1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This library implements `print` family of functions in classes like 10 // Module, Function, Value, etc. In-memory representation of those classes is 11 // converted to IR strings. 12 // 13 // Note that these routines must be extremely tolerant of various errors in the 14 // LLVM code, because it can be used for debugging transformations. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/None.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/ADT/iterator_range.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/Config/llvm-config.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/AssemblyAnnotationWriter.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Comdat.h" 41 #include "llvm/IR/Constant.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalIFunc.h" 48 #include "llvm/IR/GlobalObject.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/IRPrintingPasses.h" 52 #include "llvm/IR/InlineAsm.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instruction.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/ModuleSlotTracker.h" 61 #include "llvm/IR/ModuleSummaryIndex.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/TypeFinder.h" 65 #include "llvm/IR/Use.h" 66 #include "llvm/IR/User.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/Support/AtomicOrdering.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/Compiler.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/ErrorHandling.h" 73 #include "llvm/Support/Format.h" 74 #include "llvm/Support/FormattedStream.h" 75 #include "llvm/Support/SaveAndRestore.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cctype> 80 #include <cstddef> 81 #include <cstdint> 82 #include <iterator> 83 #include <memory> 84 #include <string> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 // Make virtual table appear in this compilation unit. 92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default; 93 94 //===----------------------------------------------------------------------===// 95 // Helper Functions 96 //===----------------------------------------------------------------------===// 97 98 using OrderMap = MapVector<const Value *, unsigned>; 99 100 using UseListOrderMap = 101 DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>; 102 103 /// Look for a value that might be wrapped as metadata, e.g. a value in a 104 /// metadata operand. Returns the input value as-is if it is not wrapped. 105 static const Value *skipMetadataWrapper(const Value *V) { 106 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) 107 if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata())) 108 return VAM->getValue(); 109 return V; 110 } 111 112 static void orderValue(const Value *V, OrderMap &OM) { 113 if (OM.lookup(V)) 114 return; 115 116 if (const Constant *C = dyn_cast<Constant>(V)) 117 if (C->getNumOperands() && !isa<GlobalValue>(C)) 118 for (const Value *Op : C->operands()) 119 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 120 orderValue(Op, OM); 121 122 // Note: we cannot cache this lookup above, since inserting into the map 123 // changes the map's size, and thus affects the other IDs. 124 unsigned ID = OM.size() + 1; 125 OM[V] = ID; 126 } 127 128 static OrderMap orderModule(const Module *M) { 129 OrderMap OM; 130 131 for (const GlobalVariable &G : M->globals()) { 132 if (G.hasInitializer()) 133 if (!isa<GlobalValue>(G.getInitializer())) 134 orderValue(G.getInitializer(), OM); 135 orderValue(&G, OM); 136 } 137 for (const GlobalAlias &A : M->aliases()) { 138 if (!isa<GlobalValue>(A.getAliasee())) 139 orderValue(A.getAliasee(), OM); 140 orderValue(&A, OM); 141 } 142 for (const GlobalIFunc &I : M->ifuncs()) { 143 if (!isa<GlobalValue>(I.getResolver())) 144 orderValue(I.getResolver(), OM); 145 orderValue(&I, OM); 146 } 147 for (const Function &F : *M) { 148 for (const Use &U : F.operands()) 149 if (!isa<GlobalValue>(U.get())) 150 orderValue(U.get(), OM); 151 152 orderValue(&F, OM); 153 154 if (F.isDeclaration()) 155 continue; 156 157 for (const Argument &A : F.args()) 158 orderValue(&A, OM); 159 for (const BasicBlock &BB : F) { 160 orderValue(&BB, OM); 161 for (const Instruction &I : BB) { 162 for (const Value *Op : I.operands()) { 163 Op = skipMetadataWrapper(Op); 164 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 165 isa<InlineAsm>(*Op)) 166 orderValue(Op, OM); 167 } 168 orderValue(&I, OM); 169 } 170 } 171 } 172 return OM; 173 } 174 175 static std::vector<unsigned> 176 predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) { 177 // Predict use-list order for this one. 178 using Entry = std::pair<const Use *, unsigned>; 179 SmallVector<Entry, 64> List; 180 for (const Use &U : V->uses()) 181 // Check if this user will be serialized. 182 if (OM.lookup(U.getUser())) 183 List.push_back(std::make_pair(&U, List.size())); 184 185 if (List.size() < 2) 186 // We may have lost some users. 187 return {}; 188 189 // When referencing a value before its declaration, a temporary value is 190 // created, which will later be RAUWed with the actual value. This reverses 191 // the use list. This happens for all values apart from basic blocks. 192 bool GetsReversed = !isa<BasicBlock>(V); 193 if (auto *BA = dyn_cast<BlockAddress>(V)) 194 ID = OM.lookup(BA->getBasicBlock()); 195 llvm::sort(List, [&](const Entry &L, const Entry &R) { 196 const Use *LU = L.first; 197 const Use *RU = R.first; 198 if (LU == RU) 199 return false; 200 201 auto LID = OM.lookup(LU->getUser()); 202 auto RID = OM.lookup(RU->getUser()); 203 204 // If ID is 4, then expect: 7 6 5 1 2 3. 205 if (LID < RID) { 206 if (GetsReversed) 207 if (RID <= ID) 208 return true; 209 return false; 210 } 211 if (RID < LID) { 212 if (GetsReversed) 213 if (LID <= ID) 214 return false; 215 return true; 216 } 217 218 // LID and RID are equal, so we have different operands of the same user. 219 // Assume operands are added in order for all instructions. 220 if (GetsReversed) 221 if (LID <= ID) 222 return LU->getOperandNo() < RU->getOperandNo(); 223 return LU->getOperandNo() > RU->getOperandNo(); 224 }); 225 226 if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) { 227 return L.second < R.second; 228 })) 229 // Order is already correct. 230 return {}; 231 232 // Store the shuffle. 233 std::vector<unsigned> Shuffle(List.size()); 234 for (size_t I = 0, E = List.size(); I != E; ++I) 235 Shuffle[I] = List[I].second; 236 return Shuffle; 237 } 238 239 static UseListOrderMap predictUseListOrder(const Module *M) { 240 OrderMap OM = orderModule(M); 241 UseListOrderMap ULOM; 242 for (const auto &Pair : OM) { 243 const Value *V = Pair.first; 244 if (V->use_empty() || std::next(V->use_begin()) == V->use_end()) 245 continue; 246 247 std::vector<unsigned> Shuffle = 248 predictValueUseListOrder(V, Pair.second, OM); 249 if (Shuffle.empty()) 250 continue; 251 252 const Function *F = nullptr; 253 if (auto *I = dyn_cast<Instruction>(V)) 254 F = I->getFunction(); 255 if (auto *A = dyn_cast<Argument>(V)) 256 F = A->getParent(); 257 if (auto *BB = dyn_cast<BasicBlock>(V)) 258 F = BB->getParent(); 259 ULOM[F][V] = std::move(Shuffle); 260 } 261 return ULOM; 262 } 263 264 static const Module *getModuleFromVal(const Value *V) { 265 if (const Argument *MA = dyn_cast<Argument>(V)) 266 return MA->getParent() ? MA->getParent()->getParent() : nullptr; 267 268 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 269 return BB->getParent() ? BB->getParent()->getParent() : nullptr; 270 271 if (const Instruction *I = dyn_cast<Instruction>(V)) { 272 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr; 273 return M ? M->getParent() : nullptr; 274 } 275 276 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 277 return GV->getParent(); 278 279 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) { 280 for (const User *U : MAV->users()) 281 if (isa<Instruction>(U)) 282 if (const Module *M = getModuleFromVal(U)) 283 return M; 284 return nullptr; 285 } 286 287 return nullptr; 288 } 289 290 static void PrintCallingConv(unsigned cc, raw_ostream &Out) { 291 switch (cc) { 292 default: Out << "cc" << cc; break; 293 case CallingConv::Fast: Out << "fastcc"; break; 294 case CallingConv::Cold: Out << "coldcc"; break; 295 case CallingConv::WebKit_JS: Out << "webkit_jscc"; break; 296 case CallingConv::AnyReg: Out << "anyregcc"; break; 297 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break; 298 case CallingConv::PreserveAll: Out << "preserve_allcc"; break; 299 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break; 300 case CallingConv::GHC: Out << "ghccc"; break; 301 case CallingConv::Tail: Out << "tailcc"; break; 302 case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break; 303 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break; 304 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break; 305 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break; 306 case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break; 307 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break; 308 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break; 309 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break; 310 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break; 311 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break; 312 case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break; 313 case CallingConv::AArch64_SVE_VectorCall: 314 Out << "aarch64_sve_vector_pcs"; 315 break; 316 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break; 317 case CallingConv::AVR_INTR: Out << "avr_intrcc "; break; 318 case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break; 319 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break; 320 case CallingConv::PTX_Device: Out << "ptx_device"; break; 321 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break; 322 case CallingConv::Win64: Out << "win64cc"; break; 323 case CallingConv::SPIR_FUNC: Out << "spir_func"; break; 324 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break; 325 case CallingConv::Swift: Out << "swiftcc"; break; 326 case CallingConv::SwiftTail: Out << "swifttailcc"; break; 327 case CallingConv::X86_INTR: Out << "x86_intrcc"; break; 328 case CallingConv::HHVM: Out << "hhvmcc"; break; 329 case CallingConv::HHVM_C: Out << "hhvm_ccc"; break; 330 case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break; 331 case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break; 332 case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break; 333 case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break; 334 case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break; 335 case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break; 336 case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break; 337 case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break; 338 case CallingConv::AMDGPU_Gfx: Out << "amdgpu_gfx"; break; 339 } 340 } 341 342 enum PrefixType { 343 GlobalPrefix, 344 ComdatPrefix, 345 LabelPrefix, 346 LocalPrefix, 347 NoPrefix 348 }; 349 350 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) { 351 assert(!Name.empty() && "Cannot get empty name!"); 352 353 // Scan the name to see if it needs quotes first. 354 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0])); 355 if (!NeedsQuotes) { 356 for (unsigned char C : Name) { 357 // By making this unsigned, the value passed in to isalnum will always be 358 // in the range 0-255. This is important when building with MSVC because 359 // its implementation will assert. This situation can arise when dealing 360 // with UTF-8 multibyte characters. 361 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' && 362 C != '_') { 363 NeedsQuotes = true; 364 break; 365 } 366 } 367 } 368 369 // If we didn't need any quotes, just write out the name in one blast. 370 if (!NeedsQuotes) { 371 OS << Name; 372 return; 373 } 374 375 // Okay, we need quotes. Output the quotes and escape any scary characters as 376 // needed. 377 OS << '"'; 378 printEscapedString(Name, OS); 379 OS << '"'; 380 } 381 382 /// Turn the specified name into an 'LLVM name', which is either prefixed with % 383 /// (if the string only contains simple characters) or is surrounded with ""'s 384 /// (if it has special chars in it). Print it out. 385 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { 386 switch (Prefix) { 387 case NoPrefix: 388 break; 389 case GlobalPrefix: 390 OS << '@'; 391 break; 392 case ComdatPrefix: 393 OS << '$'; 394 break; 395 case LabelPrefix: 396 break; 397 case LocalPrefix: 398 OS << '%'; 399 break; 400 } 401 printLLVMNameWithoutPrefix(OS, Name); 402 } 403 404 /// Turn the specified name into an 'LLVM name', which is either prefixed with % 405 /// (if the string only contains simple characters) or is surrounded with ""'s 406 /// (if it has special chars in it). Print it out. 407 static void PrintLLVMName(raw_ostream &OS, const Value *V) { 408 PrintLLVMName(OS, V->getName(), 409 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); 410 } 411 412 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) { 413 Out << ", <"; 414 if (isa<ScalableVectorType>(Ty)) 415 Out << "vscale x "; 416 Out << Mask.size() << " x i32> "; 417 bool FirstElt = true; 418 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 419 Out << "zeroinitializer"; 420 } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) { 421 Out << "undef"; 422 } else { 423 Out << "<"; 424 for (int Elt : Mask) { 425 if (FirstElt) 426 FirstElt = false; 427 else 428 Out << ", "; 429 Out << "i32 "; 430 if (Elt == UndefMaskElem) 431 Out << "undef"; 432 else 433 Out << Elt; 434 } 435 Out << ">"; 436 } 437 } 438 439 namespace { 440 441 class TypePrinting { 442 public: 443 TypePrinting(const Module *M = nullptr) : DeferredM(M) {} 444 445 TypePrinting(const TypePrinting &) = delete; 446 TypePrinting &operator=(const TypePrinting &) = delete; 447 448 /// The named types that are used by the current module. 