1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/iterator_range.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/Config/llvm-config.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/AssemblyAnnotationWriter.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/Comdat.h"
41 #include "llvm/IR/Constant.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalIFunc.h"
48 #include "llvm/IR/GlobalObject.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/IRPrintingPasses.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/ModuleSlotTracker.h"
61 #include "llvm/IR/ModuleSummaryIndex.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/TypeFinder.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/Support/AtomicOrdering.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/Format.h"
74 #include "llvm/Support/FormattedStream.h"
75 #include "llvm/Support/SaveAndRestore.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cctype>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <memory>
84 #include <string>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 // Make virtual table appear in this compilation unit.
92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
93 
94 //===----------------------------------------------------------------------===//
95 // Helper Functions
96 //===----------------------------------------------------------------------===//
97 
98 using OrderMap = MapVector<const Value *, unsigned>;
99 
100 using UseListOrderMap =
101     DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
102 
103 /// Look for a value that might be wrapped as metadata, e.g. a value in a
104 /// metadata operand. Returns the input value as-is if it is not wrapped.
105 static const Value *skipMetadataWrapper(const Value *V) {
106   if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
107     if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
108       return VAM->getValue();
109   return V;
110 }
111 
112 static void orderValue(const Value *V, OrderMap &OM) {
113   if (OM.lookup(V))
114     return;
115 
116   if (const Constant *C = dyn_cast<Constant>(V))
117     if (C->getNumOperands() && !isa<GlobalValue>(C))
118       for (const Value *Op : C->operands())
119         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
120           orderValue(Op, OM);
121 
122   // Note: we cannot cache this lookup above, since inserting into the map
123   // changes the map's size, and thus affects the other IDs.
124   unsigned ID = OM.size() + 1;
125   OM[V] = ID;
126 }
127 
128 static OrderMap orderModule(const Module *M) {
129   OrderMap OM;
130 
131   for (const GlobalVariable &G : M->globals()) {
132     if (G.hasInitializer())
133       if (!isa<GlobalValue>(G.getInitializer()))
134         orderValue(G.getInitializer(), OM);
135     orderValue(&G, OM);
136   }
137   for (const GlobalAlias &A : M->aliases()) {
138     if (!isa<GlobalValue>(A.getAliasee()))
139       orderValue(A.getAliasee(), OM);
140     orderValue(&A, OM);
141   }
142   for (const GlobalIFunc &I : M->ifuncs()) {
143     if (!isa<GlobalValue>(I.getResolver()))
144       orderValue(I.getResolver(), OM);
145     orderValue(&I, OM);
146   }
147   for (const Function &F : *M) {
148     for (const Use &U : F.operands())
149       if (!isa<GlobalValue>(U.get()))
150         orderValue(U.get(), OM);
151 
152     orderValue(&F, OM);
153 
154     if (F.isDeclaration())
155       continue;
156 
157     for (const Argument &A : F.args())
158       orderValue(&A, OM);
159     for (const BasicBlock &BB : F) {
160       orderValue(&BB, OM);
161       for (const Instruction &I : BB) {
162         for (const Value *Op : I.operands()) {
163           Op = skipMetadataWrapper(Op);
164           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
165               isa<InlineAsm>(*Op))
166             orderValue(Op, OM);
167         }
168         orderValue(&I, OM);
169       }
170     }
171   }
172   return OM;
173 }
174 
175 static std::vector<unsigned>
176 predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
177   // Predict use-list order for this one.
178   using Entry = std::pair<const Use *, unsigned>;
179   SmallVector<Entry, 64> List;
180   for (const Use &U : V->uses())
181     // Check if this user will be serialized.
182     if (OM.lookup(U.getUser()))
183       List.push_back(std::make_pair(&U, List.size()));
184 
185   if (List.size() < 2)
186     // We may have lost some users.
187     return {};
188 
189   // When referencing a value before its declaration, a temporary value is
190   // created, which will later be RAUWed with the actual value. This reverses
191   // the use list. This happens for all values apart from basic blocks.
192   bool GetsReversed = !isa<BasicBlock>(V);
193   if (auto *BA = dyn_cast<BlockAddress>(V))
194     ID = OM.lookup(BA->getBasicBlock());
195   llvm::sort(List, [&](const Entry &L, const Entry &R) {
196     const Use *LU = L.first;
197     const Use *RU = R.first;
198     if (LU == RU)
199       return false;
200 
201     auto LID = OM.lookup(LU->getUser());
202     auto RID = OM.lookup(RU->getUser());
203 
204     // If ID is 4, then expect: 7 6 5 1 2 3.
205     if (LID < RID) {
206       if (GetsReversed)
207         if (RID <= ID)
208           return true;
209       return false;
210     }
211     if (RID < LID) {
212       if (GetsReversed)
213         if (LID <= ID)
214           return false;
215       return true;
216     }
217 
218     // LID and RID are equal, so we have different operands of the same user.
219     // Assume operands are added in order for all instructions.
220     if (GetsReversed)
221       if (LID <= ID)
222         return LU->getOperandNo() < RU->getOperandNo();
223     return LU->getOperandNo() > RU->getOperandNo();
224   });
225 
226   if (llvm::is_sorted(List, llvm::less_second()))
227     // Order is already correct.
228     return {};
229 
230   // Store the shuffle.
231   std::vector<unsigned> Shuffle(List.size());
232   for (size_t I = 0, E = List.size(); I != E; ++I)
233     Shuffle[I] = List[I].second;
234   return Shuffle;
235 }
236 
237 static UseListOrderMap predictUseListOrder(const Module *M) {
238   OrderMap OM = orderModule(M);
239   UseListOrderMap ULOM;
240   for (const auto &Pair : OM) {
241     const Value *V = Pair.first;
242     if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
243       continue;
244 
245     std::vector<unsigned> Shuffle =
246         predictValueUseListOrder(V, Pair.second, OM);
247     if (Shuffle.empty())
248       continue;
249 
250     const Function *F = nullptr;
251     if (auto *I = dyn_cast<Instruction>(V))
252       F = I->getFunction();
253     if (auto *A = dyn_cast<Argument>(V))
254       F = A->getParent();
255     if (auto *BB = dyn_cast<BasicBlock>(V))
256       F = BB->getParent();
257     ULOM[F][V] = std::move(Shuffle);
258   }
259   return ULOM;
260 }
261 
262 static const Module *getModuleFromVal(const Value *V) {
263   if (const Argument *MA = dyn_cast<Argument>(V))
264     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
265 
266   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
267     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
268 
269   if (const Instruction *I = dyn_cast<Instruction>(V)) {
270     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
271     return M ? M->getParent() : nullptr;
272   }
273 
274   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
275     return GV->getParent();
276 
277   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
278     for (const User *U : MAV->users())
279       if (isa<Instruction>(U))
280         if (const Module *M = getModuleFromVal(U))
281           return M;
282     return nullptr;
283   }
284 
285   return nullptr;
286 }
287 
288 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
289   switch (cc) {
290   default:                         Out << "cc" << cc; break;
291   case CallingConv::Fast:          Out << "fastcc"; break;
292   case CallingConv::Cold:          Out << "coldcc"; break;
293   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
294   case CallingConv::AnyReg:        Out << "anyregcc"; break;
295   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
296   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
297   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
298   case CallingConv::GHC:           Out << "ghccc"; break;
299   case CallingConv::Tail:          Out << "tailcc"; break;
300   case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
301   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
302   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
303   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
304   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
305   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
306   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
307   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
308   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
309   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
310   case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
311   case CallingConv::AArch64_SVE_VectorCall:
312     Out << "aarch64_sve_vector_pcs";
313     break;
314   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
315   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
316   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
317   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
318   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
319   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
320   case CallingConv::Win64:         Out << "win64cc"; break;
321   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
322   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
323   case CallingConv::Swift:         Out << "swiftcc"; break;
324   case CallingConv::SwiftTail:     Out << "swifttailcc"; break;
325   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
326   case CallingConv::HHVM:          Out << "hhvmcc"; break;
327   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
328   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
329   case CallingConv::AMDGPU_LS:     Out << "amdgpu_ls"; break;
330   case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
331   case CallingConv::AMDGPU_ES:     Out << "amdgpu_es"; break;
332   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
333   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
334   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
335   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
336   case CallingConv::AMDGPU_Gfx:    Out << "amdgpu_gfx"; break;
337   }
338 }
339 
340 enum PrefixType {
341   GlobalPrefix,
342   ComdatPrefix,
343   LabelPrefix,
344   LocalPrefix,
345   NoPrefix
346 };
347 
348 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
349   assert(!Name.empty() && "Cannot get empty name!");
350 
351   // Scan the name to see if it needs quotes first.
352   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
353   if (!NeedsQuotes) {
354     for (unsigned char C : Name) {
355       // By making this unsigned, the value passed in to isalnum will always be
356       // in the range 0-255.  This is important when building with MSVC because
357       // its implementation will assert.  This situation can arise when dealing
358       // with UTF-8 multibyte characters.
359       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
360           C != '_') {
361         NeedsQuotes = true;
362         break;
363       }
364     }
365   }
366 
367   // If we didn't need any quotes, just write out the name in one blast.
368   if (!NeedsQuotes) {
369     OS << Name;
370     return;
371   }
372 
373   // Okay, we need quotes.  Output the quotes and escape any scary characters as
374   // needed.
375   OS << '"';
376   printEscapedString(Name, OS);
377   OS << '"';
378 }
379 
380 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
381 /// (if the string only contains simple characters) or is surrounded with ""'s
382 /// (if it has special chars in it). Print it out.
383 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
384   switch (Prefix) {
385   case NoPrefix:
386     break;
387   case GlobalPrefix:
388     OS << '@';
389     break;
390   case ComdatPrefix:
391     OS << '$';
392     break;
393   case LabelPrefix:
394     break;
395   case LocalPrefix:
396     OS << '%';
397     break;
398   }
399   printLLVMNameWithoutPrefix(OS, Name);
400 }
401 
402 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
403 /// (if the string only contains simple characters) or is surrounded with ""'s
404 /// (if it has special chars in it). Print it out.
405 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
406   PrintLLVMName(OS, V->getName(),
407                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
408 }
409 
410 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
411   Out << ", <";
412   if (isa<ScalableVectorType>(Ty))
413     Out << "vscale x ";
414   Out << Mask.size() << " x i32> ";
415   bool FirstElt = true;
416   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
417     Out << "zeroinitializer";
418   } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
419     Out << "undef";
420   } else {
421     Out << "<";
422     for (int Elt : Mask) {
423       if (FirstElt)
424         FirstElt = false;
425       else
426         Out << ", ";
427       Out << "i32 ";
428       if (Elt == UndefMaskElem)
429         Out << "undef";
430       else
431         Out << Elt;
432     }
433     Out << ">";
434   }
435 }
436 
437 namespace {
438 
439 class TypePrinting {
440 public:
441   TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
442 
443   TypePrinting(const TypePrinting &) = delete;
444   TypePrinting &operator=(const TypePrinting &) = delete;
445 
446   /// The named types that are used by the current module.
447   TypeFinder &getNamedTypes();
448 
449   /// The numbered types, number to type mapping.
450   std::vector<StructType *> &getNumberedTypes();
451 
452   bool empty();
453 
454   void print(Type *Ty, raw_ostream &OS);
455 
456   void printStructBody(StructType *Ty, raw_ostream &OS);
457 
458 private:
459   void incorporateTypes();
460 
461   /// A module to process lazily when needed. Set to nullptr as soon as used.
462   const Module *DeferredM;
463 
464   TypeFinder NamedTypes;
465 
466   // The numbered types, along with their value.
467   DenseMap<StructType *, unsigned> Type2Number;
468 
469   std::vector<StructType *> NumberedTypes;
470 };
471 
472 } // end anonymous namespace
473 
474 TypeFinder &TypePrinting::getNamedTypes() {
475   incorporateTypes();
476   return NamedTypes;
477 }
478 
479 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
480   incorporateTypes();
481 
482   // We know all the numbers that each type is used and we know that it is a
483   // dense assignment. Convert the map to an index table, if it's not done
484   // already (judging from the sizes):
485   if (NumberedTypes.size() == Type2Number.size())
486     return NumberedTypes;
487 
488   NumberedTypes.resize(Type2Number.size());
489   for (const auto &P : Type2Number) {
490     assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
491     assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
492     NumberedTypes[P.second] = P.first;
493   }
494   return NumberedTypes;
495 }
496 
497 bool TypePrinting::empty() {
498   incorporateTypes();
499   return NamedTypes.empty() && Type2Number.empty();
500 }
501 
502 void TypePrinting::incorporateTypes() {
503   if (!DeferredM)
504     return;
505 
506   NamedTypes.run(*DeferredM, false);
507   DeferredM = nullptr;
508 
509   // The list of struct types we got back includes all the struct types, split
510   // the unnamed ones out to a numbering and remove the anonymous structs.
511   unsigned NextNumber = 0;
512 
513   std::vector<StructType *>::iterator NextToUse = NamedTypes.begin();
514   for (StructType *STy : NamedTypes) {
515     // Ignore anonymous types.
516     if (STy->isLiteral())
517       continue;
518 
519     if (STy->getName().empty())
520       Type2Number[STy] = NextNumber++;
521     else
522       *NextToUse++ = STy;
523   }
524 
525   NamedTypes.erase(NextToUse, NamedTypes.end());
526 }
527 
528 /// Write the specified type to the specified raw_ostream, making use of type
529 /// names or up references to shorten the type name where possible.
530 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
531   switch (Ty->getTypeID()) {
532   case Type::VoidTyID:      OS << "void"; return;
533   case Type::HalfTyID:      OS << "half"; return;
534   case Type::BFloatTyID:    OS << "bfloat"; return;
535   case Type::FloatTyID:     OS << "float"; return;
536   case Type::DoubleTyID:    OS << "double"; return;
537   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
538   case Type::FP128TyID:     OS << "fp128"; return;
539   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
540   case Type::LabelTyID:     OS << "label"; return;
541   case Type::MetadataTyID:  OS << "metadata"; return;
542   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
543   case Type::X86_AMXTyID:   OS << "x86_amx"; return;
544   case Type::TokenTyID:     OS << "token"; return;
545   case Type::IntegerTyID:
546     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
547     return;
548 
549   case Type::FunctionTyID: {
550     FunctionType *FTy = cast<FunctionType>(Ty);
551     print(FTy->getReturnType(), OS);
552     OS << " (";
553     ListSeparator LS;
554     for (Type *Ty : FTy->params()) {
555       OS << LS;
556       print(Ty, OS);
557     }
558     if (FTy->isVarArg())
559       OS << LS << "...";
560     OS << ')';
561     return;
562   }
563   case Type::StructTyID: {
564     StructType *STy = cast<StructType>(Ty);
565 
566     if (STy->isLiteral())
567       return printStructBody(STy, OS);
568 
569     if (!STy->getName().empty())
570       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
571 
572     incorporateTypes();
573     const auto I = Type2Number.find(STy);
574     if (I != Type2Number.end())
575       OS << '%' << I->second;
576     else  // Not enumerated, print the hex address.
577       OS << "%\"type " << STy << '\"';
578     return;
579   }
580   case Type::PointerTyID: {
581     PointerType *PTy = cast<PointerType>(Ty);
582     if (PTy->isOpaque()) {
583       OS << "ptr";
584       if (unsigned AddressSpace = PTy->getAddressSpace())
585         OS << " addrspace(" << AddressSpace << ')';
586       return;
587     }
588     print(PTy->getNonOpaquePointerElementType(), OS);
589     if (unsigned AddressSpace = PTy->getAddressSpace())
590       OS << " addrspace(" << AddressSpace << ')';
591     OS << '*';
592     return;
593   }
594   case Type::ArrayTyID: {
595     ArrayType *ATy = cast<ArrayType>(Ty);
596     OS << '[' << ATy->getNumElements() << " x ";
597     print(ATy->getElementType(), OS);
598     OS << ']';
599     return;
600   }
601   case Type::FixedVectorTyID:
602   case Type::ScalableVectorTyID: {
603     VectorType *PTy = cast<VectorType>(Ty);
604     ElementCount EC = PTy->getElementCount();
605     OS << "<";
606     if (EC.isScalable())
607       OS << "vscale x ";
608     OS << EC.getKnownMinValue() << " x ";
609     print(PTy->getElementType(), OS);
610     OS << '>';
611     return;
612   }
613   case Type::DXILPointerTyID:
614     // DXIL pointer types are only handled by the DirectX backend. To avoid
615     // extra dependencies we just print the pointer's address here.
616     OS << "dxil-ptr (" << Ty << ")";
617     return;
618   }
619   llvm_unreachable("Invalid TypeID");
620 }
621 
622 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
623   if (STy->isOpaque()) {
624     OS << "opaque";
625     return;
626   }
627 
628   if (STy->isPacked())
629     OS << '<';
630 
631   if (STy->getNumElements() == 0) {
632     OS << "{}";
633   } else {
634     OS << "{ ";
635     ListSeparator LS;
636     for (Type *Ty : STy->elements()) {
637       OS << LS;
638       print(Ty, OS);
639     }
640 
641     OS << " }";
642   }
643   if (STy->isPacked())
644     OS << '>';
645 }
646 
647 AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() = default;
648 
649 namespace llvm {
650 
651 //===----------------------------------------------------------------------===//
652 // SlotTracker Class: Enumerate slot numbers for unnamed values
653 //===----------------------------------------------------------------------===//
654 /// This class provides computation of slot numbers for LLVM Assembly writing.
655 ///
656 class SlotTracker : public AbstractSlotTrackerStorage {
657 public:
658   /// ValueMap - A mapping of Values to slot numbers.
659   using ValueMap = DenseMap<const Value *, unsigned>;
660 
661 private:
662   /// TheModule - The module for which we are holding slot numbers.
663   const Module* TheModule;
664 
665   /// TheFunction - The function for which we are holding slot numbers.
666   const Function* TheFunction = nullptr;
667   bool FunctionProcessed = false;
668   bool ShouldInitializeAllMetadata;
669 
670   std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
671       ProcessModuleHookFn;
672   std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
673       ProcessFunctionHookFn;
674 
675   /// The summary index for which we are holding slot numbers.
676   const ModuleSummaryIndex *TheIndex = nullptr;
677 
678   /// mMap - The slot map for the module level data.
679   ValueMap mMap;
680   unsigned mNext = 0;
681 
682   /// fMap - The slot map for the function level data.
683   ValueMap fMap;
684   unsigned fNext = 0;
685 
686   /// mdnMap - Map for MDNodes.
687   DenseMap<const MDNode*, unsigned> mdnMap;
688   unsigned mdnNext = 0;
689 
690   /// asMap - The slot map for attribute sets.
691   DenseMap<AttributeSet, unsigned> asMap;
692   unsigned asNext = 0;
693 
694   /// ModulePathMap - The slot map for Module paths used in the summary index.
695   StringMap<unsigned> ModulePathMap;
696   unsigned ModulePathNext = 0;
697 
698   /// GUIDMap - The slot map for GUIDs used in the summary index.
699   DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
700   unsigned GUIDNext = 0;
701 
702   /// TypeIdMap - The slot map for type ids used in the summary index.
703   StringMap<unsigned> TypeIdMap;
704   unsigned TypeIdNext = 0;
705 
706 public:
707   /// Construct from a module.
708   ///
709   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
710   /// functions, giving correct numbering for metadata referenced only from
711   /// within a function (even if no functions have been initialized).
