1 
2 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
3 //
4 //                     The LLVM Compiler Infrastructure
5 //
6 // This file is distributed under the University of Illinois Open Source
7 // License. See LICENSE.TXT for details.
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 // This library implements the functionality defined in llvm/IR/Writer.h
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/IR/AssemblyAnnotationWriter.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfo.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/IRPrintingPasses.h"
30 #include "llvm/IR/InlineAsm.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/ModuleSlotTracker.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/IR/Statepoint.h"
37 #include "llvm/IR/TypeFinder.h"
38 #include "llvm/IR/UseListOrder.h"
39 #include "llvm/IR/ValueSymbolTable.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/Dwarf.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/Format.h"
44 #include "llvm/Support/FormattedStream.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cctype>
49 using namespace llvm;
50 
51 // Make virtual table appear in this compilation unit.
52 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
53 
54 //===----------------------------------------------------------------------===//
55 // Helper Functions
56 //===----------------------------------------------------------------------===//
57 
58 namespace {
59 struct OrderMap {
60   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
61 
62   unsigned size() const { return IDs.size(); }
63   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
64   std::pair<unsigned, bool> lookup(const Value *V) const {
65     return IDs.lookup(V);
66   }
67   void index(const Value *V) {
68     // Explicitly sequence get-size and insert-value operations to avoid UB.
69     unsigned ID = IDs.size() + 1;
70     IDs[V].first = ID;
71   }
72 };
73 }
74 
75 static void orderValue(const Value *V, OrderMap &OM) {
76   if (OM.lookup(V).first)
77     return;
78 
79   if (const Constant *C = dyn_cast<Constant>(V))
80     if (C->getNumOperands() && !isa<GlobalValue>(C))
81       for (const Value *Op : C->operands())
82         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
83           orderValue(Op, OM);
84 
85   // Note: we cannot cache this lookup above, since inserting into the map
86   // changes the map's size, and thus affects the other IDs.
87   OM.index(V);
88 }
89 
90 static OrderMap orderModule(const Module *M) {
91   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
92   // and ValueEnumerator::incorporateFunction().
93   OrderMap OM;
94 
95   for (const GlobalVariable &G : M->globals()) {
96     if (G.hasInitializer())
97       if (!isa<GlobalValue>(G.getInitializer()))
98         orderValue(G.getInitializer(), OM);
99     orderValue(&G, OM);
100   }
101   for (const GlobalAlias &A : M->aliases()) {
102     if (!isa<GlobalValue>(A.getAliasee()))
103       orderValue(A.getAliasee(), OM);
104     orderValue(&A, OM);
105   }
106   for (const GlobalIFunc &I : M->ifuncs()) {
107     if (!isa<GlobalValue>(I.getResolver()))
108       orderValue(I.getResolver(), OM);
109     orderValue(&I, OM);
110   }
111   for (const Function &F : *M) {
112     for (const Use &U : F.operands())
113       if (!isa<GlobalValue>(U.get()))
114         orderValue(U.get(), OM);
115 
116     orderValue(&F, OM);
117 
118     if (F.isDeclaration())
119       continue;
120 
121     for (const Argument &A : F.args())
122       orderValue(&A, OM);
123     for (const BasicBlock &BB : F) {
124       orderValue(&BB, OM);
125       for (const Instruction &I : BB) {
126         for (const Value *Op : I.operands())
127           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
128               isa<InlineAsm>(*Op))
129             orderValue(Op, OM);
130         orderValue(&I, OM);
131       }
132     }
133   }
134   return OM;
135 }
136 
137 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
138                                          unsigned ID, const OrderMap &OM,
139                                          UseListOrderStack &Stack) {
140   // Predict use-list order for this one.
141   typedef std::pair<const Use *, unsigned> Entry;
142   SmallVector<Entry, 64> List;
143   for (const Use &U : V->uses())
144     // Check if this user will be serialized.
145     if (OM.lookup(U.getUser()).first)
146       List.push_back(std::make_pair(&U, List.size()));
147 
148   if (List.size() < 2)
149     // We may have lost some users.
150     return;
151 
152   bool GetsReversed =
153       !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
154   if (auto *BA = dyn_cast<BlockAddress>(V))
155     ID = OM.lookup(BA->getBasicBlock()).first;
156   std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
157     const Use *LU = L.first;
158     const Use *RU = R.first;
159     if (LU == RU)
160       return false;
161 
162     auto LID = OM.lookup(LU->getUser()).first;
163     auto RID = OM.lookup(RU->getUser()).first;
164 
165     // If ID is 4, then expect: 7 6 5 1 2 3.
166     if (LID < RID) {
167       if (GetsReversed)
168         if (RID <= ID)
169           return true;
170       return false;
171     }
172     if (RID < LID) {
173       if (GetsReversed)
174         if (LID <= ID)
175           return false;
176       return true;
177     }
178 
179     // LID and RID are equal, so we have different operands of the same user.
180     // Assume operands are added in order for all instructions.
181     if (GetsReversed)
182       if (LID <= ID)
183         return LU->getOperandNo() < RU->getOperandNo();
184     return LU->getOperandNo() > RU->getOperandNo();
185   });
186 
187   if (std::is_sorted(
188           List.begin(), List.end(),
189           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
190     // Order is already correct.
191     return;
192 
193   // Store the shuffle.
194   Stack.emplace_back(V, F, List.size());
195   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
196   for (size_t I = 0, E = List.size(); I != E; ++I)
197     Stack.back().Shuffle[I] = List[I].second;
198 }
199 
200 static void predictValueUseListOrder(const Value *V, const Function *F,
201                                      OrderMap &OM, UseListOrderStack &Stack) {
202   auto &IDPair = OM[V];
203   assert(IDPair.first && "Unmapped value");
204   if (IDPair.second)
205     // Already predicted.
206     return;
207 
208   // Do the actual prediction.
209   IDPair.second = true;
210   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
211     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
212 
213   // Recursive descent into constants.
214   if (const Constant *C = dyn_cast<Constant>(V))
215     if (C->getNumOperands()) // Visit GlobalValues.
216       for (const Value *Op : C->operands())
217         if (isa<Constant>(Op)) // Visit GlobalValues.
218           predictValueUseListOrder(Op, F, OM, Stack);
219 }
220 
221 static UseListOrderStack predictUseListOrder(const Module *M) {
222   OrderMap OM = orderModule(M);
223 
224   // Use-list orders need to be serialized after all the users have been added
225   // to a value, or else the shuffles will be incomplete.  Store them per
226   // function in a stack.
227   //
228   // Aside from function order, the order of values doesn't matter much here.
229   UseListOrderStack Stack;
230 
231   // We want to visit the functions backward now so we can list function-local
232   // constants in the last Function they're used in.  Module-level constants
233   // have already been visited above.
234   for (const Function &F : make_range(M->rbegin(), M->rend())) {
235     if (F.isDeclaration())
236       continue;
237     for (const BasicBlock &BB : F)
238       predictValueUseListOrder(&BB, &F, OM, Stack);
239     for (const Argument &A : F.args())
240       predictValueUseListOrder(&A, &F, OM, Stack);
241     for (const BasicBlock &BB : F)
242       for (const Instruction &I : BB)
243         for (const Value *Op : I.operands())
244           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
245             predictValueUseListOrder(Op, &F, OM, Stack);
246     for (const BasicBlock &BB : F)
247       for (const Instruction &I : BB)
248         predictValueUseListOrder(&I, &F, OM, Stack);
249   }
250 
251   // Visit globals last.
252   for (const GlobalVariable &G : M->globals())
253     predictValueUseListOrder(&G, nullptr, OM, Stack);
254   for (const Function &F : *M)
255     predictValueUseListOrder(&F, nullptr, OM, Stack);
256   for (const GlobalAlias &A : M->aliases())
257     predictValueUseListOrder(&A, nullptr, OM, Stack);
258   for (const GlobalIFunc &I : M->ifuncs())
259     predictValueUseListOrder(&I, nullptr, OM, Stack);
260   for (const GlobalVariable &G : M->globals())
261     if (G.hasInitializer())
262       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
263   for (const GlobalAlias &A : M->aliases())
264     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
265   for (const GlobalIFunc &I : M->ifuncs())
266     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
267   for (const Function &F : *M)
268     for (const Use &U : F.operands())
269       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
270 
271   return Stack;
272 }
273 
274 static const Module *getModuleFromVal(const Value *V) {
275   if (const Argument *MA = dyn_cast<Argument>(V))
276     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
277 
278   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
279     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
280 
281   if (const Instruction *I = dyn_cast<Instruction>(V)) {
282     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
283     return M ? M->getParent() : nullptr;
284   }
285 
286   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
287     return GV->getParent();
288 
289   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
290     for (const User *U : MAV->users())
291       if (isa<Instruction>(U))
292         if (const Module *M = getModuleFromVal(U))
293           return M;
294     return nullptr;
295   }
296 
297   return nullptr;
298 }
299 
300 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
301   switch (cc) {
302   default:                         Out << "cc" << cc; break;
303   case CallingConv::Fast:          Out << "fastcc"; break;
304   case CallingConv::Cold:          Out << "coldcc"; break;
305   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
306   case CallingConv::AnyReg:        Out << "anyregcc"; break;
307   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
308   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
309   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
310   case CallingConv::GHC:           Out << "ghccc"; break;
311   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
312   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
313   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
314   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
315   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
316   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
317   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
318   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
319   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
320   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
321   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
322   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
323   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
324   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
325   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
326   case CallingConv::X86_64_Win64:  Out << "x86_64_win64cc"; break;
327   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
328   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
329   case CallingConv::Swift:         Out << "swiftcc"; break;
330   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
331   case CallingConv::HHVM:          Out << "hhvmcc"; break;
332   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
333   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
334   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
335   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
336   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
337   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
338   }
339 }
340 
341 void llvm::PrintEscapedString(StringRef Name, raw_ostream &Out) {
342   for (unsigned i = 0, e = Name.size(); i != e; ++i) {
343     unsigned char C = Name[i];
344     if (isprint(C) && C != '\\' && C != '"')
345       Out << C;
346     else
347       Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
348   }
349 }
350 
351 enum PrefixType {
352   GlobalPrefix,
353   ComdatPrefix,
354   LabelPrefix,
355   LocalPrefix,
356   NoPrefix
357 };
358 
359 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
360   assert(!Name.empty() && "Cannot get empty name!");
361 
362   // Scan the name to see if it needs quotes first.
363   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
364   if (!NeedsQuotes) {
365     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
366       // By making this unsigned, the value passed in to isalnum will always be
367       // in the range 0-255.  This is important when building with MSVC because
368       // its implementation will assert.  This situation can arise when dealing
369       // with UTF-8 multibyte characters.
370       unsigned char C = Name[i];
371       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
372           C != '_') {
373         NeedsQuotes = true;
374         break;
375       }
376     }
377   }
378 
379   // If we didn't need any quotes, just write out the name in one blast.
380   if (!NeedsQuotes) {
381     OS << Name;
382     return;
383   }
384 
385   // Okay, we need quotes.  Output the quotes and escape any scary characters as
386   // needed.
387   OS << '"';
388   PrintEscapedString(Name, OS);
389   OS << '"';
390 }
391 
392 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
393 /// (if the string only contains simple characters) or is surrounded with ""'s
394 /// (if it has special chars in it). Print it out.
395 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
396   switch (Prefix) {
397   case NoPrefix:
398     break;
399   case GlobalPrefix:
400     OS << '@';
401     break;
402   case ComdatPrefix:
403     OS << '$';
404     break;
405   case LabelPrefix:
406     break;
407   case LocalPrefix:
408     OS << '%';
409     break;
410   }
411   printLLVMNameWithoutPrefix(OS, Name);
412 }
413 
414 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
415 /// (if the string only contains simple characters) or is surrounded with ""'s
416 /// (if it has special chars in it). Print it out.
417 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
418   PrintLLVMName(OS, V->getName(),
419                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
420 }
421 
422 
423 namespace {
424 class TypePrinting {
425   TypePrinting(const TypePrinting &) = delete;
426   void operator=(const TypePrinting&) = delete;
427 public:
428 
429   /// NamedTypes - The named types that are used by the current module.
430   TypeFinder NamedTypes;
431 
432   /// NumberedTypes - The numbered types, along with their value.
433   DenseMap<StructType*, unsigned> NumberedTypes;
434 
435   TypePrinting() = default;
436 
437   void incorporateTypes(const Module &M);
438 
439   void print(Type *Ty, raw_ostream &OS);
440 
441   void printStructBody(StructType *Ty, raw_ostream &OS);
442 };
443 } // namespace
444 
445 void TypePrinting::incorporateTypes(const Module &M) {
446   NamedTypes.run(M, false);
447 
448   // The list of struct types we got back includes all the struct types, split
449   // the unnamed ones out to a numbering and remove the anonymous structs.
450   unsigned NextNumber = 0;
451 
452   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
453   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
454     StructType *STy = *I;
455 
456     // Ignore anonymous types.
457     if (STy->isLiteral())
458       continue;
459 
460     if (STy->getName().empty())
461       NumberedTypes[STy] = NextNumber++;
462     else
463       *NextToUse++ = STy;
464   }
465 
466   NamedTypes.erase(NextToUse, NamedTypes.end());
467 }
468 
469 
470 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
471 /// use of type names or up references to shorten the type name where possible.