449 TypeFinder &getNamedTypes(); 450 451 /// The numbered types, number to type mapping. 452 std::vector<StructType *> &getNumberedTypes(); 453 454 bool empty(); 455 456 void print(Type *Ty, raw_ostream &OS); 457 458 void printStructBody(StructType *Ty, raw_ostream &OS); 459 460 private: 461 void incorporateTypes(); 462 463 /// A module to process lazily when needed. Set to nullptr as soon as used. 464 const Module *DeferredM; 465 466 TypeFinder NamedTypes; 467 468 // The numbered types, along with their value. 469 DenseMap<StructType *, unsigned> Type2Number; 470 471 std::vector<StructType *> NumberedTypes; 472 }; 473 474 } // end anonymous namespace 475 476 TypeFinder &TypePrinting::getNamedTypes() { 477 incorporateTypes(); 478 return NamedTypes; 479 } 480 481 std::vector<StructType *> &TypePrinting::getNumberedTypes() { 482 incorporateTypes(); 483 484 // We know all the numbers that each type is used and we know that it is a 485 // dense assignment. Convert the map to an index table, if it's not done 486 // already (judging from the sizes): 487 if (NumberedTypes.size() == Type2Number.size()) 488 return NumberedTypes; 489 490 NumberedTypes.resize(Type2Number.size()); 491 for (const auto &P : Type2Number) { 492 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?"); 493 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?"); 494 NumberedTypes[P.second] = P.first; 495 } 496 return NumberedTypes; 497 } 498 499 bool TypePrinting::empty() { 500 incorporateTypes(); 501 return NamedTypes.empty() && Type2Number.empty(); 502 } 503 504 void TypePrinting::incorporateTypes() { 505 if (!DeferredM) 506 return; 507 508 NamedTypes.run(*DeferredM, false); 509 DeferredM = nullptr; 510 511 // The list of struct types we got back includes all the struct types, split 512 // the unnamed ones out to a numbering and remove the anonymous structs. 513 unsigned NextNumber = 0; 514 515 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E; 516 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) { 517 StructType *STy = *I; 518 519 // Ignore anonymous types. 520 if (STy->isLiteral()) 521 continue; 522 523 if (STy->getName().empty()) 524 Type2Number[STy] = NextNumber++; 525 else 526 *NextToUse++ = STy; 527 } 528 529 NamedTypes.erase(NextToUse, NamedTypes.end()); 530 } 531 532 /// Write the specified type to the specified raw_ostream, making use of type 533 /// names or up references to shorten the type name where possible. 534 void TypePrinting::print(Type *Ty, raw_ostream &OS) { 535 switch (Ty->getTypeID()) { 536 case Type::VoidTyID: OS << "void"; return; 537 case Type::HalfTyID: OS << "half"; return; 538 case Type::BFloatTyID: OS << "bfloat"; return; 539 case Type::FloatTyID: OS << "float"; return; 540 case Type::DoubleTyID: OS << "double"; return; 541 case Type::X86_FP80TyID: OS << "x86_fp80"; return; 542 case Type::FP128TyID: OS << "fp128"; return; 543 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return; 544 case Type::LabelTyID: OS << "label"; return; 545 case Type::MetadataTyID: OS << "metadata"; return; 546 case Type::X86_MMXTyID: OS << "x86_mmx"; return; 547 case Type::X86_AMXTyID: OS << "x86_amx"; return; 548 case Type::TokenTyID: OS << "token"; return; 549 case Type::IntegerTyID: 550 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); 551 return; 552 553 case Type::FunctionTyID: { 554 FunctionType *FTy = cast<FunctionType>(Ty); 555 print(FTy->getReturnType(), OS); 556 OS << " ("; 557 ListSeparator LS; 558 for (Type *Ty : FTy->params()) { 559 OS << LS; 560 print(Ty, OS); 561 } 562 if (FTy->isVarArg()) 563 OS << LS << "..."; 564 OS << ')'; 565 return; 566 } 567 case Type::StructTyID: { 568 StructType *STy = cast<StructType>(Ty); 569 570 if (STy->isLiteral()) 571 return printStructBody(STy, OS); 572 573 if (!STy->getName().empty()) 574 return PrintLLVMName(OS, STy->getName(), LocalPrefix); 575 576 incorporateTypes(); 577 const auto I = Type2Number.find(STy); 578 if (I != Type2Number.end()) 579 OS << '%' << I->second; 580 else // Not enumerated, print the hex address. 581 OS << "%\"type " << STy << '\"'; 582 return; 583 } 584 case Type::PointerTyID: { 585 PointerType *PTy = cast<PointerType>(Ty); 586 if (PTy->isOpaque()) { 587 OS << "ptr"; 588 if (unsigned AddressSpace = PTy->getAddressSpace()) 589 OS << " addrspace(" << AddressSpace << ')'; 590 return; 591 } 592 print(PTy->getElementType(), OS); 593 if (unsigned AddressSpace = PTy->getAddressSpace()) 594 OS << " addrspace(" << AddressSpace << ')'; 595 OS << '*'; 596 return; 597 } 598 case Type::ArrayTyID: { 599 ArrayType *ATy = cast<ArrayType>(Ty); 600 OS << '[' << ATy->getNumElements() << " x "; 601 print(ATy->getElementType(), OS); 602 OS << ']'; 603 return; 604 } 605 case Type::FixedVectorTyID: 606 case Type::ScalableVectorTyID: { 607 VectorType *PTy = cast<VectorType>(Ty); 608 ElementCount EC = PTy->getElementCount(); 609 OS << "<"; 610 if (EC.isScalable()) 611 OS << "vscale x "; 612 OS << EC.getKnownMinValue() << " x "; 613 print(PTy->getElementType(), OS); 614 OS << '>'; 615 return; 616 } 617 } 618 llvm_unreachable("Invalid TypeID"); 619 } 620 621 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { 622 if (STy->isOpaque()) { 623 OS << "opaque"; 624 return; 625 } 626 627 if (STy->isPacked()) 628 OS << '<'; 629 630 if (STy->getNumElements() == 0) { 631 OS << "{}"; 632 } else { 633 OS << "{ "; 634 ListSeparator LS; 635 for (Type *Ty : STy->elements()) { 636 OS << LS; 637 print(Ty, OS); 638 } 639 640 OS << " }"; 641 } 642 if (STy->isPacked()) 643 OS << '>'; 644 } 645 646 AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() {} 647 648 namespace llvm { 649 650 //===----------------------------------------------------------------------===// 651 // SlotTracker Class: Enumerate slot numbers for unnamed values 652 //===----------------------------------------------------------------------===// 653 /// This class provides computation of slot numbers for LLVM Assembly writing. 654 /// 655 class SlotTracker : public AbstractSlotTrackerStorage { 656 public: 657 /// ValueMap - A mapping of Values to slot numbers. 658 using ValueMap = DenseMap<const Value *, unsigned>; 659 660 private: 661 /// TheModule - The module for which we are holding slot numbers. 662 const Module* TheModule; 663 664 /// TheFunction - The function for which we are holding slot numbers. 665 const Function* TheFunction = nullptr; 666 bool FunctionProcessed = false; 667 bool ShouldInitializeAllMetadata; 668 669 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)> 670 ProcessModuleHookFn; 671 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)> 672 ProcessFunctionHookFn; 673 674 /// The summary index for which we are holding slot numbers. 675 const ModuleSummaryIndex *TheIndex = nullptr; 676 677 /// mMap - The slot map for the module level data. 678 ValueMap mMap; 679 unsigned mNext = 0; 680 681 /// fMap - The slot map for the function level data. 682 ValueMap fMap; 683 unsigned fNext = 0; 684 685 /// mdnMap - Map for MDNodes. 686 DenseMap<const MDNode*, unsigned> mdnMap; 687 unsigned mdnNext = 0; 688 689 /// asMap - The slot map for attribute sets. 690 DenseMap<AttributeSet, unsigned> asMap; 691 unsigned asNext = 0; 692 693 /// ModulePathMap - The slot map for Module paths used in the summary index. 694 StringMap<unsigned> ModulePathMap; 695 unsigned ModulePathNext = 0; 696 697 /// GUIDMap - The slot map for GUIDs used in the summary index. 698 DenseMap<GlobalValue::GUID, unsigned> GUIDMap; 699 unsigned GUIDNext = 0; 700 701 /// TypeIdMap - The slot map for type ids used in the summary index. 702 StringMap<unsigned> TypeIdMap; 703 unsigned TypeIdNext = 0; 704 705 public: 706 /// Construct from a module. 707 /// 708 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all 709 /// functions, giving correct numbering for metadata referenced only from 710 /// within a function (even if no functions have been initialized). 711 explicit SlotTracker(const Module *M, 712 bool ShouldInitializeAllMetadata = false); 713 714 /// Construct from a function, starting out in incorp state. 715 /// 716 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all 717 /// functions, giving correct numbering for metadata referenced only from 718 /// within a function (even if no functions have been initialized). 719 explicit SlotTracker(const Function *F, 720 bool ShouldInitializeAllMetadata = false); 721 722 /// Construct from a module summary index. 723 explicit SlotTracker(const ModuleSummaryIndex *Index); 724 725 SlotTracker(const SlotTracker &) = delete; 726 SlotTracker &operator=(const SlotTracker &) = delete; 727 728 ~SlotTracker() = default; 729 730 void setProcessHook( 731 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>); 732 void setProcessHook(std::function<void(AbstractSlotTrackerStorage *, 733 const Function *, bool)>); 734 735 unsigned getNextMetadataSlot() override { return mdnNext; } 736 737 void createMetadataSlot(const MDNode *N) override; 738 739 /// Return the slot number of the specified value in it's type 740 /// plane. If something is not in the SlotTracker, return -1. 741 int getLocalSlot(const Value *V); 742 int getGlobalSlot(const GlobalValue *V); 743 int getMetadataSlot(const MDNode *N) override; 744 int getAttributeGroupSlot(AttributeSet AS); 745 int getModulePathSlot(StringRef Path); 746 int getGUIDSlot(GlobalValue::GUID GUID); 747 int getTypeIdSlot(StringRef Id); 748 749 /// If you'd like to deal with a function instead of just a module, use 750 /// this method to get its data into the SlotTracker. 751 void incorporateFunction(const Function *F) { 752 TheFunction = F; 753 FunctionProcessed = false; 754 } 755 756 const Function *getFunction() const { return TheFunction; } 757 758 /// After calling incorporateFunction, use this method to remove the 759 /// most recently incorporated function from the SlotTracker. This 760 /// will reset the state of the machine back to just the module contents. 761 void purgeFunction(); 762 763 /// MDNode map iterators. 764 using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator; 765 766 mdn_iterator mdn_begin() { return mdnMap.begin(); } 767 mdn_iterator mdn_end() { return mdnMap.end(); } 768 unsigned mdn_size() const { return mdnMap.size(); } 769 bool mdn_empty() const { return mdnMap.empty(); } 770 771 /// AttributeSet map iterators. 772 using as_iterator = DenseMap<AttributeSet, unsigned>::iterator; 773 774 as_iterator as_begin() { return asMap.begin(); } 775 as_iterator as_end() { return asMap.end(); } 776 unsigned as_size() const { return asMap.size(); } 777 bool as_empty() const { return asMap.empty(); } 778 779 /// GUID map iterators. 780 using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator; 781 782 /// These functions do the actual initialization. 783 inline void initializeIfNeeded(); 784 int initializeIndexIfNeeded(); 785 786 // Implementation Details 787 private: 788 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 789 void CreateModuleSlot(const GlobalValue *V); 790 791 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. 792 void CreateMetadataSlot(const MDNode *N); 793 794 /// CreateFunctionSlot - Insert the specified Value* into the slot table. 795 void CreateFunctionSlot(const Value *V); 796 797 /// Insert the specified AttributeSet into the slot table. 798 void CreateAttributeSetSlot(AttributeSet AS); 799 800 inline void CreateModulePathSlot(StringRef Path); 801 void CreateGUIDSlot(GlobalValue::GUID GUID); 802 void CreateTypeIdSlot(StringRef Id); 803 804 /// Add all of the module level global variables (and their initializers) 805 /// and function declarations, but not the contents of those functions. 806 void processModule(); 807 // Returns number of allocated slots 808 int processIndex(); 809 810 /// Add all of the functions arguments, basic blocks, and instructions. 811 void processFunction(); 812 813 /// Add the metadata directly attached to a GlobalObject. 814 void processGlobalObjectMetadata(const GlobalObject &GO); 815 816 /// Add all of the metadata from a function. 817 void processFunctionMetadata(const Function &F); 818 819 /// Add all of the metadata from an instruction. 820 void processInstructionMetadata(const Instruction &I); 821 }; 822 823 } // end namespace llvm 824 825 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M, 826 const Function *F) 827 : M(M), F(F), Machine(&Machine) {} 828 829 ModuleSlotTracker::ModuleSlotTracker(const Module *M, 830 bool ShouldInitializeAllMetadata) 831 : ShouldCreateStorage(M), 832 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {} 833 834 ModuleSlotTracker::~ModuleSlotTracker() = default; 835 836 SlotTracker *ModuleSlotTracker::getMachine() { 837 if (!ShouldCreateStorage) 838 return Machine; 839 840 ShouldCreateStorage = false; 841 MachineStorage = 842 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata); 843 Machine = MachineStorage.get(); 844 if (ProcessModuleHookFn) 845 Machine->setProcessHook(ProcessModuleHookFn); 846 if (ProcessFunctionHookFn) 847 Machine->setProcessHook(ProcessFunctionHookFn); 848 return Machine; 849 } 850 851 void ModuleSlotTracker::incorporateFunction(const Function &F) { 852 // Using getMachine() may lazily create the slot tracker. 