712   explicit SlotTracker(const Module *M,
713                        bool ShouldInitializeAllMetadata = false);
714 
715   /// Construct from a function, starting out in incorp state.
716   ///
717   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
718   /// functions, giving correct numbering for metadata referenced only from
719   /// within a function (even if no functions have been initialized).
720   explicit SlotTracker(const Function *F,
721                        bool ShouldInitializeAllMetadata = false);
722 
723   /// Construct from a module summary index.
724   explicit SlotTracker(const ModuleSummaryIndex *Index);
725 
726   SlotTracker(const SlotTracker &) = delete;
727   SlotTracker &operator=(const SlotTracker &) = delete;
728 
729   ~SlotTracker() = default;
730 
731   void setProcessHook(
732       std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
733   void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
734                                          const Function *, bool)>);
735 
736   unsigned getNextMetadataSlot() override { return mdnNext; }
737 
738   void createMetadataSlot(const MDNode *N) override;
739 
740   /// Return the slot number of the specified value in it's type
741   /// plane.  If something is not in the SlotTracker, return -1.
742   int getLocalSlot(const Value *V);
743   int getGlobalSlot(const GlobalValue *V);
744   int getMetadataSlot(const MDNode *N) override;
745   int getAttributeGroupSlot(AttributeSet AS);
746   int getModulePathSlot(StringRef Path);
747   int getGUIDSlot(GlobalValue::GUID GUID);
748   int getTypeIdSlot(StringRef Id);
749 
750   /// If you'd like to deal with a function instead of just a module, use
751   /// this method to get its data into the SlotTracker.
752   void incorporateFunction(const Function *F) {
753     TheFunction = F;
754     FunctionProcessed = false;
755   }
756 
757   const Function *getFunction() const { return TheFunction; }
758 
759   /// After calling incorporateFunction, use this method to remove the
760   /// most recently incorporated function from the SlotTracker. This
761   /// will reset the state of the machine back to just the module contents.
762   void purgeFunction();
763 
764   /// MDNode map iterators.
765   using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
766 
767   mdn_iterator mdn_begin() { return mdnMap.begin(); }
768   mdn_iterator mdn_end() { return mdnMap.end(); }
769   unsigned mdn_size() const { return mdnMap.size(); }
770   bool mdn_empty() const { return mdnMap.empty(); }
771 
772   /// AttributeSet map iterators.
773   using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
774 
775   as_iterator as_begin()   { return asMap.begin(); }
776   as_iterator as_end()     { return asMap.end(); }
777   unsigned as_size() const { return asMap.size(); }
778   bool as_empty() const    { return asMap.empty(); }
779 
780   /// GUID map iterators.
781   using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
782 
783   /// These functions do the actual initialization.
784   inline void initializeIfNeeded();
785   int initializeIndexIfNeeded();
786 
787   // Implementation Details
788 private:
789   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
790   void CreateModuleSlot(const GlobalValue *V);
791 
792   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
793   void CreateMetadataSlot(const MDNode *N);
794 
795   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
796   void CreateFunctionSlot(const Value *V);
797 
798   /// Insert the specified AttributeSet into the slot table.
799   void CreateAttributeSetSlot(AttributeSet AS);
800 
801   inline void CreateModulePathSlot(StringRef Path);
802   void CreateGUIDSlot(GlobalValue::GUID GUID);
803   void CreateTypeIdSlot(StringRef Id);
804 
805   /// Add all of the module level global variables (and their initializers)
806   /// and function declarations, but not the contents of those functions.
807   void processModule();
808   // Returns number of allocated slots
809   int processIndex();
810 
811   /// Add all of the functions arguments, basic blocks, and instructions.
812   void processFunction();
813 
814   /// Add the metadata directly attached to a GlobalObject.
815   void processGlobalObjectMetadata(const GlobalObject &GO);
816 
817   /// Add all of the metadata from a function.
818   void processFunctionMetadata(const Function &F);
819 
820   /// Add all of the metadata from an instruction.
821   void processInstructionMetadata(const Instruction &I);
822 };
823 
824 } // end namespace llvm
825 
826 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
827                                      const Function *F)
828     : M(M), F(F), Machine(&Machine) {}
829 
830 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
831                                      bool ShouldInitializeAllMetadata)
832     : ShouldCreateStorage(M),
833       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
834 
835 ModuleSlotTracker::~ModuleSlotTracker() = default;
836 
837 SlotTracker *ModuleSlotTracker::getMachine() {
838   if (!ShouldCreateStorage)
839     return Machine;
840 
841   ShouldCreateStorage = false;
842   MachineStorage =
843       std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
844   Machine = MachineStorage.get();
845   if (ProcessModuleHookFn)
846     Machine->setProcessHook(ProcessModuleHookFn);
847   if (ProcessFunctionHookFn)
848     Machine->setProcessHook(ProcessFunctionHookFn);
849   return Machine;
850 }
851 
852 void ModuleSlotTracker::incorporateFunction(const Function &F) {
853   // Using getMachine() may lazily create the slot tracker.
854   if (!getMachine())
855     return;
856 
857   // Nothing to do if this is the right function already.
858   if (this->F == &F)
859     return;
860   if (this->F)
861     Machine->purgeFunction();
862   Machine->incorporateFunction(&F);
863   this->F = &F;
864 }
865 
866 int ModuleSlotTracker::getLocalSlot(const Value *V) {
867   assert(F && "No function incorporated");
868   return Machine->getLocalSlot(V);
869 }
870 
871 void ModuleSlotTracker::setProcessHook(
872     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
873         Fn) {
874   ProcessModuleHookFn = Fn;
875 }
876 
877 void ModuleSlotTracker::setProcessHook(
878     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
879         Fn) {
880   ProcessFunctionHookFn = Fn;
881 }
882 
883 static SlotTracker *createSlotTracker(const Value *V) {
884   if (const Argument *FA = dyn_cast<Argument>(V))
885     return new SlotTracker(FA->getParent());
886 
887   if (const Instruction *I = dyn_cast<Instruction>(V))
888     if (I->getParent())
889       return new SlotTracker(I->getParent()->getParent());
890 
891   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
892     return new SlotTracker(BB->getParent());
893 
894   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
895     return new SlotTracker(GV->getParent());
896 
897   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
898     return new SlotTracker(GA->getParent());
899 
900   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
901     return new SlotTracker(GIF->getParent());
902 
903   if (const Function *Func = dyn_cast<Function>(V))
904     return new SlotTracker(Func);
905 
906   return nullptr;
907 }
908 
909 #if 0
910 #define ST_DEBUG(X) dbgs() << X
911 #else
912 #define ST_DEBUG(X)
913 #endif
914 
915 // Module level constructor. Causes the contents of the Module (sans functions)
916 // to be added to the slot table.
917 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
918     : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
919 
920 // Function level constructor. Causes the contents of the Module and the one
921 // function provided to be added to the slot table.
922 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
923     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
924       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
925 
926 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
927     : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
928 
929 inline void SlotTracker::initializeIfNeeded() {
930   if (TheModule) {
931     processModule();
932     TheModule = nullptr; ///< Prevent re-processing next time we're called.
933   }
934 
935   if (TheFunction && !FunctionProcessed)
936     processFunction();
937 }
938 
939 int SlotTracker::initializeIndexIfNeeded() {
940   if (!TheIndex)
941     return 0;
942   int NumSlots = processIndex();
943   TheIndex = nullptr; ///< Prevent re-processing next time we're called.
944   return NumSlots;
945 }
946 
947 // Iterate through all the global variables, functions, and global
948 // variable initializers and create slots for them.
949 void SlotTracker::processModule() {
950   ST_DEBUG("begin processModule!\n");
951 
952   // Add all of the unnamed global variables to the value table.
953   for (const GlobalVariable &Var : TheModule->globals()) {
954     if (!Var.hasName())
955       CreateModuleSlot(&Var);
956     processGlobalObjectMetadata(Var);
957     auto Attrs = Var.getAttributes();
958     if (Attrs.hasAttributes())
959       CreateAttributeSetSlot(Attrs);
960   }
961 
962   for (const GlobalAlias &A : TheModule->aliases()) {
963     if (!A.hasName())
964       CreateModuleSlot(&A);
965   }
966 
967   for (const GlobalIFunc &I : TheModule->ifuncs()) {
968     if (!I.hasName())
969       CreateModuleSlot(&I);
970   }
971 
972   // Add metadata used by named metadata.
973   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
974     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
975       CreateMetadataSlot(NMD.getOperand(i));
976   }
977 
978   for (const Function &F : *TheModule) {
979     if (!F.hasName())
980       // Add all the unnamed functions to the table.
981       CreateModuleSlot(&F);
982 
983     if (ShouldInitializeAllMetadata)
984       processFunctionMetadata(F);
985 
986     // Add all the function attributes to the table.
987     // FIXME: Add attributes of other objects?
988     AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
989     if (FnAttrs.hasAttributes())
990       CreateAttributeSetSlot(FnAttrs);
991   }
992 
993   if (ProcessModuleHookFn)
994     ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
995 
996   ST_DEBUG("end processModule!\n");
997 }
998 
999 // Process the arguments, basic blocks, and instructions  of a function.
1000 void SlotTracker::processFunction() {
1001   ST_DEBUG("begin processFunction!\n");
1002   fNext = 0;
1003 
1004   // Process function metadata if it wasn't hit at the module-level.
1005   if (!ShouldInitializeAllMetadata)
1006     processFunctionMetadata(*TheFunction);
1007 
1008   // Add all the function arguments with no names.
1009   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1010       AE = TheFunction->arg_end(); AI != AE; ++AI)
1011     if (!AI->hasName())
1012       CreateFunctionSlot(&*AI);
1013 
1014   ST_DEBUG("Inserting Instructions:\n");
1015 
1016   // Add all of the basic blocks and instructions with no names.
1017   for (auto &BB : *TheFunction) {
1018     if (!BB.hasName())
1019       CreateFunctionSlot(&BB);
1020 
1021     for (auto &I : BB) {
1022       if (!I.getType()->isVoidTy() && !I.hasName())
1023         CreateFunctionSlot(&I);
1024 
1025       // We allow direct calls to any llvm.foo function here, because the
1026       // target may not be linked into the optimizer.
1027       if (const auto *Call = dyn_cast<CallBase>(&I)) {
1028         // Add all the call attributes to the table.
1029         AttributeSet Attrs = Call->getAttributes().getFnAttrs();
1030         if (Attrs.hasAttributes())
1031           CreateAttributeSetSlot(Attrs);
1032       }
1033     }
1034   }
1035 
1036   if (ProcessFunctionHookFn)
1037     ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1038 
1039   FunctionProcessed = true;
1040 
1041   ST_DEBUG("end processFunction!\n");
1042 }
1043 
1044 // Iterate through all the GUID in the index and create slots for them.
1045 int SlotTracker::processIndex() {
1046   ST_DEBUG("begin processIndex!\n");
1047   assert(TheIndex);
1048 
1049   // The first block of slots are just the module ids, which start at 0 and are
1050   // assigned consecutively. Since the StringMap iteration order isn't
1051   // guaranteed, use a std::map to order by module ID before assigning slots.
1052   std::map<uint64_t, StringRef> ModuleIdToPathMap;
1053   for (auto &ModPath : TheIndex->modulePaths())
1054     ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1055   for (auto &ModPair : ModuleIdToPathMap)
1056     CreateModulePathSlot(ModPair.second);
1057 
1058   // Start numbering the GUIDs after the module ids.
1059   GUIDNext = ModulePathNext;
1060 
1061   for (auto &GlobalList : *TheIndex)
1062     CreateGUIDSlot(GlobalList.first);
1063 
1064   for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1065     CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1066 
1067   // Start numbering the TypeIds after the GUIDs.
1068   TypeIdNext = GUIDNext;
1069   for (const auto &TID : TheIndex->typeIds())
1070     CreateTypeIdSlot(TID.second.first);
1071 
1072   ST_DEBUG("end processIndex!\n");
1073   return TypeIdNext;
1074 }
1075 
1076 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1077   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1078   GO.getAllMetadata(MDs);
1079   for (auto &MD : MDs)
1080     CreateMetadataSlot(MD.second);
1081 }
1082 
1083 void SlotTracker::processFunctionMetadata(const Function &F) {
1084   processGlobalObjectMetadata(F);
1085   for (auto &BB : F) {
1086     for (auto &I : BB)
1087       processInstructionMetadata(I);
1088   }
1089 }
1090 
1091 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1092   // Process metadata used directly by intrinsics.
1093   if (const CallInst *CI = dyn_cast<CallInst>(&I))
1094     if (Function *F = CI->getCalledFunction())
1095       if (F->isIntrinsic())
1096         for (auto &Op : I.operands())
1097           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1098             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1099               CreateMetadataSlot(N);
1100 
1101   // Process metadata attached to this instruction.
1102   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1103   I.getAllMetadata(MDs);
1104   for (auto &MD : MDs)
1105     CreateMetadataSlot(MD.second);
1106 }
1107 
1108 /// Clean up after incorporating a function. This is the only way to get out of
1109 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1110 /// incorporation state is indicated by TheFunction != 0.
1111 void SlotTracker::purgeFunction() {
1112   ST_DEBUG("begin purgeFunction!\n");
1113   fMap.clear(); // Simply discard the function level map
1114   TheFunction = nullptr;
1115   FunctionProcessed = false;
1116   ST_DEBUG("end purgeFunction!\n");
1117 }
1118 
1119 /// getGlobalSlot - Get the slot number of a global value.
1120 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1121   // Check for uninitialized state and do lazy initialization.
1122   initializeIfNeeded();
1123 
1124   // Find the value in the module map
1125   ValueMap::iterator MI = mMap.find(V);
1126   return MI == mMap.end() ? -1 : (int)MI->second;
1127 }
1128 
1129 void SlotTracker::setProcessHook(
1130     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
1131         Fn) {
1132   ProcessModuleHookFn = Fn;
1133 }
1134 
1135 void SlotTracker::setProcessHook(
1136     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
1137         Fn) {
1138   ProcessFunctionHookFn = Fn;
1139 }
1140 
1141 /// getMetadataSlot - Get the slot number of a MDNode.
1142 void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
1143 
1144 /// getMetadataSlot - Get the slot number of a MDNode.
1145 int SlotTracker::getMetadataSlot(const MDNode *N) {
1146   // Check for uninitialized state and do lazy initialization.
1147   initializeIfNeeded();
1148 
1149   // Find the MDNode in the module map
1150   mdn_iterator MI = mdnMap.find(N);
1151   return MI == mdnMap.end() ? -1 : (int)MI->second;
1152 }
1153 
1154 /// getLocalSlot - Get the slot number for a value that is local to a function.
1155 int SlotTracker::getLocalSlot(const Value *V) {
1156   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1157 
1158   // Check for uninitialized state and do lazy initialization.
1159   initializeIfNeeded();
1160 
1161   ValueMap::iterator FI = fMap.find(V);
1162   return FI == fMap.end() ? -1 : (int)FI->second;
1163 }
1164 
1165 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1166   // Check for uninitialized state and do lazy initialization.
1167   initializeIfNeeded();
1168 
1169   // Find the AttributeSet in the module map.
1170   as_iterator AI = asMap.find(AS);
1171   return AI == asMap.end() ? -1 : (int)AI->second;
1172 }
1173 
1174 int SlotTracker::getModulePathSlot(StringRef Path) {
1175   // Check for uninitialized state and do lazy initialization.
1176   initializeIndexIfNeeded();
1177 
1178   // Find the Module path in the map
1179   auto I = ModulePathMap.find(Path);
1180   return I == ModulePathMap.end() ? -1 : (int)I->second;
1181 }
1182 
1183 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1184   // Check for uninitialized state and do lazy initialization.
1185   initializeIndexIfNeeded();
1186 
1187   // Find the GUID in the map
1188   guid_iterator I = GUIDMap.find(GUID);
1189   return I == GUIDMap.end() ? -1 : (int)I->second;
1190 }
1191 
1192 int SlotTracker::getTypeIdSlot(StringRef Id) {
1193   // Check for uninitialized state and do lazy initialization.
1194   initializeIndexIfNeeded();
1195 
1196   // Find the TypeId string in the map
1197   auto I = TypeIdMap.find(Id);
1198   return I == TypeIdMap.end() ? -1 : (int)I->second;
1199 }
1200 
1201 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1202 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1203   assert(V && "Can't insert a null Value into SlotTracker!");
1204   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1205   assert(!V->hasName() && "Doesn't need a slot!");
1206 
1207   unsigned DestSlot = mNext++;
1208   mMap[V] = DestSlot;
1209 
1210   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1211            DestSlot << " [");
1212   // G = Global, F = Function, A = Alias, I = IFunc, o = other
1213   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1214             (isa<Function>(V) ? 'F' :
1215              (isa<GlobalAlias>(V) ? 'A' :
1216               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1217 }
1218 
1219 /// CreateSlot - Create a new slot for the specified value if it has no name.
1220 void SlotTracker::CreateFunctionSlot(const Value *V) {
1221   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1222 
1223   unsigned DestSlot = fNext++;
1224   fMap[V] = DestSlot;
1225 
1226   // G = Global, F = Function, o = other
1227   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1228            DestSlot << " [o]\n");
1229 }
1230 
1231 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1232 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1233   assert(N && "Can't insert a null Value into SlotTracker!");
1234 
1235   // Don't make slots for DIExpressions or DIArgLists. We just print them inline
1236   // everywhere.
1237   if (isa<DIExpression>(N) || isa<DIArgList>(N))
1238     return;
1239 
1240   unsigned DestSlot = mdnNext;
1241   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1242     return;
1243   ++mdnNext;
1244 
1245   // Recursively add any MDNodes referenced by operands.
1246   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1247     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1248       CreateMetadataSlot(Op);
1249 }
1250 
1251 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1252   assert(AS.hasAttributes() && "Doesn't need a slot!");
1253 
1254   as_iterator I = asMap.find(AS);
1255   if (I != asMap.end())
1256     return;
1257 
1258   unsigned DestSlot = asNext++;
1259   asMap[AS] = DestSlot;
1260 }
1261 
1262 /// Create a new slot for the specified Module
1263 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1264   ModulePathMap[Path] = ModulePathNext++;
1265 }
1266 
1267 /// Create a new slot for the specified GUID
1268 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1269   GUIDMap[GUID] = GUIDNext++;
1270 }
1271 
1272 /// Create a new slot for the specified Id
1273 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1274   TypeIdMap[Id] = TypeIdNext++;
1275 }
1276 
1277 namespace {
1278 /// Common instances used by most of the printer functions.
1279 struct AsmWriterContext {
1280   TypePrinting *TypePrinter = nullptr;
1281   SlotTracker *Machine = nullptr;
1282   const Module *Context = nullptr;
1283 
1284   AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr)
1285       : TypePrinter(TP), Machine(ST), Context(M) {}
1286 
1287   static AsmWriterContext &getEmpty() {
1288     static AsmWriterContext EmptyCtx(nullptr, nullptr);
1289     return EmptyCtx;
1290   }
1291 
1292   /// A callback that will be triggered when the underlying printer
1293   /// prints a Metadata as operand.