472 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
473   switch (Ty->getTypeID()) {
474   case Type::VoidTyID:      OS << "void"; return;
475   case Type::HalfTyID:      OS << "half"; return;
476   case Type::FloatTyID:     OS << "float"; return;
477   case Type::DoubleTyID:    OS << "double"; return;
478   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
479   case Type::FP128TyID:     OS << "fp128"; return;
480   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
481   case Type::LabelTyID:     OS << "label"; return;
482   case Type::MetadataTyID:  OS << "metadata"; return;
483   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
484   case Type::TokenTyID:     OS << "token"; return;
485   case Type::IntegerTyID:
486     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
487     return;
488 
489   case Type::FunctionTyID: {
490     FunctionType *FTy = cast<FunctionType>(Ty);
491     print(FTy->getReturnType(), OS);
492     OS << " (";
493     for (FunctionType::param_iterator I = FTy->param_begin(),
494          E = FTy->param_end(); I != E; ++I) {
495       if (I != FTy->param_begin())
496         OS << ", ";
497       print(*I, OS);
498     }
499     if (FTy->isVarArg()) {
500       if (FTy->getNumParams()) OS << ", ";
501       OS << "...";
502     }
503     OS << ')';
504     return;
505   }
506   case Type::StructTyID: {
507     StructType *STy = cast<StructType>(Ty);
508 
509     if (STy->isLiteral())
510       return printStructBody(STy, OS);
511 
512     if (!STy->getName().empty())
513       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
514 
515     DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
516     if (I != NumberedTypes.end())
517       OS << '%' << I->second;
518     else  // Not enumerated, print the hex address.
519       OS << "%\"type " << STy << '\"';
520     return;
521   }
522   case Type::PointerTyID: {
523     PointerType *PTy = cast<PointerType>(Ty);
524     print(PTy->getElementType(), OS);
525     if (unsigned AddressSpace = PTy->getAddressSpace())
526       OS << " addrspace(" << AddressSpace << ')';
527     OS << '*';
528     return;
529   }
530   case Type::ArrayTyID: {
531     ArrayType *ATy = cast<ArrayType>(Ty);
532     OS << '[' << ATy->getNumElements() << " x ";
533     print(ATy->getElementType(), OS);
534     OS << ']';
535     return;
536   }
537   case Type::VectorTyID: {
538     VectorType *PTy = cast<VectorType>(Ty);
539     OS << "<" << PTy->getNumElements() << " x ";
540     print(PTy->getElementType(), OS);
541     OS << '>';
542     return;
543   }
544   }
545   llvm_unreachable("Invalid TypeID");
546 }
547 
548 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
549   if (STy->isOpaque()) {
550     OS << "opaque";
551     return;
552   }
553 
554   if (STy->isPacked())
555     OS << '<';
556 
557   if (STy->getNumElements() == 0) {
558     OS << "{}";
559   } else {
560     StructType::element_iterator I = STy->element_begin();
561     OS << "{ ";
562     print(*I++, OS);
563     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
564       OS << ", ";
565       print(*I, OS);
566     }
567 
568     OS << " }";
569   }
570   if (STy->isPacked())
571     OS << '>';
572 }
573 
574 namespace llvm {
575 //===----------------------------------------------------------------------===//
576 // SlotTracker Class: Enumerate slot numbers for unnamed values
577 //===----------------------------------------------------------------------===//
578 /// This class provides computation of slot numbers for LLVM Assembly writing.
579 ///
580 class SlotTracker {
581 public:
582   /// ValueMap - A mapping of Values to slot numbers.
583   typedef DenseMap<const Value*, unsigned> ValueMap;
584 
585 private:
586   /// TheModule - The module for which we are holding slot numbers.
587   const Module* TheModule;
588 
589   /// TheFunction - The function for which we are holding slot numbers.
590   const Function* TheFunction;
591   bool FunctionProcessed;
592   bool ShouldInitializeAllMetadata;
593 
594   /// mMap - The slot map for the module level data.
595   ValueMap mMap;
596   unsigned mNext;
597 
598   /// fMap - The slot map for the function level data.
599   ValueMap fMap;
600   unsigned fNext;
601 
602   /// mdnMap - Map for MDNodes.
603   DenseMap<const MDNode*, unsigned> mdnMap;
604   unsigned mdnNext;
605 
606   /// asMap - The slot map for attribute sets.
607   DenseMap<AttributeSet, unsigned> asMap;
608   unsigned asNext;
609 public:
610   /// Construct from a module.
611   ///
612   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
613   /// functions, giving correct numbering for metadata referenced only from
614   /// within a function (even if no functions have been initialized).
615   explicit SlotTracker(const Module *M,
616                        bool ShouldInitializeAllMetadata = false);
617   /// Construct from a function, starting out in incorp state.
618   ///
619   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
620   /// functions, giving correct numbering for metadata referenced only from
621   /// within a function (even if no functions have been initialized).
622   explicit SlotTracker(const Function *F,
623                        bool ShouldInitializeAllMetadata = false);
624 
625   /// Return the slot number of the specified value in it's type
626   /// plane.  If something is not in the SlotTracker, return -1.
627   int getLocalSlot(const Value *V);
628   int getGlobalSlot(const GlobalValue *V);
629   int getMetadataSlot(const MDNode *N);
630   int getAttributeGroupSlot(AttributeSet AS);
631 
632   /// If you'd like to deal with a function instead of just a module, use
633   /// this method to get its data into the SlotTracker.
634   void incorporateFunction(const Function *F) {
635     TheFunction = F;
636     FunctionProcessed = false;
637   }
638 
639   const Function *getFunction() const { return TheFunction; }
640 
641   /// After calling incorporateFunction, use this method to remove the
642   /// most recently incorporated function from the SlotTracker. This
643   /// will reset the state of the machine back to just the module contents.
644   void purgeFunction();
645 
646   /// MDNode map iterators.
647   typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
648   mdn_iterator mdn_begin() { return mdnMap.begin(); }
649   mdn_iterator mdn_end() { return mdnMap.end(); }
650   unsigned mdn_size() const { return mdnMap.size(); }
651   bool mdn_empty() const { return mdnMap.empty(); }
652 
653   /// AttributeSet map iterators.
654   typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
655   as_iterator as_begin()   { return asMap.begin(); }
656   as_iterator as_end()     { return asMap.end(); }
657   unsigned as_size() const { return asMap.size(); }
658   bool as_empty() const    { return asMap.empty(); }
659 
660   /// This function does the actual initialization.
661   inline void initialize();
662 
663   // Implementation Details
664 private:
665   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
666   void CreateModuleSlot(const GlobalValue *V);
667 
668   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
669   void CreateMetadataSlot(const MDNode *N);
670 
671   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
672   void CreateFunctionSlot(const Value *V);
673 
674   /// \brief Insert the specified AttributeSet into the slot table.
675   void CreateAttributeSetSlot(AttributeSet AS);
676 
677   /// Add all of the module level global variables (and their initializers)
678   /// and function declarations, but not the contents of those functions.
679   void processModule();
680 
681   /// Add all of the functions arguments, basic blocks, and instructions.
682   void processFunction();
683 
684   /// Add the metadata directly attached to a GlobalObject.
685   void processGlobalObjectMetadata(const GlobalObject &GO);
686 
687   /// Add all of the metadata from a function.
688   void processFunctionMetadata(const Function &F);
689 
690   /// Add all of the metadata from an instruction.
691   void processInstructionMetadata(const Instruction &I);
692 
693   SlotTracker(const SlotTracker &) = delete;
694   void operator=(const SlotTracker &) = delete;
695 };
696 } // namespace llvm
697 
698 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
699                                      const Function *F)
700     : M(M), F(F), Machine(&Machine) {}
701 
702 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
703                                      bool ShouldInitializeAllMetadata)
704     : ShouldCreateStorage(M),
705       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
706 
707 ModuleSlotTracker::~ModuleSlotTracker() {}
708 
709 SlotTracker *ModuleSlotTracker::getMachine() {
710   if (!ShouldCreateStorage)
711     return Machine;
712 
713   ShouldCreateStorage = false;
714   MachineStorage =
715       llvm::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
716   Machine = MachineStorage.get();
717   return Machine;
718 }
719 
720 void ModuleSlotTracker::incorporateFunction(const Function &F) {
721   // Using getMachine() may lazily create the slot tracker.
722   if (!getMachine())
723     return;
724 
725   // Nothing to do if this is the right function already.
726   if (this->F == &F)
727     return;
728   if (this->F)
729     Machine->purgeFunction();
730   Machine->incorporateFunction(&F);
731   this->F = &F;
732 }
733 
734 int ModuleSlotTracker::getLocalSlot(const Value *V) {
735   assert(F && "No function incorporated");
736   return Machine->getLocalSlot(V);
737 }
738 
739 static SlotTracker *createSlotTracker(const Value *V) {
740   if (const Argument *FA = dyn_cast<Argument>(V))
741     return new SlotTracker(FA->getParent());
742 
743   if (const Instruction *I = dyn_cast<Instruction>(V))
744     if (I->getParent())
745       return new SlotTracker(I->getParent()->getParent());
746 
747   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
748     return new SlotTracker(BB->getParent());
749 
750   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
751     return new SlotTracker(GV->getParent());
752 
753   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
754     return new SlotTracker(GA->getParent());
755 
756   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
757     return new SlotTracker(GIF->getParent());
758 
759   if (const Function *Func = dyn_cast<Function>(V))
760     return new SlotTracker(Func);
761 
762   return nullptr;
763 }
764 
765 #if 0
766 #define ST_DEBUG(X) dbgs() << X
767 #else
768 #define ST_DEBUG(X)
769 #endif
770 
771 // Module level constructor. Causes the contents of the Module (sans functions)
772 // to be added to the slot table.
773 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
774     : TheModule(M), TheFunction(nullptr), FunctionProcessed(false),
775       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
776       fNext(0), mdnNext(0), asNext(0) {}
777 
778 // Function level constructor. Causes the contents of the Module and the one
779 // function provided to be added to the slot table.
780 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
781     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
782       FunctionProcessed(false),
783       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
784       fNext(0), mdnNext(0), asNext(0) {}
785 
786 inline void SlotTracker::initialize() {
787   if (TheModule) {
788     processModule();
789     TheModule = nullptr; ///< Prevent re-processing next time we're called.
790   }
791 
792   if (TheFunction && !FunctionProcessed)
793     processFunction();
794 }
795 
796 // Iterate through all the global variables, functions, and global
797 // variable initializers and create slots for them.
798 void SlotTracker::processModule() {
799   ST_DEBUG("begin processModule!\n");
800 
801   // Add all of the unnamed global variables to the value table.
802   for (const GlobalVariable &Var : TheModule->globals()) {
803     if (!Var.hasName())
804       CreateModuleSlot(&Var);
805     processGlobalObjectMetadata(Var);
806   }
807 
808   for (const GlobalAlias &A : TheModule->aliases()) {
809     if (!A.hasName())
810       CreateModuleSlot(&A);
811   }
812 
813   for (const GlobalIFunc &I : TheModule->ifuncs()) {
814     if (!I.hasName())
815       CreateModuleSlot(&I);
816   }
817 
818   // Add metadata used by named metadata.
819   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
820     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
821       CreateMetadataSlot(NMD.getOperand(i));
822   }
823 
824   for (const Function &F : *TheModule) {
825     if (!F.hasName())
826       // Add all the unnamed functions to the table.
827       CreateModuleSlot(&F);
828 
829     if (ShouldInitializeAllMetadata)
830       processFunctionMetadata(F);
831 
832     // Add all the function attributes to the table.
833     // FIXME: Add attributes of other objects?
834     AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
835     if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
836       CreateAttributeSetSlot(FnAttrs);
837   }
838 
839   ST_DEBUG("end processModule!\n");
840 }
841 
842 // Process the arguments, basic blocks, and instructions  of a function.
843 void SlotTracker::processFunction() {
844   ST_DEBUG("begin processFunction!\n");
845   fNext = 0;
846 
847   // Process function metadata if it wasn't hit at the module-level.
848   if (!ShouldInitializeAllMetadata)
849     processFunctionMetadata(*TheFunction);
850 
851   // Add all the function arguments with no names.
852   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
853       AE = TheFunction->arg_end(); AI != AE; ++AI)
854     if (!AI->hasName())
855       CreateFunctionSlot(&*AI);
856 
857   ST_DEBUG("Inserting Instructions:\n");
858 
859   // Add all of the basic blocks and instructions with no names.
860   for (auto &BB : *TheFunction) {
861     if (!BB.hasName())
862       CreateFunctionSlot(&BB);
863 
864     for (auto &I : BB) {
865       if (!I.getType()->isVoidTy() && !I.hasName())
866         CreateFunctionSlot(&I);
867 
868       // We allow direct calls to any llvm.foo function here, because the
869       // target may not be linked into the optimizer.
870       if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
871         // Add all the call attributes to the table.
872         AttributeSet Attrs = CI->getAttributes().getFnAttributes();
873         if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
874           CreateAttributeSetSlot(Attrs);
875       } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
876         // Add all the call attributes to the table.
877         AttributeSet Attrs = II->getAttributes().getFnAttributes();
878         if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
879           CreateAttributeSetSlot(Attrs);
880       }
881     }
882   }
883 
884   FunctionProcessed = true;
885 
886   ST_DEBUG("end processFunction!\n");
887 }
888 
889 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
890   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
891   GO.getAllMetadata(MDs);
892   for (auto &MD : MDs)
893     CreateMetadataSlot(MD.second);
894 }
895 
896 void SlotTracker::processFunctionMetadata(const Function &F) {
897   processGlobalObjectMetadata(F);
898   for (auto &BB : F) {
899     for (auto &I : BB)
900       processInstructionMetadata(I);
901   }
902 }
903 
904 void SlotTracker::processInstructionMetadata(const Instruction &I) {
905   // Process metadata used directly by intrinsics.
906   if (const CallInst *CI = dyn_cast<CallInst>(&I))
907     if (Function *F = CI->getCalledFunction())
908       if (F->isIntrinsic())
909         for (auto &Op : I.operands())
910           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
911             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
912               CreateMetadataSlot(N);
913 
914   // Process metadata attached to this instruction.