853 if (!getMachine()) 854 return; 855 856 // Nothing to do if this is the right function already. 857 if (this->F == &F) 858 return; 859 if (this->F) 860 Machine->purgeFunction(); 861 Machine->incorporateFunction(&F); 862 this->F = &F; 863 } 864 865 int ModuleSlotTracker::getLocalSlot(const Value *V) { 866 assert(F && "No function incorporated"); 867 return Machine->getLocalSlot(V); 868 } 869 870 void ModuleSlotTracker::setProcessHook( 871 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)> 872 Fn) { 873 ProcessModuleHookFn = Fn; 874 } 875 876 void ModuleSlotTracker::setProcessHook( 877 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)> 878 Fn) { 879 ProcessFunctionHookFn = Fn; 880 } 881 882 static SlotTracker *createSlotTracker(const Value *V) { 883 if (const Argument *FA = dyn_cast<Argument>(V)) 884 return new SlotTracker(FA->getParent()); 885 886 if (const Instruction *I = dyn_cast<Instruction>(V)) 887 if (I->getParent()) 888 return new SlotTracker(I->getParent()->getParent()); 889 890 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 891 return new SlotTracker(BB->getParent()); 892 893 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 894 return new SlotTracker(GV->getParent()); 895 896 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 897 return new SlotTracker(GA->getParent()); 898 899 if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V)) 900 return new SlotTracker(GIF->getParent()); 901 902 if (const Function *Func = dyn_cast<Function>(V)) 903 return new SlotTracker(Func); 904 905 return nullptr; 906 } 907 908 #if 0 909 #define ST_DEBUG(X) dbgs() << X 910 #else 911 #define ST_DEBUG(X) 912 #endif 913 914 // Module level constructor. Causes the contents of the Module (sans functions) 915 // to be added to the slot table. 916 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata) 917 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} 918 919 // Function level constructor. Causes the contents of the Module and the one 920 // function provided to be added to the slot table. 921 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata) 922 : TheModule(F ? F->getParent() : nullptr), TheFunction(F), 923 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} 924 925 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index) 926 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {} 927 928 inline void SlotTracker::initializeIfNeeded() { 929 if (TheModule) { 930 processModule(); 931 TheModule = nullptr; ///< Prevent re-processing next time we're called. 932 } 933 934 if (TheFunction && !FunctionProcessed) 935 processFunction(); 936 } 937 938 int SlotTracker::initializeIndexIfNeeded() { 939 if (!TheIndex) 940 return 0; 941 int NumSlots = processIndex(); 942 TheIndex = nullptr; ///< Prevent re-processing next time we're called. 943 return NumSlots; 944 } 945 946 // Iterate through all the global variables, functions, and global 947 // variable initializers and create slots for them. 948 void SlotTracker::processModule() { 949 ST_DEBUG("begin processModule!\n"); 950 951 // Add all of the unnamed global variables to the value table. 952 for (const GlobalVariable &Var : TheModule->globals()) { 953 if (!Var.hasName()) 954 CreateModuleSlot(&Var); 955 processGlobalObjectMetadata(Var); 956 auto Attrs = Var.getAttributes(); 957 if (Attrs.hasAttributes()) 958 CreateAttributeSetSlot(Attrs); 959 } 960 961 for (const GlobalAlias &A : TheModule->aliases()) { 962 if (!A.hasName()) 963 CreateModuleSlot(&A); 964 } 965 966 for (const GlobalIFunc &I : TheModule->ifuncs()) { 967 if (!I.hasName()) 968 CreateModuleSlot(&I); 969 } 970 971 // Add metadata used by named metadata. 972 for (const NamedMDNode &NMD : TheModule->named_metadata()) { 973 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) 974 CreateMetadataSlot(NMD.getOperand(i)); 975 } 976 977 for (const Function &F : *TheModule) { 978 if (!F.hasName()) 979 // Add all the unnamed functions to the table. 980 CreateModuleSlot(&F); 981 982 if (ShouldInitializeAllMetadata) 983 processFunctionMetadata(F); 984 985 // Add all the function attributes to the table. 986 // FIXME: Add attributes of other objects? 987 AttributeSet FnAttrs = F.getAttributes().getFnAttrs(); 988 if (FnAttrs.hasAttributes()) 989 CreateAttributeSetSlot(FnAttrs); 990 } 991 992 if (ProcessModuleHookFn) 993 ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata); 994 995 ST_DEBUG("end processModule!\n"); 996 } 997 998 // Process the arguments, basic blocks, and instructions of a function. 999 void SlotTracker::processFunction() { 1000 ST_DEBUG("begin processFunction!\n"); 1001 fNext = 0; 1002 1003 // Process function metadata if it wasn't hit at the module-level. 1004 if (!ShouldInitializeAllMetadata) 1005 processFunctionMetadata(*TheFunction); 1006 1007 // Add all the function arguments with no names. 1008 for(Function::const_arg_iterator AI = TheFunction->arg_begin(), 1009 AE = TheFunction->arg_end(); AI != AE; ++AI) 1010 if (!AI->hasName()) 1011 CreateFunctionSlot(&*AI); 1012 1013 ST_DEBUG("Inserting Instructions:\n"); 1014 1015 // Add all of the basic blocks and instructions with no names. 1016 for (auto &BB : *TheFunction) { 1017 if (!BB.hasName()) 1018 CreateFunctionSlot(&BB); 1019 1020 for (auto &I : BB) { 1021 if (!I.getType()->isVoidTy() && !I.hasName()) 1022 CreateFunctionSlot(&I); 1023 1024 // We allow direct calls to any llvm.foo function here, because the 1025 // target may not be linked into the optimizer. 1026 if (const auto *Call = dyn_cast<CallBase>(&I)) { 1027 // Add all the call attributes to the table. 1028 AttributeSet Attrs = Call->getAttributes().getFnAttrs(); 1029 if (Attrs.hasAttributes()) 1030 CreateAttributeSetSlot(Attrs); 1031 } 1032 } 1033 } 1034 1035 if (ProcessFunctionHookFn) 1036 ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata); 1037 1038 FunctionProcessed = true; 1039 1040 ST_DEBUG("end processFunction!\n"); 1041 } 1042 1043 // Iterate through all the GUID in the index and create slots for them. 1044 int SlotTracker::processIndex() { 1045 ST_DEBUG("begin processIndex!\n"); 1046 assert(TheIndex); 1047 1048 // The first block of slots are just the module ids, which start at 0 and are 1049 // assigned consecutively. Since the StringMap iteration order isn't 1050 // guaranteed, use a std::map to order by module ID before assigning slots. 1051 std::map<uint64_t, StringRef> ModuleIdToPathMap; 1052 for (auto &ModPath : TheIndex->modulePaths()) 1053 ModuleIdToPathMap[ModPath.second.first] = ModPath.first(); 1054 for (auto &ModPair : ModuleIdToPathMap) 1055 CreateModulePathSlot(ModPair.second); 1056 1057 // Start numbering the GUIDs after the module ids. 1058 GUIDNext = ModulePathNext; 1059 1060 for (auto &GlobalList : *TheIndex) 1061 CreateGUIDSlot(GlobalList.first); 1062 1063 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) 1064 CreateGUIDSlot(GlobalValue::getGUID(TId.first)); 1065 1066 // Start numbering the TypeIds after the GUIDs. 1067 TypeIdNext = GUIDNext; 1068 for (const auto &TID : TheIndex->typeIds()) 1069 CreateTypeIdSlot(TID.second.first); 1070 1071 ST_DEBUG("end processIndex!\n"); 1072 return TypeIdNext; 1073 } 1074 1075 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) { 1076 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1077 GO.getAllMetadata(MDs); 1078 for (auto &MD : MDs) 1079 CreateMetadataSlot(MD.second); 1080 } 1081 1082 void SlotTracker::processFunctionMetadata(const Function &F) { 1083 processGlobalObjectMetadata(F); 1084 for (auto &BB : F) { 1085 for (auto &I : BB) 1086 processInstructionMetadata(I); 1087 } 1088 } 1089 1090 void SlotTracker::processInstructionMetadata(const Instruction &I) { 1091 // Process metadata used directly by intrinsics. 1092 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 1093 if (Function *F = CI->getCalledFunction()) 1094 if (F->isIntrinsic()) 1095 for (auto &Op : I.operands()) 1096 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) 1097 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata())) 1098 CreateMetadataSlot(N); 1099 1100 // Process metadata attached to this instruction. 1101 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1102 I.getAllMetadata(MDs); 1103 for (auto &MD : MDs) 1104 CreateMetadataSlot(MD.second); 1105 } 1106 1107 /// Clean up after incorporating a function. This is the only way to get out of 1108 /// the function incorporation state that affects get*Slot/Create*Slot. Function 1109 /// incorporation state is indicated by TheFunction != 0. 1110 void SlotTracker::purgeFunction() { 1111 ST_DEBUG("begin purgeFunction!\n"); 1112 fMap.clear(); // Simply discard the function level map 1113 TheFunction = nullptr; 1114 FunctionProcessed = false; 1115 ST_DEBUG("end purgeFunction!\n"); 1116 } 1117 1118 /// getGlobalSlot - Get the slot number of a global value. 1119 int SlotTracker::getGlobalSlot(const GlobalValue *V) { 1120 // Check for uninitialized state and do lazy initialization. 1121 initializeIfNeeded(); 1122 1123 // Find the value in the module map 1124 ValueMap::iterator MI = mMap.find(V); 1125 return MI == mMap.end() ? -1 : (int)MI->second; 1126 } 1127 1128 void SlotTracker::setProcessHook( 1129 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)> 1130 Fn) { 1131 ProcessModuleHookFn = Fn; 1132 } 1133 1134 void SlotTracker::setProcessHook( 1135 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)> 1136 Fn) { 1137 ProcessFunctionHookFn = Fn; 1138 } 1139 1140 /// getMetadataSlot - Get the slot number of a MDNode. 1141 void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); } 1142 1143 /// getMetadataSlot - Get the slot number of a MDNode. 1144 int SlotTracker::getMetadataSlot(const MDNode *N) { 1145 // Check for uninitialized state and do lazy initialization. 1146 initializeIfNeeded(); 1147 1148 // Find the MDNode in the module map 1149 mdn_iterator MI = mdnMap.find(N); 1150 return MI == mdnMap.end() ? -1 : (int)MI->second; 1151 } 1152 1153 /// getLocalSlot - Get the slot number for a value that is local to a function. 1154 int SlotTracker::getLocalSlot(const Value *V) { 1155 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); 1156 1157 // Check for uninitialized state and do lazy initialization. 1158 initializeIfNeeded(); 1159 1160 ValueMap::iterator FI = fMap.find(V); 1161 return FI == fMap.end() ? -1 : (int)FI->second; 1162 } 1163 1164 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) { 1165 // Check for uninitialized state and do lazy initialization. 1166 initializeIfNeeded(); 1167 1168 // Find the AttributeSet in the module map. 1169 as_iterator AI = asMap.find(AS); 1170 return AI == asMap.end() ? -1 : (int)AI->second; 1171 } 1172 1173 int SlotTracker::getModulePathSlot(StringRef Path) { 1174 // Check for uninitialized state and do lazy initialization. 1175 initializeIndexIfNeeded(); 1176 1177 // Find the Module path in the map 1178 auto I = ModulePathMap.find(Path); 1179 return I == ModulePathMap.end() ? -1 : (int)I->second; 1180 } 1181 1182 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) { 1183 // Check for uninitialized state and do lazy initialization. 1184 initializeIndexIfNeeded(); 1185 1186 // Find the GUID in the map 1187 guid_iterator I = GUIDMap.find(GUID); 1188 return I == GUIDMap.end() ? -1 : (int)I->second; 1189 } 1190 1191 int SlotTracker::getTypeIdSlot(StringRef Id) { 1192 // Check for uninitialized state and do lazy initialization. 1193 initializeIndexIfNeeded(); 1194 1195 // Find the TypeId string in the map 1196 auto I = TypeIdMap.find(Id); 1197 return I == TypeIdMap.end() ? -1 : (int)I->second; 1198 } 1199 1200 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 1201 void SlotTracker::CreateModuleSlot(const GlobalValue *V) { 1202 assert(V && "Can't insert a null Value into SlotTracker!"); 1203 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); 1204 assert(!V->hasName() && "Doesn't need a slot!"); 1205 1206 unsigned DestSlot = mNext++; 1207 mMap[V] = DestSlot; 1208 1209 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 1210 DestSlot << " ["); 1211 // G = Global, F = Function, A = Alias, I = IFunc, o = other 1212 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : 1213 (isa<Function>(V) ? 'F' : 1214 (isa<GlobalAlias>(V) ? 'A' : 1215 (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n"); 1216 } 1217 1218 /// CreateSlot - Create a new slot for the specified value if it has no name. 1219 void SlotTracker::CreateFunctionSlot(const Value *V) { 1220 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); 1221 1222 unsigned DestSlot = fNext++; 1223 fMap[V] = DestSlot; 1224 1225 // G = Global, F = Function, o = other 1226 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 1227 DestSlot << " [o]\n"); 1228 } 1229 1230 /// CreateModuleSlot - Insert the specified MDNode* into the slot table. 1231 void SlotTracker::CreateMetadataSlot(const MDNode *N) { 1232 assert(N && "Can't insert a null Value into SlotTracker!"); 1233 1234 // Don't make slots for DIExpressions or DIArgLists. We just print them inline 1235 // everywhere. 