1294   virtual void onWriteMetadataAsOperand(const Metadata *) {}
1295 
1296   virtual ~AsmWriterContext() = default;
1297 };
1298 } // end anonymous namespace
1299 
1300 //===----------------------------------------------------------------------===//
1301 // AsmWriter Implementation
1302 //===----------------------------------------------------------------------===//
1303 
1304 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1305                                    AsmWriterContext &WriterCtx);
1306 
1307 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1308                                    AsmWriterContext &WriterCtx,
1309                                    bool FromValue = false);
1310 
1311 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1312   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U))
1313     Out << FPO->getFastMathFlags();
1314 
1315   if (const OverflowingBinaryOperator *OBO =
1316         dyn_cast<OverflowingBinaryOperator>(U)) {
1317     if (OBO->hasNoUnsignedWrap())
1318       Out << " nuw";
1319     if (OBO->hasNoSignedWrap())
1320       Out << " nsw";
1321   } else if (const PossiblyExactOperator *Div =
1322                dyn_cast<PossiblyExactOperator>(U)) {
1323     if (Div->isExact())
1324       Out << " exact";
1325   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1326     if (GEP->isInBounds())
1327       Out << " inbounds";
1328   }
1329 }
1330 
1331 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1332                                   AsmWriterContext &WriterCtx) {
1333   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1334     if (CI->getType()->isIntegerTy(1)) {
1335       Out << (CI->getZExtValue() ? "true" : "false");
1336       return;
1337     }
1338     Out << CI->getValue();
1339     return;
1340   }
1341 
1342   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1343     const APFloat &APF = CFP->getValueAPF();
1344     if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1345         &APF.getSemantics() == &APFloat::IEEEdouble()) {
1346       // We would like to output the FP constant value in exponential notation,
1347       // but we cannot do this if doing so will lose precision.  Check here to
1348       // make sure that we only output it in exponential format if we can parse
1349       // the value back and get the same value.
1350       //
1351       bool ignored;
1352       bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1353       bool isInf = APF.isInfinity();
1354       bool isNaN = APF.isNaN();
1355       if (!isInf && !isNaN) {
1356         double Val = APF.convertToDouble();
1357         SmallString<128> StrVal;
1358         APF.toString(StrVal, 6, 0, false);
1359         // Check to make sure that the stringized number is not some string like
1360         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1361         // that the string matches the "[-+]?[0-9]" regex.
1362         //
1363         assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') &&
1364                                        isDigit(StrVal[1]))) &&
1365                "[-+]?[0-9] regex does not match!");
1366         // Reparse stringized version!
1367         if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1368           Out << StrVal;
1369           return;
1370         }
1371       }
1372       // Otherwise we could not reparse it to exactly the same value, so we must
1373       // output the string in hexadecimal format!  Note that loading and storing
1374       // floating point types changes the bits of NaNs on some hosts, notably
1375       // x86, so we must not use these types.
1376       static_assert(sizeof(double) == sizeof(uint64_t),
1377                     "assuming that double is 64 bits!");
1378       APFloat apf = APF;
1379       // Floats are represented in ASCII IR as double, convert.
1380       // FIXME: We should allow 32-bit hex float and remove this.
1381       if (!isDouble) {
1382         // A signaling NaN is quieted on conversion, so we need to recreate the
1383         // expected value after convert (quiet bit of the payload is clear).
1384         bool IsSNAN = apf.isSignaling();
1385         apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1386                     &ignored);
1387         if (IsSNAN) {
1388           APInt Payload = apf.bitcastToAPInt();
1389           apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(),
1390                                  &Payload);
1391         }
1392       }
1393       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1394       return;
1395     }
1396 
1397     // Either half, bfloat or some form of long double.
1398     // These appear as a magic letter identifying the type, then a
1399     // fixed number of hex digits.
1400     Out << "0x";
1401     APInt API = APF.bitcastToAPInt();
1402     if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1403       Out << 'K';
1404       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1405                                   /*Upper=*/true);
1406       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1407                                   /*Upper=*/true);
1408       return;
1409     } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1410       Out << 'L';
1411       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1412                                   /*Upper=*/true);
1413       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1414                                   /*Upper=*/true);
1415     } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1416       Out << 'M';
1417       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1418                                   /*Upper=*/true);
1419       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1420                                   /*Upper=*/true);
1421     } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1422       Out << 'H';
1423       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1424                                   /*Upper=*/true);
1425     } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1426       Out << 'R';
1427       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1428                                   /*Upper=*/true);
1429     } else
1430       llvm_unreachable("Unsupported floating point type");
1431     return;
1432   }
1433 
1434   if (isa<ConstantAggregateZero>(CV)) {
1435     Out << "zeroinitializer";
1436     return;
1437   }
1438 
1439   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1440     Out << "blockaddress(";
1441     WriteAsOperandInternal(Out, BA->getFunction(), WriterCtx);
1442     Out << ", ";
1443     WriteAsOperandInternal(Out, BA->getBasicBlock(), WriterCtx);
1444     Out << ")";
1445     return;
1446   }
1447 
1448   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1449     Out << "dso_local_equivalent ";
1450     WriteAsOperandInternal(Out, Equiv->getGlobalValue(), WriterCtx);
1451     return;
1452   }
1453 
1454   if (const auto *NC = dyn_cast<NoCFIValue>(CV)) {
1455     Out << "no_cfi ";
1456     WriteAsOperandInternal(Out, NC->getGlobalValue(), WriterCtx);
1457     return;
1458   }
1459 
1460   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1461     Type *ETy = CA->getType()->getElementType();
1462     Out << '[';
1463     WriterCtx.TypePrinter->print(ETy, Out);
1464     Out << ' ';
1465     WriteAsOperandInternal(Out, CA->getOperand(0), WriterCtx);
1466     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1467       Out << ", ";
1468       WriterCtx.TypePrinter->print(ETy, Out);
1469       Out << ' ';
1470       WriteAsOperandInternal(Out, CA->getOperand(i), WriterCtx);
1471     }
1472     Out << ']';
1473     return;
1474   }
1475 
1476   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1477     // As a special case, print the array as a string if it is an array of
1478     // i8 with ConstantInt values.
1479     if (CA->isString()) {
1480       Out << "c\"";
1481       printEscapedString(CA->getAsString(), Out);
1482       Out << '"';
1483       return;
1484     }
1485 
1486     Type *ETy = CA->getType()->getElementType();
1487     Out << '[';
1488     WriterCtx.TypePrinter->print(ETy, Out);
1489     Out << ' ';
1490     WriteAsOperandInternal(Out, CA->getElementAsConstant(0), WriterCtx);
1491     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1492       Out << ", ";
1493       WriterCtx.TypePrinter->print(ETy, Out);
1494       Out << ' ';
1495       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), WriterCtx);
1496     }
1497     Out << ']';
1498     return;
1499   }
1500 
1501   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1502     if (CS->getType()->isPacked())
1503       Out << '<';
1504     Out << '{';
1505     unsigned N = CS->getNumOperands();
1506     if (N) {
1507       Out << ' ';
1508       WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out);
1509       Out << ' ';
1510 
1511       WriteAsOperandInternal(Out, CS->getOperand(0), WriterCtx);
1512 
1513       for (unsigned i = 1; i < N; i++) {
1514         Out << ", ";
1515         WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out);
1516         Out << ' ';
1517 
1518         WriteAsOperandInternal(Out, CS->getOperand(i), WriterCtx);
1519       }
1520       Out << ' ';
1521     }
1522 
1523     Out << '}';
1524     if (CS->getType()->isPacked())
1525       Out << '>';
1526     return;
1527   }
1528 
1529   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1530     auto *CVVTy = cast<FixedVectorType>(CV->getType());
1531     Type *ETy = CVVTy->getElementType();
1532     Out << '<';
1533     WriterCtx.TypePrinter->print(ETy, Out);
1534     Out << ' ';
1535     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), WriterCtx);
1536     for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1537       Out << ", ";
1538       WriterCtx.TypePrinter->print(ETy, Out);
1539       Out << ' ';
1540       WriteAsOperandInternal(Out, CV->getAggregateElement(i), WriterCtx);
1541     }
1542     Out << '>';
1543     return;
1544   }
1545 
1546   if (isa<ConstantPointerNull>(CV)) {
1547     Out << "null";
1548     return;
1549   }
1550 
1551   if (isa<ConstantTokenNone>(CV)) {
1552     Out << "none";
1553     return;
1554   }
1555 
1556   if (isa<PoisonValue>(CV)) {
1557     Out << "poison";
1558     return;
1559   }
1560 
1561   if (isa<UndefValue>(CV)) {
1562     Out << "undef";
1563     return;
1564   }
1565 
1566   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1567     Out << CE->getOpcodeName();
1568     WriteOptimizationInfo(Out, CE);
1569     if (CE->isCompare())
1570       Out << ' ' << CmpInst::getPredicateName(
1571                         static_cast<CmpInst::Predicate>(CE->getPredicate()));
1572     Out << " (";
1573 
1574     Optional<unsigned> InRangeOp;
1575     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1576       WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out);
1577       Out << ", ";
1578       InRangeOp = GEP->getInRangeIndex();
1579       if (InRangeOp)
1580         ++*InRangeOp;
1581     }
1582 
1583     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1584       if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1585         Out << "inrange ";
1586       WriterCtx.TypePrinter->print((*OI)->getType(), Out);
1587       Out << ' ';
1588       WriteAsOperandInternal(Out, *OI, WriterCtx);
1589       if (OI+1 != CE->op_end())
1590         Out << ", ";
1591     }
1592 
1593     if (CE->hasIndices())
1594       for (unsigned I : CE->getIndices())
1595         Out << ", " << I;
1596 
1597     if (CE->isCast()) {
1598       Out << " to ";
1599       WriterCtx.TypePrinter->print(CE->getType(), Out);
1600     }
1601 
1602     if (CE->getOpcode() == Instruction::ShuffleVector)
1603       PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1604 
1605     Out << ')';
1606     return;
1607   }
1608 
1609   Out << "<placeholder or erroneous Constant>";
1610 }
1611 
1612 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1613                          AsmWriterContext &WriterCtx) {
1614   Out << "!{";
1615   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1616     const Metadata *MD = Node->getOperand(mi);
1617     if (!MD)
1618       Out << "null";
1619     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1620       Value *V = MDV->getValue();
1621       WriterCtx.TypePrinter->print(V->getType(), Out);
1622       Out << ' ';
1623       WriteAsOperandInternal(Out, V, WriterCtx);
1624     } else {
1625       WriteAsOperandInternal(Out, MD, WriterCtx);
1626       WriterCtx.onWriteMetadataAsOperand(MD);
1627     }
1628     if (mi + 1 != me)
1629       Out << ", ";
1630   }
1631 
1632   Out << "}";
1633 }
1634 
1635 namespace {
1636 
1637 struct FieldSeparator {
1638   bool Skip = true;
1639   const char *Sep;
1640 
1641   FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1642 };
1643 
1644 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1645   if (FS.Skip) {
1646     FS.Skip = false;
1647     return OS;
1648   }
1649   return OS << FS.Sep;
1650 }
1651 
1652 struct MDFieldPrinter {
1653   raw_ostream &Out;
1654   FieldSeparator FS;
1655   AsmWriterContext &WriterCtx;
1656 
1657   explicit MDFieldPrinter(raw_ostream &Out)
1658       : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
1659   MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1660       : Out(Out), WriterCtx(Ctx) {}
1661 
1662   void printTag(const DINode *N);
1663   void printMacinfoType(const DIMacroNode *N);
1664   void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1665   void printString(StringRef Name, StringRef Value,
1666                    bool ShouldSkipEmpty = true);
1667   void printMetadata(StringRef Name, const Metadata *MD,
1668                      bool ShouldSkipNull = true);
1669   template <class IntTy>
1670   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1671   void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1672                   bool ShouldSkipZero);
1673   void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1674   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1675   void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1676   template <class IntTy, class Stringifier>
1677   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1678                       bool ShouldSkipZero = true);
1679   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1680   void printNameTableKind(StringRef Name,
1681                           DICompileUnit::DebugNameTableKind NTK);
1682 };
1683 
1684 } // end anonymous namespace
1685 
1686 void MDFieldPrinter::printTag(const DINode *N) {
1687   Out << FS << "tag: ";
1688   auto Tag = dwarf::TagString(N->getTag());
1689   if (!Tag.empty())
1690     Out << Tag;
1691   else
1692     Out << N->getTag();
1693 }
1694 
1695 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1696   Out << FS << "type: ";
1697   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1698   if (!Type.empty())
1699     Out << Type;
1700   else
1701     Out << N->getMacinfoType();
1702 }
1703 
1704 void MDFieldPrinter::printChecksum(
1705     const DIFile::ChecksumInfo<StringRef> &Checksum) {
1706   Out << FS << "checksumkind: " << Checksum.getKindAsString();
1707   printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1708 }
1709 
1710 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1711                                  bool ShouldSkipEmpty) {
1712   if (ShouldSkipEmpty && Value.empty())
1713     return;
1714 
1715   Out << FS << Name << ": \"";
1716   printEscapedString(Value, Out);
1717   Out << "\"";
1718 }
1719 
1720 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1721                                    AsmWriterContext &WriterCtx) {
1722   if (!MD) {
1723     Out << "null";
1724     return;
1725   }
1726   WriteAsOperandInternal(Out, MD, WriterCtx);
1727   WriterCtx.onWriteMetadataAsOperand(MD);
1728 }
1729 
1730 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1731                                    bool ShouldSkipNull) {
1732   if (ShouldSkipNull && !MD)
1733     return;
1734 
1735   Out << FS << Name << ": ";
1736   writeMetadataAsOperand(Out, MD, WriterCtx);
1737 }
1738 
1739 template <class IntTy>
1740 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1741   if (ShouldSkipZero && !Int)
1742     return;
1743 
1744   Out << FS << Name << ": " << Int;
1745 }
1746 
1747 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1748                                 bool IsUnsigned, bool ShouldSkipZero) {
1749   if (ShouldSkipZero && Int.isZero())
1750     return;
1751 
1752   Out << FS << Name << ": ";
1753   Int.print(Out, !IsUnsigned);
1754 }
1755 
1756 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1757                                Optional<bool> Default) {
1758   if (Default && Value == *Default)
1759     return;
1760   Out << FS << Name << ": " << (Value ? "true" : "false");
1761 }
1762 
1763 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1764   if (!Flags)
1765     return;
1766 
1767   Out << FS << Name << ": ";
1768 
1769   SmallVector<DINode::DIFlags, 8> SplitFlags;
1770   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1771 
1772   FieldSeparator FlagsFS(" | ");
1773   for (auto F : SplitFlags) {
1774     auto StringF = DINode::getFlagString(F);
1775     assert(!StringF.empty() && "Expected valid flag");
1776     Out << FlagsFS << StringF;
1777   }
1778   if (Extra || SplitFlags.empty())
1779     Out << FlagsFS << Extra;
1780 }
1781 
1782 void MDFieldPrinter::printDISPFlags(StringRef Name,
1783                                     DISubprogram::DISPFlags Flags) {
1784   // Always print this field, because no flags in the IR at all will be
1785   // interpreted as old-style isDefinition: true.
1786   Out << FS << Name << ": ";
1787 
1788   if (!Flags) {
1789     Out << 0;
1790     return;
1791   }
1792 
1793   SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1794   auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1795 
1796   FieldSeparator FlagsFS(" | ");
1797   for (auto F : SplitFlags) {
1798     auto StringF = DISubprogram::getFlagString(F);
1799     assert(!StringF.empty() && "Expected valid flag");
1800     Out << FlagsFS << StringF;
1801   }
1802   if (Extra || SplitFlags.empty())
1803     Out << FlagsFS << Extra;
1804 }
1805 
1806 void MDFieldPrinter::printEmissionKind(StringRef Name,
1807                                        DICompileUnit::DebugEmissionKind EK) {
1808   Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1809 }
1810 
1811 void MDFieldPrinter::printNameTableKind(StringRef Name,
1812                                         DICompileUnit::DebugNameTableKind NTK) {
1813   if (NTK == DICompileUnit::DebugNameTableKind::Default)
1814     return;
1815   Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1816 }
1817 
1818 template <class IntTy, class Stringifier>
1819 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1820                                     Stringifier toString, bool ShouldSkipZero) {
1821   if (!Value)
1822     return;
1823 
1824   Out << FS << Name << ": ";
1825   auto S = toString(Value);
1826   if (!S.empty())
1827     Out << S;
1828   else
1829     Out << Value;
1830 }
1831 
1832 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1833                                AsmWriterContext &WriterCtx) {
1834   Out << "!GenericDINode(";
1835   MDFieldPrinter Printer(Out, WriterCtx);
1836   Printer.printTag(N);
1837   Printer.printString("header", N->getHeader());
1838   if (N->getNumDwarfOperands()) {
1839     Out << Printer.FS << "operands: {";
1840     FieldSeparator IFS;
1841     for (auto &I : N->dwarf_operands()) {
1842       Out << IFS;
1843       writeMetadataAsOperand(Out, I, WriterCtx);
1844     }
1845     Out << "}";
1846   }
1847   Out << ")";
1848 }
1849 
1850 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1851                             AsmWriterContext &WriterCtx) {
1852   Out << "!DILocation(";
1853   MDFieldPrinter Printer(Out, WriterCtx);
1854   // Always output the line, since 0 is a relevant and important value for it.
1855   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1856   Printer.printInt("column", DL->getColumn());
1857   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1858   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1859   Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1860                     /* Default */ false);
1861   Out << ")";
1862 }
1863 
1864 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1865                             AsmWriterContext &WriterCtx) {
1866   Out << "!DISubrange(";
1867   MDFieldPrinter Printer(Out, WriterCtx);
1868 
1869   auto *Count = N->getRawCountNode();
1870   if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
1871     auto *CV = cast<ConstantInt>(CE->getValue());
1872     Printer.printInt("count", CV->getSExtValue(),
1873                      /* ShouldSkipZero */ false);
1874   } else
1875     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1876 
1877   // A lowerBound of constant 0 should not be skipped, since it is different
1878   // from an unspecified lower bound (= nullptr).