915   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
916   I.getAllMetadata(MDs);
917   for (auto &MD : MDs)
918     CreateMetadataSlot(MD.second);
919 }
920 
921 /// Clean up after incorporating a function. This is the only way to get out of
922 /// the function incorporation state that affects get*Slot/Create*Slot. Function
923 /// incorporation state is indicated by TheFunction != 0.
924 void SlotTracker::purgeFunction() {
925   ST_DEBUG("begin purgeFunction!\n");
926   fMap.clear(); // Simply discard the function level map
927   TheFunction = nullptr;
928   FunctionProcessed = false;
929   ST_DEBUG("end purgeFunction!\n");
930 }
931 
932 /// getGlobalSlot - Get the slot number of a global value.
933 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
934   // Check for uninitialized state and do lazy initialization.
935   initialize();
936 
937   // Find the value in the module map
938   ValueMap::iterator MI = mMap.find(V);
939   return MI == mMap.end() ? -1 : (int)MI->second;
940 }
941 
942 /// getMetadataSlot - Get the slot number of a MDNode.
943 int SlotTracker::getMetadataSlot(const MDNode *N) {
944   // Check for uninitialized state and do lazy initialization.
945   initialize();
946 
947   // Find the MDNode in the module map
948   mdn_iterator MI = mdnMap.find(N);
949   return MI == mdnMap.end() ? -1 : (int)MI->second;
950 }
951 
952 
953 /// getLocalSlot - Get the slot number for a value that is local to a function.
954 int SlotTracker::getLocalSlot(const Value *V) {
955   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
956 
957   // Check for uninitialized state and do lazy initialization.
958   initialize();
959 
960   ValueMap::iterator FI = fMap.find(V);
961   return FI == fMap.end() ? -1 : (int)FI->second;
962 }
963 
964 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
965   // Check for uninitialized state and do lazy initialization.
966   initialize();
967 
968   // Find the AttributeSet in the module map.
969   as_iterator AI = asMap.find(AS);
970   return AI == asMap.end() ? -1 : (int)AI->second;
971 }
972 
973 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
974 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
975   assert(V && "Can't insert a null Value into SlotTracker!");
976   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
977   assert(!V->hasName() && "Doesn't need a slot!");
978 
979   unsigned DestSlot = mNext++;
980   mMap[V] = DestSlot;
981 
982   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
983            DestSlot << " [");
984   // G = Global, F = Function, A = Alias, I = IFunc, o = other
985   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
986             (isa<Function>(V) ? 'F' :
987              (isa<GlobalAlias>(V) ? 'A' :
988               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
989 }
990 
991 /// CreateSlot - Create a new slot for the specified value if it has no name.
992 void SlotTracker::CreateFunctionSlot(const Value *V) {
993   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
994 
995   unsigned DestSlot = fNext++;
996   fMap[V] = DestSlot;
997 
998   // G = Global, F = Function, o = other
999   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1000            DestSlot << " [o]\n");
1001 }
1002 
1003 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1004 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1005   assert(N && "Can't insert a null Value into SlotTracker!");
1006 
1007   unsigned DestSlot = mdnNext;
1008   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1009     return;
1010   ++mdnNext;
1011 
1012   // Recursively add any MDNodes referenced by operands.
1013   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1014     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1015       CreateMetadataSlot(Op);
1016 }
1017 
1018 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1019   assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
1020          "Doesn't need a slot!");
1021 
1022   as_iterator I = asMap.find(AS);
1023   if (I != asMap.end())
1024     return;
1025 
1026   unsigned DestSlot = asNext++;
1027   asMap[AS] = DestSlot;
1028 }
1029 
1030 //===----------------------------------------------------------------------===//
1031 // AsmWriter Implementation
1032 //===----------------------------------------------------------------------===//
1033 
1034 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1035                                    TypePrinting *TypePrinter,
1036                                    SlotTracker *Machine,
1037                                    const Module *Context);
1038 
1039 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1040                                    TypePrinting *TypePrinter,
1041                                    SlotTracker *Machine, const Module *Context,
1042                                    bool FromValue = false);
1043 
1044 static void writeAtomicRMWOperation(raw_ostream &Out,
1045                                     AtomicRMWInst::BinOp Op) {
1046   switch (Op) {
1047   default: Out << " <unknown operation " << Op << ">"; break;
1048   case AtomicRMWInst::Xchg: Out << " xchg"; break;
1049   case AtomicRMWInst::Add:  Out << " add"; break;
1050   case AtomicRMWInst::Sub:  Out << " sub"; break;
1051   case AtomicRMWInst::And:  Out << " and"; break;
1052   case AtomicRMWInst::Nand: Out << " nand"; break;
1053   case AtomicRMWInst::Or:   Out << " or"; break;
1054   case AtomicRMWInst::Xor:  Out << " xor"; break;
1055   case AtomicRMWInst::Max:  Out << " max"; break;
1056   case AtomicRMWInst::Min:  Out << " min"; break;
1057   case AtomicRMWInst::UMax: Out << " umax"; break;
1058   case AtomicRMWInst::UMin: Out << " umin"; break;
1059   }
1060 }
1061 
1062 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1063   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1064     // Unsafe algebra implies all the others, no need to write them all out
1065     if (FPO->hasUnsafeAlgebra())
1066       Out << " fast";
1067     else {
1068       if (FPO->hasNoNaNs())
1069         Out << " nnan";
1070       if (FPO->hasNoInfs())
1071         Out << " ninf";
1072       if (FPO->hasNoSignedZeros())
1073         Out << " nsz";
1074       if (FPO->hasAllowReciprocal())
1075         Out << " arcp";
1076     }
1077   }
1078 
1079   if (const OverflowingBinaryOperator *OBO =
1080         dyn_cast<OverflowingBinaryOperator>(U)) {
1081     if (OBO->hasNoUnsignedWrap())
1082       Out << " nuw";
1083     if (OBO->hasNoSignedWrap())
1084       Out << " nsw";
1085   } else if (const PossiblyExactOperator *Div =
1086                dyn_cast<PossiblyExactOperator>(U)) {
1087     if (Div->isExact())
1088       Out << " exact";
1089   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1090     if (GEP->isInBounds())
1091       Out << " inbounds";
1092   }
1093 }
1094 
1095 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1096                                   TypePrinting &TypePrinter,
1097                                   SlotTracker *Machine,
1098                                   const Module *Context) {
1099   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1100     if (CI->getType()->isIntegerTy(1)) {
1101       Out << (CI->getZExtValue() ? "true" : "false");
1102       return;
1103     }
1104     Out << CI->getValue();
1105     return;
1106   }
1107 
1108   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1109     if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
1110         &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
1111       // We would like to output the FP constant value in exponential notation,
1112       // but we cannot do this if doing so will lose precision.  Check here to
1113       // make sure that we only output it in exponential format if we can parse
1114       // the value back and get the same value.
1115       //
1116       bool ignored;
1117       bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
1118       bool isInf = CFP->getValueAPF().isInfinity();
1119       bool isNaN = CFP->getValueAPF().isNaN();
1120       if (!isInf && !isNaN) {
1121         double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
1122                                 CFP->getValueAPF().convertToFloat();
1123         SmallString<128> StrVal;
1124         raw_svector_ostream(StrVal) << Val;
1125 
1126         // Check to make sure that the stringized number is not some string like
1127         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1128         // that the string matches the "[-+]?[0-9]" regex.
1129         //
1130         if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1131             ((StrVal[0] == '-' || StrVal[0] == '+') &&
1132              (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
1133           // Reparse stringized version!
1134           if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
1135             Out << StrVal;
1136             return;
1137           }
1138         }
1139       }
1140       // Otherwise we could not reparse it to exactly the same value, so we must
1141       // output the string in hexadecimal format!  Note that loading and storing
1142       // floating point types changes the bits of NaNs on some hosts, notably
1143       // x86, so we must not use these types.
1144       static_assert(sizeof(double) == sizeof(uint64_t),
1145                     "assuming that double is 64 bits!");
1146       APFloat apf = CFP->getValueAPF();
1147       // Floats are represented in ASCII IR as double, convert.
1148       if (!isDouble)
1149         apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1150                           &ignored);
1151       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1152       return;
1153     }
1154 
1155     // Either half, or some form of long double.
1156     // These appear as a magic letter identifying the type, then a
1157     // fixed number of hex digits.
1158     Out << "0x";
1159     APInt API = CFP->getValueAPF().bitcastToAPInt();
1160     if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
1161       Out << 'K';
1162       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1163                                   /*Upper=*/true);
1164       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1165                                   /*Upper=*/true);
1166       return;
1167     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
1168       Out << 'L';
1169       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1170                                   /*Upper=*/true);
1171       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1172                                   /*Upper=*/true);
1173     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
1174       Out << 'M';
1175       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1176                                   /*Upper=*/true);
1177       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1178                                   /*Upper=*/true);
1179     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
1180       Out << 'H';
1181       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1182                                   /*Upper=*/true);
1183     } else
1184       llvm_unreachable("Unsupported floating point type");
1185     return;
1186   }
1187 
1188   if (isa<ConstantAggregateZero>(CV)) {
1189     Out << "zeroinitializer";
1190     return;
1191   }
1192 
1193   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1194     Out << "blockaddress(";
1195     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1196                            Context);
1197     Out << ", ";
1198     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1199                            Context);
1200     Out << ")";
1201     return;
1202   }
1203 
1204   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1205     Type *ETy = CA->getType()->getElementType();
1206     Out << '[';
1207     TypePrinter.print(ETy, Out);
1208     Out << ' ';
1209     WriteAsOperandInternal(Out, CA->getOperand(0),
1210                            &TypePrinter, Machine,
1211                            Context);
1212     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1213       Out << ", ";
1214       TypePrinter.print(ETy, Out);
1215       Out << ' ';
1216       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1217                              Context);
1218     }
1219     Out << ']';
1220     return;
1221   }
1222 
1223   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1224     // As a special case, print the array as a string if it is an array of
1225     // i8 with ConstantInt values.