1236 if (isa<DIExpression>(N) || isa<DIArgList>(N)) 1237 return; 1238 1239 unsigned DestSlot = mdnNext; 1240 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second) 1241 return; 1242 ++mdnNext; 1243 1244 // Recursively add any MDNodes referenced by operands. 1245 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1246 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) 1247 CreateMetadataSlot(Op); 1248 } 1249 1250 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) { 1251 assert(AS.hasAttributes() && "Doesn't need a slot!"); 1252 1253 as_iterator I = asMap.find(AS); 1254 if (I != asMap.end()) 1255 return; 1256 1257 unsigned DestSlot = asNext++; 1258 asMap[AS] = DestSlot; 1259 } 1260 1261 /// Create a new slot for the specified Module 1262 void SlotTracker::CreateModulePathSlot(StringRef Path) { 1263 ModulePathMap[Path] = ModulePathNext++; 1264 } 1265 1266 /// Create a new slot for the specified GUID 1267 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) { 1268 GUIDMap[GUID] = GUIDNext++; 1269 } 1270 1271 /// Create a new slot for the specified Id 1272 void SlotTracker::CreateTypeIdSlot(StringRef Id) { 1273 TypeIdMap[Id] = TypeIdNext++; 1274 } 1275 1276 namespace { 1277 /// Common instances used by most of the printer functions. 1278 struct AsmWriterContext { 1279 TypePrinting *TypePrinter = nullptr; 1280 SlotTracker *Machine = nullptr; 1281 const Module *Context = nullptr; 1282 1283 AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr) 1284 : TypePrinter(TP), Machine(ST), Context(M) {} 1285 1286 static AsmWriterContext &getEmpty() { 1287 static AsmWriterContext EmptyCtx(nullptr, nullptr); 1288 return EmptyCtx; 1289 } 1290 1291 /// A callback that will be triggered when the underlying printer 1292 /// prints a Metadata as operand. 1293 virtual void onWriteMetadataAsOperand(const Metadata *) {} 1294 1295 virtual ~AsmWriterContext() {} 1296 }; 1297 } // end anonymous namespace 1298 1299 //===----------------------------------------------------------------------===// 1300 // AsmWriter Implementation 1301 //===----------------------------------------------------------------------===// 1302 1303 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 1304 AsmWriterContext &WriterCtx); 1305 1306 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, 1307 AsmWriterContext &WriterCtx, 1308 bool FromValue = false); 1309 1310 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { 1311 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) 1312 Out << FPO->getFastMathFlags(); 1313 1314 if (const OverflowingBinaryOperator *OBO = 1315 dyn_cast<OverflowingBinaryOperator>(U)) { 1316 if (OBO->hasNoUnsignedWrap()) 1317 Out << " nuw"; 1318 if (OBO->hasNoSignedWrap()) 1319 Out << " nsw"; 1320 } else if (const PossiblyExactOperator *Div = 1321 dyn_cast<PossiblyExactOperator>(U)) { 1322 if (Div->isExact()) 1323 Out << " exact"; 1324 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { 1325 if (GEP->isInBounds()) 1326 Out << " inbounds"; 1327 } 1328 } 1329 1330 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, 1331 AsmWriterContext &WriterCtx) { 1332 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1333 if (CI->getType()->isIntegerTy(1)) { 1334 Out << (CI->getZExtValue() ? "true" : "false"); 1335 return; 1336 } 1337 Out << CI->getValue(); 1338 return; 1339 } 1340 1341 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1342 const APFloat &APF = CFP->getValueAPF(); 1343 if (&APF.getSemantics() == &APFloat::IEEEsingle() || 1344 &APF.getSemantics() == &APFloat::IEEEdouble()) { 1345 // We would like to output the FP constant value in exponential notation, 1346 // but we cannot do this if doing so will lose precision. Check here to 1347 // make sure that we only output it in exponential format if we can parse 1348 // the value back and get the same value. 1349 // 1350 bool ignored; 1351 bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble(); 1352 bool isInf = APF.isInfinity(); 1353 bool isNaN = APF.isNaN(); 1354 if (!isInf && !isNaN) { 1355 double Val = APF.convertToDouble(); 1356 SmallString<128> StrVal; 1357 APF.toString(StrVal, 6, 0, false); 1358 // Check to make sure that the stringized number is not some string like 1359 // "Inf" or NaN, that atof will accept, but the lexer will not. Check 1360 // that the string matches the "[-+]?[0-9]" regex. 1361 // 1362 assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') && 1363 isDigit(StrVal[1]))) && 1364 "[-+]?[0-9] regex does not match!"); 1365 // Reparse stringized version! 1366 if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) { 1367 Out << StrVal; 1368 return; 1369 } 1370 } 1371 // Otherwise we could not reparse it to exactly the same value, so we must 1372 // output the string in hexadecimal format! Note that loading and storing 1373 // floating point types changes the bits of NaNs on some hosts, notably 1374 // x86, so we must not use these types. 1375 static_assert(sizeof(double) == sizeof(uint64_t), 1376 "assuming that double is 64 bits!"); 1377 APFloat apf = APF; 1378 // Floats are represented in ASCII IR as double, convert. 1379 // FIXME: We should allow 32-bit hex float and remove this. 1380 if (!isDouble) { 1381 // A signaling NaN is quieted on conversion, so we need to recreate the 1382 // expected value after convert (quiet bit of the payload is clear). 1383 bool IsSNAN = apf.isSignaling(); 1384 apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1385 &ignored); 1386 if (IsSNAN) { 1387 APInt Payload = apf.bitcastToAPInt(); 1388 apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(), 1389 &Payload); 1390 } 1391 } 1392 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true); 1393 return; 1394 } 1395 1396 // Either half, bfloat or some form of long double. 1397 // These appear as a magic letter identifying the type, then a 1398 // fixed number of hex digits. 1399 Out << "0x"; 1400 APInt API = APF.bitcastToAPInt(); 1401 if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) { 1402 Out << 'K'; 1403 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4, 1404 /*Upper=*/true); 1405 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1406 /*Upper=*/true); 1407 return; 1408 } else if (&APF.getSemantics() == &APFloat::IEEEquad()) { 1409 Out << 'L'; 1410 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1411 /*Upper=*/true); 1412 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, 1413 /*Upper=*/true); 1414 } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) { 1415 Out << 'M'; 1416 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1417 /*Upper=*/true); 1418 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, 1419 /*Upper=*/true); 1420 } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) { 1421 Out << 'H'; 1422 Out << format_hex_no_prefix(API.getZExtValue(), 4, 1423 /*Upper=*/true); 1424 } else if (&APF.getSemantics() == &APFloat::BFloat()) { 1425 Out << 'R'; 1426 Out << format_hex_no_prefix(API.getZExtValue(), 4, 1427 /*Upper=*/true); 1428 } else 1429 llvm_unreachable("Unsupported floating point type"); 1430 return; 1431 } 1432 1433 if (isa<ConstantAggregateZero>(CV)) { 1434 Out << "zeroinitializer"; 1435 return; 1436 } 1437 1438 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 1439 Out << "blockaddress("; 1440 WriteAsOperandInternal(Out, BA->getFunction(), WriterCtx); 1441 Out << ", "; 1442 WriteAsOperandInternal(Out, BA->getBasicBlock(), WriterCtx); 1443 Out << ")"; 1444 return; 1445 } 1446 1447 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) { 1448 Out << "dso_local_equivalent "; 1449 WriteAsOperandInternal(Out, Equiv->getGlobalValue(), WriterCtx); 1450 return; 1451 } 1452 1453 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { 1454 Type *ETy = CA->getType()->getElementType(); 1455 Out << '['; 1456 WriterCtx.TypePrinter->print(ETy, Out); 1457 Out << ' '; 1458 WriteAsOperandInternal(Out, CA->getOperand(0), WriterCtx); 1459 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1460 Out << ", "; 1461 WriterCtx.TypePrinter->print(ETy, Out); 1462 Out << ' '; 1463 WriteAsOperandInternal(Out, CA->getOperand(i), WriterCtx); 1464 } 1465 Out << ']'; 1466 return; 1467 } 1468 1469 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) { 1470 // As a special case, print the array as a string if it is an array of 1471 // i8 with ConstantInt values. 1472 if (CA->isString()) { 1473 Out << "c\""; 1474 printEscapedString(CA->getAsString(), Out); 1475 Out << '"'; 1476 return; 1477 } 1478 1479 Type *ETy = CA->getType()->getElementType(); 1480 Out << '['; 1481 WriterCtx.TypePrinter->print(ETy, Out); 1482 Out << ' '; 1483 WriteAsOperandInternal(Out, CA->getElementAsConstant(0), WriterCtx); 1484 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) { 1485 Out << ", "; 1486 WriterCtx.TypePrinter->print(ETy, Out); 1487 Out << ' '; 1488 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), WriterCtx); 1489 } 1490 Out << ']'; 1491 return; 1492 } 1493 1494 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { 1495 if (CS->getType()->isPacked()) 1496 Out << '<'; 1497 Out << '{'; 1498 unsigned N = CS->getNumOperands(); 1499 if (N) { 1500 Out << ' '; 1501 WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out); 1502 Out << ' '; 1503 1504 WriteAsOperandInternal(Out, CS->getOperand(0), WriterCtx); 1505 1506 for (unsigned i = 1; i < N; i++) { 1507 Out << ", "; 1508 WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out); 1509 Out << ' '; 1510 1511 WriteAsOperandInternal(Out, CS->getOperand(i), WriterCtx); 1512 } 1513 Out << ' '; 1514 } 1515 1516 Out << '}'; 1517 if (CS->getType()->isPacked()) 1518 Out << '>'; 1519 return; 1520 } 1521 1522 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) { 1523 auto *CVVTy = cast<FixedVectorType>(CV->getType()); 1524 Type *ETy = CVVTy->getElementType(); 1525 Out << '<'; 1526 WriterCtx.TypePrinter->print(ETy, Out); 1527 Out << ' '; 1528 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), WriterCtx); 1529 for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) { 1530 Out << ", "; 1531 WriterCtx.TypePrinter->print(ETy, Out); 1532 Out << ' '; 1533 WriteAsOperandInternal(Out, CV->getAggregateElement(i), WriterCtx); 1534 } 1535 Out << '>'; 1536 return; 1537 } 1538 1539 if (isa<ConstantPointerNull>(CV)) { 1540 Out << "null"; 1541 return; 1542 } 1543 1544 if (isa<ConstantTokenNone>(CV)) { 1545 Out << "none"; 1546 return; 1547 } 1548 1549 if (isa<PoisonValue>(CV)) { 1550 Out << "poison"; 1551 return; 1552 } 1553 1554 if (isa<UndefValue>(CV)) { 1555 Out << "undef"; 1556 return; 1557 } 1558 1559 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1560 Out << CE->getOpcodeName(); 1561 WriteOptimizationInfo(Out, CE); 1562 if (CE->isCompare()) 1563 Out << ' ' << CmpInst::getPredicateName( 1564 static_cast<CmpInst::Predicate>(CE->getPredicate())); 1565 Out << " ("; 1566 1567 Optional<unsigned> InRangeOp; 1568 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) { 1569 WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out); 1570 Out << ", "; 1571 InRangeOp = GEP->getInRangeIndex(); 1572 if (InRangeOp) 1573 ++*InRangeOp; 1574 } 1575 1576 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { 1577 if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp) 1578 Out << "inrange "; 1579 WriterCtx.TypePrinter->print((*OI)->getType(), Out); 1580 Out << ' '; 1581 WriteAsOperandInternal(Out, *OI, WriterCtx); 1582 if (OI+1 != CE->op_end()) 1583 Out << ", "; 1584 } 1585 1586 if (CE->hasIndices()) { 1587 ArrayRef<unsigned> Indices = CE->getIndices(); 1588 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 1589 Out << ", " << Indices[i]; 1590 } 1591 1592 if (CE->isCast()) { 1593 Out << " to "; 1594 WriterCtx.TypePrinter->print(CE->getType(), Out); 1595 } 1596 1597 if (CE->getOpcode() == Instruction::ShuffleVector) 1598 PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask()); 1599 1600 Out << ')'; 1601 return; 1602 } 1603 1604 Out << "<placeholder or erroneous Constant>"; 1605 } 1606 1607 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, 1608 AsmWriterContext &WriterCtx) { 1609 Out << "!