1879   auto *LBound = N->getRawLowerBound();
1880   if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
1881     auto *LV = cast<ConstantInt>(LE->getValue());
1882     Printer.printInt("lowerBound", LV->getSExtValue(),
1883                      /* ShouldSkipZero */ false);
1884   } else
1885     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1886 
1887   auto *UBound = N->getRawUpperBound();
1888   if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
1889     auto *UV = cast<ConstantInt>(UE->getValue());
1890     Printer.printInt("upperBound", UV->getSExtValue(),
1891                      /* ShouldSkipZero */ false);
1892   } else
1893     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1894 
1895   auto *Stride = N->getRawStride();
1896   if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
1897     auto *SV = cast<ConstantInt>(SE->getValue());
1898     Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
1899   } else
1900     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1901 
1902   Out << ")";
1903 }
1904 
1905 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
1906                                    AsmWriterContext &WriterCtx) {
1907   Out << "!DIGenericSubrange(";
1908   MDFieldPrinter Printer(Out, WriterCtx);
1909 
1910   auto IsConstant = [&](Metadata *Bound) -> bool {
1911     if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
1912       return BE->isConstant() &&
1913              DIExpression::SignedOrUnsignedConstant::SignedConstant ==
1914                  *BE->isConstant();
1915     }
1916     return false;
1917   };
1918 
1919   auto GetConstant = [&](Metadata *Bound) -> int64_t {
1920     assert(IsConstant(Bound) && "Expected constant");
1921     auto *BE = dyn_cast_or_null<DIExpression>(Bound);
1922     return static_cast<int64_t>(BE->getElement(1));
1923   };
1924 
1925   auto *Count = N->getRawCountNode();
1926   if (IsConstant(Count))
1927     Printer.printInt("count", GetConstant(Count),
1928                      /* ShouldSkipZero */ false);
1929   else
1930     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1931 
1932   auto *LBound = N->getRawLowerBound();
1933   if (IsConstant(LBound))
1934     Printer.printInt("lowerBound", GetConstant(LBound),
1935                      /* ShouldSkipZero */ false);
1936   else
1937     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1938 
1939   auto *UBound = N->getRawUpperBound();
1940   if (IsConstant(UBound))
1941     Printer.printInt("upperBound", GetConstant(UBound),
1942                      /* ShouldSkipZero */ false);
1943   else
1944     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1945 
1946   auto *Stride = N->getRawStride();
1947   if (IsConstant(Stride))
1948     Printer.printInt("stride", GetConstant(Stride),
1949                      /* ShouldSkipZero */ false);
1950   else
1951     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1952 
1953   Out << ")";
1954 }
1955 
1956 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1957                               AsmWriterContext &) {
1958   Out << "!DIEnumerator(";
1959   MDFieldPrinter Printer(Out);
1960   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1961   Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
1962                      /*ShouldSkipZero=*/false);
1963   if (N->isUnsigned())
1964     Printer.printBool("isUnsigned", true);
1965   Out << ")";
1966 }
1967 
1968 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1969                              AsmWriterContext &) {
1970   Out << "!DIBasicType(";
1971   MDFieldPrinter Printer(Out);
1972   if (N->getTag() != dwarf::DW_TAG_base_type)
1973     Printer.printTag(N);
1974   Printer.printString("name", N->getName());
1975   Printer.printInt("size", N->getSizeInBits());
1976   Printer.printInt("align", N->getAlignInBits());
1977   Printer.printDwarfEnum("encoding", N->getEncoding(),
1978                          dwarf::AttributeEncodingString);
1979   Printer.printDIFlags("flags", N->getFlags());
1980   Out << ")";
1981 }
1982 
1983 static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
1984                               AsmWriterContext &WriterCtx) {
1985   Out << "!DIStringType(";
1986   MDFieldPrinter Printer(Out, WriterCtx);
1987   if (N->getTag() != dwarf::DW_TAG_string_type)
1988     Printer.printTag(N);
1989   Printer.printString("name", N->getName());
1990   Printer.printMetadata("stringLength", N->getRawStringLength());
1991   Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
1992   Printer.printMetadata("stringLocationExpression",
1993                         N->getRawStringLocationExp());
1994   Printer.printInt("size", N->getSizeInBits());
1995   Printer.printInt("align", N->getAlignInBits());
1996   Printer.printDwarfEnum("encoding", N->getEncoding(),
1997                          dwarf::AttributeEncodingString);
1998   Out << ")";
1999 }
2000 
2001 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
2002                                AsmWriterContext &WriterCtx) {
2003   Out << "!DIDerivedType(";
2004   MDFieldPrinter Printer(Out, WriterCtx);
2005   Printer.printTag(N);
2006   Printer.printString("name", N->getName());
2007   Printer.printMetadata("scope", N->getRawScope());
2008   Printer.printMetadata("file", N->getRawFile());
2009   Printer.printInt("line", N->getLine());
2010   Printer.printMetadata("baseType", N->getRawBaseType(),
2011                         /* ShouldSkipNull */ false);
2012   Printer.printInt("size", N->getSizeInBits());
2013   Printer.printInt("align", N->getAlignInBits());
2014   Printer.printInt("offset", N->getOffsetInBits());
2015   Printer.printDIFlags("flags", N->getFlags());
2016   Printer.printMetadata("extraData", N->getRawExtraData());
2017   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2018     Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2019                      /* ShouldSkipZero */ false);
2020   Printer.printMetadata("annotations", N->getRawAnnotations());
2021   Out << ")";
2022 }
2023 
2024 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
2025                                  AsmWriterContext &WriterCtx) {
2026   Out << "!DICompositeType(";
2027   MDFieldPrinter Printer(Out, WriterCtx);
2028   Printer.printTag(N);
2029   Printer.printString("name", N->getName());
2030   Printer.printMetadata("scope", N->getRawScope());
2031   Printer.printMetadata("file", N->getRawFile());
2032   Printer.printInt("line", N->getLine());
2033   Printer.printMetadata("baseType", N->getRawBaseType());
2034   Printer.printInt("size", N->getSizeInBits());
2035   Printer.printInt("align", N->getAlignInBits());
2036   Printer.printInt("offset", N->getOffsetInBits());
2037   Printer.printDIFlags("flags", N->getFlags());
2038   Printer.printMetadata("elements", N->getRawElements());
2039   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2040                          dwarf::LanguageString);
2041   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2042   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2043   Printer.printString("identifier", N->getIdentifier());
2044   Printer.printMetadata("discriminator", N->getRawDiscriminator());
2045   Printer.printMetadata("dataLocation", N->getRawDataLocation());
2046   Printer.printMetadata("associated", N->getRawAssociated());
2047   Printer.printMetadata("allocated", N->getRawAllocated());
2048   if (auto *RankConst = N->getRankConst())
2049     Printer.printInt("rank", RankConst->getSExtValue(),
2050                      /* ShouldSkipZero */ false);
2051   else
2052     Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2053   Printer.printMetadata("annotations", N->getRawAnnotations());
2054   Out << ")";
2055 }
2056 
2057 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
2058                                   AsmWriterContext &WriterCtx) {
2059   Out << "!DISubroutineType(";
2060   MDFieldPrinter Printer(Out, WriterCtx);
2061   Printer.printDIFlags("flags", N->getFlags());
2062   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2063   Printer.printMetadata("types", N->getRawTypeArray(),
2064                         /* ShouldSkipNull */ false);
2065   Out << ")";
2066 }
2067 
2068 static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &) {
2069   Out << "!DIFile(";
2070   MDFieldPrinter Printer(Out);
2071   Printer.printString("filename", N->getFilename(),
2072                       /* ShouldSkipEmpty */ false);
2073   Printer.printString("directory", N->getDirectory(),
2074                       /* ShouldSkipEmpty */ false);
2075   // Print all values for checksum together, or not at all.
2076   if (N->getChecksum())
2077     Printer.printChecksum(*N->getChecksum());
2078   Printer.printString("source", N->getSource().getValueOr(StringRef()),
2079                       /* ShouldSkipEmpty */ true);
2080   Out << ")";
2081 }
2082 
2083 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
2084                                AsmWriterContext &WriterCtx) {
2085   Out << "!DICompileUnit(";
2086   MDFieldPrinter Printer(Out, WriterCtx);
2087   Printer.printDwarfEnum("language", N->getSourceLanguage(),
2088                          dwarf::LanguageString, /* ShouldSkipZero */ false);
2089   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2090   Printer.printString("producer", N->getProducer());
2091   Printer.printBool("isOptimized", N->isOptimized());
2092   Printer.printString("flags", N->getFlags());
2093   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2094                    /* ShouldSkipZero */ false);
2095   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2096   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2097   Printer.printMetadata("enums", N->getRawEnumTypes());
2098   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2099   Printer.printMetadata("globals", N->getRawGlobalVariables());
2100   Printer.printMetadata("imports", N->getRawImportedEntities());
2101   Printer.printMetadata("macros", N->getRawMacros());
2102   Printer.printInt("dwoId", N->getDWOId());
2103   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2104   Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2105                     false);
2106   Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2107   Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2108   Printer.printString("sysroot", N->getSysRoot());
2109   Printer.printString("sdk", N->getSDK());
2110   Out << ")";
2111 }
2112 
2113 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2114                               AsmWriterContext &WriterCtx) {
2115   Out << "!DISubprogram(";
2116   MDFieldPrinter Printer(Out, WriterCtx);
2117   Printer.printString("name", N->getName());
2118   Printer.printString("linkageName", N->getLinkageName());
2119   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2120   Printer.printMetadata("file", N->getRawFile());
2121   Printer.printInt("line", N->getLine());
2122   Printer.printMetadata("type", N->getRawType());
2123   Printer.printInt("scopeLine", N->getScopeLine());
2124   Printer.printMetadata("containingType", N->getRawContainingType());
2125   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2126       N->getVirtualIndex() != 0)
2127     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2128   Printer.printInt("thisAdjustment", N->getThisAdjustment());
2129   Printer.printDIFlags("flags", N->getFlags());
2130   Printer.printDISPFlags("spFlags", N->getSPFlags());
2131   Printer.printMetadata("unit", N->getRawUnit());
2132   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2133   Printer.printMetadata("declaration", N->getRawDeclaration());
2134   Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2135   Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2136   Printer.printMetadata("annotations", N->getRawAnnotations());
2137   Printer.printString("targetFuncName", N->getTargetFuncName());
2138   Out << ")";
2139 }
2140 
2141 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2142                                 AsmWriterContext &WriterCtx) {
2143   Out << "!DILexicalBlock(";
2144   MDFieldPrinter Printer(Out, WriterCtx);
2145   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2146   Printer.printMetadata("file", N->getRawFile());
2147   Printer.printInt("line", N->getLine());
2148   Printer.printInt("column", N->getColumn());
2149   Out << ")";
2150 }
2151 
2152 static void writeDILexicalBlockFile(raw_ostream &Out,
2153                                     const DILexicalBlockFile *N,
2154                                     AsmWriterContext &WriterCtx) {
2155   Out << "!DILexicalBlockFile(";
2156   MDFieldPrinter Printer(Out, WriterCtx);
2157   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2158   Printer.printMetadata("file", N->getRawFile());
2159   Printer.printInt("discriminator", N->getDiscriminator(),
2160                    /* ShouldSkipZero */ false);
2161   Out << ")";
2162 }
2163 
2164 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2165                              AsmWriterContext &WriterCtx) {
2166   Out << "!DINamespace(";
2167   MDFieldPrinter Printer(Out, WriterCtx);
2168   Printer.printString("name", N->getName());
2169   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2170   Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2171   Out << ")";
2172 }
2173 
2174 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2175                                AsmWriterContext &WriterCtx) {
2176   Out << "!DICommonBlock(";
2177   MDFieldPrinter Printer(Out, WriterCtx);
2178   Printer.printMetadata("scope", N->getRawScope(), false);
2179   Printer.printMetadata("declaration", N->getRawDecl(), false);
2180   Printer.printString("name", N->getName());
2181   Printer.printMetadata("file", N->getRawFile());
2182   Printer.printInt("line", N->getLineNo());
2183   Out << ")";
2184 }
2185 
2186 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2187                          AsmWriterContext &WriterCtx) {
2188   Out << "!DIMacro(";
2189   MDFieldPrinter Printer(Out, WriterCtx);
2190   Printer.printMacinfoType(N);
2191   Printer.printInt("line", N->getLine());
2192   Printer.printString("name", N->getName());
2193   Printer.printString("value", N->getValue());
2194   Out << ")";
2195 }
2196 
2197 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2198                              AsmWriterContext &WriterCtx) {
2199   Out << "!DIMacroFile(";
2200   MDFieldPrinter Printer(Out, WriterCtx);
2201   Printer.printInt("line", N->getLine());
2202   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2203   Printer.printMetadata("nodes", N->getRawElements());
2204   Out << ")";
2205 }
2206 
2207 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2208                           AsmWriterContext &WriterCtx) {
2209   Out << "!DIModule(";
2210   MDFieldPrinter Printer(Out, WriterCtx);
2211   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2212   Printer.printString("name", N->getName());
2213   Printer.printString("configMacros", N->getConfigurationMacros());
2214   Printer.printString("includePath", N->getIncludePath());
2215   Printer.printString("apinotes", N->getAPINotesFile());
2216   Printer.printMetadata("file", N->getRawFile());
2217   Printer.printInt("line", N->getLineNo());
2218   Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2219   Out << ")";
2220 }
2221 
2222 static void writeDITemplateTypeParameter(raw_ostream &Out,
2223                                          const DITemplateTypeParameter *N,
2224                                          AsmWriterContext &WriterCtx) {
2225   Out << "!DITemplateTypeParameter(";
2226   MDFieldPrinter Printer(Out, WriterCtx);
2227   Printer.printString("name", N->getName());
2228   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2229   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2230   Out << ")";
2231 }
2232 
2233 static void writeDITemplateValueParameter(raw_ostream &Out,
2234                                           const DITemplateValueParameter *N,
2235                                           AsmWriterContext &WriterCtx) {
2236   Out << "!DITemplateValueParameter(";
2237   MDFieldPrinter Printer(Out, WriterCtx);
2238   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2239     Printer.printTag(N);
2240   Printer.printString("name", N->getName());
2241   Printer.printMetadata("type", N->getRawType());
2242   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2243   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2244   Out << ")";
2245 }
2246 
2247 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2248                                   AsmWriterContext &WriterCtx) {
2249   Out << "!DIGlobalVariable(";
2250   MDFieldPrinter Printer(Out, WriterCtx);
2251   Printer.printString("name", N->getName());
2252   Printer.printString("linkageName", N->getLinkageName());
2253   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2254   Printer.printMetadata("file", N->getRawFile());
2255   Printer.printInt("line", N->getLine());
2256   Printer.printMetadata("type", N->getRawType());
2257   Printer.printBool("isLocal", N->isLocalToUnit());
2258   Printer.printBool("isDefinition", N->isDefinition());
2259   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2260   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2261   Printer.printInt("align", N->getAlignInBits());
2262   Printer.printMetadata("annotations", N->getRawAnnotations());
2263   Out << ")";
2264 }
2265 
2266 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2267                                  AsmWriterContext &WriterCtx) {
2268   Out << "!DILocalVariable(";
2269   MDFieldPrinter Printer(Out, WriterCtx);
2270   Printer.printString("name", N->getName());
2271   Printer.printInt("arg", N->getArg());
2272   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2273   Printer.printMetadata("file", N->getRawFile());
2274   Printer.printInt("line", N->getLine());
2275   Printer.printMetadata("type", N->getRawType());
2276   Printer.printDIFlags("flags", N->getFlags());
2277   Printer.printInt("align", N->getAlignInBits());
2278   Printer.printMetadata("annotations", N->getRawAnnotations());
2279   Out << ")";
2280 }
2281 
2282 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2283                          AsmWriterContext &WriterCtx) {
2284   Out << "!DILabel(";
2285   MDFieldPrinter Printer(Out, WriterCtx);
2286   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2287   Printer.printString("name", N->getName());
2288   Printer.printMetadata("file", N->getRawFile());
2289   Printer.printInt("line", N->getLine());
2290   Out << ")";
2291 }
2292 
2293 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2294                               AsmWriterContext &WriterCtx) {
2295   Out << "!DIExpression(";
2296   FieldSeparator FS;
2297   if (N->isValid()) {
2298     for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2299       auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2300       assert(!OpStr.empty() && "Expected valid opcode");
2301 
2302       Out << FS << OpStr;
2303       if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2304         Out << FS << Op.getArg(0);
2305         Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2306       } else {
2307         for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2308           Out << FS << Op.getArg(A);
2309       }
2310     }
2311   } else {
2312     for (const auto &I : N->getElements())
2313       Out << FS << I;
2314   }
2315   Out << ")";
2316 }
2317 
2318 static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2319                            AsmWriterContext &WriterCtx,
2320                            bool FromValue = false) {
2321   assert(FromValue &&
2322          "Unexpected DIArgList metadata outside of value argument");
2323   Out << "!DIArgList(";
2324   FieldSeparator FS;
2325   MDFieldPrinter Printer(Out, WriterCtx);
2326   for (Metadata *Arg : N->getArgs()) {
2327     Out << FS;
2328     WriteAsOperandInternal(Out, Arg, WriterCtx, true);
2329   }
2330   Out << ")";
2331 }
2332 
2333 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2334                                             const DIGlobalVariableExpression *N,
2335                                             AsmWriterContext &WriterCtx) {
2336   Out << "!DIGlobalVariableExpression(";
2337   MDFieldPrinter Printer(Out, WriterCtx);
2338   Printer.printMetadata("var", N->getVariable());
2339   Printer.printMetadata("expr", N->getExpression());
2340   Out << ")";
2341 }
2342 
2343 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2344                                 AsmWriterContext &WriterCtx) {
2345   Out << "!DIObjCProperty(";
2346   MDFieldPrinter Printer(Out, WriterCtx);
2347   Printer.printString("name", N->getName());
2348   Printer.printMetadata("file", N->getRawFile());
2349   Printer.printInt("line", N->getLine());
2350   Printer.printString("setter", N->getSetterName());
2351   Printer.printString("getter", N->getGetterName());
2352   Printer.printInt("attributes", N->getAttributes());
2353   Printer.printMetadata("type", N->getRawType());
2354   Out << ")";
2355 }
2356 
2357 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2358                                   AsmWriterContext &WriterCtx) {
2359   Out << "!DIImportedEntity(";
2360   MDFieldPrinter Printer(Out, WriterCtx);
2361   Printer.printTag(N);
2362   Printer.printString("name", N->getName());
2363   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2364   Printer.printMetadata("entity", N->getRawEntity());
2365   Printer.printMetadata("file", N->getRawFile());
2366   Printer.printInt("line", N->getLine());
2367   Printer.printMetadata("elements", N->getRawElements());
2368   Out << ")";
2369 }
2370 
2371 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2372                                     AsmWriterContext &Ctx) {
2373   if (Node->isDistinct())
2374     Out << "distinct ";
2375   else if (Node->isTemporary())
2376     Out << "<temporary!> "; // Handle broken code.
2377 
2378   switch (Node->getMetadataID()) {
2379   default:
2380     llvm_unreachable("Expected uniquable MDNode");
2381 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2382   case Metadata::CLASS##Kind:                                                  \
2383     write##CLASS(Out, cast<CLASS>(Node), Ctx);                                 \
2384     break;
2385 #include "llvm/IR/Metadata.def"
2386   }
2387 }
2388 
2389 // Full implementation of printing a Value as an operand with support for
2390 // TypePrinting, etc.
2391 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2392                                    AsmWriterContext &WriterCtx) {
2393   if (V->hasName()) {
2394     PrintLLVMName(Out, V);
2395     return;
2396   }
2397 
2398   const Constant *CV = dyn_cast<Constant>(V);
2399   if (CV && !isa<GlobalValue>(CV)) {
2400     assert(WriterCtx.TypePrinter && "Constants require TypePrinting!");
2401     WriteConstantInternal(Out, CV, WriterCtx);
2402     return;
2403   }
2404 
2405   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2406     Out << "asm ";
2407     if (IA->hasSideEffects())
2408       Out << "sideeffect ";
2409     if (IA->isAlignStack())
2410       Out << "alignstack ";
2411     // We don't emit the AD_ATT dialect as it's the assumed default.
2412     if (IA->getDialect() == InlineAsm::AD_Intel)
2413       Out << "inteldialect ";
2414     if (IA->canThrow())
2415       Out << "unwind ";
2416     Out << '"';
2417     printEscapedString(IA->getAsmString(), Out);
2418     Out << "\", \"";
2419     printEscapedString(IA->getConstraintString(), Out);
2420     Out << '"';
2421     return;
2422   }
2423 
2424   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2425     WriteAsOperandInternal(Out, MD->getMetadata(), WriterCtx,
2426                            /* FromValue */ true);
2427     return;
2428   }
2429 
2430   char Prefix = '%';
2431   int Slot;
2432   auto *Machine = WriterCtx.Machine;
2433   // If we have a SlotTracker, use it.