1226     if (CA->isString()) {
1227       Out << "c\"";
1228       PrintEscapedString(CA->getAsString(), Out);
1229       Out << '"';
1230       return;
1231     }
1232 
1233     Type *ETy = CA->getType()->getElementType();
1234     Out << '[';
1235     TypePrinter.print(ETy, Out);
1236     Out << ' ';
1237     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1238                            &TypePrinter, Machine,
1239                            Context);
1240     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1241       Out << ", ";
1242       TypePrinter.print(ETy, Out);
1243       Out << ' ';
1244       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1245                              Machine, Context);
1246     }
1247     Out << ']';
1248     return;
1249   }
1250 
1251 
1252   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1253     if (CS->getType()->isPacked())
1254       Out << '<';
1255     Out << '{';
1256     unsigned N = CS->getNumOperands();
1257     if (N) {
1258       Out << ' ';
1259       TypePrinter.print(CS->getOperand(0)->getType(), Out);
1260       Out << ' ';
1261 
1262       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1263                              Context);
1264 
1265       for (unsigned i = 1; i < N; i++) {
1266         Out << ", ";
1267         TypePrinter.print(CS->getOperand(i)->getType(), Out);
1268         Out << ' ';
1269 
1270         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1271                                Context);
1272       }
1273       Out << ' ';
1274     }
1275 
1276     Out << '}';
1277     if (CS->getType()->isPacked())
1278       Out << '>';
1279     return;
1280   }
1281 
1282   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1283     Type *ETy = CV->getType()->getVectorElementType();
1284     Out << '<';
1285     TypePrinter.print(ETy, Out);
1286     Out << ' ';
1287     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1288                            Machine, Context);
1289     for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1290       Out << ", ";
1291       TypePrinter.print(ETy, Out);
1292       Out << ' ';
1293       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1294                              Machine, Context);
1295     }
1296     Out << '>';
1297     return;
1298   }
1299 
1300   if (isa<ConstantPointerNull>(CV)) {
1301     Out << "null";
1302     return;
1303   }
1304 
1305   if (isa<ConstantTokenNone>(CV)) {
1306     Out << "none";
1307     return;
1308   }
1309 
1310   if (isa<UndefValue>(CV)) {
1311     Out << "undef";
1312     return;
1313   }
1314 
1315   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1316     Out << CE->getOpcodeName();
1317     WriteOptimizationInfo(Out, CE);
1318     if (CE->isCompare())
1319       Out << ' ' << CmpInst::getPredicateName(
1320                         static_cast<CmpInst::Predicate>(CE->getPredicate()));
1321     Out << " (";
1322 
1323     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1324       TypePrinter.print(GEP->getSourceElementType(), Out);
1325       Out << ", ";
1326     }
1327 
1328     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1329       TypePrinter.print((*OI)->getType(), Out);
1330       Out << ' ';
1331       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1332       if (OI+1 != CE->op_end())
1333         Out << ", ";
1334     }
1335 
1336     if (CE->hasIndices()) {
1337       ArrayRef<unsigned> Indices = CE->getIndices();
1338       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1339         Out << ", " << Indices[i];
1340     }
1341 
1342     if (CE->isCast()) {
1343       Out << " to ";
1344       TypePrinter.print(CE->getType(), Out);
1345     }
1346 
1347     Out << ')';
1348     return;
1349   }
1350 
1351   Out << "<placeholder or erroneous Constant>";
1352 }
1353 
1354 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1355                          TypePrinting *TypePrinter, SlotTracker *Machine,
1356                          const Module *Context) {
1357   Out << "!{";
1358   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1359     const Metadata *MD = Node->getOperand(mi);
1360     if (!MD)
1361       Out << "null";
1362     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1363       Value *V = MDV->getValue();
1364       TypePrinter->print(V->getType(), Out);
1365       Out << ' ';
1366       WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1367     } else {
1368       WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1369     }
1370     if (mi + 1 != me)
1371       Out << ", ";
1372   }
1373 
1374   Out << "}";
1375 }
1376 
1377 namespace {
1378 struct FieldSeparator {
1379   bool Skip;
1380   const char *Sep;
1381   FieldSeparator(const char *Sep = ", ") : Skip(true), Sep(Sep) {}
1382 };
1383 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1384   if (FS.Skip) {
1385     FS.Skip = false;
1386     return OS;
1387   }
1388   return OS << FS.Sep;
1389 }
1390 struct MDFieldPrinter {
1391   raw_ostream &Out;
1392   FieldSeparator FS;
1393   TypePrinting *TypePrinter;
1394   SlotTracker *Machine;
1395   const Module *Context;
1396 
1397   explicit MDFieldPrinter(raw_ostream &Out)
1398       : Out(Out), TypePrinter(nullptr), Machine(nullptr), Context(nullptr) {}
1399   MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1400                  SlotTracker *Machine, const Module *Context)
1401       : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1402   }
1403   void printTag(const DINode *N);
1404   void printMacinfoType(const DIMacroNode *N);
1405   void printString(StringRef Name, StringRef Value,
1406                    bool ShouldSkipEmpty = true);
1407   void printMetadata(StringRef Name, const Metadata *MD,
1408                      bool ShouldSkipNull = true);
1409   template <class IntTy>
1410   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1411   void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1412   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1413   template <class IntTy, class Stringifier>
1414   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1415                       bool ShouldSkipZero = true);
1416   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1417 };
1418 } // end namespace
1419 
1420 void MDFieldPrinter::printTag(const DINode *N) {
1421   Out << FS << "tag: ";
1422   auto Tag = dwarf::TagString(N->getTag());
1423   if (!Tag.empty())
1424     Out << Tag;
1425   else
1426     Out << N->getTag();
1427 }
1428 
1429 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1430   Out << FS << "type: ";
1431   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1432   if (!Type.empty())
1433     Out << Type;
1434   else
1435     Out << N->getMacinfoType();
1436 }
1437 
1438 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1439                                  bool ShouldSkipEmpty) {
1440   if (ShouldSkipEmpty && Value.empty())
1441     return;
1442 
1443   Out << FS << Name << ": \"";
1444   PrintEscapedString(Value, Out);
1445   Out << "\"";
1446 }
1447 
1448 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1449                                    TypePrinting *TypePrinter,
1450                                    SlotTracker *Machine,
1451                                    const Module *Context) {
1452   if (!MD) {
1453     Out << "null";
1454     return;
1455   }
1456   WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1457 }
1458 
1459 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1460                                    bool ShouldSkipNull) {
1461   if (ShouldSkipNull && !MD)
1462     return;
1463 
1464   Out << FS << Name << ": ";
1465   writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1466 }
1467 
1468 template <class IntTy>
1469 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1470   if (ShouldSkipZero && !Int)
1471     return;
1472 
1473   Out << FS << Name << ": " << Int;
1474 }
1475 
1476 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1477                                Optional<bool> Default) {
1478   if (Default && Value == *Default)
1479     return;
1480   Out << FS << Name << ": " << (Value ? "true" : "false");
1481 }
1482 
1483 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1484   if (!Flags)
1485     return;
1486 
1487   Out << FS << Name << ": ";
1488 
1489   SmallVector<DINode::DIFlags, 8> SplitFlags;
1490   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1491 
1492   FieldSeparator FlagsFS(" | ");
1493   for (auto F : SplitFlags) {
1494     auto StringF = DINode::getFlagString(F);
1495     assert(!StringF.empty() && "Expected valid flag");
1496     Out << FlagsFS << StringF;
1497   }
1498   if (Extra || SplitFlags.empty())
1499     Out << FlagsFS << Extra;
1500 }
1501 
1502 void MDFieldPrinter::printEmissionKind(StringRef Name,
1503                                        DICompileUnit::DebugEmissionKind EK) {
1504   Out << FS << Name << ": " << DICompileUnit::EmissionKindString(EK);
1505 }
1506 
1507 
1508 template <class IntTy, class Stringifier>
1509 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1510                                     Stringifier toString, bool ShouldSkipZero) {
1511   if (!Value)
1512     return;
1513 
1514   Out << FS << Name << ": ";
1515   auto S = toString(Value);
1516   if (!S.empty())
1517     Out << S;
1518   else
1519     Out << Value;
1520 }
1521 
1522 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1523                                TypePrinting *TypePrinter, SlotTracker *Machine,
1524                                const Module *Context) {
1525   Out << "!GenericDINode(";
1526   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1527   Printer.printTag(N);
1528   Printer.printString("header", N->getHeader());
1529   if (N->getNumDwarfOperands()) {
1530     Out << Printer.FS << "operands: {";
1531     FieldSeparator IFS;
1532     for (auto &I : N->dwarf_operands()) {
1533       Out << IFS;
1534       writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1535     }
1536     Out << "}";
1537   }
1538   Out << ")";
1539 }
1540 
1541 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1542                             TypePrinting *TypePrinter, SlotTracker *Machine,
1543                             const Module *Context) {
1544   Out << "!DILocation(";
1545   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1546   // Always output the line, since 0 is a relevant and important value for it.
1547   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1548   Printer.printInt("column", DL->getColumn());
1549   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1550   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1551   Out << ")";
1552 }
1553 
1554 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1555                             TypePrinting *, SlotTracker *, const Module *) {
1556   Out << "!DISubrange(";
1557   MDFieldPrinter Printer(Out);
1558   Printer.printInt("count", N->getCount(), /* ShouldSkipZero */ false);
1559   Printer.printInt("lowerBound", N->getLowerBound());
1560   Out << ")";
1561 }
1562 
1563 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1564                               TypePrinting *, SlotTracker *, const Module *) {
1565   Out << "!DIEnumerator(";
1566   MDFieldPrinter Printer(Out);
1567   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1568   Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1569   Out << ")";
1570 }
1571 
1572 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1573                              TypePrinting *, SlotTracker *, const Module *) {
1574   Out << "!DIBasicType(";
1575   MDFieldPrinter Printer(Out);
1576   if (N->getTag() != dwarf::DW_TAG_base_type)
1577     Printer.printTag(N);
1578   Printer.printString("name", N->getName());
1579   Printer.printInt("size", N->getSizeInBits());
1580   Printer.printInt("align", N->getAlignInBits());
1581   Printer.printDwarfEnum("encoding", N->getEncoding(),
1582                          dwarf::AttributeEncodingString);
1583   Out << ")";
1584 }
1585 
1586 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1587                                TypePrinting *TypePrinter, SlotTracker *Machine,
1588                                const Module *Context) {
1589   Out << "!DIDerivedType(";
1590   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1591   Printer.printTag(N);
1592   Printer.printString("name", N->getName());
1593   Printer.printMetadata("scope", N->getRawScope());
1594   Printer.printMetadata("file", N->getRawFile());
1595   Printer.printInt("line", N->getLine());
1596   Printer.printMetadata("baseType", N->getRawBaseType(),
1597                         /* ShouldSkipNull */ false);
1598   Printer.printInt("size", N->getSizeInBits());
1599   Printer.printInt("align", N->getAlignInBits());
1600   Printer.printInt("offset", N->getOffsetInBits());
1601   Printer.printDIFlags("flags", N->getFlags());
1602   Printer.printMetadata("extraData", N->getRawExtraData());
1603   Out << ")";
1604 }
1605 
1606 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1607                                  TypePrinting *TypePrinter,
1608                                  SlotTracker *Machine, const Module *Context) {
1609   Out << "!DICompositeType(";
1610   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1611   Printer.printTag(N);
1612   Printer.printString("name", N->getName());
1613   Printer.printMetadata("scope", N->getRawScope());
1614   Printer.printMetadata("file", N->getRawFile());
1615   Printer.printInt("line", N->getLine());
1616   Printer.printMetadata("baseType", N->getRawBaseType());
1617   Printer.printInt("size", N->getSizeInBits());
1618   Printer.printInt("align", N->getAlignInBits());
1619   Printer.printInt("offset", N->getOffsetInBits());
1620   Printer.printDIFlags("flags", N->getFlags());
1621   Printer.printMetadata("elements", N->getRawElements());
1622   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1623                          dwarf::LanguageString);
1624   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1625   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1626   Printer.printString("identifier", N->getIdentifier());
1627   Out << ")";
1628 }
1629 
1630 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1631                                   TypePrinting *TypePrinter,
1632                                   SlotTracker *Machine, const Module *Context) {
1633   Out << "!DISubroutineType(";
1634   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1635   Printer.printDIFlags("flags", N->getFlags());
1636   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
1637   Printer.printMetadata("types", N->getRawTypeArray(),
1638                         /* ShouldSkipNull */ false);
1639   Out << ")";
1640 }
1641 
1642 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1643                         SlotTracker *, const Module *) {
1644   Out << "!DIFile(";
1645   MDFieldPrinter Printer(Out);
1646   Printer.printString("filename", N->getFilename(),
1647                       /* ShouldSkipEmpty */ false);
1648   Printer.printString("directory", N->getDirectory(),
1649                       /* ShouldSkipEmpty */ false);
1650   Out << ")";
1651 }
1652 
1653 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1654                                TypePrinting *TypePrinter, SlotTracker *Machine,
1655                                const Module *Context) {
1656   Out << "!DICompileUnit(";
1657   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1658   Printer.printDwarfEnum("language", N->getSourceLanguage(),
1659                          dwarf::LanguageString, /* ShouldSkipZero */ false);
1660   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1661   Printer.printString("producer", N->getProducer());
1662   Printer.printBool("isOptimized", N->isOptimized());
1663   Printer.printString("flags", N->getFlags());
1664   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1665                    /* ShouldSkipZero */ false);
1666   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1667   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
1668   Printer.printMetadata("enums", N->getRawEnumTypes());
1669   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1670   Printer.printMetadata("globals", N->getRawGlobalVariables());
1671   Printer.printMetadata("imports", N->getRawImportedEntities());
1672   Printer.printMetadata("macros", N->getRawMacros());
1673   Printer.printInt("dwoId", N->getDWOId());
1674   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
1675   Out << ")";
1676 }
1677 
1678 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1679                               TypePrinting *TypePrinter, SlotTracker *Machine,
1680                               const Module *Context) {
1681   Out << "!DISubprogram(";
1682   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1683   Printer.printString("name", N->getName());
1684   Printer.printString("linkageName", N->getLinkageName());
1685   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1686   Printer.printMetadata("file", N->getRawFile());
1687   Printer.printInt("line", N->getLine());
1688   Printer.printMetadata("type", N->getRawType());
1689   Printer.printBool("isLocal", N->isLocalToUnit());
1690   Printer.printBool("isDefinition", N->isDefinition());
1691   Printer.printInt("scopeLine", N->getScopeLine());
1692   Printer.printMetadata("containingType", N->getRawContainingType());
1693   Printer.printDwarfEnum("virtuality", N->getVirtuality(),
1694                          dwarf::VirtualityString);
1695   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
1696       N->getVirtualIndex() != 0)
1697     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
1698   Printer.printInt("thisAdjustment", N->getThisAdjustment());
1699   Printer.printDIFlags("flags", N->getFlags());
1700   Printer.printBool("isOptimized", N->isOptimized());
1701   Printer.printMetadata("unit", N->getRawUnit());
1702   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1703   Printer.printMetadata("declaration", N->getRawDeclaration());
1704   Printer.printMetadata("variables", N->getRawVariables());
1705   Out << ")";
1706 }
1707 
1708 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1709                                 TypePrinting *TypePrinter, SlotTracker *Machine,
1710                                 const Module *Context) {
1711   Out << "!DILexicalBlock(";
1712   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1713   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1714   Printer.printMetadata("file", N->getRawFile());
1715   Printer.printInt("line", N->getLine());
1716   Printer.printInt("column", N->getColumn());
1717   Out << ")";
1718 }
1719 
1720 static void writeDILexicalBlockFile(raw_ostream &Out,
1721                                     const DILexicalBlockFile *N,
1722                                     TypePrinting *TypePrinter,
1723                                     SlotTracker *Machine,