{"; 1610 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { 1611 const Metadata *MD = Node->getOperand(mi); 1612 if (!MD) 1613 Out << "null"; 1614 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) { 1615 Value *V = MDV->getValue(); 1616 WriterCtx.TypePrinter->print(V->getType(), Out); 1617 Out << ' '; 1618 WriteAsOperandInternal(Out, V, WriterCtx); 1619 } else { 1620 WriteAsOperandInternal(Out, MD, WriterCtx); 1621 WriterCtx.onWriteMetadataAsOperand(MD); 1622 } 1623 if (mi + 1 != me) 1624 Out << ", "; 1625 } 1626 1627 Out << "}"; 1628 } 1629 1630 namespace { 1631 1632 struct FieldSeparator { 1633 bool Skip = true; 1634 const char *Sep; 1635 1636 FieldSeparator(const char *Sep = ", ") : Sep(Sep) {} 1637 }; 1638 1639 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) { 1640 if (FS.Skip) { 1641 FS.Skip = false; 1642 return OS; 1643 } 1644 return OS << FS.Sep; 1645 } 1646 1647 struct MDFieldPrinter { 1648 raw_ostream &Out; 1649 FieldSeparator FS; 1650 AsmWriterContext &WriterCtx; 1651 1652 explicit MDFieldPrinter(raw_ostream &Out) 1653 : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {} 1654 MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx) 1655 : Out(Out), WriterCtx(Ctx) {} 1656 1657 void printTag(const DINode *N); 1658 void printMacinfoType(const DIMacroNode *N); 1659 void printChecksum(const DIFile::ChecksumInfo<StringRef> &N); 1660 void printString(StringRef Name, StringRef Value, 1661 bool ShouldSkipEmpty = true); 1662 void printMetadata(StringRef Name, const Metadata *MD, 1663 bool ShouldSkipNull = true); 1664 template <class IntTy> 1665 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true); 1666 void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned, 1667 bool ShouldSkipZero); 1668 void printBool(StringRef Name, bool Value, Optional<bool> Default = None); 1669 void printDIFlags(StringRef Name, DINode::DIFlags Flags); 1670 void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags); 1671 template <class IntTy, class Stringifier> 1672 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString, 1673 bool ShouldSkipZero = true); 1674 void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK); 1675 void printNameTableKind(StringRef Name, 1676 DICompileUnit::DebugNameTableKind NTK); 1677 }; 1678 1679 } // end anonymous namespace 1680 1681 void MDFieldPrinter::printTag(const DINode *N) { 1682 Out << FS << "tag: "; 1683 auto Tag = dwarf::TagString(N->getTag()); 1684 if (!Tag.empty()) 1685 Out << Tag; 1686 else 1687 Out << N->getTag(); 1688 } 1689 1690 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) { 1691 Out << FS << "type: "; 1692 auto Type = dwarf::MacinfoString(N->getMacinfoType()); 1693 if (!Type.empty()) 1694 Out << Type; 1695 else 1696 Out << N->getMacinfoType(); 1697 } 1698 1699 void MDFieldPrinter::printChecksum( 1700 const DIFile::ChecksumInfo<StringRef> &Checksum) { 1701 Out << FS << "checksumkind: " << Checksum.getKindAsString(); 1702 printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false); 1703 } 1704 1705 void MDFieldPrinter::printString(StringRef Name, StringRef Value, 1706 bool ShouldSkipEmpty) { 1707 if (ShouldSkipEmpty && Value.empty()) 1708 return; 1709 1710 Out << FS << Name << ": \""; 1711 printEscapedString(Value, Out); 1712 Out << "\""; 1713 } 1714 1715 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, 1716 AsmWriterContext &WriterCtx) { 1717 if (!MD) { 1718 Out << "null"; 1719 return; 1720 } 1721 WriteAsOperandInternal(Out, MD, WriterCtx); 1722 WriterCtx.onWriteMetadataAsOperand(MD); 1723 } 1724 1725 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD, 1726 bool ShouldSkipNull) { 1727 if (ShouldSkipNull && !MD) 1728 return; 1729 1730 Out << FS << Name << ": "; 1731 writeMetadataAsOperand(Out, MD, WriterCtx); 1732 } 1733 1734 template <class IntTy> 1735 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) { 1736 if (ShouldSkipZero && !Int) 1737 return; 1738 1739 Out << FS << Name << ": " << Int; 1740 } 1741 1742 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int, 1743 bool IsUnsigned, bool ShouldSkipZero) { 1744 if (ShouldSkipZero && Int.isZero()) 1745 return; 1746 1747 Out << FS << Name << ": "; 1748 Int.print(Out, !IsUnsigned); 1749 } 1750 1751 void MDFieldPrinter::printBool(StringRef Name, bool Value, 1752 Optional<bool> Default) { 1753 if (Default && Value == *Default) 1754 return; 1755 Out << FS << Name << ": " << (Value ? "true" : "false"); 1756 } 1757 1758 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) { 1759 if (!Flags) 1760 return; 1761 1762 Out << FS << Name << ": "; 1763 1764 SmallVector<DINode::DIFlags, 8> SplitFlags; 1765 auto Extra = DINode::splitFlags(Flags, SplitFlags); 1766 1767 FieldSeparator FlagsFS(" | "); 1768 for (auto F : SplitFlags) { 1769 auto StringF = DINode::getFlagString(F); 1770 assert(!StringF.empty() && "Expected valid flag"); 1771 Out << FlagsFS << StringF; 1772 } 1773 if (Extra || SplitFlags.empty()) 1774 Out << FlagsFS << Extra; 1775 } 1776 1777 void MDFieldPrinter::printDISPFlags(StringRef Name, 1778 DISubprogram::DISPFlags Flags) { 1779 // Always print this field, because no flags in the IR at all will be 1780 // interpreted as old-style isDefinition: true. 1781 Out << FS << Name << ": "; 1782 1783 if (!Flags) { 1784 Out << 0; 1785 return; 1786 } 1787 1788 SmallVector<DISubprogram::DISPFlags, 8> SplitFlags; 1789 auto Extra = DISubprogram::splitFlags(Flags, SplitFlags); 1790 1791 FieldSeparator FlagsFS(" | "); 1792 for (auto F : SplitFlags) { 1793 auto StringF = DISubprogram::getFlagString(F); 1794 assert(!StringF.empty() && "Expected valid flag"); 1795 Out << FlagsFS << StringF; 1796 } 1797 if (Extra || SplitFlags.empty()) 1798 Out << FlagsFS << Extra; 1799 } 1800 1801 void MDFieldPrinter::printEmissionKind(StringRef Name, 1802 DICompileUnit::DebugEmissionKind EK) { 1803 Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK); 1804 } 1805 1806 void MDFieldPrinter::printNameTableKind(StringRef Name, 1807 DICompileUnit::DebugNameTableKind NTK) { 1808 if (NTK == DICompileUnit::DebugNameTableKind::Default) 1809 return; 1810 Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK); 1811 } 1812 1813 template <class IntTy, class Stringifier> 1814 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value, 1815 Stringifier toString, bool ShouldSkipZero) { 1816 if (!Value) 1817 return; 1818 1819 Out << FS << Name << ": "; 1820 auto S = toString(Value); 1821 if (!S.empty()) 1822 Out << S; 1823 else 1824 Out << Value; 1825 } 1826 1827 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, 1828 AsmWriterContext &WriterCtx) { 1829 Out << "!GenericDINode("; 1830 MDFieldPrinter Printer(Out, WriterCtx); 1831 Printer.printTag(N); 1832 Printer.printString("header", N->getHeader()); 1833 if (N->getNumDwarfOperands()) { 1834 Out << Printer.FS << "operands: {"; 1835 FieldSeparator IFS; 1836 for (auto &I : N->dwarf_operands()) { 1837 Out << IFS; 1838 writeMetadataAsOperand(Out, I, WriterCtx); 1839 } 1840 Out << "}"; 1841 } 1842 Out << ")"; 1843 } 1844 1845 static void writeDILocation(raw_ostream &Out, const DILocation *DL, 1846 AsmWriterContext &WriterCtx) { 1847 Out << "!DILocation("; 1848 MDFieldPrinter Printer(Out, WriterCtx); 1849 // Always output the line, since 0 is a relevant and important value for it. 1850 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false); 1851 Printer.printInt("column", DL->getColumn()); 1852 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false); 1853 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt()); 1854 Printer.printBool("isImplicitCode", DL->isImplicitCode(), 1855 /* Default */ false); 1856 Out << ")"; 1857 } 1858 1859 static void writeDISubrange(raw_ostream &Out, const DISubrange *N, 1860 AsmWriterContext &WriterCtx) { 1861 Out << "!DISubrange("; 1862 MDFieldPrinter Printer(Out, WriterCtx); 1863 1864 auto *Count = N->getRawCountNode(); 1865 if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) { 1866 auto *CV = cast<ConstantInt>(CE->getValue()); 1867 Printer.printInt("count", CV->getSExtValue(), 1868 /* ShouldSkipZero */ false); 1869 } else 1870 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true); 1871 1872 // A lowerBound of constant 0 should not be skipped, since it is different 1873 // from an unspecified lower bound (= nullptr). 1874 auto *LBound = N->getRawLowerBound(); 1875 if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) { 1876 auto *LV = cast<ConstantInt>(LE->getValue()); 1877 Printer.printInt("lowerBound", LV->getSExtValue(), 1878 /* ShouldSkipZero */ false); 1879 } else 1880 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true); 1881 1882 auto *UBound = N->getRawUpperBound(); 1883 if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) { 1884 auto *UV = cast<ConstantInt>(UE->getValue()); 1885 Printer.printInt("upperBound", UV->getSExtValue(), 1886 /* ShouldSkipZero */ false); 1887 } else 1888 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true); 1889 1890 auto *Stride = N->getRawStride(); 1891 if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) { 1892 auto *SV = cast<ConstantInt>(SE->getValue()); 1893 Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false); 1894 } else 1895 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true); 1896 1897 Out << ")"; 1898 } 1899 1900 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N, 1901 AsmWriterContext &WriterCtx) { 1902 Out << "!DIGenericSubrange("; 1903 MDFieldPrinter Printer(Out, WriterCtx); 1904 1905 auto IsConstant = [&](Metadata *Bound) -> bool { 1906 if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) { 1907 return BE->isConstant() && 1908 DIExpression::SignedOrUnsignedConstant::SignedConstant == 1909 *BE->isConstant(); 1910 } 1911 return false; 1912 }; 1913 1914 auto GetConstant = [&](Metadata *Bound) -> int64_t { 1915 assert(IsConstant(Bound) && "Expected constant"); 1916 auto *BE = dyn_cast_or_null<DIExpression>(Bound); 1917 return static_cast<int64_t>(BE->getElement(1)); 1918 }; 1919 1920 auto *Count = N->getRawCountNode(); 1921 if (IsConstant(Count)) 1922 Printer.printInt("count", GetConstant(Count), 1923 /* ShouldSkipZero */ false); 1924 else 1925 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true); 1926 1927 auto *LBound = N->getRawLowerBound(); 1928 if (IsConstant(LBound)) 1929 Printer.printInt("lowerBound", GetConstant(LBound), 1930 /* ShouldSkipZero */ false); 1931 else 1932 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true); 1933 1934 auto *UBound = N->getRawUpperBound(); 1935 if (IsConstant(UBound)) 1936 Printer.printInt("upperBound", GetConstant(UBound), 1937 /* ShouldSkipZero */ false); 1938 else 1939 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true); 1940 1941 auto *Stride = N->getRawStride(); 1942 if (IsConstant(Stride)) 1943 Printer.printInt("stride", GetConstant(Stride), 1944 /* ShouldSkipZero */ false); 1945 else 1946 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true); 1947 1948 Out << ")"; 1949 } 1950 1951 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, 1952 AsmWriterContext &) { 1953 Out << "!DIEnumerator("; 1954 MDFieldPrinter Printer(Out); 1955 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false); 1956 Printer.printAPInt("value", N->getValue(), N->isUnsigned(), 1957 /*ShouldSkipZero=*/false); 1958 if (N->isUnsigned()) 1959 Printer.printBool("isUnsigned", true); 1960 Out << ")"; 1961 } 1962 1963 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, 1964 AsmWriterContext &) { 1965 Out << "!DIBasicType("; 1966 MDFieldPrinter Printer(Out); 1967 if (N->getTag() != dwarf::DW_TAG_base_type) 1968 Printer.printTag(N); 1969 Printer.printString("name", N->getName()); 1970 Printer.printInt("size", N->getSizeInBits()); 1971 Printer.printInt("align", N->getAlignInBits()); 1972 Printer.printDwarfEnum("encoding", N->getEncoding(), 1973 dwarf::AttributeEncodingString); 1974 Printer.printDIFlags("flags", N->getFlags()); 1975 Out << ")"; 1976 } 1977 1978 static void writeDIStringType(raw_ostream &Out, const DIStringType *N, 1979 AsmWriterContext &WriterCtx) { 1980 Out << "!DIStringType("; 1981 MDFieldPrinter Printer(Out, WriterCtx); 1982 if (N->getTag() != dwarf::DW_TAG_string_type) 1983 Printer.printTag(N); 1984 Printer.printString("name", N->getName()); 1985 Printer.printMetadata("stringLength", N->getRawStringLength()); 1986 Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp()); 1987 Printer.printInt("size", N->getSizeInBits()); 1988 Printer.printInt("align", N->getAlignInBits()); 1989 Printer.printDwarfEnum("encoding", N->getEncoding(), 1990 dwarf::AttributeEncodingString); 1991 Out << ")"; 1992 } 1993 1994 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, 1995 AsmWriterContext &WriterCtx) { 1996 Out << "!DIDerivedType("; 1997 MDFieldPrinter Printer(Out, WriterCtx); 1998 Printer.printTag(N); 1999 Printer.printString("name", N->getName()); 2000 Printer.printMetadata("scope", N->getRawScope()); 2001 Printer.printMetadata("file", N->getRawFile()); 2002 Printer.printInt("line", N->getLine()); 2003 Printer.printMetadata("baseType", N->getRawBaseType(), 2004 /* ShouldSkipNull */ false); 2005 Printer.printInt("size", N->getSizeInBits()); 2006 Printer.printInt("align", N->getAlignInBits()); 2007 Printer.printInt("offset", N->getOffsetInBits()); 2008 Printer.printDIFlags("flags", N->getFlags()); 2009 Printer.printMetadata("extraData", N->getRawExtraData()); 2010 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 2011 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace, 2012 /* ShouldSkipZero */ false); 2013 Printer.printMetadata("annotations", N->getRawAnnotations()); 2014 Out << ")"; 2015 } 2016 2017 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, 2018 AsmWriterContext &WriterCtx) { 2019 Out << "!DICompositeType("; 2020 MDFieldPrinter Printer(Out, WriterCtx); 2021 Printer.printTag(N); 2022 Printer.printString("name", N->getName()); 2023 Printer.printMetadata("scope", N->getRawScope()); 2024 Printer.printMetadata("file", N->getRawFile()); 2025 Printer.printInt("line", N->getLine()); 2026 Printer.printMetadata("baseType", N->getRawBaseType()); 2027 Printer.printInt("size", N->getSizeInBits()); 2028 Printer.printInt("align", N->getAlignInBits()); 2029 Printer.printInt("offset", N->getOffsetInBits()); 2030 Printer.printDIFlags("flags", N->getFlags()); 2031 Printer.printMetadata("elements", N->getRawElements()); 2032 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(), 2033 dwarf::LanguageString); 2034 Printer.printMetadata("vtableHolder", N->getRawVTableHolder()); 2035 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 2036 Printer.printString("identifier", N->getIdentifier()); 2037 Printer.printMetadata("discriminator", N->getRawDiscriminator()); 2038 Printer.printMetadata("dataLocation", N->getRawDataLocation()); 