2434   if (Machine) {
2435     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2436       Slot = Machine->getGlobalSlot(GV);
2437       Prefix = '@';
2438     } else {
2439       Slot = Machine->getLocalSlot(V);
2440 
2441       // If the local value didn't succeed, then we may be referring to a value
2442       // from a different function.  Translate it, as this can happen when using
2443       // address of blocks.
2444       if (Slot == -1)
2445         if ((Machine = createSlotTracker(V))) {
2446           Slot = Machine->getLocalSlot(V);
2447           delete Machine;
2448         }
2449     }
2450   } else if ((Machine = createSlotTracker(V))) {
2451     // Otherwise, create one to get the # and then destroy it.
2452     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2453       Slot = Machine->getGlobalSlot(GV);
2454       Prefix = '@';
2455     } else {
2456       Slot = Machine->getLocalSlot(V);
2457     }
2458     delete Machine;
2459     Machine = nullptr;
2460   } else {
2461     Slot = -1;
2462   }
2463 
2464   if (Slot != -1)
2465     Out << Prefix << Slot;
2466   else
2467     Out << "<badref>";
2468 }
2469 
2470 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2471                                    AsmWriterContext &WriterCtx,
2472                                    bool FromValue) {
2473   // Write DIExpressions and DIArgLists inline when used as a value. Improves
2474   // readability of debug info intrinsics.
2475   if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2476     writeDIExpression(Out, Expr, WriterCtx);
2477     return;
2478   }
2479   if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2480     writeDIArgList(Out, ArgList, WriterCtx, FromValue);
2481     return;
2482   }
2483 
2484   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2485     std::unique_ptr<SlotTracker> MachineStorage;
2486     SaveAndRestore<SlotTracker *> SARMachine(WriterCtx.Machine);
2487     if (!WriterCtx.Machine) {
2488       MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
2489       WriterCtx.Machine = MachineStorage.get();
2490     }
2491     int Slot = WriterCtx.Machine->getMetadataSlot(N);
2492     if (Slot == -1) {
2493       if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2494         writeDILocation(Out, Loc, WriterCtx);
2495         return;
2496       }
2497       // Give the pointer value instead of "badref", since this comes up all
2498       // the time when debugging.
2499       Out << "<" << N << ">";
2500     } else
2501       Out << '!' << Slot;
2502     return;
2503   }
2504 
2505   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2506     Out << "!\"";
2507     printEscapedString(MDS->getString(), Out);
2508     Out << '"';
2509     return;
2510   }
2511 
2512   auto *V = cast<ValueAsMetadata>(MD);
2513   assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values");
2514   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2515          "Unexpected function-local metadata outside of value argument");
2516 
2517   WriterCtx.TypePrinter->print(V->getValue()->getType(), Out);
2518   Out << ' ';
2519   WriteAsOperandInternal(Out, V->getValue(), WriterCtx);
2520 }
2521 
2522 namespace {
2523 
2524 class AssemblyWriter {
2525   formatted_raw_ostream &Out;
2526   const Module *TheModule = nullptr;
2527   const ModuleSummaryIndex *TheIndex = nullptr;
2528   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2529   SlotTracker &Machine;
2530   TypePrinting TypePrinter;
2531   AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2532   SetVector<const Comdat *> Comdats;
2533   bool IsForDebug;
2534   bool ShouldPreserveUseListOrder;
2535   UseListOrderMap UseListOrders;
2536   SmallVector<StringRef, 8> MDNames;
2537   /// Synchronization scope names registered with LLVMContext.
2538   SmallVector<StringRef, 8> SSNs;
2539   DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2540 
2541 public:
2542   /// Construct an AssemblyWriter with an external SlotTracker
2543   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2544                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2545                  bool ShouldPreserveUseListOrder = false);
2546 
2547   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2548                  const ModuleSummaryIndex *Index, bool IsForDebug);
2549 
2550   AsmWriterContext getContext() {
2551     return AsmWriterContext(&TypePrinter, &Machine, TheModule);
2552   }
2553 
2554   void printMDNodeBody(const MDNode *MD);
2555   void printNamedMDNode(const NamedMDNode *NMD);
2556 
2557   void printModule(const Module *M);
2558 
2559   void writeOperand(const Value *Op, bool PrintType);
2560   void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2561   void writeOperandBundles(const CallBase *Call);
2562   void writeSyncScope(const LLVMContext &Context,
2563                       SyncScope::ID SSID);
2564   void writeAtomic(const LLVMContext &Context,
2565                    AtomicOrdering Ordering,
2566                    SyncScope::ID SSID);
2567   void writeAtomicCmpXchg(const LLVMContext &Context,
2568                           AtomicOrdering SuccessOrdering,
2569                           AtomicOrdering FailureOrdering,
2570                           SyncScope::ID SSID);
2571 
2572   void writeAllMDNodes();
2573   void writeMDNode(unsigned Slot, const MDNode *Node);
2574   void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2575   void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2576   void writeAllAttributeGroups();
2577 
2578   void printTypeIdentities();
2579   void printGlobal(const GlobalVariable *GV);
2580   void printAlias(const GlobalAlias *GA);
2581   void printIFunc(const GlobalIFunc *GI);
2582   void printComdat(const Comdat *C);
2583   void printFunction(const Function *F);
2584   void printArgument(const Argument *FA, AttributeSet Attrs);
2585   void printBasicBlock(const BasicBlock *BB);
2586   void printInstructionLine(const Instruction &I);
2587   void printInstruction(const Instruction &I);
2588 
2589   void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
2590   void printUseLists(const Function *F);
2591 
2592   void printModuleSummaryIndex();
2593   void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2594   void printSummary(const GlobalValueSummary &Summary);
2595   void printAliasSummary(const AliasSummary *AS);
2596   void printGlobalVarSummary(const GlobalVarSummary *GS);
2597   void printFunctionSummary(const FunctionSummary *FS);
2598   void printTypeIdSummary(const TypeIdSummary &TIS);
2599   void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2600   void printTypeTestResolution(const TypeTestResolution &TTRes);
2601   void printArgs(const std::vector<uint64_t> &Args);
2602   void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2603   void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2604   void printVFuncId(const FunctionSummary::VFuncId VFId);
2605   void
2606   printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2607                       const char *Tag);
2608   void
2609   printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2610                    const char *Tag);
2611 
2612 private:
2613   /// Print out metadata attachments.
2614   void printMetadataAttachments(
2615       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2616       StringRef Separator);
2617 
2618   // printInfoComment - Print a little comment after the instruction indicating
2619   // which slot it occupies.
2620   void printInfoComment(const Value &V);
2621 
2622   // printGCRelocateComment - print comment after call to the gc.relocate
2623   // intrinsic indicating base and derived pointer names.
2624   void printGCRelocateComment(const GCRelocateInst &Relocate);
2625 };
2626 
2627 } // end anonymous namespace
2628 
2629 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2630                                const Module *M, AssemblyAnnotationWriter *AAW,
2631                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2632     : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2633       IsForDebug(IsForDebug),
2634       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2635   if (!TheModule)
2636     return;
2637   for (const GlobalObject &GO : TheModule->global_objects())
2638     if (const Comdat *C = GO.getComdat())
2639       Comdats.insert(C);
2640 }
2641 
2642 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2643                                const ModuleSummaryIndex *Index, bool IsForDebug)
2644     : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2645       IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2646 
2647 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2648   if (!Operand) {
2649     Out << "<null operand!>";
2650     return;
2651   }
2652   if (PrintType) {
2653     TypePrinter.print(Operand->getType(), Out);
2654     Out << ' ';
2655   }
2656   auto WriterCtx = getContext();
2657   WriteAsOperandInternal(Out, Operand, WriterCtx);
2658 }
2659 
2660 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2661                                     SyncScope::ID SSID) {
2662   switch (SSID) {
2663   case SyncScope::System: {
2664     break;
2665   }
2666   default: {
2667     if (SSNs.empty())
2668       Context.getSyncScopeNames(SSNs);
2669 
2670     Out << " syncscope(\"";
2671     printEscapedString(SSNs[SSID], Out);
2672     Out << "\")";
2673     break;
2674   }
2675   }
2676 }
2677 
2678 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2679                                  AtomicOrdering Ordering,
2680                                  SyncScope::ID SSID) {
2681   if (Ordering == AtomicOrdering::NotAtomic)
2682     return;
2683 
2684   writeSyncScope(Context, SSID);
2685   Out << " " << toIRString(Ordering);
2686 }
2687 
2688 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2689                                         AtomicOrdering SuccessOrdering,
2690                                         AtomicOrdering FailureOrdering,
2691                                         SyncScope::ID SSID) {
2692   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2693          FailureOrdering != AtomicOrdering::NotAtomic);
2694 
2695   writeSyncScope(Context, SSID);
2696   Out << " " << toIRString(SuccessOrdering);
2697   Out << " " << toIRString(FailureOrdering);
2698 }
2699 
2700 void AssemblyWriter::writeParamOperand(const Value *Operand,
2701                                        AttributeSet Attrs) {
2702   if (!Operand) {
2703     Out << "<null operand!>";
2704     return;
2705   }
2706 
2707   // Print the type
2708   TypePrinter.print(Operand->getType(), Out);
2709   // Print parameter attributes list
2710   if (Attrs.hasAttributes()) {
2711     Out << ' ';
2712     writeAttributeSet(Attrs);
2713   }
2714   Out << ' ';
2715   // Print the operand
2716   auto WriterCtx = getContext();
2717   WriteAsOperandInternal(Out, Operand, WriterCtx);
2718 }
2719 
2720 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2721   if (!Call->hasOperandBundles())
2722     return;
2723 
2724   Out << " [ ";
2725 
2726   bool FirstBundle = true;
2727   for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2728     OperandBundleUse BU = Call->getOperandBundleAt(i);
2729 
2730     if (!FirstBundle)
2731       Out << ", ";
2732     FirstBundle = false;
2733 
2734     Out << '"';
2735     printEscapedString(BU.getTagName(), Out);
2736     Out << '"';
2737 
2738     Out << '(';
2739 
2740     bool FirstInput = true;
2741     auto WriterCtx = getContext();
2742     for (const auto &Input : BU.Inputs) {
2743       if (!FirstInput)
2744         Out << ", ";
2745       FirstInput = false;
2746 
2747       TypePrinter.print(Input->getType(), Out);
2748       Out << " ";
2749       WriteAsOperandInternal(Out, Input, WriterCtx);
2750     }
2751 
2752     Out << ')';
2753   }
2754 
2755   Out << " ]";
2756 }
2757 
2758 void AssemblyWriter::printModule(const Module *M) {
2759   Machine.initializeIfNeeded();
2760 
2761   if (ShouldPreserveUseListOrder)
2762     UseListOrders = predictUseListOrder(M);
2763 
2764   if (!M->getModuleIdentifier().empty() &&
2765       // Don't print the ID if it will start a new line (which would
2766       // require a comment char before it).
2767       M->getModuleIdentifier().find('\n') == std::string::npos)
2768     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2769 
2770   if (!M->getSourceFileName().empty()) {
2771     Out << "source_filename = \"";
2772     printEscapedString(M->getSourceFileName(), Out);
2773     Out << "\"\n";
2774   }
2775 
2776   const std::string &DL = M->getDataLayoutStr();
2777   if (!DL.empty())
2778     Out << "target datalayout = \"" << DL << "\"\n";
2779   if (!M->getTargetTriple().empty())
2780     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2781 
2782   if (!M->getModuleInlineAsm().empty()) {
2783     Out << '\n';
2784 
2785     // Split the string into lines, to make it easier to read the .ll file.
2786     StringRef Asm = M->getModuleInlineAsm();
2787     do {
2788       StringRef Front;
2789       std::tie(Front, Asm) = Asm.split('\n');
2790 
2791       // We found a newline, print the portion of the asm string from the
2792       // last newline up to this newline.
2793       Out << "module asm \"";
2794       printEscapedString(Front, Out);
2795       Out << "\"\n";
2796     } while (!Asm.empty());
2797   }
2798 
2799   printTypeIdentities();
2800 
2801   // Output all comdats.
2802   if (!Comdats.empty())
2803     Out << '\n';
2804   for (const Comdat *C : Comdats) {
2805     printComdat(C);
2806     if (C != Comdats.back())
2807       Out << '\n';
2808   }
2809 
2810   // Output all globals.
2811   if (!M->global_empty()) Out << '\n';
2812   for (const GlobalVariable &GV : M->globals()) {
2813     printGlobal(&GV); Out << '\n';
2814   }
2815 
2816   // Output all aliases.
2817   if (!M->alias_empty()) Out << "\n";
2818   for (const GlobalAlias &GA : M->aliases())
2819     printAlias(&GA);
2820 
2821   // Output all ifuncs.
2822   if (!M->ifunc_empty()) Out << "\n";
2823   for (const GlobalIFunc &GI : M->ifuncs())
2824     printIFunc(&GI);
2825 
2826   // Output all of the functions.
2827   for (const Function &F : *M) {
2828     Out << '\n';
2829     printFunction(&F);
2830   }
2831 
2832   // Output global use-lists.
2833   printUseLists(nullptr);
2834 
2835   // Output all attribute groups.
2836   if (!Machine.as_empty()) {
2837     Out << '\n';
2838     writeAllAttributeGroups();
2839   }
2840 
2841   // Output named metadata.
2842   if (!M->named_metadata_empty()) Out << '\n';
2843 
2844   for (const NamedMDNode &Node : M->named_metadata())
2845     printNamedMDNode(&Node);
2846 
2847   // Output metadata.
2848   if (!Machine.mdn_empty()) {
2849     Out << '\n';
2850     writeAllMDNodes();
2851   }
2852 }
2853 
2854 void AssemblyWriter::printModuleSummaryIndex() {
2855   assert(TheIndex);
2856   int NumSlots = Machine.initializeIndexIfNeeded();
2857 
2858   Out << "\n";
2859 
2860   // Print module path entries. To print in order, add paths to a vector
2861   // indexed by module slot.
2862   std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2863   std::string RegularLTOModuleName =
2864       ModuleSummaryIndex::getRegularLTOModuleName();
2865   moduleVec.resize(TheIndex->modulePaths().size());
2866   for (auto &ModPath : TheIndex->modulePaths())
2867     moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2868         // A module id of -1 is a special entry for a regular LTO module created
2869         // during the thin link.
2870         ModPath.second.first == -1u ? RegularLTOModuleName
2871                                     : (std::string)std::string(ModPath.first()),
2872         ModPath.second.second);
2873 
2874   unsigned i = 0;
2875   for (auto &ModPair : moduleVec) {
2876     Out << "^" << i++ << " = module: (";
2877     Out << "path: \"";
2878     printEscapedString(ModPair.first, Out);
2879     Out << "\", hash: (";
2880     FieldSeparator FS;
2881     for (auto Hash : ModPair.second)
2882       Out << FS << Hash;
2883     Out << "))\n";
2884   }
2885 
2886   // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2887   // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2888   for (auto &GlobalList : *TheIndex) {
2889     auto GUID = GlobalList.first;
2890     for (auto &Summary : GlobalList.second.SummaryList)
2891       SummaryToGUIDMap[Summary.get()] = GUID;
2892   }
2893 
2894   // Print the global value summary entries.
2895   for (auto &GlobalList : *TheIndex) {
2896     auto GUID = GlobalList.first;
2897     auto VI = TheIndex->getValueInfo(GlobalList);
2898     printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2899   }
2900 
2901   // Print the TypeIdMap entries.
2902   for (const auto &TID : TheIndex->typeIds()) {
2903     Out << "^" << Machine.getTypeIdSlot(TID.second.first)
2904         << " = typeid: (name: \"" << TID.second.first << "\"";
2905     printTypeIdSummary(TID.second.second);
2906     Out << ") ; guid = " << TID.first << "\n";
2907   }
2908 
2909   // Print the TypeIdCompatibleVtableMap entries.
2910   for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2911     auto GUID = GlobalValue::getGUID(TId.first);
2912     Out << "^" << Machine.getGUIDSlot(GUID)
2913         << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2914     printTypeIdCompatibleVtableSummary(TId.second);
2915     Out << ") ; guid = " << GUID << "\n";
2916   }
2917 
2918   // Don't emit flags when it's not really needed (value is zero by default).
2919   if (TheIndex->getFlags()) {
2920     Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
2921     ++NumSlots;
2922   }
2923 
2924   Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
2925       << "\n";
2926 }
2927 
2928 static const char *
2929 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2930   switch (K) {
2931   case WholeProgramDevirtResolution::Indir:
2932     return "indir";
2933   case WholeProgramDevirtResolution::SingleImpl:
2934     return "singleImpl";
2935   case WholeProgramDevirtResolution::BranchFunnel:
2936     return "branchFunnel";
2937   }
2938   llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2939 }
2940 
2941 static const char *getWholeProgDevirtResByArgKindName(
2942     WholeProgramDevirtResolution::ByArg::Kind K) {
2943   switch (K) {
2944   case WholeProgramDevirtResolution::ByArg::Indir:
2945     return "indir";
2946   case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2947     return "uniformRetVal";
2948   case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2949     return "uniqueRetVal";
2950   case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2951     return "virtualConstProp";
2952   }
2953   llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2954 }
2955 
2956 static const char *getTTResKindName(TypeTestResolution::Kind K) {
2957   switch (K) {
2958   case TypeTestResolution::Unknown:
2959     return "unknown";
2960   case TypeTestResolution::Unsat:
2961     return "unsat";
2962   case TypeTestResolution::ByteArray:
2963     return "byteArray";
2964   case TypeTestResolution::Inline:
2965     return "inline";
2966   case TypeTestResolution::Single:
2967     return "single";
2968   case TypeTestResolution::AllOnes:
2969     return "allOnes";
2970   }
2971   llvm_unreachable("invalid TypeTestResolution kind");
2972 }
2973 
2974 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
2975   Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
2976       << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
2977 
2978   // The following fields are only used if the target does not support the use
2979   // of absolute symbols to store constants. Print only if non-zero.
2980   if (TTRes.AlignLog2)
2981     Out << ", alignLog2: " << TTRes.AlignLog2;
2982   if (TTRes.SizeM1)
2983     Out << ", sizeM1: " << TTRes.SizeM1;
2984   if (TTRes.BitMask)
2985     // BitMask is uint8_t which causes it to print the corresponding char.
2986     Out << ", bitMask: " << (unsigned)TTRes.BitMask;
2987   if (TTRes.InlineBits)
2988     Out << ", inlineBits: " << TTRes.InlineBits;
2989 
2990   Out << ")";
2991 }
2992 
2993 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
2994   Out << ", summary: (";
2995   printTypeTestResolution(TIS.TTRes);
2996   if (!TIS.WPDRes.empty()) {
2997     Out << ", wpdResolutions: (";
2998     FieldSeparator FS;
2999     for (auto &WPDRes : TIS.WPDRes) {
3000       Out << FS;
3001       Out << "(offset: " << WPDRes.first << ", ";
3002       printWPDRes(WPDRes.second);
3003       Out << ")";
3004     }
3005     Out << ")";
3006   }
3007   Out << ")";
3008 }
3009 
3010 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3011     const TypeIdCompatibleVtableInfo &TI) {
3012   Out << ", summary: (";
3013   FieldSeparator FS;
3014   for (auto &P : TI) {
3015     Out << FS;
3016     Out << "(offset: " << P.AddressPointOffset << ", ";
3017     Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3018     Out << ")";
3019   }
3020   Out << ")";
3021 }
3022 
3023 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3024   Out << "args: (";
3025   FieldSeparator FS;
3026   for (auto arg : Args) {
3027     Out << FS;
3028     Out << arg;
3029   }
3030   Out << ")";
3031 }
3032 
3033 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3034   Out << "wpdRes: (kind: ";
3035   Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
3036 
3037   if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
3038     Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3039 
3040   if (!WPDRes.ResByArg.empty()) {
3041     Out << ", resByArg: (";
3042     FieldSeparator FS;
3043     for (auto &ResByArg : WPDRes.ResByArg) {
3044       Out << FS;
3045       printArgs(ResByArg.first);
3046       Out << ", byArg: (kind: ";
3047       Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3048       if (ResByArg.second.TheKind ==
3049               WholeProgramDevirtResolution::ByArg::UniformRetVal ||
3050           ResByArg.second.TheKind ==
3051               WholeProgramDevirtResolution::ByArg::UniqueRetVal)
3052         Out << ", info: " << ResByArg.second.Info;
3053 
3054       // The following fields are only used if the target does not support the
3055       // use of absolute symbols to store constants. Print only if non-zero.