1724                                     const Module *Context) {
1725   Out << "!DILexicalBlockFile(";
1726   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1727   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1728   Printer.printMetadata("file", N->getRawFile());
1729   Printer.printInt("discriminator", N->getDiscriminator(),
1730                    /* ShouldSkipZero */ false);
1731   Out << ")";
1732 }
1733 
1734 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
1735                              TypePrinting *TypePrinter, SlotTracker *Machine,
1736                              const Module *Context) {
1737   Out << "!DINamespace(";
1738   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1739   Printer.printString("name", N->getName());
1740   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1741   Printer.printMetadata("file", N->getRawFile());
1742   Printer.printInt("line", N->getLine());
1743   Out << ")";
1744 }
1745 
1746 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
1747                          TypePrinting *TypePrinter, SlotTracker *Machine,
1748                          const Module *Context) {
1749   Out << "!DIMacro(";
1750   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1751   Printer.printMacinfoType(N);
1752   Printer.printInt("line", N->getLine());
1753   Printer.printString("name", N->getName());
1754   Printer.printString("value", N->getValue());
1755   Out << ")";
1756 }
1757 
1758 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
1759                              TypePrinting *TypePrinter, SlotTracker *Machine,
1760                              const Module *Context) {
1761   Out << "!DIMacroFile(";
1762   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1763   Printer.printInt("line", N->getLine());
1764   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1765   Printer.printMetadata("nodes", N->getRawElements());
1766   Out << ")";
1767 }
1768 
1769 static void writeDIModule(raw_ostream &Out, const DIModule *N,
1770                           TypePrinting *TypePrinter, SlotTracker *Machine,
1771                           const Module *Context) {
1772   Out << "!DIModule(";
1773   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1774   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1775   Printer.printString("name", N->getName());
1776   Printer.printString("configMacros", N->getConfigurationMacros());
1777   Printer.printString("includePath", N->getIncludePath());
1778   Printer.printString("isysroot", N->getISysRoot());
1779   Out << ")";
1780 }
1781 
1782 
1783 static void writeDITemplateTypeParameter(raw_ostream &Out,
1784                                          const DITemplateTypeParameter *N,
1785                                          TypePrinting *TypePrinter,
1786                                          SlotTracker *Machine,
1787                                          const Module *Context) {
1788   Out << "!DITemplateTypeParameter(";
1789   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1790   Printer.printString("name", N->getName());
1791   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
1792   Out << ")";
1793 }
1794 
1795 static void writeDITemplateValueParameter(raw_ostream &Out,
1796                                           const DITemplateValueParameter *N,
1797                                           TypePrinting *TypePrinter,
1798                                           SlotTracker *Machine,
1799                                           const Module *Context) {
1800   Out << "!DITemplateValueParameter(";
1801   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1802   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
1803     Printer.printTag(N);
1804   Printer.printString("name", N->getName());
1805   Printer.printMetadata("type", N->getRawType());
1806   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
1807   Out << ")";
1808 }
1809 
1810 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
1811                                   TypePrinting *TypePrinter,
1812                                   SlotTracker *Machine, const Module *Context) {
1813   Out << "!DIGlobalVariable(";
1814   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1815   Printer.printString("name", N->getName());
1816   Printer.printString("linkageName", N->getLinkageName());
1817   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1818   Printer.printMetadata("file", N->getRawFile());
1819   Printer.printInt("line", N->getLine());
1820   Printer.printMetadata("type", N->getRawType());
1821   Printer.printBool("isLocal", N->isLocalToUnit());
1822   Printer.printBool("isDefinition", N->isDefinition());
1823   Printer.printMetadata("expr", N->getExpr());
1824   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
1825   Out << ")";
1826 }
1827 
1828 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
1829                                  TypePrinting *TypePrinter,
1830                                  SlotTracker *Machine, const Module *Context) {
1831   Out << "!DILocalVariable(";
1832   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1833   Printer.printString("name", N->getName());
1834   Printer.printInt("arg", N->getArg());
1835   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1836   Printer.printMetadata("file", N->getRawFile());
1837   Printer.printInt("line", N->getLine());
1838   Printer.printMetadata("type", N->getRawType());
1839   Printer.printDIFlags("flags", N->getFlags());
1840   Out << ")";
1841 }
1842 
1843 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
1844                               TypePrinting *TypePrinter, SlotTracker *Machine,
1845                               const Module *Context) {
1846   Out << "!DIExpression(";
1847   FieldSeparator FS;
1848   if (N->isValid()) {
1849     for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
1850       auto OpStr = dwarf::OperationEncodingString(I->getOp());
1851       assert(!OpStr.empty() && "Expected valid opcode");
1852 
1853       Out << FS << OpStr;
1854       for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
1855         Out << FS << I->getArg(A);
1856     }
1857   } else {
1858     for (const auto &I : N->getElements())
1859       Out << FS << I;
1860   }
1861   Out << ")";
1862 }
1863 
1864 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
1865                                 TypePrinting *TypePrinter, SlotTracker *Machine,
1866                                 const Module *Context) {
1867   Out << "!DIObjCProperty(";
1868   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1869   Printer.printString("name", N->getName());
1870   Printer.printMetadata("file", N->getRawFile());
1871   Printer.printInt("line", N->getLine());
1872   Printer.printString("setter", N->getSetterName());
1873   Printer.printString("getter", N->getGetterName());
1874   Printer.printInt("attributes", N->getAttributes());
1875   Printer.printMetadata("type", N->getRawType());
1876   Out << ")";
1877 }
1878 
1879 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
1880                                   TypePrinting *TypePrinter,
1881                                   SlotTracker *Machine, const Module *Context) {
1882   Out << "!DIImportedEntity(";
1883   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1884   Printer.printTag(N);
1885   Printer.printString("name", N->getName());
1886   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1887   Printer.printMetadata("entity", N->getRawEntity());
1888   Printer.printInt("line", N->getLine());
1889   Out << ")";
1890 }
1891 
1892 
1893 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1894                                     TypePrinting *TypePrinter,
1895                                     SlotTracker *Machine,
1896                                     const Module *Context) {
1897   if (Node->isDistinct())
1898     Out << "distinct ";
1899   else if (Node->isTemporary())
1900     Out << "<temporary!> "; // Handle broken code.
1901 
1902   switch (Node->getMetadataID()) {
1903   default:
1904     llvm_unreachable("Expected uniquable MDNode");
1905 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1906   case Metadata::CLASS##Kind:                                                  \
1907     write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context);       \
1908     break;
1909 #include "llvm/IR/Metadata.def"
1910   }
1911 }
1912 
1913 // Full implementation of printing a Value as an operand with support for
1914 // TypePrinting, etc.
1915 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1916                                    TypePrinting *TypePrinter,
1917                                    SlotTracker *Machine,
1918                                    const Module *Context) {
1919   if (V->hasName()) {
1920     PrintLLVMName(Out, V);
1921     return;
1922   }
1923 
1924   const Constant *CV = dyn_cast<Constant>(V);
1925   if (CV && !isa<GlobalValue>(CV)) {
1926     assert(TypePrinter && "Constants require TypePrinting!");
1927     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1928     return;
1929   }
1930 
1931   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1932     Out << "asm ";
1933     if (IA->hasSideEffects())
1934       Out << "sideeffect ";
1935     if (IA->isAlignStack())
1936       Out << "alignstack ";
1937     // We don't emit the AD_ATT dialect as it's the assumed default.
1938     if (IA->getDialect() == InlineAsm::AD_Intel)
1939       Out << "inteldialect ";
1940     Out << '"';
1941     PrintEscapedString(IA->getAsmString(), Out);
1942     Out << "\", \"";
1943     PrintEscapedString(IA->getConstraintString(), Out);
1944     Out << '"';
1945     return;
1946   }
1947 
1948   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
1949     WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
1950                            Context, /* FromValue */ true);
1951     return;
1952   }
1953 
1954   char Prefix = '%';
1955   int Slot;
1956   // If we have a SlotTracker, use it.
1957   if (Machine) {
1958     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1959       Slot = Machine->getGlobalSlot(GV);
1960       Prefix = '@';
1961     } else {
1962       Slot = Machine->getLocalSlot(V);
1963 
1964       // If the local value didn't succeed, then we may be referring to a value
1965       // from a different function.  Translate it, as this can happen when using
1966       // address of blocks.
1967       if (Slot == -1)
1968         if ((Machine = createSlotTracker(V))) {
1969           Slot = Machine->getLocalSlot(V);
1970           delete Machine;
1971         }
1972     }
1973   } else if ((Machine = createSlotTracker(V))) {
1974     // Otherwise, create one to get the # and then destroy it.
1975     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1976       Slot = Machine->getGlobalSlot(GV);
1977       Prefix = '@';
1978     } else {
1979       Slot = Machine->getLocalSlot(V);
1980     }
1981     delete Machine;
1982     Machine = nullptr;
1983   } else {
1984     Slot = -1;
1985   }
1986 
1987   if (Slot != -1)
1988     Out << Prefix << Slot;
1989   else
1990     Out << "<badref>";
1991 }
1992 
1993 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1994                                    TypePrinting *TypePrinter,
1995                                    SlotTracker *Machine, const Module *Context,
1996                                    bool FromValue) {
1997   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1998     std::unique_ptr<SlotTracker> MachineStorage;
1999     if (!Machine) {
2000       MachineStorage = make_unique<SlotTracker>(Context);
2001       Machine = MachineStorage.get();
2002     }
2003     int Slot = Machine->getMetadataSlot(N);
2004     if (Slot == -1)
2005       // Give the pointer value instead of "badref", since this comes up all
2006       // the time when debugging.
2007       Out << "<" << N << ">";
2008     else
2009       Out << '!' << Slot;
2010     return;
2011   }
2012 
2013   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2014     Out << "!\"";
2015     PrintEscapedString(MDS->getString(), Out);
2016     Out << '"';
2017     return;
2018   }
2019 
2020   auto *V = cast<ValueAsMetadata>(MD);
2021   assert(TypePrinter && "TypePrinter required for metadata values");
2022   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2023          "Unexpected function-local metadata outside of value argument");
2024 
2025   TypePrinter->print(V->getValue()->getType(), Out);
2026   Out << ' ';
2027   WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2028 }
2029 
2030 namespace {
2031 class AssemblyWriter {
2032   formatted_raw_ostream &Out;
2033   const Module *TheModule;
2034   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2035   SlotTracker &Machine;
2036   TypePrinting TypePrinter;
2037   AssemblyAnnotationWriter *AnnotationWriter;
2038   SetVector<const Comdat *> Comdats;
2039   bool IsForDebug;
2040   bool ShouldPreserveUseListOrder;
2041   UseListOrderStack UseListOrders;
2042   SmallVector<StringRef, 8> MDNames;
2043 
2044 public:
2045   /// Construct an AssemblyWriter with an external SlotTracker
2046   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2047                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2048                  bool ShouldPreserveUseListOrder = false);
2049 
2050   void printMDNodeBody(const MDNode *MD);
2051   void printNamedMDNode(const NamedMDNode *NMD);
2052 
2053   void printModule(const Module *M);
2054 
2055   void writeOperand(const Value *Op, bool PrintType);
2056   void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
2057   void writeOperandBundles(ImmutableCallSite CS);
2058   void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
2059   void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2060                           AtomicOrdering FailureOrdering,
2061                           SynchronizationScope SynchScope);
2062 
2063   void writeAllMDNodes();
2064   void writeMDNode(unsigned Slot, const MDNode *Node);
2065   void writeAllAttributeGroups();
2066 
2067   void printTypeIdentities();
2068   void printGlobal(const GlobalVariable *GV);
2069   void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2070   void printComdat(const Comdat *C);
2071   void printFunction(const Function *F);
2072   void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
2073   void printBasicBlock(const BasicBlock *BB);
2074   void printInstructionLine(const Instruction &I);
2075   void printInstruction(const Instruction &I);
2076 
2077   void printUseListOrder(const UseListOrder &Order);
2078   void printUseLists(const Function *F);
2079 
2080 private:
2081   /// \brief Print out metadata attachments.
2082   void printMetadataAttachments(
2083       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2084       StringRef Separator);
2085 
2086   // printInfoComment - Print a little comment after the instruction indicating
2087   // which slot it occupies.
2088   void printInfoComment(const Value &V);
2089 
2090   // printGCRelocateComment - print comment after call to the gc.relocate
2091   // intrinsic indicating base and derived pointer names.
2092   void printGCRelocateComment(const GCRelocateInst &Relocate);
2093 };
2094 } // namespace
2095 
2096 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2097                                const Module *M, AssemblyAnnotationWriter *AAW,
2098                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2099     : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW),
2100       IsForDebug(IsForDebug),
2101       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2102   if (!TheModule)
2103     return;
2104   TypePrinter.incorporateTypes(*TheModule);
2105   for (const GlobalObject &GO : TheModule->global_objects())
2106     if (const Comdat *C = GO.getComdat())
2107       Comdats.insert(C);
2108 }
2109 
2110 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2111   if (!Operand) {
2112     Out << "<null operand!>";
2113     return;
2114   }
2115   if (PrintType) {
2116     TypePrinter.print(Operand->getType(), Out);
2117     Out << ' ';
2118   }
2119   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2120 }
2121 
2122 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
2123                                  SynchronizationScope SynchScope) {
2124   if (Ordering == AtomicOrdering::NotAtomic)
2125     return;
2126 
2127   switch (SynchScope) {
2128   case SingleThread: Out << " singlethread"; break;
2129   case CrossThread: break;
2130   }
2131 
2132   Out << " " << toIRString(Ordering);
2133 }
2134 
2135 void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2136                                         AtomicOrdering FailureOrdering,
2137                                         SynchronizationScope SynchScope) {
2138   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2139          FailureOrdering != AtomicOrdering::NotAtomic);
2140 
2141   switch (SynchScope) {
2142   case SingleThread: Out << " singlethread"; break;
2143   case CrossThread: break;
2144   }
2145 
2146   Out << " " << toIRString(SuccessOrdering);
2147   Out << " " << toIRString(FailureOrdering);
2148 }
2149 
2150 void AssemblyWriter::writeParamOperand(const Value *Operand,
2151                                        AttributeSet Attrs, unsigned Idx) {
2152   if (!Operand) {
2153     Out << "<null operand!>";
2154     return;
2155   }
2156 
2157   // Print the type
2158   TypePrinter.print(Operand->getType(), Out);
2159   // Print parameter attributes list
2160   if (Attrs.hasAttributes(Idx))
2161     Out << ' ' << Attrs.getAsString(Idx);
2162   Out << ' ';
2163   // Print the operand
2164   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2165 }
2166 
2167 void AssemblyWriter::writeOperandBundles(ImmutableCallSite CS) {
2168   if (!CS.hasOperandBundles())
2169     return;
2170 
2171   Out << " [ ";
2172 
2173   bool FirstBundle = true;
2174   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2175     OperandBundleUse BU = CS.getOperandBundleAt(i);
2176 
2177     if (!FirstBundle)
2178       Out << ", ";
2179     FirstBundle = false;
2180 
2181     Out << '"';
2182     PrintEscapedString(BU.getTagName(), Out);
2183     Out << '"';
2184 
2185     Out << '(';
2186 
2187     bool FirstInput = true;
2188     for (const auto &Input : BU.Inputs) {
2189       if (!FirstInput)
2190         Out << ", ";
2191       FirstInput = false;
2192 
2193       TypePrinter.print(Input->getType(), Out);
2194       Out << " ";
2195       WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2196     }
2197 
2198     Out << ')';
2199   }
2200 
2201   Out << " ]";
2202 }
2203 
2204 void AssemblyWriter::printModule(const Module *M) {
2205   Machine.initialize();
2206 
2207   if (ShouldPreserveUseListOrder)
2208     UseListOrders = predictUseListOrder(M);
2209 
2210   if (!M->getModuleIdentifier().empty() &&
2211       // Don't print the ID if it will start a new line (which would
2212       // require a comment char before it).