2039 Printer.printMetadata("associated", N->getRawAssociated()); 2040 Printer.printMetadata("allocated", N->getRawAllocated()); 2041 if (auto *RankConst = N->getRankConst()) 2042 Printer.printInt("rank", RankConst->getSExtValue(), 2043 /* ShouldSkipZero */ false); 2044 else 2045 Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true); 2046 Printer.printMetadata("annotations", N->getRawAnnotations()); 2047 Out << ")"; 2048 } 2049 2050 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, 2051 AsmWriterContext &WriterCtx) { 2052 Out << "!DISubroutineType("; 2053 MDFieldPrinter Printer(Out, WriterCtx); 2054 Printer.printDIFlags("flags", N->getFlags()); 2055 Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString); 2056 Printer.printMetadata("types", N->getRawTypeArray(), 2057 /* ShouldSkipNull */ false); 2058 Out << ")"; 2059 } 2060 2061 static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &) { 2062 Out << "!DIFile("; 2063 MDFieldPrinter Printer(Out); 2064 Printer.printString("filename", N->getFilename(), 2065 /* ShouldSkipEmpty */ false); 2066 Printer.printString("directory", N->getDirectory(), 2067 /* ShouldSkipEmpty */ false); 2068 // Print all values for checksum together, or not at all. 2069 if (N->getChecksum()) 2070 Printer.printChecksum(*N->getChecksum()); 2071 Printer.printString("source", N->getSource().getValueOr(StringRef()), 2072 /* ShouldSkipEmpty */ true); 2073 Out << ")"; 2074 } 2075 2076 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, 2077 AsmWriterContext &WriterCtx) { 2078 Out << "!DICompileUnit("; 2079 MDFieldPrinter Printer(Out, WriterCtx); 2080 Printer.printDwarfEnum("language", N->getSourceLanguage(), 2081 dwarf::LanguageString, /* ShouldSkipZero */ false); 2082 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); 2083 Printer.printString("producer", N->getProducer()); 2084 Printer.printBool("isOptimized", N->isOptimized()); 2085 Printer.printString("flags", N->getFlags()); 2086 Printer.printInt("runtimeVersion", N->getRuntimeVersion(), 2087 /* ShouldSkipZero */ false); 2088 Printer.printString("splitDebugFilename", N->getSplitDebugFilename()); 2089 Printer.printEmissionKind("emissionKind", N->getEmissionKind()); 2090 Printer.printMetadata("enums", N->getRawEnumTypes()); 2091 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes()); 2092 Printer.printMetadata("globals", N->getRawGlobalVariables()); 2093 Printer.printMetadata("imports", N->getRawImportedEntities()); 2094 Printer.printMetadata("macros", N->getRawMacros()); 2095 Printer.printInt("dwoId", N->getDWOId()); 2096 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true); 2097 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(), 2098 false); 2099 Printer.printNameTableKind("nameTableKind", N->getNameTableKind()); 2100 Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false); 2101 Printer.printString("sysroot", N->getSysRoot()); 2102 Printer.printString("sdk", N->getSDK()); 2103 Out << ")"; 2104 } 2105 2106 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, 2107 AsmWriterContext &WriterCtx) { 2108 Out << "!DISubprogram("; 2109 MDFieldPrinter Printer(Out, WriterCtx); 2110 Printer.printString("name", N->getName()); 2111 Printer.printString("linkageName", N->getLinkageName()); 2112 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2113 Printer.printMetadata("file", N->getRawFile()); 2114 Printer.printInt("line", N->getLine()); 2115 Printer.printMetadata("type", N->getRawType()); 2116 Printer.printInt("scopeLine", N->getScopeLine()); 2117 Printer.printMetadata("containingType", N->getRawContainingType()); 2118 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none || 2119 N->getVirtualIndex() != 0) 2120 Printer.printInt("virtualIndex", N->getVirtualIndex(), false); 2121 Printer.printInt("thisAdjustment", N->getThisAdjustment()); 2122 Printer.printDIFlags("flags", N->getFlags()); 2123 Printer.printDISPFlags("spFlags", N->getSPFlags()); 2124 Printer.printMetadata("unit", N->getRawUnit()); 2125 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 2126 Printer.printMetadata("declaration", N->getRawDeclaration()); 2127 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes()); 2128 Printer.printMetadata("thrownTypes", N->getRawThrownTypes()); 2129 Printer.printMetadata("annotations", N->getRawAnnotations()); 2130 Out << ")"; 2131 } 2132 2133 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, 2134 AsmWriterContext &WriterCtx) { 2135 Out << "!DILexicalBlock("; 2136 MDFieldPrinter Printer(Out, WriterCtx); 2137 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2138 Printer.printMetadata("file", N->getRawFile()); 2139 Printer.printInt("line", N->getLine()); 2140 Printer.printInt("column", N->getColumn()); 2141 Out << ")"; 2142 } 2143 2144 static void writeDILexicalBlockFile(raw_ostream &Out, 2145 const DILexicalBlockFile *N, 2146 AsmWriterContext &WriterCtx) { 2147 Out << "!DILexicalBlockFile("; 2148 MDFieldPrinter Printer(Out, WriterCtx); 2149 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2150 Printer.printMetadata("file", N->getRawFile()); 2151 Printer.printInt("discriminator", N->getDiscriminator(), 2152 /* ShouldSkipZero */ false); 2153 Out << ")"; 2154 } 2155 2156 static void writeDINamespace(raw_ostream &Out, const DINamespace *N, 2157 AsmWriterContext &WriterCtx) { 2158 Out << "!DINamespace("; 2159 MDFieldPrinter Printer(Out, WriterCtx); 2160 Printer.printString("name", N->getName()); 2161 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2162 Printer.printBool("exportSymbols", N->getExportSymbols(), false); 2163 Out << ")"; 2164 } 2165 2166 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N, 2167 AsmWriterContext &WriterCtx) { 2168 Out << "!DICommonBlock("; 2169 MDFieldPrinter Printer(Out, WriterCtx); 2170 Printer.printMetadata("scope", N->getRawScope(), false); 2171 Printer.printMetadata("declaration", N->getRawDecl(), false); 2172 Printer.printString("name", N->getName()); 2173 Printer.printMetadata("file", N->getRawFile()); 2174 Printer.printInt("line", N->getLineNo()); 2175 Out << ")"; 2176 } 2177 2178 static void writeDIMacro(raw_ostream &Out, const DIMacro *N, 2179 AsmWriterContext &WriterCtx) { 2180 Out << "!DIMacro("; 2181 MDFieldPrinter Printer(Out, WriterCtx); 2182 Printer.printMacinfoType(N); 2183 Printer.printInt("line", N->getLine()); 2184 Printer.printString("name", N->getName()); 2185 Printer.printString("value", N->getValue()); 2186 Out << ")"; 2187 } 2188 2189 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, 2190 AsmWriterContext &WriterCtx) { 2191 Out << "!DIMacroFile("; 2192 MDFieldPrinter Printer(Out, WriterCtx); 2193 Printer.printInt("line", N->getLine()); 2194 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); 2195 Printer.printMetadata("nodes", N->getRawElements()); 2196 Out << ")"; 2197 } 2198 2199 static void writeDIModule(raw_ostream &Out, const DIModule *N, 2200 AsmWriterContext &WriterCtx) { 2201 Out << "!DIModule("; 2202 MDFieldPrinter Printer(Out, WriterCtx); 2203 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2204 Printer.printString("name", N->getName()); 2205 Printer.printString("configMacros", N->getConfigurationMacros()); 2206 Printer.printString("includePath", N->getIncludePath()); 2207 Printer.printString("apinotes", N->getAPINotesFile()); 2208 Printer.printMetadata("file", N->getRawFile()); 2209 Printer.printInt("line", N->getLineNo()); 2210 Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false); 2211 Out << ")"; 2212 } 2213 2214 static void writeDITemplateTypeParameter(raw_ostream &Out, 2215 const DITemplateTypeParameter *N, 2216 AsmWriterContext &WriterCtx) { 2217 Out << "!DITemplateTypeParameter("; 2218 MDFieldPrinter Printer(Out, WriterCtx); 2219 Printer.printString("name", N->getName()); 2220 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false); 2221 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false); 2222 Out << ")"; 2223 } 2224 2225 static void writeDITemplateValueParameter(raw_ostream &Out, 2226 const DITemplateValueParameter *N, 2227 AsmWriterContext &WriterCtx) { 2228 Out << "!DITemplateValueParameter("; 2229 MDFieldPrinter Printer(Out, WriterCtx); 2230 if (N->getTag() != dwarf::DW_TAG_template_value_parameter) 2231 Printer.printTag(N); 2232 Printer.printString("name", N->getName()); 2233 Printer.printMetadata("type", N->getRawType()); 2234 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false); 2235 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false); 2236 Out << ")"; 2237 } 2238 2239 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, 2240 AsmWriterContext &WriterCtx) { 2241 Out << "!DIGlobalVariable("; 2242 MDFieldPrinter Printer(Out, WriterCtx); 2243 Printer.printString("name", N->getName()); 2244 Printer.printString("linkageName", N->getLinkageName()); 2245 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2246 Printer.printMetadata("file", N->getRawFile()); 2247 Printer.printInt("line", N->getLine()); 2248 Printer.printMetadata("type", N->getRawType()); 2249 Printer.printBool("isLocal", N->isLocalToUnit()); 2250 Printer.printBool("isDefinition", N->isDefinition()); 2251 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration()); 2252 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 2253 Printer.printInt("align", N->getAlignInBits()); 2254 Printer.printMetadata("annotations", N->getRawAnnotations()); 2255 Out << ")"; 2256 } 2257 2258 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, 2259 AsmWriterContext &WriterCtx) { 2260 Out << "!DILocalVariable("; 2261 MDFieldPrinter Printer(Out, WriterCtx); 2262 Printer.printString("name", N->getName()); 2263 Printer.printInt("arg", N->getArg()); 2264 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2265 Printer.printMetadata("file", N->getRawFile()); 2266 Printer.printInt("line", N->getLine()); 2267 Printer.printMetadata("type", N->getRawType()); 2268 Printer.printDIFlags("flags", N->getFlags()); 2269 Printer.printInt("align", N->getAlignInBits()); 2270 Printer.printMetadata("annotations", N->getRawAnnotations()); 2271 Out << ")"; 2272 } 2273 2274 static void writeDILabel(raw_ostream &Out, const DILabel *N, 2275 AsmWriterContext &WriterCtx) { 2276 Out << "!DILabel("; 2277 MDFieldPrinter Printer(Out, WriterCtx); 2278 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2279 Printer.printString("name", N->getName()); 2280 Printer.printMetadata("file", N->getRawFile()); 2281 Printer.printInt("line", N->getLine()); 2282 Out << ")"; 2283 } 2284 2285 static void writeDIExpression(raw_ostream &Out, const DIExpression *N, 2286 AsmWriterContext &WriterCtx) { 2287 Out << "!DIExpression("; 2288 FieldSeparator FS; 2289 if (N->isValid()) { 2290 for (const DIExpression::ExprOperand &Op : N->expr_ops()) { 2291 auto OpStr = dwarf::OperationEncodingString(Op.getOp()); 2292 assert(!OpStr.empty() && "Expected valid opcode"); 2293 2294 Out << FS << OpStr; 2295 if (Op.getOp() == dwarf::DW_OP_LLVM_convert) { 2296 Out << FS << Op.getArg(0); 2297 Out << FS << dwarf::AttributeEncodingString(Op.getArg(1)); 2298 } else { 2299 for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A) 2300 Out << FS << Op.getArg(A); 2301 } 2302 } 2303 } else { 2304 for (const auto &I : N->getElements()) 2305 Out << FS << I; 2306 } 2307 Out << ")"; 2308 } 2309 2310 static void writeDIArgList(raw_ostream &Out, const DIArgList *N, 2311 AsmWriterContext &WriterCtx, 2312 bool FromValue = false) { 2313 assert(FromValue && 2314 "Unexpected DIArgList metadata outside of value argument"); 2315 Out << "!DIArgList("; 2316 FieldSeparator FS; 2317 MDFieldPrinter Printer(Out, WriterCtx); 2318 for (Metadata *Arg : N->getArgs()) { 2319 Out << FS; 2320 WriteAsOperandInternal(Out, Arg, WriterCtx, true); 2321 } 2322 Out << ")"; 2323 } 2324 2325 static void writeDIGlobalVariableExpression(raw_ostream &Out, 2326 const DIGlobalVariableExpression *N, 2327 AsmWriterContext &WriterCtx) { 2328 Out << "!DIGlobalVariableExpression("; 2329 MDFieldPrinter Printer(Out, WriterCtx); 2330 Printer.printMetadata("var", N->getVariable()); 2331 Printer.printMetadata("expr", N->getExpression()); 2332 Out << ")"; 2333 } 2334 2335 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, 2336 AsmWriterContext &WriterCtx) { 2337 Out << "!DIObjCProperty("; 2338 MDFieldPrinter Printer(Out, WriterCtx); 2339 Printer.printString("name", N->getName()); 2340 Printer.printMetadata("file", N->getRawFile()); 2341 Printer.printInt("line", N->getLine()); 2342 Printer.printString("setter", N->getSetterName()); 2343 Printer.printString("getter", N->getGetterName()); 2344 Printer.printInt("attributes", N->getAttributes()); 2345 Printer.printMetadata("type", N->getRawType()); 2346 Out << ")"; 2347 } 2348 2349 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, 2350 AsmWriterContext &WriterCtx) { 2351 Out << "!DIImportedEntity("; 2352 MDFieldPrinter Printer(Out, WriterCtx); 2353 Printer.printTag(N); 2354 Printer.printString("name", N->getName()); 2355 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2356 Printer.printMetadata("entity", N->getRawEntity()); 2357 Printer.printMetadata("file", N->getRawFile()); 2358 Printer.printInt("line", N->getLine()); 2359 Printer.printMetadata("elements", N->getRawElements()); 2360 Out << ")"; 2361 } 2362 2363 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, 2364 AsmWriterContext &Ctx) { 2365 if (Node->isDistinct()) 2366 Out << "distinct "; 2367 else if (Node->isTemporary()) 2368 Out << "<temporary!