3056       if (ResByArg.second.Byte || ResByArg.second.Bit)
3057         Out << ", byte: " << ResByArg.second.Byte
3058             << ", bit: " << ResByArg.second.Bit;
3059 
3060       Out << ")";
3061     }
3062     Out << ")";
3063   }
3064   Out << ")";
3065 }
3066 
3067 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
3068   switch (SK) {
3069   case GlobalValueSummary::AliasKind:
3070     return "alias";
3071   case GlobalValueSummary::FunctionKind:
3072     return "function";
3073   case GlobalValueSummary::GlobalVarKind:
3074     return "variable";
3075   }
3076   llvm_unreachable("invalid summary kind");
3077 }
3078 
3079 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3080   Out << ", aliasee: ";
3081   // The indexes emitted for distributed backends may not include the
3082   // aliasee summary (only if it is being imported directly). Handle
3083   // that case by just emitting "null" as the aliasee.
3084   if (AS->hasAliasee())
3085     Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3086   else
3087     Out << "null";
3088 }
3089 
3090 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3091   auto VTableFuncs = GS->vTableFuncs();
3092   Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3093       << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3094       << "constant: " << GS->VarFlags.Constant;
3095   if (!VTableFuncs.empty())
3096     Out << ", "
3097         << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3098   Out << ")";
3099 
3100   if (!VTableFuncs.empty()) {
3101     Out << ", vTableFuncs: (";
3102     FieldSeparator FS;
3103     for (auto &P : VTableFuncs) {
3104       Out << FS;
3105       Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3106           << ", offset: " << P.VTableOffset;
3107       Out << ")";
3108     }
3109     Out << ")";
3110   }
3111 }
3112 
3113 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3114   switch (LT) {
3115   case GlobalValue::ExternalLinkage:
3116     return "external";
3117   case GlobalValue::PrivateLinkage:
3118     return "private";
3119   case GlobalValue::InternalLinkage:
3120     return "internal";
3121   case GlobalValue::LinkOnceAnyLinkage:
3122     return "linkonce";
3123   case GlobalValue::LinkOnceODRLinkage:
3124     return "linkonce_odr";
3125   case GlobalValue::WeakAnyLinkage:
3126     return "weak";
3127   case GlobalValue::WeakODRLinkage:
3128     return "weak_odr";
3129   case GlobalValue::CommonLinkage:
3130     return "common";
3131   case GlobalValue::AppendingLinkage:
3132     return "appending";
3133   case GlobalValue::ExternalWeakLinkage:
3134     return "extern_weak";
3135   case GlobalValue::AvailableExternallyLinkage:
3136     return "available_externally";
3137   }
3138   llvm_unreachable("invalid linkage");
3139 }
3140 
3141 // When printing the linkage types in IR where the ExternalLinkage is
3142 // not printed, and other linkage types are expected to be printed with
3143 // a space after the name.
3144 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3145   if (LT == GlobalValue::ExternalLinkage)
3146     return "";
3147   return getLinkageName(LT) + " ";
3148 }
3149 
3150 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
3151   switch (Vis) {
3152   case GlobalValue::DefaultVisibility:
3153     return "default";
3154   case GlobalValue::HiddenVisibility:
3155     return "hidden";
3156   case GlobalValue::ProtectedVisibility:
3157     return "protected";
3158   }
3159   llvm_unreachable("invalid visibility");
3160 }
3161 
3162 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3163   Out << ", insts: " << FS->instCount();
3164   if (FS->fflags().anyFlagSet())
3165     Out << ", " << FS->fflags();
3166 
3167   if (!FS->calls().empty()) {
3168     Out << ", calls: (";
3169     FieldSeparator IFS;
3170     for (auto &Call : FS->calls()) {
3171       Out << IFS;
3172       Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3173       if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3174         Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3175       else if (Call.second.RelBlockFreq)
3176         Out << ", relbf: " << Call.second.RelBlockFreq;
3177       Out << ")";
3178     }
3179     Out << ")";
3180   }
3181 
3182   if (const auto *TIdInfo = FS->getTypeIdInfo())
3183     printTypeIdInfo(*TIdInfo);
3184 
3185   auto PrintRange = [&](const ConstantRange &Range) {
3186     Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3187   };
3188 
3189   if (!FS->paramAccesses().empty()) {
3190     Out << ", params: (";
3191     FieldSeparator IFS;
3192     for (auto &PS : FS->paramAccesses()) {
3193       Out << IFS;
3194       Out << "(param: " << PS.ParamNo;
3195       Out << ", offset: ";
3196       PrintRange(PS.Use);
3197       if (!PS.Calls.empty()) {
3198         Out << ", calls: (";
3199         FieldSeparator IFS;
3200         for (auto &Call : PS.Calls) {
3201           Out << IFS;
3202           Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3203           Out << ", param: " << Call.ParamNo;
3204           Out << ", offset: ";
3205           PrintRange(Call.Offsets);
3206           Out << ")";
3207         }
3208         Out << ")";
3209       }
3210       Out << ")";
3211     }
3212     Out << ")";
3213   }
3214 }
3215 
3216 void AssemblyWriter::printTypeIdInfo(
3217     const FunctionSummary::TypeIdInfo &TIDInfo) {
3218   Out << ", typeIdInfo: (";
3219   FieldSeparator TIDFS;
3220   if (!TIDInfo.TypeTests.empty()) {
3221     Out << TIDFS;
3222     Out << "typeTests: (";
3223     FieldSeparator FS;
3224     for (auto &GUID : TIDInfo.TypeTests) {
3225       auto TidIter = TheIndex->typeIds().equal_range(GUID);
3226       if (TidIter.first == TidIter.second) {
3227         Out << FS;
3228         Out << GUID;
3229         continue;
3230       }
3231       // Print all type id that correspond to this GUID.
3232       for (auto It = TidIter.first; It != TidIter.second; ++It) {
3233         Out << FS;
3234         auto Slot = Machine.getTypeIdSlot(It->second.first);
3235         assert(Slot != -1);
3236         Out << "^" << Slot;
3237       }
3238     }
3239     Out << ")";
3240   }
3241   if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3242     Out << TIDFS;
3243     printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3244   }
3245   if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3246     Out << TIDFS;
3247     printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3248   }
3249   if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3250     Out << TIDFS;
3251     printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3252                      "typeTestAssumeConstVCalls");
3253   }
3254   if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3255     Out << TIDFS;
3256     printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3257                      "typeCheckedLoadConstVCalls");
3258   }
3259   Out << ")";
3260 }
3261 
3262 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3263   auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3264   if (TidIter.first == TidIter.second) {
3265     Out << "vFuncId: (";
3266     Out << "guid: " << VFId.GUID;
3267     Out << ", offset: " << VFId.Offset;
3268     Out << ")";
3269     return;
3270   }
3271   // Print all type id that correspond to this GUID.
3272   FieldSeparator FS;
3273   for (auto It = TidIter.first; It != TidIter.second; ++It) {
3274     Out << FS;
3275     Out << "vFuncId: (";
3276     auto Slot = Machine.getTypeIdSlot(It->second.first);
3277     assert(Slot != -1);
3278     Out << "^" << Slot;
3279     Out << ", offset: " << VFId.Offset;
3280     Out << ")";
3281   }
3282 }
3283 
3284 void AssemblyWriter::printNonConstVCalls(
3285     const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3286   Out << Tag << ": (";
3287   FieldSeparator FS;
3288   for (auto &VFuncId : VCallList) {
3289     Out << FS;
3290     printVFuncId(VFuncId);
3291   }
3292   Out << ")";
3293 }
3294 
3295 void AssemblyWriter::printConstVCalls(
3296     const std::vector<FunctionSummary::ConstVCall> &VCallList,
3297     const char *Tag) {
3298   Out << Tag << ": (";
3299   FieldSeparator FS;
3300   for (auto &ConstVCall : VCallList) {
3301     Out << FS;
3302     Out << "(";
3303     printVFuncId(ConstVCall.VFunc);
3304     if (!ConstVCall.Args.empty()) {
3305       Out << ", ";
3306       printArgs(ConstVCall.Args);
3307     }
3308     Out << ")";
3309   }
3310   Out << ")";
3311 }
3312 
3313 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3314   GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3315   GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3316   Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3317   Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3318       << ", flags: (";
3319   Out << "linkage: " << getLinkageName(LT);
3320   Out << ", visibility: "
3321       << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
3322   Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3323   Out << ", live: " << GVFlags.Live;
3324   Out << ", dsoLocal: " << GVFlags.DSOLocal;
3325   Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3326   Out << ")";
3327 
3328   if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3329     printAliasSummary(cast<AliasSummary>(&Summary));
3330   else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3331     printFunctionSummary(cast<FunctionSummary>(&Summary));
3332   else
3333     printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3334 
3335   auto RefList = Summary.refs();
3336   if (!RefList.empty()) {
3337     Out << ", refs: (";
3338     FieldSeparator FS;
3339     for (auto &Ref : RefList) {
3340       Out << FS;
3341       if (Ref.isReadOnly())
3342         Out << "readonly ";
3343       else if (Ref.isWriteOnly())
3344         Out << "writeonly ";
3345       Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3346     }
3347     Out << ")";
3348   }
3349 
3350   Out << ")";
3351 }
3352 
3353 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3354   Out << "^" << Slot << " = gv: (";
3355   if (!VI.name().empty())
3356     Out << "name: \"" << VI.name() << "\"";
3357   else
3358     Out << "guid: " << VI.getGUID();
3359   if (!VI.getSummaryList().empty()) {
3360     Out << ", summaries: (";
3361     FieldSeparator FS;
3362     for (auto &Summary : VI.getSummaryList()) {
3363       Out << FS;
3364       printSummary(*Summary);
3365     }
3366     Out << ")";
3367   }
3368   Out << ")";
3369   if (!VI.name().empty())
3370     Out << " ; guid = " << VI.getGUID();
3371   Out << "\n";
3372 }
3373 
3374 static void printMetadataIdentifier(StringRef Name,
3375                                     formatted_raw_ostream &Out) {
3376   if (Name.empty()) {
3377     Out << "<empty name> ";
3378   } else {
3379     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3380         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3381       Out << Name[0];
3382     else
3383       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3384     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3385       unsigned char C = Name[i];
3386       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3387           C == '.' || C == '_')
3388         Out << C;
3389       else
3390         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3391     }
3392   }
3393 }
3394 
3395 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3396   Out << '!';
3397   printMetadataIdentifier(NMD->getName(), Out);
3398   Out << " = !{";
3399   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3400     if (i)
3401       Out << ", ";
3402 
3403     // Write DIExpressions inline.
3404     // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3405     MDNode *Op = NMD->getOperand(i);
3406     assert(!isa<DIArgList>(Op) &&
3407            "DIArgLists should not appear in NamedMDNodes");
3408     if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3409       writeDIExpression(Out, Expr, AsmWriterContext::getEmpty());
3410       continue;
3411     }
3412 
3413     int Slot = Machine.getMetadataSlot(Op);
3414     if (Slot == -1)
3415       Out << "<badref>";
3416     else
3417       Out << '!' << Slot;
3418   }
3419   Out << "}\n";
3420 }
3421 
3422 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3423                             formatted_raw_ostream &Out) {
3424   switch (Vis) {
3425   case GlobalValue::DefaultVisibility: break;
3426   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
3427   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3428   }
3429 }
3430 
3431 static void PrintDSOLocation(const GlobalValue &GV,
3432                              formatted_raw_ostream &Out) {
3433   if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3434     Out << "dso_local ";
3435 }
3436 
3437 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3438                                  formatted_raw_ostream &Out) {
3439   switch (SCT) {
3440   case GlobalValue::DefaultStorageClass: break;
3441   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3442   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3443   }
3444 }
3445 
3446 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3447                                   formatted_raw_ostream &Out) {
3448   switch (TLM) {
3449     case GlobalVariable::NotThreadLocal:
3450       break;
3451     case GlobalVariable::GeneralDynamicTLSModel:
3452       Out << "thread_local ";
3453       break;
3454     case GlobalVariable::LocalDynamicTLSModel:
3455       Out << "thread_local(localdynamic) ";
3456       break;
3457     case GlobalVariable::InitialExecTLSModel:
3458       Out << "thread_local(initialexec) ";
3459       break;
3460     case GlobalVariable::LocalExecTLSModel:
3461       Out << "thread_local(localexec) ";
3462       break;
3463   }
3464 }
3465 
3466 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3467   switch (UA) {
3468   case GlobalVariable::UnnamedAddr::None:
3469     return "";
3470   case GlobalVariable::UnnamedAddr::Local:
3471     return "local_unnamed_addr";
3472   case GlobalVariable::UnnamedAddr::Global:
3473     return "unnamed_addr";
3474   }
3475   llvm_unreachable("Unknown UnnamedAddr");
3476 }
3477 
3478 static void maybePrintComdat(formatted_raw_ostream &Out,
3479                              const GlobalObject &GO) {
3480   const Comdat *C = GO.getComdat();
3481   if (!C)
3482     return;
3483 
3484   if (isa<GlobalVariable>(GO))
3485     Out << ',';
3486   Out << " comdat";
3487 
3488   if (GO.getName() == C->getName())
3489     return;
3490 
3491   Out << '(';
3492   PrintLLVMName(Out, C->getName(), ComdatPrefix);
3493   Out << ')';
3494 }
3495 
3496 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3497   if (GV->isMaterializable())
3498     Out << "; Materializable\n";
3499 
3500   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent());
3501   WriteAsOperandInternal(Out, GV, WriterCtx);
3502   Out << " = ";
3503 
3504   if (!GV->hasInitializer() && GV->hasExternalLinkage())
3505     Out << "external ";
3506 
3507   Out << getLinkageNameWithSpace(GV->getLinkage());
3508   PrintDSOLocation(*GV, Out);
3509   PrintVisibility(GV->getVisibility(), Out);
3510   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3511   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3512   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3513   if (!UA.empty())
3514       Out << UA << ' ';
3515 
3516   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3517     Out << "addrspace(" << AddressSpace << ") ";
3518   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3519   Out << (GV->isConstant() ? "constant " : "global ");
3520   TypePrinter.print(GV->getValueType(), Out);
3521 
3522   if (GV->hasInitializer()) {
3523     Out << ' ';
3524     writeOperand(GV->getInitializer(), false);
3525   }
3526 
3527   if (GV->hasSection()) {
3528     Out << ", section \"";
3529     printEscapedString(GV->getSection(), Out);
3530     Out << '"';
3531   }
3532   if (GV->hasPartition()) {
3533     Out << ", partition \"";
3534     printEscapedString(GV->getPartition(), Out);
3535     Out << '"';
3536   }
3537 
3538   using SanitizerMetadata = llvm::GlobalValue::SanitizerMetadata;
3539   if (GV->hasSanitizerMetadata()) {
3540     SanitizerMetadata MD = GV->getSanitizerMetadata();
3541     if (MD.NoAddress)
3542       Out << ", no_sanitize_address";
3543     if (MD.NoHWAddress)
3544       Out << ", no_sanitize_hwaddress";
3545     if (MD.NoMemtag)
3546       Out << ", no_sanitize_memtag";
3547     if (MD.IsDynInit)
3548       Out << ", sanitize_address_dyninit";
3549   }
3550 
3551   maybePrintComdat(Out, *GV);
3552   if (MaybeAlign A = GV->getAlign())
3553     Out << ", align " << A->value();
3554 
3555   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3556   GV->getAllMetadata(MDs);
3557   printMetadataAttachments(MDs, ", ");
3558 
3559   auto Attrs = GV->getAttributes();
3560   if (Attrs.hasAttributes())
3561     Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3562 
3563   printInfoComment(*GV);
3564 }
3565 
3566 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
3567   if (GA->isMaterializable())
3568     Out << "; Materializable\n";
3569 
3570   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GA->getParent());
3571   WriteAsOperandInternal(Out, GA, WriterCtx);
3572   Out << " = ";
3573 
3574   Out << getLinkageNameWithSpace(GA->getLinkage());
3575   PrintDSOLocation(*GA, Out);
3576   PrintVisibility(GA->getVisibility(), Out);
3577   PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
3578   PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
3579   StringRef UA = getUnnamedAddrEncoding(GA->getUnnamedAddr());
3580   if (!UA.empty())
3581       Out << UA << ' ';
3582 
3583   Out << "alias ";
3584 
3585   TypePrinter.print(GA->getValueType(), Out);
3586   Out << ", ";
3587 
3588   if (const Constant *Aliasee = GA->getAliasee()) {
3589     writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
3590   } else {
3591     TypePrinter.print(GA->getType(), Out);
3592     Out << " <<NULL ALIASEE>>";
3593   }
3594 
3595   if (GA->hasPartition()) {
3596     Out << ", partition \"";
3597     printEscapedString(GA->getPartition(), Out);
3598     Out << '"';
3599   }
3600 
3601   printInfoComment(*GA);
3602   Out << '\n';
3603 }
3604 
3605 void AssemblyWriter::printIFunc(const GlobalIFunc *GI) {
3606   if (GI->isMaterializable())
3607     Out << "; Materializable\n";
3608 
3609   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GI->getParent());
3610   WriteAsOperandInternal(Out, GI, WriterCtx);
3611   Out << " = ";
3612 
3613   Out << getLinkageNameWithSpace(GI->getLinkage());
3614   PrintDSOLocation(*GI, Out);
3615   PrintVisibility(GI->getVisibility(), Out);
3616 
3617   Out << "ifunc ";
3618 
3619   TypePrinter.print(GI->getValueType(), Out);
3620   Out << ", ";
3621 
3622   if (const Constant *Resolver = GI->getResolver()) {
3623     writeOperand(Resolver, !isa<ConstantExpr>(Resolver));
3624   } else {
3625     TypePrinter.print(GI->getType(), Out);
3626     Out << " <<NULL RESOLVER>>";
3627   }
3628 
3629   if (GI->hasPartition()) {
3630     Out << ", partition \"";
3631     printEscapedString(GI->getPartition(), Out);
3632     Out << '"';
3633   }
3634 
3635   printInfoComment(*GI);
3636   Out << '\n';
3637 }
3638 
3639 void AssemblyWriter::printComdat(const Comdat *C) {
3640   C->print(Out);
3641 }
3642 
3643 void AssemblyWriter::printTypeIdentities() {
3644   if (TypePrinter.empty())
3645     return;
3646 
3647   Out << '\n';
3648 
3649   // Emit all numbered types.