2213       M->getModuleIdentifier().find('\n') == std::string::npos)
2214     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2215 
2216   if (!M->getSourceFileName().empty()) {
2217     Out << "source_filename = \"";
2218     PrintEscapedString(M->getSourceFileName(), Out);
2219     Out << "\"\n";
2220   }
2221 
2222   const std::string &DL = M->getDataLayoutStr();
2223   if (!DL.empty())
2224     Out << "target datalayout = \"" << DL << "\"\n";
2225   if (!M->getTargetTriple().empty())
2226     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2227 
2228   if (!M->getModuleInlineAsm().empty()) {
2229     Out << '\n';
2230 
2231     // Split the string into lines, to make it easier to read the .ll file.
2232     StringRef Asm = M->getModuleInlineAsm();
2233     do {
2234       StringRef Front;
2235       std::tie(Front, Asm) = Asm.split('\n');
2236 
2237       // We found a newline, print the portion of the asm string from the
2238       // last newline up to this newline.
2239       Out << "module asm \"";
2240       PrintEscapedString(Front, Out);
2241       Out << "\"\n";
2242     } while (!Asm.empty());
2243   }
2244 
2245   printTypeIdentities();
2246 
2247   // Output all comdats.
2248   if (!Comdats.empty())
2249     Out << '\n';
2250   for (const Comdat *C : Comdats) {
2251     printComdat(C);
2252     if (C != Comdats.back())
2253       Out << '\n';
2254   }
2255 
2256   // Output all globals.
2257   if (!M->global_empty()) Out << '\n';
2258   for (const GlobalVariable &GV : M->globals()) {
2259     printGlobal(&GV); Out << '\n';
2260   }
2261 
2262   // Output all aliases.
2263   if (!M->alias_empty()) Out << "\n";
2264   for (const GlobalAlias &GA : M->aliases())
2265     printIndirectSymbol(&GA);
2266 
2267   // Output all ifuncs.
2268   if (!M->ifunc_empty()) Out << "\n";
2269   for (const GlobalIFunc &GI : M->ifuncs())
2270     printIndirectSymbol(&GI);
2271 
2272   // Output global use-lists.
2273   printUseLists(nullptr);
2274 
2275   // Output all of the functions.
2276   for (const Function &F : *M)
2277     printFunction(&F);
2278   assert(UseListOrders.empty() && "All use-lists should have been consumed");
2279 
2280   // Output all attribute groups.
2281   if (!Machine.as_empty()) {
2282     Out << '\n';
2283     writeAllAttributeGroups();
2284   }
2285 
2286   // Output named metadata.
2287   if (!M->named_metadata_empty()) Out << '\n';
2288 
2289   for (const NamedMDNode &Node : M->named_metadata())
2290     printNamedMDNode(&Node);
2291 
2292   // Output metadata.
2293   if (!Machine.mdn_empty()) {
2294     Out << '\n';
2295     writeAllMDNodes();
2296   }
2297 }
2298 
2299 static void printMetadataIdentifier(StringRef Name,
2300                                     formatted_raw_ostream &Out) {
2301   if (Name.empty()) {
2302     Out << "<empty name> ";
2303   } else {
2304     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
2305         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
2306       Out << Name[0];
2307     else
2308       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
2309     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
2310       unsigned char C = Name[i];
2311       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
2312           C == '.' || C == '_')
2313         Out << C;
2314       else
2315         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
2316     }
2317   }
2318 }
2319 
2320 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
2321   Out << '!';
2322   printMetadataIdentifier(NMD->getName(), Out);
2323   Out << " = !{";
2324   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2325     if (i)
2326       Out << ", ";
2327     int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
2328     if (Slot == -1)
2329       Out << "<badref>";
2330     else
2331       Out << '!' << Slot;
2332   }
2333   Out << "}\n";
2334 }
2335 
2336 static const char *getLinkagePrintName(GlobalValue::LinkageTypes LT) {
2337   switch (LT) {
2338   case GlobalValue::ExternalLinkage:
2339     return "";
2340   case GlobalValue::PrivateLinkage:
2341     return "private ";
2342   case GlobalValue::InternalLinkage:
2343     return "internal ";
2344   case GlobalValue::LinkOnceAnyLinkage:
2345     return "linkonce ";
2346   case GlobalValue::LinkOnceODRLinkage:
2347     return "linkonce_odr ";
2348   case GlobalValue::WeakAnyLinkage:
2349     return "weak ";
2350   case GlobalValue::WeakODRLinkage:
2351     return "weak_odr ";
2352   case GlobalValue::CommonLinkage:
2353     return "common ";
2354   case GlobalValue::AppendingLinkage:
2355     return "appending ";
2356   case GlobalValue::ExternalWeakLinkage:
2357     return "extern_weak ";
2358   case GlobalValue::AvailableExternallyLinkage:
2359     return "available_externally ";
2360   }
2361   llvm_unreachable("invalid linkage");
2362 }
2363 
2364 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
2365                             formatted_raw_ostream &Out) {
2366   switch (Vis) {
2367   case GlobalValue::DefaultVisibility: break;
2368   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
2369   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
2370   }
2371 }
2372 
2373 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
2374                                  formatted_raw_ostream &Out) {
2375   switch (SCT) {
2376   case GlobalValue::DefaultStorageClass: break;
2377   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
2378   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
2379   }
2380 }
2381 
2382 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
2383                                   formatted_raw_ostream &Out) {
2384   switch (TLM) {
2385     case GlobalVariable::NotThreadLocal:
2386       break;
2387     case GlobalVariable::GeneralDynamicTLSModel:
2388       Out << "thread_local ";
2389       break;
2390     case GlobalVariable::LocalDynamicTLSModel:
2391       Out << "thread_local(localdynamic) ";
2392       break;
2393     case GlobalVariable::InitialExecTLSModel:
2394       Out << "thread_local(initialexec) ";
2395       break;
2396     case GlobalVariable::LocalExecTLSModel:
2397       Out << "thread_local(localexec) ";
2398       break;
2399   }
2400 }
2401 
2402 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
2403   switch (UA) {
2404   case GlobalVariable::UnnamedAddr::None:
2405     return "";
2406   case GlobalVariable::UnnamedAddr::Local:
2407     return "local_unnamed_addr";
2408   case GlobalVariable::UnnamedAddr::Global:
2409     return "unnamed_addr";
2410   }
2411   llvm_unreachable("Unknown UnnamedAddr");
2412 }
2413 
2414 static void maybePrintComdat(formatted_raw_ostream &Out,
2415                              const GlobalObject &GO) {
2416   const Comdat *C = GO.getComdat();
2417   if (!C)
2418     return;
2419 
2420   if (isa<GlobalVariable>(GO))
2421     Out << ',';
2422   Out << " comdat";
2423 
2424   if (GO.getName() == C->getName())
2425     return;
2426 
2427   Out << '(';
2428   PrintLLVMName(Out, C->getName(), ComdatPrefix);
2429   Out << ')';
2430 }
2431 
2432 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
2433   if (GV->isMaterializable())
2434     Out << "; Materializable\n";
2435 
2436   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
2437   Out << " = ";
2438 
2439   if (!GV->hasInitializer() && GV->hasExternalLinkage())
2440     Out << "external ";
2441 
2442   Out << getLinkagePrintName(GV->getLinkage());
2443   PrintVisibility(GV->getVisibility(), Out);
2444   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
2445   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
2446   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
2447   if (!UA.empty())
2448       Out << UA << ' ';
2449 
2450   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
2451     Out << "addrspace(" << AddressSpace << ") ";
2452   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
2453   Out << (GV->isConstant() ? "constant " : "global ");
2454   TypePrinter.print(GV->getValueType(), Out);
2455 
2456   if (GV->hasInitializer()) {
2457     Out << ' ';
2458     writeOperand(GV->getInitializer(), false);
2459   }
2460 
2461   if (GV->hasSection()) {
2462     Out << ", section \"";
2463     PrintEscapedString(GV->getSection(), Out);
2464     Out << '"';
2465   }
2466   maybePrintComdat(Out, *GV);
2467   if (GV->getAlignment())
2468     Out << ", align " << GV->getAlignment();
2469 
2470   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2471   GV->getAllMetadata(MDs);
2472   printMetadataAttachments(MDs, ", ");
2473 
2474   printInfoComment(*GV);
2475 }
2476 
2477 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
2478   if (GIS->isMaterializable())
2479     Out << "; Materializable\n";
2480 
2481   WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
2482   Out << " = ";
2483 
2484   Out << getLinkagePrintName(GIS->getLinkage());
2485   PrintVisibility(GIS->getVisibility(), Out);
2486   PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
2487   PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
2488   StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
2489   if (!UA.empty())
2490       Out << UA << ' ';
2491 
2492   if (isa<GlobalAlias>(GIS))
2493     Out << "alias ";
2494   else if (isa<GlobalIFunc>(GIS))
2495     Out << "ifunc ";
2496   else
2497     llvm_unreachable("Not an alias or ifunc!");
2498 
2499   TypePrinter.print(GIS->getValueType(), Out);
2500 
2501   Out << ", ";
2502 
2503   const Constant *IS = GIS->getIndirectSymbol();
2504 
2505   if (!IS) {
2506     TypePrinter.print(GIS->getType(), Out);
2507     Out << " <<NULL ALIASEE>>";
2508   } else {
2509     writeOperand(IS, !isa<ConstantExpr>(IS));
2510   }
2511 
2512   printInfoComment(*GIS);
2513   Out << '\n';
2514 }
2515 
2516 void AssemblyWriter::printComdat(const Comdat *C) {
2517   C->print(Out);
2518 }
2519 
2520 void AssemblyWriter::printTypeIdentities() {
2521   if (TypePrinter.NumberedTypes.empty() &&
2522       TypePrinter.NamedTypes.empty())
2523     return;
2524 
2525   Out << '\n';
2526 
2527   // We know all the numbers that each type is used and we know that it is a
2528   // dense assignment.  Convert the map to an index table.
2529   std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
2530   for (DenseMap<StructType*, unsigned>::iterator I =
2531        TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
2532        I != E; ++I) {
2533     assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
2534     NumberedTypes[I->second] = I->first;
2535   }
2536 
2537   // Emit all numbered types.
2538   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
2539     Out << '%' << i << " = type ";
2540 
2541     // Make sure we print out at least one level of the type structure, so
2542     // that we do not get %2 = type %2
2543     TypePrinter.printStructBody(NumberedTypes[i], Out);
2544     Out << '\n';
2545   }
2546 
2547   for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
2548     PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
2549     Out << " = type ";
2550 
2551     // Make sure we print out at least one level of the type structure, so
2552     // that we do not get %FILE = type %FILE
2553     TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
2554     Out << '\n';
2555   }
2556 }
2557 
2558 /// printFunction - Print all aspects of a function.
2559 ///
2560 void AssemblyWriter::printFunction(const Function *F) {
2561   // Print out the return type and name.
2562   Out << '\n';
2563 
2564   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
2565 
2566   if (F->isMaterializable())
2567     Out << "; Materializable\n";
2568 
2569   const AttributeSet &Attrs = F->getAttributes();
2570   if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
2571     AttributeSet AS = Attrs.getFnAttributes();
2572     std::string AttrStr;
2573 
2574     unsigned Idx = 0;
2575     for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
2576       if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
2577         break;
2578 
2579     for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
2580          I != E; ++I) {
2581       Attribute Attr = *I;
2582       if (!Attr.isStringAttribute()) {
2583         if (!AttrStr.empty()) AttrStr += ' ';
2584         AttrStr += Attr.getAsString();
2585       }
2586     }
2587 
2588     if (!AttrStr.empty())
2589       Out << "; Function Attrs: " << AttrStr << '\n';
2590   }
2591 
2592   Machine.incorporateFunction(F);
2593 
2594   if (F->isDeclaration()) {
2595     Out << "declare";
2596     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2597     F->getAllMetadata(MDs);
2598     printMetadataAttachments(MDs, " ");
2599     Out << ' ';
2600   } else
2601     Out << "define ";
2602 
2603   Out << getLinkagePrintName(F->getLinkage());
2604   PrintVisibility(F->getVisibility(), Out);
2605   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
2606 
2607   // Print the calling convention.
2608   if (F->getCallingConv() != CallingConv::C) {
2609     PrintCallingConv(F->getCallingConv(), Out);
2610     Out << " ";
2611   }
2612 
2613   FunctionType *FT = F->getFunctionType();
2614   if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
2615     Out <<  Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
2616   TypePrinter.print(F->getReturnType(), Out);
2617   Out << ' ';
2618   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
2619   Out << '(';
2620 
2621   // Loop over the arguments, printing them...
2622   if (F->isDeclaration() && !IsForDebug) {
2623     // We're only interested in the type here - don't print argument names.
2624     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
2625       // Insert commas as we go... the first arg doesn't get a comma
2626       if (I)
2627         Out << ", ";
2628       // Output type...
2629       TypePrinter.print(FT->getParamType(I), Out);
2630 
2631       if (Attrs.hasAttributes(I + 1))
2632         Out << ' ' << Attrs.getAsString(I + 1);
2633     }
2634   } else {
2635     // The arguments are meaningful here, print them in detail.