> "; // Handle broken code. 2369 2370 switch (Node->getMetadataID()) { 2371 default: 2372 llvm_unreachable("Expected uniquable MDNode"); 2373 #define HANDLE_MDNODE_LEAF(CLASS) \ 2374 case Metadata::CLASS##Kind: \ 2375 write##CLASS(Out, cast<CLASS>(Node), Ctx); \ 2376 break; 2377 #include "llvm/IR/Metadata.def" 2378 } 2379 } 2380 2381 // Full implementation of printing a Value as an operand with support for 2382 // TypePrinting, etc. 2383 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 2384 AsmWriterContext &WriterCtx) { 2385 if (V->hasName()) { 2386 PrintLLVMName(Out, V); 2387 return; 2388 } 2389 2390 const Constant *CV = dyn_cast<Constant>(V); 2391 if (CV && !isa<GlobalValue>(CV)) { 2392 assert(WriterCtx.TypePrinter && "Constants require TypePrinting!"); 2393 WriteConstantInternal(Out, CV, WriterCtx); 2394 return; 2395 } 2396 2397 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2398 Out << "asm "; 2399 if (IA->hasSideEffects()) 2400 Out << "sideeffect "; 2401 if (IA->isAlignStack()) 2402 Out << "alignstack "; 2403 // We don't emit the AD_ATT dialect as it's the assumed default. 2404 if (IA->getDialect() == InlineAsm::AD_Intel) 2405 Out << "inteldialect "; 2406 if (IA->canThrow()) 2407 Out << "unwind "; 2408 Out << '"'; 2409 printEscapedString(IA->getAsmString(), Out); 2410 Out << "\", \""; 2411 printEscapedString(IA->getConstraintString(), Out); 2412 Out << '"'; 2413 return; 2414 } 2415 2416 if (auto *MD = dyn_cast<MetadataAsValue>(V)) { 2417 WriteAsOperandInternal(Out, MD->getMetadata(), WriterCtx, 2418 /* FromValue */ true); 2419 return; 2420 } 2421 2422 char Prefix = '%'; 2423 int Slot; 2424 auto *Machine = WriterCtx.Machine; 2425 // If we have a SlotTracker, use it. 2426 if (Machine) { 2427 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2428 Slot = Machine->getGlobalSlot(GV); 2429 Prefix = '@'; 2430 } else { 2431 Slot = Machine->getLocalSlot(V); 2432 2433 // If the local value didn't succeed, then we may be referring to a value 2434 // from a different function. Translate it, as this can happen when using 2435 // address of blocks. 2436 if (Slot == -1) 2437 if ((Machine = createSlotTracker(V))) { 2438 Slot = Machine->getLocalSlot(V); 2439 delete Machine; 2440 } 2441 } 2442 } else if ((Machine = createSlotTracker(V))) { 2443 // Otherwise, create one to get the # and then destroy it. 2444 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2445 Slot = Machine->getGlobalSlot(GV); 2446 Prefix = '@'; 2447 } else { 2448 Slot = Machine->getLocalSlot(V); 2449 } 2450 delete Machine; 2451 Machine = nullptr; 2452 } else { 2453 Slot = -1; 2454 } 2455 2456 if (Slot != -1) 2457 Out << Prefix << Slot; 2458 else 2459 Out << "<badref>"; 2460 } 2461 2462 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, 2463 AsmWriterContext &WriterCtx, 2464 bool FromValue) { 2465 // Write DIExpressions and DIArgLists inline when used as a value. Improves 2466 // readability of debug info intrinsics. 2467 if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) { 2468 writeDIExpression(Out, Expr, WriterCtx); 2469 return; 2470 } 2471 if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) { 2472 writeDIArgList(Out, ArgList, WriterCtx, FromValue); 2473 return; 2474 } 2475 2476 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2477 std::unique_ptr<SlotTracker> MachineStorage; 2478 SaveAndRestore<SlotTracker *> SARMachine(WriterCtx.Machine); 2479 if (!WriterCtx.Machine) { 2480 MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context); 2481 WriterCtx.Machine = MachineStorage.get(); 2482 } 2483 int Slot = WriterCtx.Machine->getMetadataSlot(N); 2484 if (Slot == -1) { 2485 if (const DILocation *Loc = dyn_cast<DILocation>(N)) { 2486 writeDILocation(Out, Loc, WriterCtx); 2487 return; 2488 } 2489 // Give the pointer value instead of "badref", since this comes up all 2490 // the time when debugging. 2491 Out << "<" << N << ">"; 2492 } else 2493 Out << '!' << Slot; 2494 return; 2495 } 2496 2497 if (const MDString *MDS = dyn_cast<MDString>(MD)) { 2498 Out << "!\""; 2499 printEscapedString(MDS->getString(), Out); 2500 Out << '"'; 2501 return; 2502 } 2503 2504 auto *V = cast<ValueAsMetadata>(MD); 2505 assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values"); 2506 assert((FromValue || !isa<LocalAsMetadata>(V)) && 2507 "Unexpected function-local metadata outside of value argument"); 2508 2509 WriterCtx.TypePrinter->print(V->getValue()->getType(), Out); 2510 Out << ' '; 2511 WriteAsOperandInternal(Out, V->getValue(), WriterCtx); 2512 } 2513 2514 namespace { 2515 2516 class AssemblyWriter { 2517 formatted_raw_ostream &Out; 2518 const Module *TheModule = nullptr; 2519 const ModuleSummaryIndex *TheIndex = nullptr; 2520 std::unique_ptr<SlotTracker> SlotTrackerStorage; 2521 SlotTracker &Machine; 2522 TypePrinting TypePrinter; 2523 AssemblyAnnotationWriter *AnnotationWriter = nullptr; 2524 SetVector<const Comdat *> Comdats; 2525 bool IsForDebug; 2526 bool ShouldPreserveUseListOrder; 2527 UseListOrderMap UseListOrders; 2528 SmallVector<StringRef, 8> MDNames; 2529 /// Synchronization scope names registered with LLVMContext. 2530 SmallVector<StringRef, 8> SSNs; 2531 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap; 2532 2533 public: 2534 /// Construct an AssemblyWriter with an external SlotTracker 2535 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M, 2536 AssemblyAnnotationWriter *AAW, bool IsForDebug, 2537 bool ShouldPreserveUseListOrder = false); 2538 2539 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2540 const ModuleSummaryIndex *Index, bool IsForDebug); 2541 2542 AsmWriterContext getContext() { 2543 return AsmWriterContext(&TypePrinter, &Machine, TheModule); 2544 } 2545 2546 void printMDNodeBody(const MDNode *MD); 2547 void printNamedMDNode(const NamedMDNode *NMD); 2548 2549 void printModule(const Module *M); 2550 2551 void writeOperand(const Value *Op, bool PrintType); 2552 void writeParamOperand(const Value *Operand, AttributeSet Attrs); 2553 void writeOperandBundles(const CallBase *Call); 2554 void writeSyncScope(const LLVMContext &Context, 2555 SyncScope::ID SSID); 2556 void writeAtomic(const LLVMContext &Context, 2557 AtomicOrdering Ordering, 2558 SyncScope::ID SSID); 2559 void writeAtomicCmpXchg(const LLVMContext &Context, 2560 AtomicOrdering SuccessOrdering, 2561 AtomicOrdering FailureOrdering, 2562 SyncScope::ID SSID); 2563 2564 void writeAllMDNodes(); 2565 void writeMDNode(unsigned Slot, const MDNode *Node); 2566 void writeAttribute(const Attribute &Attr, bool InAttrGroup = false); 2567 void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false); 2568 void writeAllAttributeGroups(); 2569 2570 void printTypeIdentities(); 2571 void printGlobal(const GlobalVariable *GV); 2572 void printAlias(const GlobalAlias *GA); 2573 void printIFunc(const GlobalIFunc *GI); 2574 void printComdat(const Comdat *C); 2575 void printFunction(const Function *F); 2576 void printArgument(const Argument *FA, AttributeSet Attrs); 2577 void printBasicBlock(const BasicBlock *BB); 2578 void printInstructionLine(const Instruction &I); 2579 void printInstruction(const Instruction &I); 2580 2581 void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle); 2582 void printUseLists(const Function *F); 2583 2584 void printModuleSummaryIndex(); 2585 void printSummaryInfo(unsigned Slot, const ValueInfo &VI); 2586 void printSummary(const GlobalValueSummary &Summary); 2587 void printAliasSummary(const AliasSummary *AS); 2588 void printGlobalVarSummary(const GlobalVarSummary *GS); 2589 void printFunctionSummary(const FunctionSummary *FS); 2590 void printTypeIdSummary(const TypeIdSummary &TIS); 2591 void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI); 2592 void printTypeTestResolution(const TypeTestResolution &TTRes); 2593 void printArgs(const std::vector<uint64_t> &Args); 2594 void printWPDRes(const WholeProgramDevirtResolution &WPDRes); 2595 void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo); 2596 void printVFuncId(const FunctionSummary::VFuncId VFId); 2597 void 2598 printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList, 2599 const char *Tag); 2600 void 2601 printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList, 2602 const char *Tag); 2603 2604 private: 2605 /// Print out metadata attachments. 2606 void printMetadataAttachments( 2607 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs, 2608 StringRef Separator); 2609 2610 // printInfoComment - Print a little comment after the instruction indicating 2611 // which slot it occupies. 2612 void printInfoComment(const Value &V); 2613 2614 // printGCRelocateComment - print comment after call to the gc.relocate 2615 // intrinsic indicating base and derived pointer names. 2616 void printGCRelocateComment(const GCRelocateInst &Relocate); 2617 }; 2618 2619 } // end anonymous namespace 2620 2621 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2622 const Module *M, AssemblyAnnotationWriter *AAW, 2623 bool IsForDebug, bool ShouldPreserveUseListOrder) 2624 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW), 2625 IsForDebug(IsForDebug), 2626 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 2627 if (!TheModule) 2628 return; 2629 for (const GlobalObject &GO : TheModule->global_objects()) 2630 if (const Comdat *C = GO.getComdat()) 2631 Comdats.insert(C); 2632 } 2633 2634 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2635 const ModuleSummaryIndex *Index, bool IsForDebug) 2636 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr), 2637 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {} 2638 2639 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { 2640 if (!Operand) { 2641 Out << "<null operand!>"; 2642 return; 2643 } 2644 if (PrintType) { 2645 TypePrinter.print(Operand->getType(), Out); 2646 Out << ' '; 2647 } 2648 auto WriterCtx = getContext(); 2649 WriteAsOperandInternal(Out, Operand, WriterCtx); 2650 } 2651 2652 void AssemblyWriter::writeSyncScope(const LLVMContext &Context, 2653 SyncScope::ID SSID) { 2654 switch (SSID) { 2655 case SyncScope::System: { 2656 break; 2657 } 2658 default: { 2659 if (SSNs.empty()) 2660 Context.getSyncScopeNames(SSNs); 2661 2662 Out << " syncscope(\""; 2663 printEscapedString(SSNs[SSID], Out); 2664 Out << "\")"; 2665 break; 2666 } 2667 } 2668 } 2669 2670 void AssemblyWriter::writeAtomic(const LLVMContext &Context, 2671 AtomicOrdering Ordering, 2672 SyncScope::ID SSID) { 2673 if (Ordering == AtomicOrdering::NotAtomic) 2674 return; 2675 2676 writeSyncScope(Context, SSID); 2677 Out << " " << toIRString(Ordering); 2678 } 2679 2680 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context, 2681 AtomicOrdering SuccessOrdering, 2682 AtomicOrdering FailureOrdering, 2683 SyncScope::ID SSID) { 2684 assert(SuccessOrdering != AtomicOrdering::NotAtomic && 2685 FailureOrdering != AtomicOrdering::NotAtomic); 2686 2687 writeSyncScope(Context, SSID); 2688 Out << " " << toIRString(SuccessOrdering); 2689 Out << " " << toIRString(FailureOrdering); 2690 } 2691 2692 void AssemblyWriter::writeParamOperand(const Value *Operand, 2693 AttributeSet Attrs) { 2694 if (!Operand) { 2695 Out << "<null operand!>"; 2696 return; 2697 } 2698 2699 // Print the type 2700 TypePrinter.print(Operand->getType(), Out); 2701 // Print parameter attributes list 2702 if (Attrs.hasAttributes()) { 2703 Out << ' '; 2704 writeAttributeSet(Attrs); 2705 } 2706 Out << ' '; 2707 // Print the operand 2708 auto WriterCtx = getContext(); 2709 WriteAsOperandInternal(Out, Operand, WriterCtx); 2710 } 2711 2712 void AssemblyWriter::writeOperandBundles(const CallBase *Call) { 2713 if (!Call->hasOperandBundles()) 2714 return; 2715 2716 Out << " [ "; 2717 2718 bool FirstBundle = true; 2719 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) { 2720 OperandBundleUse BU = Call->getOperandBundleAt(i); 2721 2722 if (!FirstBundle) 2723 Out << ", "; 2724 FirstBundle = false; 2725 2726 Out << '"'; 2727 printEscapedString(BU.getTagName(), Out); 2728 Out << '"'; 2729 2730 Out << '('; 2731 2732 bool FirstInput = true; 2733 auto WriterCtx = getContext(); 2734 for (const auto &Input : BU.Inputs) { 2735 if (!FirstInput) 2736 Out << ", "; 2737 FirstInput = false; 2738 2739 TypePrinter.print(Input->getType(), Out); 2740 Out << " "; 2741 WriteAsOperandInternal(Out, Input, WriterCtx); 2742 } 2743 2744 Out << ')'; 2745 } 2746 2747 Out << " ]"; 2748 } 2749 2750 void AssemblyWriter::printModule(const Module *M) { 2751 Machine.initializeIfNeeded(); 2752 2753 if (ShouldPreserveUseListOrder) 2754 UseListOrders = predictUseListOrder(M); 2755 2756 if (!M->getModuleIdentifier().empty() && 2757 // Don't print the ID if it will start a new line (which would 2758 // require a comment char before it). 2759 M->getModuleIdentifier().find('\n') == std::string::npos) 2760 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 2761 2762 if (!M->getSourceFileName().empty()) { 2763 Out << "source_filename = \""; 2764 printEscapedString(M->getSourceFileName(), Out); 2765 Out << "\"\n"; 2766 } 2767 2768 const std::string &DL = M->getDataLayoutStr(); 2769 if (!DL.empty()) 2770 Out << "target datalayout = \"" << DL << "\"\n"; 2771 if (!M->getTargetTriple().empty()) 2772 Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; 2773 2774 if (!M->getModuleInlineAsm().empty()) { 2775 Out << '\n'; 2776 2777 // Split the string into lines, to make it easier to read the .ll file. 2778 StringRef Asm = M->getModuleInlineAsm(); 2779 do { 2780 StringRef Front; 2781 std::tie(Front, Asm) = Asm.split('\n'); 2782 2783 // We found a newline, print the portion of the asm string from the 2784 // last newline up to this newline. 