3650   auto &NumberedTypes = TypePrinter.getNumberedTypes();
3651   for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3652     Out << '%' << I << " = type ";
3653 
3654     // Make sure we print out at least one level of the type structure, so
3655     // that we do not get %2 = type %2
3656     TypePrinter.printStructBody(NumberedTypes[I], Out);
3657     Out << '\n';
3658   }
3659 
3660   auto &NamedTypes = TypePrinter.getNamedTypes();
3661   for (StructType *NamedType : NamedTypes) {
3662     PrintLLVMName(Out, NamedType->getName(), LocalPrefix);
3663     Out << " = type ";
3664 
3665     // Make sure we print out at least one level of the type structure, so
3666     // that we do not get %FILE = type %FILE
3667     TypePrinter.printStructBody(NamedType, Out);
3668     Out << '\n';
3669   }
3670 }
3671 
3672 /// printFunction - Print all aspects of a function.
3673 void AssemblyWriter::printFunction(const Function *F) {
3674   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3675 
3676   if (F->isMaterializable())
3677     Out << "; Materializable\n";
3678 
3679   const AttributeList &Attrs = F->getAttributes();
3680   if (Attrs.hasFnAttrs()) {
3681     AttributeSet AS = Attrs.getFnAttrs();
3682     std::string AttrStr;
3683 
3684     for (const Attribute &Attr : AS) {
3685       if (!Attr.isStringAttribute()) {
3686         if (!AttrStr.empty()) AttrStr += ' ';
3687         AttrStr += Attr.getAsString();
3688       }
3689     }
3690 
3691     if (!AttrStr.empty())
3692       Out << "; Function Attrs: " << AttrStr << '\n';
3693   }
3694 
3695   Machine.incorporateFunction(F);
3696 
3697   if (F->isDeclaration()) {
3698     Out << "declare";
3699     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3700     F->getAllMetadata(MDs);
3701     printMetadataAttachments(MDs, " ");
3702     Out << ' ';
3703   } else
3704     Out << "define ";
3705 
3706   Out << getLinkageNameWithSpace(F->getLinkage());
3707   PrintDSOLocation(*F, Out);
3708   PrintVisibility(F->getVisibility(), Out);
3709   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3710 
3711   // Print the calling convention.
3712   if (F->getCallingConv() != CallingConv::C) {
3713     PrintCallingConv(F->getCallingConv(), Out);
3714     Out << " ";
3715   }
3716 
3717   FunctionType *FT = F->getFunctionType();
3718   if (Attrs.hasRetAttrs())
3719     Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3720   TypePrinter.print(F->getReturnType(), Out);
3721   AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent());
3722   Out << ' ';
3723   WriteAsOperandInternal(Out, F, WriterCtx);
3724   Out << '(';
3725 
3726   // Loop over the arguments, printing them...
3727   if (F->isDeclaration() && !IsForDebug) {
3728     // We're only interested in the type here - don't print argument names.
3729     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3730       // Insert commas as we go... the first arg doesn't get a comma
3731       if (I)
3732         Out << ", ";
3733       // Output type...
3734       TypePrinter.print(FT->getParamType(I), Out);
3735 
3736       AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
3737       if (ArgAttrs.hasAttributes()) {
3738         Out << ' ';
3739         writeAttributeSet(ArgAttrs);
3740       }
3741     }
3742   } else {
3743     // The arguments are meaningful here, print them in detail.
3744     for (const Argument &Arg : F->args()) {
3745       // Insert commas as we go... the first arg doesn't get a comma
3746       if (Arg.getArgNo() != 0)
3747         Out << ", ";
3748       printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
3749     }
3750   }
3751 
3752   // Finish printing arguments...
3753   if (FT->isVarArg()) {
3754     if (FT->getNumParams()) Out << ", ";
3755     Out << "...";  // Output varargs portion of signature!
3756   }
3757   Out << ')';
3758   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3759   if (!UA.empty())
3760     Out << ' ' << UA;
3761   // We print the function address space if it is non-zero or if we are writing
3762   // a module with a non-zero program address space or if there is no valid
3763   // Module* so that the file can be parsed without the datalayout string.
3764   const Module *Mod = F->getParent();
3765   if (F->getAddressSpace() != 0 || !Mod ||
3766       Mod->getDataLayout().getProgramAddressSpace() != 0)
3767     Out << " addrspace(" << F->getAddressSpace() << ")";
3768   if (Attrs.hasFnAttrs())
3769     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
3770   if (F->hasSection()) {
3771     Out << " section \"";
3772     printEscapedString(F->getSection(), Out);
3773     Out << '"';
3774   }
3775   if (F->hasPartition()) {
3776     Out << " partition \"";
3777     printEscapedString(F->getPartition(), Out);
3778     Out << '"';
3779   }
3780   maybePrintComdat(Out, *F);
3781   if (MaybeAlign A = F->getAlign())
3782     Out << " align " << A->value();
3783   if (F->hasGC())
3784     Out << " gc \"" << F->getGC() << '"';
3785   if (F->hasPrefixData()) {
3786     Out << " prefix ";
3787     writeOperand(F->getPrefixData(), true);
3788   }
3789   if (F->hasPrologueData()) {
3790     Out << " prologue ";
3791     writeOperand(F->getPrologueData(), true);
3792   }
3793   if (F->hasPersonalityFn()) {
3794     Out << " personality ";
3795     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3796   }
3797 
3798   if (F->isDeclaration()) {
3799     Out << '\n';
3800   } else {
3801     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3802     F->getAllMetadata(MDs);
3803     printMetadataAttachments(MDs, " ");
3804 
3805     Out << " {";
3806     // Output all of the function's basic blocks.
3807     for (const BasicBlock &BB : *F)
3808       printBasicBlock(&BB);
3809 
3810     // Output the function's use-lists.
3811     printUseLists(F);
3812 
3813     Out << "}\n";
3814   }
3815 
3816   Machine.purgeFunction();
3817 }
3818 
3819 /// printArgument - This member is called for every argument that is passed into
3820 /// the function.  Simply print it out
3821 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3822   // Output type...
3823   TypePrinter.print(Arg->getType(), Out);
3824 
3825   // Output parameter attributes list
3826   if (Attrs.hasAttributes()) {
3827     Out << ' ';
3828     writeAttributeSet(Attrs);
3829   }
3830 
3831   // Output name, if available...
3832   if (Arg->hasName()) {
3833     Out << ' ';
3834     PrintLLVMName(Out, Arg);
3835   } else {
3836     int Slot = Machine.getLocalSlot(Arg);
3837     assert(Slot != -1 && "expect argument in function here");
3838     Out << " %" << Slot;
3839   }
3840 }
3841 
3842 /// printBasicBlock - This member is called for each basic block in a method.
3843 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3844   bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
3845   if (BB->hasName()) {              // Print out the label if it exists...
3846     Out << "\n";
3847     PrintLLVMName(Out, BB->getName(), LabelPrefix);
3848     Out << ':';
3849   } else if (!IsEntryBlock) {
3850     Out << "\n";
3851     int Slot = Machine.getLocalSlot(BB);
3852     if (Slot != -1)
3853       Out << Slot << ":";
3854     else
3855       Out << "<badref>:";
3856   }
3857 
3858   if (!IsEntryBlock) {
3859     // Output predecessors for the block.
3860     Out.PadToColumn(50);
3861     Out << ";";
3862     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3863 
3864     if (PI == PE) {
3865       Out << " No predecessors!";
3866     } else {
3867       Out << " preds = ";
3868       writeOperand(*PI, false);
3869       for (++PI; PI != PE; ++PI) {
3870         Out << ", ";
3871         writeOperand(*PI, false);
3872       }
3873     }
3874   }
3875 
3876   Out << "\n";
3877 
3878   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3879 
3880   // Output all of the instructions in the basic block...
3881   for (const Instruction &I : *BB) {
3882     printInstructionLine(I);
3883   }
3884 
3885   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3886 }
3887 
3888 /// printInstructionLine - Print an instruction and a newline character.
3889 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3890   printInstruction(I);
3891   Out << '\n';
3892 }
3893 
3894 /// printGCRelocateComment - print comment after call to the gc.relocate
3895 /// intrinsic indicating base and derived pointer names.
3896 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3897   Out << " ; (";
3898   writeOperand(Relocate.getBasePtr(), false);
3899   Out << ", ";
3900   writeOperand(Relocate.getDerivedPtr(), false);
3901   Out << ")";
3902 }
3903 
3904 /// printInfoComment - Print a little comment after the instruction indicating
3905 /// which slot it occupies.
3906 void AssemblyWriter::printInfoComment(const Value &V) {
3907   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3908     printGCRelocateComment(*Relocate);
3909 
3910   if (AnnotationWriter)
3911     AnnotationWriter->printInfoComment(V, Out);
3912 }
3913 
3914 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3915                                     raw_ostream &Out) {
3916   // We print the address space of the call if it is non-zero.
3917   unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3918   bool PrintAddrSpace = CallAddrSpace != 0;
3919   if (!PrintAddrSpace) {
3920     const Module *Mod = getModuleFromVal(I);
3921     // We also print it if it is zero but not equal to the program address space
3922     // or if we can't find a valid Module* to make it possible to parse
3923     // the resulting file even without a datalayout string.
3924     if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3925       PrintAddrSpace = true;
3926   }
3927   if (PrintAddrSpace)
3928     Out << " addrspace(" << CallAddrSpace << ")";
3929 }
3930 
3931 // This member is called for each Instruction in a function..
3932 void AssemblyWriter::printInstruction(const Instruction &I) {
3933   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3934 
3935   // Print out indentation for an instruction.
3936   Out << "  ";
3937 
3938   // Print out name if it exists...
3939   if (I.hasName()) {
3940     PrintLLVMName(Out, &I);
3941     Out << " = ";
3942   } else if (!I.getType()->isVoidTy()) {
3943     // Print out the def slot taken.
3944     int SlotNum = Machine.getLocalSlot(&I);
3945     if (SlotNum == -1)
3946       Out << "<badref> = ";
3947     else
3948       Out << '%' << SlotNum << " = ";
3949   }
3950 
3951   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3952     if (CI->isMustTailCall())
3953       Out << "musttail ";
3954     else if (CI->isTailCall())
3955       Out << "tail ";
3956     else if (CI->isNoTailCall())
3957       Out << "notail ";
3958   }
3959 
3960   // Print out the opcode...
3961   Out << I.getOpcodeName();
3962 
3963   // If this is an atomic load or store, print out the atomic marker.
3964   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
3965       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3966     Out << " atomic";
3967 
3968   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3969     Out << " weak";
3970 
3971   // If this is a volatile operation, print out the volatile marker.
3972   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
3973       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3974       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3975       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3976     Out << " volatile";
3977 
3978   // Print out optimization information.
3979   WriteOptimizationInfo(Out, &I);
3980 
3981   // Print out the compare instruction predicates
3982   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3983     Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3984 
3985   // Print out the atomicrmw operation
3986   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3987     Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3988 
3989   // Print out the type of the operands...
3990   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3991 
3992   // Special case conditional branches to swizzle the condition out to the front
3993   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
3994     const BranchInst &BI(cast<BranchInst>(I));
3995     Out << ' ';
3996     writeOperand(BI.getCondition(), true);
3997     Out << ", ";
3998     writeOperand(BI.getSuccessor(0), true);
3999     Out << ", ";
4000     writeOperand(BI.getSuccessor(1), true);
4001 
4002   } else if (isa<SwitchInst>(I)) {
4003     const SwitchInst& SI(cast<SwitchInst>(I));
4004     // Special case switch instruction to get formatting nice and correct.
4005     Out << ' ';
4006     writeOperand(SI.getCondition(), true);
4007     Out << ", ";
4008     writeOperand(SI.getDefaultDest(), true);
4009     Out << " [";
4010     for (auto Case : SI.cases()) {
4011       Out << "\n    ";
4012       writeOperand(Case.getCaseValue(), true);
4013       Out << ", ";
4014       writeOperand(Case.getCaseSuccessor(), true);
4015     }
4016     Out << "\n  ]";
4017   } else if (isa<IndirectBrInst>(I)) {
4018     // Special case indirectbr instruction to get formatting nice and correct.
4019     Out << ' ';
4020     writeOperand(Operand, true);
4021     Out << ", [";
4022 
4023     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4024       if (i != 1)
4025         Out << ", ";
4026       writeOperand(I.getOperand(i), true);
4027     }
4028     Out << ']';
4029   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
4030     Out << ' ';
4031     TypePrinter.print(I.getType(), Out);
4032     Out << ' ';
4033 
4034     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4035       if (op) Out << ", ";
4036       Out << "[ ";
4037       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4038       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4039     }
4040   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
4041     Out << ' ';
4042     writeOperand(I.getOperand(0), true);
4043     for (unsigned i : EVI->indices())
4044       Out << ", " << i;
4045   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
4046     Out << ' ';
4047     writeOperand(I.getOperand(0), true); Out << ", ";
4048     writeOperand(I.getOperand(1), true);
4049     for (unsigned i : IVI->indices())
4050       Out << ", " << i;
4051   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
4052     Out << ' ';
4053     TypePrinter.print(I.getType(), Out);
4054     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4055       Out << '\n';
4056 
4057     if (LPI->isCleanup())
4058       Out << "          cleanup";
4059 
4060     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4061       if (i != 0 || LPI->isCleanup()) Out << "\n";
4062       if (LPI->isCatch(i))
4063         Out << "          catch ";
4064       else
4065         Out << "          filter ";
4066 
4067       writeOperand(LPI->getClause(i), true);
4068     }
4069   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
4070     Out << " within ";
4071     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4072     Out << " [";
4073     unsigned Op = 0;
4074     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4075       if (Op > 0)
4076         Out << ", ";
4077       writeOperand(PadBB, /*PrintType=*/true);
4078       ++Op;
4079     }
4080     Out << "] unwind ";
4081     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4082       writeOperand(UnwindDest, /*PrintType=*/true);
4083     else
4084       Out << "to caller";
4085   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
4086     Out << " within ";
4087     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4088     Out << " [";
4089     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
4090          ++Op) {
4091       if (Op > 0)
4092         Out << ", ";
4093       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4094     }
4095     Out << ']';
4096   } else if (isa<ReturnInst>(I) && !Operand) {
4097     Out << " void";
4098   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
4099     Out << " from ";
4100     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4101 
4102     Out << " to ";
4103     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4104   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
4105     Out << " from ";
4106     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4107 
4108     Out << " unwind ";
4109     if (CRI->hasUnwindDest())
4110       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4111     else
4112       Out << "to caller";
4113   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4114     // Print the calling convention being used.
4115     if (CI->getCallingConv() != CallingConv::C) {
4116       Out << " ";
4117       PrintCallingConv(CI->getCallingConv(), Out);
4118     }
4119 
4120     Operand = CI->getCalledOperand();
4121     FunctionType *FTy = CI->getFunctionType();
4122     Type *RetTy = FTy->getReturnType();
4123     const AttributeList &PAL = CI->getAttributes();
4124 
4125     if (PAL.hasRetAttrs())
4126       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4127 
4128     // Only print addrspace(N) if necessary:
4129     maybePrintCallAddrSpace(Operand, &I, Out);
4130 
4131     // If possible, print out the short form of the call instruction.  We can
4132     // only do this if the first argument is a pointer to a nonvararg function,
4133     // and if the return type is not a pointer to a function.
4134     //
4135     Out << ' ';
4136     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4137     Out << ' ';
4138     writeOperand(Operand, false);
4139     Out << '(';
4140     for (unsigned op = 0, Eop = CI->arg_size(); op < Eop; ++op) {
4141       if (op > 0)
4142         Out << ", ";
4143       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op));
4144     }
4145 
4146     // Emit an ellipsis if this is a musttail call in a vararg function.  This
4147     // is only to aid readability, musttail calls forward varargs by default.
4148     if (CI->isMustTailCall() && CI->getParent() &&
4149         CI->getParent()->getParent() &&
4150         CI->getParent()->getParent()->isVarArg())
4151       Out << ", ...";
4152 
4153     Out << ')';
4154     if (PAL.hasFnAttrs())
4155       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4156 
4157     writeOperandBundles(CI);
4158   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4159     Operand = II->getCalledOperand();
4160     FunctionType *FTy = II->getFunctionType();
4161     Type *RetTy = FTy->getReturnType();
4162     const AttributeList &PAL = II->getAttributes();
4163 
4164     // Print the calling convention being used.
4165     if (II->getCallingConv() != CallingConv::C) {
4166       Out << " ";
4167       PrintCallingConv(II->getCallingConv(), Out);
4168     }
4169 
4170     if (PAL.hasRetAttrs())
4171       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4172 
4173     // Only print addrspace(N) if necessary:
4174     maybePrintCallAddrSpace(Operand, &I, Out);
4175 
4176     // If possible, print out the short form of the invoke instruction. We can
4177     // only do this if the first argument is a pointer to a nonvararg function,
4178     // and if the return type is not a pointer to a function.
4179     //
4180     Out << ' ';
4181     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4182     Out << ' ';
4183     writeOperand(Operand, false);
4184     Out << '(';
4185     for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) {
4186       if (op)
4187         Out << ", ";
4188       writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op));
4189     }
4190 
4191     Out << ')';
4192     if (PAL.hasFnAttrs())
4193       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4194 
4195     writeOperandBundles(II);
4196 
4197     Out << "\n          to ";
4198     writeOperand(II->getNormalDest(), true);
4199     Out << " unwind ";
4200     writeOperand(II->getUnwindDest(), true);
4201   } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4202     Operand = CBI->getCalledOperand();
4203     FunctionType *FTy = CBI->getFunctionType();
4204     Type *RetTy = FTy->getReturnType();
4205     const AttributeList &PAL = CBI->getAttributes();
4206 
4207     // Print the calling convention being used.
4208     if (CBI->getCallingConv() != CallingConv::C) {
4209       Out << " ";
4210       PrintCallingConv(CBI->getCallingConv(), Out);
4211     }
4212 
4213     if (PAL.hasRetAttrs())
4214       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4215 
4216     // If possible, print out the short form of the callbr instruction. We can
4217     // only do this if the first argument is a pointer to a nonvararg function,
4218     // and if the return type is not a pointer to a function.
4219     //
4220     Out << ' ';
4221     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4222     Out << ' ';
4223     writeOperand(Operand, false);
4224     Out << '(';
4225     for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) {
4226       if (op)
4227         Out << ", ";
4228       writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
4229     }
4230 
4231     Out << ')';
4232     if (PAL.hasFnAttrs())
4233       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4234 
4235     writeOperandBundles(CBI);
4236 
4237     Out << "\n          to ";
4238     writeOperand(CBI->getDefaultDest(), true);
4239     Out << " [";
4240     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4241       if (i != 0)
4242         Out << ", ";
4243       writeOperand(CBI->getIndirectDest(i), true);
4244     }
4245     Out << ']';
4246   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4247     Out << ' ';
4248     if (AI->isUsedWithInAlloca())
4249       Out << "inalloca ";
4250     if (AI->isSwiftError())
4251       Out << "swifterror ";
4252     TypePrinter.print(AI->getAllocatedType(), Out);
4253 
4254     // Explicitly write the array size if the code is broken, if it's an array
4255     // allocation, or if the type is not canonical for scalar allocations.  The
4256     // latter case prevents the type from mutating when round-tripping through
4257     // assembly.