2636     unsigned Idx = 1;
2637     for (const Argument &Arg : F->args()) {
2638       // Insert commas as we go... the first arg doesn't get a comma
2639       if (Idx != 1)
2640         Out << ", ";
2641       printArgument(&Arg, Attrs, Idx++);
2642     }
2643   }
2644 
2645   // Finish printing arguments...
2646   if (FT->isVarArg()) {
2647     if (FT->getNumParams()) Out << ", ";
2648     Out << "...";  // Output varargs portion of signature!
2649   }
2650   Out << ')';
2651   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
2652   if (!UA.empty())
2653     Out << ' ' << UA;
2654   if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
2655     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
2656   if (F->hasSection()) {
2657     Out << " section \"";
2658     PrintEscapedString(F->getSection(), Out);
2659     Out << '"';
2660   }
2661   maybePrintComdat(Out, *F);
2662   if (F->getAlignment())
2663     Out << " align " << F->getAlignment();
2664   if (F->hasGC())
2665     Out << " gc \"" << F->getGC() << '"';
2666   if (F->hasPrefixData()) {
2667     Out << " prefix ";
2668     writeOperand(F->getPrefixData(), true);
2669   }
2670   if (F->hasPrologueData()) {
2671     Out << " prologue ";
2672     writeOperand(F->getPrologueData(), true);
2673   }
2674   if (F->hasPersonalityFn()) {
2675     Out << " personality ";
2676     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
2677   }
2678 
2679   if (F->isDeclaration()) {
2680     Out << '\n';
2681   } else {
2682     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2683     F->getAllMetadata(MDs);
2684     printMetadataAttachments(MDs, " ");
2685 
2686     Out << " {";
2687     // Output all of the function's basic blocks.
2688     for (const BasicBlock &BB : *F)
2689       printBasicBlock(&BB);
2690 
2691     // Output the function's use-lists.
2692     printUseLists(F);
2693 
2694     Out << "}\n";
2695   }
2696 
2697   Machine.purgeFunction();
2698 }
2699 
2700 /// printArgument - This member is called for every argument that is passed into
2701 /// the function.  Simply print it out
2702 ///
2703 void AssemblyWriter::printArgument(const Argument *Arg,
2704                                    AttributeSet Attrs, unsigned Idx) {
2705   // Output type...
2706   TypePrinter.print(Arg->getType(), Out);
2707 
2708   // Output parameter attributes list
2709   if (Attrs.hasAttributes(Idx))
2710     Out << ' ' << Attrs.getAsString(Idx);
2711 
2712   // Output name, if available...
2713   if (Arg->hasName()) {
2714     Out << ' ';
2715     PrintLLVMName(Out, Arg);
2716   }
2717 }
2718 
2719 /// printBasicBlock - This member is called for each basic block in a method.
2720 ///
2721 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
2722   if (BB->hasName()) {              // Print out the label if it exists...
2723     Out << "\n";
2724     PrintLLVMName(Out, BB->getName(), LabelPrefix);
2725     Out << ':';
2726   } else if (!BB->use_empty()) {      // Don't print block # of no uses...
2727     Out << "\n; <label>:";
2728     int Slot = Machine.getLocalSlot(BB);
2729     if (Slot != -1)
2730       Out << Slot << ":";
2731     else
2732       Out << "<badref>";
2733   }
2734 
2735   if (!BB->getParent()) {
2736     Out.PadToColumn(50);
2737     Out << "; Error: Block without parent!";
2738   } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
2739     // Output predecessors for the block.
2740     Out.PadToColumn(50);
2741     Out << ";";
2742     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
2743 
2744     if (PI == PE) {
2745       Out << " No predecessors!";
2746     } else {
2747       Out << " preds = ";
2748       writeOperand(*PI, false);
2749       for (++PI; PI != PE; ++PI) {
2750         Out << ", ";
2751         writeOperand(*PI, false);
2752       }
2753     }
2754   }
2755 
2756   Out << "\n";
2757 
2758   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
2759 
2760   // Output all of the instructions in the basic block...
2761   for (const Instruction &I : *BB) {
2762     printInstructionLine(I);
2763   }
2764 
2765   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
2766 }
2767 
2768 /// printInstructionLine - Print an instruction and a newline character.
2769 void AssemblyWriter::printInstructionLine(const Instruction &I) {
2770   printInstruction(I);
2771   Out << '\n';
2772 }
2773 
2774 /// printGCRelocateComment - print comment after call to the gc.relocate
2775 /// intrinsic indicating base and derived pointer names.
2776 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
2777   Out << " ; (";
2778   writeOperand(Relocate.getBasePtr(), false);
2779   Out << ", ";
2780   writeOperand(Relocate.getDerivedPtr(), false);
2781   Out << ")";
2782 }
2783 
2784 /// printInfoComment - Print a little comment after the instruction indicating
2785 /// which slot it occupies.
2786 ///
2787 void AssemblyWriter::printInfoComment(const Value &V) {
2788   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
2789     printGCRelocateComment(*Relocate);
2790 
2791   if (AnnotationWriter)
2792     AnnotationWriter->printInfoComment(V, Out);
2793 }
2794 
2795 // This member is called for each Instruction in a function..
2796 void AssemblyWriter::printInstruction(const Instruction &I) {
2797   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
2798 
2799   // Print out indentation for an instruction.
2800   Out << "  ";
2801 
2802   // Print out name if it exists...
2803   if (I.hasName()) {
2804     PrintLLVMName(Out, &I);
2805     Out << " = ";
2806   } else if (!I.getType()->isVoidTy()) {
2807     // Print out the def slot taken.
2808     int SlotNum = Machine.getLocalSlot(&I);
2809     if (SlotNum == -1)
2810       Out << "<badref> = ";
2811     else
2812       Out << '%' << SlotNum << " = ";
2813   }
2814 
2815   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2816     if (CI->isMustTailCall())
2817       Out << "musttail ";
2818     else if (CI->isTailCall())
2819       Out << "tail ";
2820     else if (CI->isNoTailCall())
2821       Out << "notail ";
2822   }
2823 
2824   // Print out the opcode...
2825   Out << I.getOpcodeName();
2826 
2827   // If this is an atomic load or store, print out the atomic marker.
2828   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
2829       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
2830     Out << " atomic";
2831 
2832   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
2833     Out << " weak";
2834 
2835   // If this is a volatile operation, print out the volatile marker.
2836   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
2837       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
2838       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
2839       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
2840     Out << " volatile";
2841 
2842   // Print out optimization information.
2843   WriteOptimizationInfo(Out, &I);
2844 
2845   // Print out the compare instruction predicates
2846   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
2847     Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
2848 
2849   // Print out the atomicrmw operation
2850   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
2851     writeAtomicRMWOperation(Out, RMWI->getOperation());
2852 
2853   // Print out the type of the operands...
2854   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
2855 
2856   // Special case conditional branches to swizzle the condition out to the front
2857   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
2858     const BranchInst &BI(cast<BranchInst>(I));
2859     Out << ' ';
2860     writeOperand(BI.getCondition(), true);
2861     Out << ", ";
2862     writeOperand(BI.getSuccessor(0), true);
2863     Out << ", ";
2864     writeOperand(BI.getSuccessor(1), true);
2865 
2866   } else if (isa<SwitchInst>(I)) {
2867     const SwitchInst& SI(cast<SwitchInst>(I));
2868     // Special case switch instruction to get formatting nice and correct.
2869     Out << ' ';
2870     writeOperand(SI.getCondition(), true);
2871     Out << ", ";
2872     writeOperand(SI.getDefaultDest(), true);
2873     Out << " [";
2874     for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2875          i != e; ++i) {
2876       Out << "\n    ";
2877       writeOperand(i.getCaseValue(), true);
2878       Out << ", ";
2879       writeOperand(i.getCaseSuccessor(), true);
2880     }
2881     Out << "\n  ]";
2882   } else if (isa<IndirectBrInst>(I)) {
2883     // Special case indirectbr instruction to get formatting nice and correct.
2884     Out << ' ';
2885     writeOperand(Operand, true);
2886     Out << ", [";
2887 
2888     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2889       if (i != 1)
2890         Out << ", ";
2891       writeOperand(I.getOperand(i), true);
2892     }
2893     Out << ']';
2894   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
2895     Out << ' ';
2896     TypePrinter.print(I.getType(), Out);
2897     Out << ' ';
2898 
2899     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
2900       if (op) Out << ", ";
2901       Out << "[ ";
2902       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
2903       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
2904     }
2905   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
2906     Out << ' ';
2907     writeOperand(I.getOperand(0), true);
2908     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
2909       Out << ", " << *i;
2910   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
2911     Out << ' ';
2912     writeOperand(I.getOperand(0), true); Out << ", ";
2913     writeOperand(I.getOperand(1), true);
2914     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
2915       Out << ", " << *i;
2916   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
2917     Out << ' ';
2918     TypePrinter.print(I.getType(), Out);
2919     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
2920       Out << '\n';
2921 
2922     if (LPI->isCleanup())
2923       Out << "          cleanup";
2924 
2925     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
2926       if (i != 0 || LPI->isCleanup()) Out << "\n";
2927       if (LPI->isCatch(i))
2928         Out << "          catch ";
2929       else
2930         Out << "          filter ";
2931 
2932       writeOperand(LPI->getClause(i), true);
2933     }
2934   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
2935     Out << " within ";
2936     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
2937     Out << " [";
2938     unsigned Op = 0;
2939     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
2940       if (Op > 0)
2941         Out << ", ";
2942       writeOperand(PadBB, /*PrintType=*/true);
2943       ++Op;
2944     }
2945     Out << "] unwind ";
2946     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
2947       writeOperand(UnwindDest, /*PrintType=*/true);
2948     else
2949       Out << "to caller";
2950   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
2951     Out << " within ";
2952     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
2953     Out << " [";
2954     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
2955          ++Op) {
2956       if (Op > 0)
2957         Out << ", ";
2958       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
2959     }
2960     Out << ']';
2961   } else if (isa<ReturnInst>(I) && !Operand) {
2962     Out << " void";
2963   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
2964     Out << " from ";
2965     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
2966 
2967     Out << " to ";
2968     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
2969   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
2970     Out << " from ";
2971     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
2972 
2973     Out << " unwind ";
2974     if (CRI->hasUnwindDest())
2975       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
2976     else
2977       Out << "to caller";
2978   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2979     // Print the calling convention being used.
2980     if (CI->getCallingConv() != CallingConv::C) {
2981       Out << " ";
2982       PrintCallingConv(CI->getCallingConv(), Out);
2983     }
2984 
2985     Operand = CI->getCalledValue();
2986     FunctionType *FTy = cast<FunctionType>(CI->getFunctionType());
2987     Type *RetTy = FTy->getReturnType();
2988     const AttributeSet &PAL = CI->getAttributes();
2989 
2990     if (PAL.hasAttributes(AttributeSet::ReturnIndex))
2991       Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
2992 
2993     // If possible, print out the short form of the call instruction.  We can
2994     // only do this if the first argument is a pointer to a nonvararg function,
2995     // and if the return type is not a pointer to a function.
2996     //
2997     Out << ' ';
2998     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
2999     Out << ' ';
3000     writeOperand(Operand, false);
3001     Out << '(';
3002     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
3003       if (op > 0)
3004         Out << ", ";
3005       writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
3006     }
3007 
3008     // Emit an ellipsis if this is a musttail call in a vararg function.  This
3009     // is only to aid readability, musttail calls forward varargs by default.
3010     if (CI->isMustTailCall() && CI->getParent() &&
3011         CI->getParent()->getParent() &&
3012         CI->getParent()->getParent()->isVarArg())
3013       Out << ", ...";
3014 
3015     Out << ')';
3016     if (PAL.hasAttributes(AttributeSet::FunctionIndex))
3017       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3018 
3019     writeOperandBundles(CI);
3020 
3021   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
3022     Operand = II->getCalledValue();
3023     FunctionType *FTy = cast<FunctionType>(II->getFunctionType());
3024     Type *RetTy = FTy->getReturnType();
3025     const AttributeSet &PAL = II->getAttributes();
3026 
3027     // Print the calling convention being used.
3028     if (II->getCallingConv() != CallingConv::C) {
3029       Out << " ";
3030       PrintCallingConv(II->getCallingConv(), Out);
3031     }
3032 
3033     if (PAL.hasAttributes(AttributeSet::ReturnIndex))
3034       Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
3035 
3036     // If possible, print out the short form of the invoke instruction. We can
3037     // only do this if the first argument is a pointer to a nonvararg function,
3038     // and if the return type is not a pointer to a function.
3039     //
3040     Out << ' ';
3041     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3042     Out << ' ';
3043     writeOperand(Operand, false);
3044     Out << '(';
3045     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
3046       if (op)
3047         Out << ", ";
3048       writeParamOperand(II->getArgOperand(op), PAL, op + 1);
3049     }
3050 
3051     Out << ')';
3052     if (PAL.hasAttributes(AttributeSet::FunctionIndex))
3053       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3054 
3055     writeOperandBundles(II);
3056 
3057     Out << "\n          to ";
3058     writeOperand(II->getNormalDest(), true);
3059     Out << " unwind ";
3060     writeOperand(II->getUnwindDest(), true);
3061 
3062   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
3063     Out << ' ';
3064     if (AI->isUsedWithInAlloca())
3065       Out << "inalloca ";
3066     if (AI->isSwiftError())
3067       Out << "swifterror ";
3068     TypePrinter.print(AI->getAllocatedType(), Out);
3069 
3070     // Explicitly write the array size if the code is broken, if it's an array
3071     // allocation, or if the type is not canonical for scalar allocations.  The
3072     // latter case prevents the type from mutating when round-tripping through
3073     // assembly.