4258     if (!AI->getArraySize() || AI->isArrayAllocation() ||
4259         !AI->getArraySize()->getType()->isIntegerTy(32)) {
4260       Out << ", ";
4261       writeOperand(AI->getArraySize(), true);
4262     }
4263     if (MaybeAlign A = AI->getAlign()) {
4264       Out << ", align " << A->value();
4265     }
4266 
4267     unsigned AddrSpace = AI->getType()->getAddressSpace();
4268     if (AddrSpace != 0) {
4269       Out << ", addrspace(" << AddrSpace << ')';
4270     }
4271   } else if (isa<CastInst>(I)) {
4272     if (Operand) {
4273       Out << ' ';
4274       writeOperand(Operand, true);   // Work with broken code
4275     }
4276     Out << " to ";
4277     TypePrinter.print(I.getType(), Out);
4278   } else if (isa<VAArgInst>(I)) {
4279     if (Operand) {
4280       Out << ' ';
4281       writeOperand(Operand, true);   // Work with broken code
4282     }
4283     Out << ", ";
4284     TypePrinter.print(I.getType(), Out);
4285   } else if (Operand) {   // Print the normal way.
4286     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4287       Out << ' ';
4288       TypePrinter.print(GEP->getSourceElementType(), Out);
4289       Out << ',';
4290     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4291       Out << ' ';
4292       TypePrinter.print(LI->getType(), Out);
4293       Out << ',';
4294     }
4295 
4296     // PrintAllTypes - Instructions who have operands of all the same type
4297     // omit the type from all but the first operand.  If the instruction has
4298     // different type operands (for example br), then they are all printed.
4299     bool PrintAllTypes = false;
4300     Type *TheType = Operand->getType();
4301 
4302     // Select, Store and ShuffleVector always print all types.
4303     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
4304         || isa<ReturnInst>(I)) {
4305       PrintAllTypes = true;
4306     } else {
4307       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4308         Operand = I.getOperand(i);
4309         // note that Operand shouldn't be null, but the test helps make dump()
4310         // more tolerant of malformed IR
4311         if (Operand && Operand->getType() != TheType) {
4312           PrintAllTypes = true;    // We have differing types!  Print them all!
4313           break;
4314         }
4315       }
4316     }
4317 
4318     if (!PrintAllTypes) {
4319       Out << ' ';
4320       TypePrinter.print(TheType, Out);
4321     }
4322 
4323     Out << ' ';
4324     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4325       if (i) Out << ", ";
4326       writeOperand(I.getOperand(i), PrintAllTypes);
4327     }
4328   }
4329 
4330   // Print atomic ordering/alignment for memory operations
4331   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4332     if (LI->isAtomic())
4333       writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4334     if (MaybeAlign A = LI->getAlign())
4335       Out << ", align " << A->value();
4336   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4337     if (SI->isAtomic())
4338       writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4339     if (MaybeAlign A = SI->getAlign())
4340       Out << ", align " << A->value();
4341   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4342     writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4343                        CXI->getFailureOrdering(), CXI->getSyncScopeID());
4344     Out << ", align " << CXI->getAlign().value();
4345   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4346     writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4347                 RMWI->getSyncScopeID());
4348     Out << ", align " << RMWI->getAlign().value();
4349   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4350     writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4351   } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4352     PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4353   }
4354 
4355   // Print Metadata info.
4356   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4357   I.getAllMetadata(InstMD);
4358   printMetadataAttachments(InstMD, ", ");
4359 
4360   // Print a nice comment.
4361   printInfoComment(I);
4362 }
4363 
4364 void AssemblyWriter::printMetadataAttachments(
4365     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4366     StringRef Separator) {
4367   if (MDs.empty())
4368     return;
4369 
4370   if (MDNames.empty())
4371     MDs[0].second->getContext().getMDKindNames(MDNames);
4372 
4373   auto WriterCtx = getContext();
4374   for (const auto &I : MDs) {
4375     unsigned Kind = I.first;
4376     Out << Separator;
4377     if (Kind < MDNames.size()) {
4378       Out << "!";
4379       printMetadataIdentifier(MDNames[Kind], Out);
4380     } else
4381       Out << "!<unknown kind #" << Kind << ">";
4382     Out << ' ';
4383     WriteAsOperandInternal(Out, I.second, WriterCtx);
4384   }
4385 }
4386 
4387 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4388   Out << '!' << Slot << " = ";
4389   printMDNodeBody(Node);
4390   Out << "\n";
4391 }
4392 
4393 void AssemblyWriter::writeAllMDNodes() {
4394   SmallVector<const MDNode *, 16> Nodes;
4395   Nodes.resize(Machine.mdn_size());
4396   for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4397     Nodes[I.second] = cast<MDNode>(I.first);
4398 
4399   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4400     writeMDNode(i, Nodes[i]);
4401   }
4402 }
4403 
4404 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4405   auto WriterCtx = getContext();
4406   WriteMDNodeBodyInternal(Out, Node, WriterCtx);
4407 }
4408 
4409 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4410   if (!Attr.isTypeAttribute()) {
4411     Out << Attr.getAsString(InAttrGroup);
4412     return;
4413   }
4414 
4415   Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
4416   if (Type *Ty = Attr.getValueAsType()) {
4417     Out << '(';
4418     TypePrinter.print(Ty, Out);
4419     Out << ')';
4420   }
4421 }
4422 
4423 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4424                                        bool InAttrGroup) {
4425   bool FirstAttr = true;
4426   for (const auto &Attr : AttrSet) {
4427     if (!FirstAttr)
4428       Out << ' ';
4429     writeAttribute(Attr, InAttrGroup);
4430     FirstAttr = false;
4431   }
4432 }
4433 
4434 void AssemblyWriter::writeAllAttributeGroups() {
4435   std::vector<std::pair<AttributeSet, unsigned>> asVec;
4436   asVec.resize(Machine.as_size());
4437 
4438   for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4439     asVec[I.second] = I;
4440 
4441   for (const auto &I : asVec)
4442     Out << "attributes #" << I.second << " = { "
4443         << I.first.getAsString(true) << " }\n";
4444 }
4445 
4446 void AssemblyWriter::printUseListOrder(const Value *V,
4447                                        const std::vector<unsigned> &Shuffle) {
4448   bool IsInFunction = Machine.getFunction();
4449   if (IsInFunction)
4450     Out << "  ";
4451 
4452   Out << "uselistorder";
4453   if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
4454     Out << "_bb ";
4455     writeOperand(BB->getParent(), false);
4456     Out << ", ";
4457     writeOperand(BB, false);
4458   } else {
4459     Out << " ";
4460     writeOperand(V, true);
4461   }
4462   Out << ", { ";
4463 
4464   assert(Shuffle.size() >= 2 && "Shuffle too small");
4465   Out << Shuffle[0];
4466   for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4467     Out << ", " << Shuffle[I];
4468   Out << " }\n";
4469 }
4470 
4471 void AssemblyWriter::printUseLists(const Function *F) {
4472   auto It = UseListOrders.find(F);
4473   if (It == UseListOrders.end())
4474     return;
4475 
4476   Out << "\n; uselistorder directives\n";
4477   for (const auto &Pair : It->second)
4478     printUseListOrder(Pair.first, Pair.second);
4479 }
4480 
4481 //===----------------------------------------------------------------------===//
4482 //                       External Interface declarations
4483 //===----------------------------------------------------------------------===//
4484 
4485 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4486                      bool ShouldPreserveUseListOrder,
4487                      bool IsForDebug) const {
4488   SlotTracker SlotTable(this->getParent());
4489   formatted_raw_ostream OS(ROS);
4490   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4491                    IsForDebug,
4492                    ShouldPreserveUseListOrder);
4493   W.printFunction(this);
4494 }
4495 
4496 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4497                      bool ShouldPreserveUseListOrder,
4498                      bool IsForDebug) const {
4499   SlotTracker SlotTable(this->getParent());
4500   formatted_raw_ostream OS(ROS);
4501   AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4502                    IsForDebug,
4503                    ShouldPreserveUseListOrder);
4504   W.printBasicBlock(this);
4505 }
4506 
4507 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4508                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4509   SlotTracker SlotTable(this);
4510   formatted_raw_ostream OS(ROS);
4511   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4512                    ShouldPreserveUseListOrder);
4513   W.printModule(this);
4514 }
4515 
4516 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4517   SlotTracker SlotTable(getParent());
4518   formatted_raw_ostream OS(ROS);
4519   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4520   W.printNamedMDNode(this);
4521 }
4522 
4523 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4524                         bool IsForDebug) const {
4525   Optional<SlotTracker> LocalST;
4526   SlotTracker *SlotTable;
4527   if (auto *ST = MST.getMachine())
4528     SlotTable = ST;
4529   else {
4530     LocalST.emplace(getParent());
4531     SlotTable = &*LocalST;
4532   }
4533 
4534   formatted_raw_ostream OS(ROS);
4535   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4536   W.printNamedMDNode(this);
4537 }
4538 
4539 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4540   PrintLLVMName(ROS, getName(), ComdatPrefix);
4541   ROS << " = comdat ";
4542 
4543   switch (getSelectionKind()) {
4544   case Comdat::Any:
4545     ROS << "any";
4546     break;
4547   case Comdat::ExactMatch:
4548     ROS << "exactmatch";
4549     break;
4550   case Comdat::Largest:
4551     ROS << "largest";
4552     break;
4553   case Comdat::NoDeduplicate:
4554     ROS << "nodeduplicate";
4555     break;
4556   case Comdat::SameSize:
4557     ROS << "samesize";
4558     break;
4559   }
4560 
4561   ROS << '\n';
4562 }
4563 
4564 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4565   TypePrinting TP;
4566   TP.print(const_cast<Type*>(this), OS);
4567 
4568   if (NoDetails)
4569     return;
4570 
4571   // If the type is a named struct type, print the body as well.
4572   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4573     if (!STy->isLiteral()) {
4574       OS << " = type ";
4575       TP.printStructBody(STy, OS);
4576     }
4577 }
4578 
4579 static bool isReferencingMDNode(const Instruction &I) {
4580   if (const auto *CI = dyn_cast<CallInst>(&I))
4581     if (Function *F = CI->getCalledFunction())
4582       if (F->isIntrinsic())
4583         for (auto &Op : I.operands())
4584           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4585             if (isa<MDNode>(V->getMetadata()))
4586               return true;
4587   return false;
4588 }
4589 
4590 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4591   bool ShouldInitializeAllMetadata = false;
4592   if (auto *I = dyn_cast<Instruction>(this))
4593     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4594   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4595     ShouldInitializeAllMetadata = true;
4596 
4597   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4598   print(ROS, MST, IsForDebug);
4599 }
4600 
4601 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4602                   bool IsForDebug) const {
4603   formatted_raw_ostream OS(ROS);
4604   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4605   SlotTracker &SlotTable =
4606       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4607   auto incorporateFunction = [&](const Function *F) {
4608     if (F)
4609       MST.incorporateFunction(*F);
4610   };
4611 
4612   if (const Instruction *I = dyn_cast<Instruction>(this)) {
4613     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4614     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4615     W.printInstruction(*I);
4616   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4617     incorporateFunction(BB->getParent());
4618     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4619     W.printBasicBlock(BB);
4620   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4621     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4622     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4623       W.printGlobal(V);
4624     else if (const Function *F = dyn_cast<Function>(GV))
4625       W.printFunction(F);
4626     else if (const GlobalAlias *A = dyn_cast<GlobalAlias>(GV))
4627       W.printAlias(A);
4628     else if (const GlobalIFunc *I = dyn_cast<GlobalIFunc>(GV))
4629       W.printIFunc(I);
4630     else
4631       llvm_unreachable("Unknown GlobalValue to print out!");
4632   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4633     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4634   } else if (const Constant *C = dyn_cast<Constant>(this)) {
4635     TypePrinting TypePrinter;
4636     TypePrinter.print(C->getType(), OS);
4637     OS << ' ';
4638     AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine());
4639     WriteConstantInternal(OS, C, WriterCtx);
4640   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4641     this->printAsOperand(OS, /* PrintType */ true, MST);
4642   } else {
4643     llvm_unreachable("Unknown value to print out!");
4644   }
4645 }
4646 
4647 /// Print without a type, skipping the TypePrinting object.
4648 ///
4649 /// \return \c true iff printing was successful.
4650 static bool printWithoutType(const Value &V, raw_ostream &O,
4651                              SlotTracker *Machine, const Module *M) {
4652   if (V.hasName() || isa<GlobalValue>(V) ||
4653       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4654     AsmWriterContext WriterCtx(nullptr, Machine, M);
4655     WriteAsOperandInternal(O, &V, WriterCtx);
4656     return true;
4657   }
4658   return false;
4659 }
4660 
4661 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4662                                ModuleSlotTracker &MST) {
4663   TypePrinting TypePrinter(MST.getModule());
4664   if (PrintType) {
4665     TypePrinter.print(V.getType(), O);
4666     O << ' ';
4667   }
4668 
4669   AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine(), MST.getModule());
4670   WriteAsOperandInternal(O, &V, WriterCtx);
4671 }
4672 
4673 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4674                            const Module *M) const {
4675   if (!M)
4676     M = getModuleFromVal(this);
4677 
4678   if (!PrintType)
4679     if (printWithoutType(*this, O, nullptr, M))
4680       return;
4681 
4682   SlotTracker Machine(
4683       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4684   ModuleSlotTracker MST(Machine, M);
4685   printAsOperandImpl(*this, O, PrintType, MST);
4686 }
4687 
4688 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4689                            ModuleSlotTracker &MST) const {
4690   if (!PrintType)
4691     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4692       return;
4693 
4694   printAsOperandImpl(*this, O, PrintType, MST);
4695 }
4696 
4697 /// Recursive version of printMetadataImpl.
4698 static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD,
4699                                  AsmWriterContext &WriterCtx) {
4700   formatted_raw_ostream OS(ROS);
4701   WriteAsOperandInternal(OS, &MD, WriterCtx, /* FromValue */ true);
4702 
4703   auto *N = dyn_cast<MDNode>(&MD);
4704   if (!N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
4705     return;
4706 
4707   OS << " = ";
4708   WriteMDNodeBodyInternal(OS, N, WriterCtx);
4709 }
4710 
4711 namespace {
4712 struct MDTreeAsmWriterContext : public AsmWriterContext {
4713   unsigned Level;
4714   // {Level, Printed string}
4715   using EntryTy = std::pair<unsigned, std::string>;
4716   SmallVector<EntryTy, 4> Buffer;
4717 
4718   // Used to break the cycle in case there is any.
4719   SmallPtrSet<const Metadata *, 4> Visited;
4720 
4721   raw_ostream &MainOS;
4722 
4723   MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M,
4724                          raw_ostream &OS, const Metadata *InitMD)
4725       : AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {}
4726 
4727   void onWriteMetadataAsOperand(const Metadata *MD) override {
4728     if (Visited.count(MD))
4729       return;
4730     Visited.insert(MD);
4731 
4732     std::string Str;
4733     raw_string_ostream SS(Str);
4734     ++Level;
4735     // A placeholder entry to memorize the correct
4736     // position in buffer.
4737     Buffer.emplace_back(std::make_pair(Level, ""));
4738     unsigned InsertIdx = Buffer.size() - 1;
4739 
4740     printMetadataImplRec(SS, *MD, *this);
4741     Buffer[InsertIdx].second = std::move(SS.str());
4742     --Level;
4743   }
4744 
4745   ~MDTreeAsmWriterContext() {
4746     for (const auto &Entry : Buffer) {
4747       MainOS << "\n";
4748       unsigned NumIndent = Entry.first * 2U;
4749       MainOS.indent(NumIndent) << Entry.second;
4750     }
4751   }
4752 };
4753 } // end anonymous namespace
4754 
4755 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4756                               ModuleSlotTracker &MST, const Module *M,
4757                               bool OnlyAsOperand, bool PrintAsTree = false) {
4758   formatted_raw_ostream OS(ROS);
4759 
4760   TypePrinting TypePrinter(M);
4761 
4762   std::unique_ptr<AsmWriterContext> WriterCtx;
4763   if (PrintAsTree && !OnlyAsOperand)
4764     WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
4765         &TypePrinter, MST.getMachine(), M, OS, &MD);
4766   else
4767     WriterCtx =
4768         std::make_unique<AsmWriterContext>(&TypePrinter, MST.getMachine(), M);
4769 
4770   WriteAsOperandInternal(OS, &MD, *WriterCtx, /* FromValue */ true);
4771 
4772   auto *N = dyn_cast<MDNode>(&MD);
4773   if (OnlyAsOperand || !N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
4774     return;
4775 
4776   OS << " = ";
4777   WriteMDNodeBodyInternal(OS, N, *WriterCtx);
4778 }
4779 
4780 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4781   ModuleSlotTracker MST(M, isa<MDNode>(this));
4782   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4783 }
4784 
4785 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4786                               const Module *M) const {
4787   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4788 }
4789 
4790 void Metadata::print(raw_ostream &OS, const Module *M,
4791                      bool /*IsForDebug*/) const {
4792   ModuleSlotTracker MST(M, isa<MDNode>(this));
4793   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4794 }
4795 
4796 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4797                      const Module *M, bool /*IsForDebug*/) const {
4798   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4799 }
4800 
4801 void MDNode::printTree(raw_ostream &OS, const Module *M) const {
4802   ModuleSlotTracker MST(M, true);
4803   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
4804                     /*PrintAsTree=*/true);
4805 }
4806 
4807 void MDNode::printTree(raw_ostream &OS, ModuleSlotTracker &MST,
4808                        const Module *M) const {
4809   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
4810                     /*PrintAsTree=*/true);
4811 }
4812 
4813 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4814   SlotTracker SlotTable(this);
4815   formatted_raw_ostream OS(ROS);
4816   AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4817   W.printModuleSummaryIndex();
4818 }
4819 
4820 void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
4821                                        unsigned UB) const {
4822   SlotTracker *ST = MachineStorage.get();
4823   if (!ST)
4824     return;
4825 
4826   for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
4827     if (I.second >= LB && I.second < UB)
4828       L.push_back(std::make_pair(I.second, I.first));
4829 }
4830 
4831 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4832 // Value::dump - allow easy printing of Values from the debugger.
4833 LLVM_DUMP_METHOD
4834 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4835 
4836 // Type::dump - allow easy printing of Types from the debugger.
4837 LLVM_DUMP_METHOD
4838 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4839 
4840 // Module::dump() - Allow printing of Modules from the debugger.
4841 LLVM_DUMP_METHOD
4842 void Module::dump() const {
4843   print(dbgs(), nullptr,
4844         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4845 }
4846 
4847 // Allow printing of Comdats from the debugger.
4848 LLVM_DUMP_METHOD
4849 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4850 
4851 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4852 LLVM_DUMP_METHOD
4853 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4854 
4855 LLVM_DUMP_METHOD
4856 void Metadata::dump() const { dump(nullptr); }
4857 
4858 LLVM_DUMP_METHOD
4859 void Metadata::dump(const Module *M) const {
4860   print(dbgs(), M, /*IsForDebug=*/true);
4861   dbgs() << '\n';
4862 }
4863 
4864 LLVM_DUMP_METHOD
4865 void MDNode::dumpTree() const { dumpTree(nullptr); }
4866 
4867 LLVM_DUMP_METHOD
4868 void MDNode::dumpTree(const Module *M) const {
4869   printTree(dbgs(), M);
4870   dbgs() << '\n';
4871 }
4872 
4873 // Allow printing of ModuleSummaryIndex from the debugger.
4874 LLVM_DUMP_METHOD
4875 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4876 #endif
4877