3074     if (!AI->getArraySize() || AI->isArrayAllocation() ||
3075         !AI->getArraySize()->getType()->isIntegerTy(32)) {
3076       Out << ", ";
3077       writeOperand(AI->getArraySize(), true);
3078     }
3079     if (AI->getAlignment()) {
3080       Out << ", align " << AI->getAlignment();
3081     }
3082   } else if (isa<CastInst>(I)) {
3083     if (Operand) {
3084       Out << ' ';
3085       writeOperand(Operand, true);   // Work with broken code
3086     }
3087     Out << " to ";
3088     TypePrinter.print(I.getType(), Out);
3089   } else if (isa<VAArgInst>(I)) {
3090     if (Operand) {
3091       Out << ' ';
3092       writeOperand(Operand, true);   // Work with broken code
3093     }
3094     Out << ", ";
3095     TypePrinter.print(I.getType(), Out);
3096   } else if (Operand) {   // Print the normal way.
3097     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
3098       Out << ' ';
3099       TypePrinter.print(GEP->getSourceElementType(), Out);
3100       Out << ',';
3101     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
3102       Out << ' ';
3103       TypePrinter.print(LI->getType(), Out);
3104       Out << ',';
3105     }
3106 
3107     // PrintAllTypes - Instructions who have operands of all the same type
3108     // omit the type from all but the first operand.  If the instruction has
3109     // different type operands (for example br), then they are all printed.
3110     bool PrintAllTypes = false;
3111     Type *TheType = Operand->getType();
3112 
3113     // Select, Store and ShuffleVector always print all types.
3114     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
3115         || isa<ReturnInst>(I)) {
3116       PrintAllTypes = true;
3117     } else {
3118       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
3119         Operand = I.getOperand(i);
3120         // note that Operand shouldn't be null, but the test helps make dump()
3121         // more tolerant of malformed IR
3122         if (Operand && Operand->getType() != TheType) {
3123           PrintAllTypes = true;    // We have differing types!  Print them all!
3124           break;
3125         }
3126       }
3127     }
3128 
3129     if (!PrintAllTypes) {
3130       Out << ' ';
3131       TypePrinter.print(TheType, Out);
3132     }
3133 
3134     Out << ' ';
3135     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
3136       if (i) Out << ", ";
3137       writeOperand(I.getOperand(i), PrintAllTypes);
3138     }
3139   }
3140 
3141   // Print atomic ordering/alignment for memory operations
3142   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
3143     if (LI->isAtomic())
3144       writeAtomic(LI->getOrdering(), LI->getSynchScope());
3145     if (LI->getAlignment())
3146       Out << ", align " << LI->getAlignment();
3147   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
3148     if (SI->isAtomic())
3149       writeAtomic(SI->getOrdering(), SI->getSynchScope());
3150     if (SI->getAlignment())
3151       Out << ", align " << SI->getAlignment();
3152   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
3153     writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
3154                        CXI->getSynchScope());
3155   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
3156     writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
3157   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
3158     writeAtomic(FI->getOrdering(), FI->getSynchScope());
3159   }
3160 
3161   // Print Metadata info.
3162   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
3163   I.getAllMetadata(InstMD);
3164   printMetadataAttachments(InstMD, ", ");
3165 
3166   // Print a nice comment.
3167   printInfoComment(I);
3168 }
3169 
3170 void AssemblyWriter::printMetadataAttachments(
3171     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
3172     StringRef Separator) {
3173   if (MDs.empty())
3174     return;
3175 
3176   if (MDNames.empty())
3177     MDs[0].second->getContext().getMDKindNames(MDNames);
3178 
3179   for (const auto &I : MDs) {
3180     unsigned Kind = I.first;
3181     Out << Separator;
3182     if (Kind < MDNames.size()) {
3183       Out << "!";
3184       printMetadataIdentifier(MDNames[Kind], Out);
3185     } else
3186       Out << "!<unknown kind #" << Kind << ">";
3187     Out << ' ';
3188     WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
3189   }
3190 }
3191 
3192 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
3193   Out << '!' << Slot << " = ";
3194   printMDNodeBody(Node);
3195   Out << "\n";
3196 }
3197 
3198 void AssemblyWriter::writeAllMDNodes() {
3199   SmallVector<const MDNode *, 16> Nodes;
3200   Nodes.resize(Machine.mdn_size());
3201   for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
3202        I != E; ++I)
3203     Nodes[I->second] = cast<MDNode>(I->first);
3204 
3205   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3206     writeMDNode(i, Nodes[i]);
3207   }
3208 }
3209 
3210 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
3211   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
3212 }
3213 
3214 void AssemblyWriter::writeAllAttributeGroups() {
3215   std::vector<std::pair<AttributeSet, unsigned> > asVec;
3216   asVec.resize(Machine.as_size());
3217 
3218   for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
3219        I != E; ++I)
3220     asVec[I->second] = *I;
3221 
3222   for (const auto &I : asVec)
3223     Out << "attributes #" << I.second << " = { "
3224         << I.first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
3225 }
3226 
3227 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
3228   bool IsInFunction = Machine.getFunction();
3229   if (IsInFunction)
3230     Out << "  ";
3231 
3232   Out << "uselistorder";
3233   if (const BasicBlock *BB =
3234           IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
3235     Out << "_bb ";
3236     writeOperand(BB->getParent(), false);
3237     Out << ", ";
3238     writeOperand(BB, false);
3239   } else {
3240     Out << " ";
3241     writeOperand(Order.V, true);
3242   }
3243   Out << ", { ";
3244 
3245   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3246   Out << Order.Shuffle[0];
3247   for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
3248     Out << ", " << Order.Shuffle[I];
3249   Out << " }\n";
3250 }
3251 
3252 void AssemblyWriter::printUseLists(const Function *F) {
3253   auto hasMore =
3254       [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
3255   if (!hasMore())
3256     // Nothing to do.
3257     return;
3258 
3259   Out << "\n; uselistorder directives\n";
3260   while (hasMore()) {
3261     printUseListOrder(UseListOrders.back());
3262     UseListOrders.pop_back();
3263   }
3264 }
3265 
3266 //===----------------------------------------------------------------------===//
3267 //                       External Interface declarations
3268 //===----------------------------------------------------------------------===//
3269 
3270 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
3271                      bool ShouldPreserveUseListOrder,
3272                      bool IsForDebug) const {
3273   SlotTracker SlotTable(this->getParent());
3274   formatted_raw_ostream OS(ROS);
3275   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
3276                    IsForDebug,
3277                    ShouldPreserveUseListOrder);
3278   W.printFunction(this);
3279 }
3280 
3281 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
3282                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
3283   SlotTracker SlotTable(this);
3284   formatted_raw_ostream OS(ROS);
3285   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
3286                    ShouldPreserveUseListOrder);
3287   W.printModule(this);
3288 }
3289 
3290 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
3291   SlotTracker SlotTable(getParent());
3292   formatted_raw_ostream OS(ROS);
3293   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
3294   W.printNamedMDNode(this);
3295 }
3296 
3297 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
3298                         bool IsForDebug) const {
3299   Optional<SlotTracker> LocalST;
3300   SlotTracker *SlotTable;
3301   if (auto *ST = MST.getMachine())
3302     SlotTable = ST;
3303   else {
3304     LocalST.emplace(getParent());
3305     SlotTable = &*LocalST;
3306   }
3307 
3308   formatted_raw_ostream OS(ROS);
3309   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
3310   W.printNamedMDNode(this);
3311 }
3312 
3313 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
3314   PrintLLVMName(ROS, getName(), ComdatPrefix);
3315   ROS << " = comdat ";
3316 
3317   switch (getSelectionKind()) {
3318   case Comdat::Any:
3319     ROS << "any";
3320     break;
3321   case Comdat::ExactMatch:
3322     ROS << "exactmatch";
3323     break;
3324   case Comdat::Largest:
3325     ROS << "largest";
3326     break;
3327   case Comdat::NoDuplicates:
3328     ROS << "noduplicates";
3329     break;
3330   case Comdat::SameSize:
3331     ROS << "samesize";
3332     break;
3333   }
3334 
3335   ROS << '\n';
3336 }
3337 
3338 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
3339   TypePrinting TP;
3340   TP.print(const_cast<Type*>(this), OS);
3341 
3342   if (NoDetails)
3343     return;
3344 
3345   // If the type is a named struct type, print the body as well.
3346   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
3347     if (!STy->isLiteral()) {
3348       OS << " = type ";
3349       TP.printStructBody(STy, OS);
3350     }
3351 }
3352 
3353 static bool isReferencingMDNode(const Instruction &I) {
3354   if (const auto *CI = dyn_cast<CallInst>(&I))
3355     if (Function *F = CI->getCalledFunction())
3356       if (F->isIntrinsic())
3357         for (auto &Op : I.operands())
3358           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
3359             if (isa<MDNode>(V->getMetadata()))
3360               return true;
3361   return false;
3362 }
3363 
3364 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
3365   bool ShouldInitializeAllMetadata = false;
3366   if (auto *I = dyn_cast<Instruction>(this))
3367     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
3368   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
3369     ShouldInitializeAllMetadata = true;
3370 
3371   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
3372   print(ROS, MST, IsForDebug);
3373 }
3374 
3375 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
3376                   bool IsForDebug) const {
3377   formatted_raw_ostream OS(ROS);
3378   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
3379   SlotTracker &SlotTable =
3380       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
3381   auto incorporateFunction = [&](const Function *F) {
3382     if (F)
3383       MST.incorporateFunction(*F);
3384   };
3385 
3386   if (const Instruction *I = dyn_cast<Instruction>(this)) {
3387     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
3388     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
3389     W.printInstruction(*I);
3390   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
3391     incorporateFunction(BB->getParent());
3392     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
3393     W.printBasicBlock(BB);
3394   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
3395     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
3396     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
3397       W.printGlobal(V);
3398     else if (const Function *F = dyn_cast<Function>(GV))
3399       W.printFunction(F);
3400     else
3401       W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
3402   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
3403     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
3404   } else if (const Constant *C = dyn_cast<Constant>(this)) {
3405     TypePrinting TypePrinter;
3406     TypePrinter.print(C->getType(), OS);
3407     OS << ' ';
3408     WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
3409   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
3410     this->printAsOperand(OS, /* PrintType */ true, MST);
3411   } else {
3412     llvm_unreachable("Unknown value to print out!");
3413   }
3414 }
3415 
3416 /// Print without a type, skipping the TypePrinting object.
3417 ///
3418 /// \return \c true iff printing was successful.
3419 static bool printWithoutType(const Value &V, raw_ostream &O,
3420                              SlotTracker *Machine, const Module *M) {
3421   if (V.hasName() || isa<GlobalValue>(V) ||
3422       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
3423     WriteAsOperandInternal(O, &V, nullptr, Machine, M);
3424     return true;
3425   }
3426   return false;
3427 }
3428 
3429 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
3430                                ModuleSlotTracker &MST) {
3431   TypePrinting TypePrinter;
3432   if (const Module *M = MST.getModule())
3433     TypePrinter.incorporateTypes(*M);
3434   if (PrintType) {
3435     TypePrinter.print(V.getType(), O);
3436     O << ' ';
3437   }
3438 
3439   WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
3440                          MST.getModule());
3441 }
3442 
3443 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3444                            const Module *M) const {
3445   if (!M)
3446     M = getModuleFromVal(this);
3447 
3448   if (!PrintType)
3449     if (printWithoutType(*this, O, nullptr, M))
3450       return;
3451 
3452   SlotTracker Machine(
3453       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
3454   ModuleSlotTracker MST(Machine, M);
3455   printAsOperandImpl(*this, O, PrintType, MST);
3456 }
3457 
3458 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3459                            ModuleSlotTracker &MST) const {
3460   if (!PrintType)
3461     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
3462       return;
3463 
3464   printAsOperandImpl(*this, O, PrintType, MST);
3465 }
3466 
3467 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
3468                               ModuleSlotTracker &MST, const Module *M,
3469                               bool OnlyAsOperand) {
3470   formatted_raw_ostream OS(ROS);
3471 
3472   TypePrinting TypePrinter;
3473   if (M)
3474     TypePrinter.incorporateTypes(*M);
3475 
3476   WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
3477                          /* FromValue */ true);
3478 
3479   auto *N = dyn_cast<MDNode>(&MD);
3480   if (OnlyAsOperand || !N)
3481     return;
3482 
3483   OS << " = ";
3484   WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
3485 }
3486 
3487 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
3488   ModuleSlotTracker MST(M, isa<MDNode>(this));
3489   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3490 }
3491 
3492 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
3493                               const Module *M) const {
3494   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3495 }
3496 
3497 void Metadata::print(raw_ostream &OS, const Module *M,
3498                      bool /*IsForDebug*/) const {
3499   ModuleSlotTracker MST(M, isa<MDNode>(this));
3500   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3501 }
3502 
3503 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
3504                      const Module *M, bool /*IsForDebug*/) const {
3505   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3506 }
3507 
3508 // Value::dump - allow easy printing of Values from the debugger.
3509 LLVM_DUMP_METHOD
3510 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
3511 
3512 // Type::dump - allow easy printing of Types from the debugger.
3513 LLVM_DUMP_METHOD
3514 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
3515 
3516 // Module::dump() - Allow printing of Modules from the debugger.
3517 LLVM_DUMP_METHOD
3518 void Module::dump() const {
3519   print(dbgs(), nullptr,
3520         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
3521 }
3522 
3523 // \brief Allow printing of Comdats from the debugger.
3524 LLVM_DUMP_METHOD
3525 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
3526 
3527 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
3528 LLVM_DUMP_METHOD
3529 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
3530 
3531 LLVM_DUMP_METHOD
3532 void Metadata::dump() const { dump(nullptr); }
3533 
3534 LLVM_DUMP_METHOD
3535 void Metadata::dump(const Module *M) const {
3536   print(dbgs(), M, /*IsForDebug=*/true);
3537   dbgs() << '\n';
3538 }
3539