2785 Out << "module asm \""; 2786 printEscapedString(Front, Out); 2787 Out << "\"\n"; 2788 } while (!Asm.empty()); 2789 } 2790 2791 printTypeIdentities(); 2792 2793 // Output all comdats. 2794 if (!Comdats.empty()) 2795 Out << '\n'; 2796 for (const Comdat *C : Comdats) { 2797 printComdat(C); 2798 if (C != Comdats.back()) 2799 Out << '\n'; 2800 } 2801 2802 // Output all globals. 2803 if (!M->global_empty()) Out << '\n'; 2804 for (const GlobalVariable &GV : M->globals()) { 2805 printGlobal(&GV); Out << '\n'; 2806 } 2807 2808 // Output all aliases. 2809 if (!M->alias_empty()) Out << "\n"; 2810 for (const GlobalAlias &GA : M->aliases()) 2811 printAlias(&GA); 2812 2813 // Output all ifuncs. 2814 if (!M->ifunc_empty()) Out << "\n"; 2815 for (const GlobalIFunc &GI : M->ifuncs()) 2816 printIFunc(&GI); 2817 2818 // Output all of the functions. 2819 for (const Function &F : *M) { 2820 Out << '\n'; 2821 printFunction(&F); 2822 } 2823 2824 // Output global use-lists. 2825 printUseLists(nullptr); 2826 2827 // Output all attribute groups. 2828 if (!Machine.as_empty()) { 2829 Out << '\n'; 2830 writeAllAttributeGroups(); 2831 } 2832 2833 // Output named metadata. 2834 if (!M->named_metadata_empty()) Out << '\n'; 2835 2836 for (const NamedMDNode &Node : M->named_metadata()) 2837 printNamedMDNode(&Node); 2838 2839 // Output metadata. 2840 if (!Machine.mdn_empty()) { 2841 Out << '\n'; 2842 writeAllMDNodes(); 2843 } 2844 } 2845 2846 void AssemblyWriter::printModuleSummaryIndex() { 2847 assert(TheIndex); 2848 int NumSlots = Machine.initializeIndexIfNeeded(); 2849 2850 Out << "\n"; 2851 2852 // Print module path entries. To print in order, add paths to a vector 2853 // indexed by module slot. 2854 std::vector<std::pair<std::string, ModuleHash>> moduleVec; 2855 std::string RegularLTOModuleName = 2856 ModuleSummaryIndex::getRegularLTOModuleName(); 2857 moduleVec.resize(TheIndex->modulePaths().size()); 2858 for (auto &ModPath : TheIndex->modulePaths()) 2859 moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair( 2860 // A module id of -1 is a special entry for a regular LTO module created 2861 // during the thin link. 2862 ModPath.second.first == -1u ? RegularLTOModuleName 2863 : (std::string)std::string(ModPath.first()), 2864 ModPath.second.second); 2865 2866 unsigned i = 0; 2867 for (auto &ModPair : moduleVec) { 2868 Out << "^" << i++ << " = module: ("; 2869 Out << "path: \""; 2870 printEscapedString(ModPair.first, Out); 2871 Out << "\", hash: ("; 2872 FieldSeparator FS; 2873 for (auto Hash : ModPair.second) 2874 Out << FS << Hash; 2875 Out << "))\n"; 2876 } 2877 2878 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer 2879 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID). 2880 for (auto &GlobalList : *TheIndex) { 2881 auto GUID = GlobalList.first; 2882 for (auto &Summary : GlobalList.second.SummaryList) 2883 SummaryToGUIDMap[Summary.get()] = GUID; 2884 } 2885 2886 // Print the global value summary entries. 2887 for (auto &GlobalList : *TheIndex) { 2888 auto GUID = GlobalList.first; 2889 auto VI = TheIndex->getValueInfo(GlobalList); 2890 printSummaryInfo(Machine.getGUIDSlot(GUID), VI); 2891 } 2892 2893 // Print the TypeIdMap entries. 2894 for (const auto &TID : TheIndex->typeIds()) { 2895 Out << "^" << Machine.getTypeIdSlot(TID.second.first) 2896 << " = typeid: (name: \"" << TID.second.first << "\""; 2897 printTypeIdSummary(TID.second.second); 2898 Out << ") ; guid = " << TID.first << "\n"; 2899 } 2900 2901 // Print the TypeIdCompatibleVtableMap entries. 2902 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) { 2903 auto GUID = GlobalValue::getGUID(TId.first); 2904 Out << "^" << Machine.getGUIDSlot(GUID) 2905 << " = typeidCompatibleVTable: (name: \"" << TId.first << "\""; 2906 printTypeIdCompatibleVtableSummary(TId.second); 2907 Out << ") ; guid = " << GUID << "\n"; 2908 } 2909 2910 // Don't emit flags when it's not really needed (value is zero by default). 2911 if (TheIndex->getFlags()) { 2912 Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n"; 2913 ++NumSlots; 2914 } 2915 2916 Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount() 2917 << "\n"; 2918 } 2919 2920 static const char * 2921 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) { 2922 switch (K) { 2923 case WholeProgramDevirtResolution::Indir: 2924 return "indir"; 2925 case WholeProgramDevirtResolution::SingleImpl: 2926 return "singleImpl"; 2927 case WholeProgramDevirtResolution::BranchFunnel: 2928 return "branchFunnel"; 2929 } 2930 llvm_unreachable("invalid WholeProgramDevirtResolution kind"); 2931 } 2932 2933 static const char *getWholeProgDevirtResByArgKindName( 2934 WholeProgramDevirtResolution::ByArg::Kind K) { 2935 switch (K) { 2936 case WholeProgramDevirtResolution::ByArg::Indir: 2937 return "indir"; 2938 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 2939 return "uniformRetVal"; 2940 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: 2941 return "uniqueRetVal"; 2942 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: 2943 return "virtualConstProp"; 2944 } 2945 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind"); 2946 } 2947 2948 static const char *getTTResKindName(TypeTestResolution::Kind K) { 2949 switch (K) { 2950 case TypeTestResolution::Unknown: 2951 return "unknown"; 2952 case TypeTestResolution::Unsat: 2953 return "unsat"; 2954 case TypeTestResolution::ByteArray: 2955 return "byteArray"; 2956 case TypeTestResolution::Inline: 2957 return "inline"; 2958 case TypeTestResolution::Single: 2959 return "single"; 2960 case TypeTestResolution::AllOnes: 2961 return "allOnes"; 2962 } 2963 llvm_unreachable("invalid TypeTestResolution kind"); 2964 } 2965 2966 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) { 2967 Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind) 2968 << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth; 2969 2970 // The following fields are only used if the target does not support the use 2971 // of absolute symbols to store constants. Print only if non-zero. 2972 if (TTRes.AlignLog2) 2973 Out << ", alignLog2: " << TTRes.AlignLog2; 2974 if (TTRes.SizeM1) 2975 Out << ", sizeM1: " << TTRes.SizeM1; 2976 if (TTRes.BitMask) 2977 // BitMask is uint8_t which causes it to print the corresponding char. 2978 Out << ", bitMask: " << (unsigned)TTRes.BitMask; 2979 if (TTRes.InlineBits) 2980 Out << ", inlineBits: " << TTRes.InlineBits; 2981 2982 Out << ")"; 2983 } 2984 2985 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) { 2986 Out << ", summary: ("; 2987 printTypeTestResolution(TIS.TTRes); 2988 if (!TIS.WPDRes.empty()) { 2989 Out << ", wpdResolutions: ("; 2990 FieldSeparator FS; 2991 for (auto &WPDRes : TIS.WPDRes) { 2992 Out << FS; 2993 Out << "(offset: " << WPDRes.first << ", "; 2994 printWPDRes(WPDRes.second); 2995 Out << ")"; 2996 } 2997 Out << ")"; 2998 } 2999 Out << ")"; 3000 } 3001 3002 void AssemblyWriter::printTypeIdCompatibleVtableSummary( 3003 const TypeIdCompatibleVtableInfo &TI) { 3004 Out << ", summary: ("; 3005 FieldSeparator FS; 3006 for (auto &P : TI) { 3007 Out << FS; 3008 Out << "(offset: " << P.AddressPointOffset << ", "; 3009 Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID()); 3010 Out << ")"; 3011 } 3012 Out << ")"; 3013 } 3014 3015 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) { 3016 Out << "args: ("; 3017 FieldSeparator FS; 3018 for (auto arg : Args) { 3019 Out << FS; 3020 Out << arg; 3021 } 3022 Out << ")"; 3023 } 3024 3025 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) { 3026 Out << "wpdRes: (kind: "; 3027 Out << getWholeProgDevirtResKindName(WPDRes.TheKind); 3028 3029 if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl) 3030 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\""; 3031 3032 if (!WPDRes.ResByArg.empty()) { 3033 Out << ", resByArg: ("; 3034 FieldSeparator FS; 3035 for (auto &ResByArg : WPDRes.ResByArg) { 3036 Out << FS; 3037 printArgs(ResByArg.first); 3038 Out << ", byArg: (kind: "; 3039 Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind); 3040 if (ResByArg.second.TheKind == 3041 WholeProgramDevirtResolution::ByArg::UniformRetVal || 3042 ResByArg.second.TheKind == 3043 WholeProgramDevirtResolution::ByArg::UniqueRetVal) 3044 Out << ", info: " << ResByArg.second.Info; 3045 3046 // The following fields are only used if the target does not support the 3047 // use of absolute symbols to store constants. Print only if non-zero. 3048 if (ResByArg.second.Byte || ResByArg.second.Bit) 3049 Out << ", byte: " << ResByArg.second.Byte 3050 << ", bit: " << ResByArg.second.Bit; 3051 3052 Out << ")"; 3053 } 3054 Out << ")"; 3055 } 3056 Out << ")"; 3057 } 3058 3059 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) { 3060 switch (SK) { 3061 case GlobalValueSummary::AliasKind: 3062 return "alias"; 3063 case GlobalValueSummary::FunctionKind: 3064 return "function"; 3065 case GlobalValueSummary::GlobalVarKind: 3066 return "variable"; 3067 } 3068 llvm_unreachable("invalid summary kind"); 3069 } 3070 3071 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) { 3072 Out << ", aliasee: "; 3073 // The indexes emitted for distributed backends may not include the 3074 // aliasee summary (only if it is being imported directly). Handle 3075 // that case by just emitting "null" as the aliasee. 3076 if (AS->hasAliasee()) 3077 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]); 3078 else 3079 Out << "null"; 3080 } 3081 3082 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) { 3083 auto VTableFuncs = GS->vTableFuncs(); 3084 Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", " 3085 << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", " 3086 << "constant: " << GS->VarFlags.Constant; 3087 if (!VTableFuncs.empty()) 3088 Out << ", " 3089 << "vcall_visibility: " << GS->VarFlags.VCallVisibility; 3090 Out << ")"; 3091 3092 if (!VTableFuncs.empty()) { 3093 Out << ", vTableFuncs: ("; 3094 FieldSeparator FS; 3095 for (auto &P : VTableFuncs) { 3096 Out << FS; 3097 Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID()) 3098 << ", offset: " << P.VTableOffset; 3099 Out << ")"; 3100 } 3101 Out << ")"; 3102 } 3103 } 3104 3105 static std::string getLinkageName(GlobalValue::LinkageTypes LT) { 3106 switch (LT) { 3107 case GlobalValue::ExternalLinkage: 3108 return "external"; 3109 case GlobalValue::PrivateLinkage: 3110 return "private"; 3111 case GlobalValue::InternalLinkage: 3112 return "internal"; 3113 case GlobalValue::LinkOnceAnyLinkage: 3114 return "linkonce"; 3115 case GlobalValue::LinkOnceODRLinkage: 3116 return "linkonce_odr"; 3117 case GlobalValue::WeakAnyLinkage: 3118 return "weak"; 3119 case GlobalValue::WeakODRLinkage: 3120 return "weak_odr"; 3121 case GlobalValue::CommonLinkage: 3122 return "common"; 3123 case GlobalValue::AppendingLinkage: 3124 return "appending"; 3125 case GlobalValue::ExternalWeakLinkage: 3126 return "extern_weak"; 3127 case GlobalValue::AvailableExternallyLinkage: 3128 return "available_externally"; 3129 } 3130 llvm_unreachable("invalid linkage"); 3131 } 3132 3133 // When printing the linkage types in IR where the ExternalLinkage is 3134 // not printed, and other linkage types are expected to be printed with 3135 // a space after the name. 3136 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) { 3137 if (LT == GlobalValue::ExternalLinkage) 3138 return ""; 3139 return getLinkageName(LT) + " "; 3140 } 3141 3142 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) { 3143 switch (Vis) { 3144 case GlobalValue::DefaultVisibility: 3145 return "default"; 3146 case GlobalValue::HiddenVisibility: 3147 return "hidden"; 3148 case GlobalValue::ProtectedVisibility: 3149 return "protected"; 3150 } 3151 llvm_unreachable("invalid visibility"); 3152 } 3153 3154 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) { 3155 Out << ", insts: " << FS->instCount(); 3156 if (FS->fflags().anyFlagSet()) 3157 Out << ", " << FS->fflags(); 3158 3159 if (!FS->calls().empty()) { 3160 Out << ", calls: ("; 3161 FieldSeparator IFS; 3162 for (auto &Call : FS->calls()) { 3163 Out << IFS; 3164 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID()); 3165 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown) 3166 Out << ", hotness: " << getHotnessName(Call.second.getHotness()); 3167 else if (Call.second.RelBlockFreq) 3168 Out << ", relbf: " << Call.second.RelBlockFreq; 3169 Out << ")"; 3170 } 3171 Out << ")"; 3172 } 3173 3174 if (const auto *TIdInfo = FS->getTypeIdInfo()) 3175 printTypeIdInfo(*TIdInfo); 3176 3177 auto PrintRange = [&](const ConstantRange &Range) { 3178 Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]"; 3179 }; 3180 3181 if (!FS->paramAccesses().empty()) { 3182 Out << ", params: ("; 3183 FieldSeparator IFS; 3184 for (auto &PS : FS->paramAccesses()) { 3185 Out << IFS; 3186 Out << "(param: " << PS.ParamNo; 3187 Out << ", offset: "; 3188 PrintRange(PS.Use); 3189 if (!PS.Calls.empty()) { 3190 Out << ", calls: ("; 3191 FieldSeparator IFS; 3192 for (auto &Call : PS.Calls) { 3193 Out << IFS; 3194 Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID()); 3195 Out << ", param: " << Call.ParamNo; 3196 Out << ", offset: "; 3197 PrintRange(Call.Offsets); 3198 Out << ")"; 3199 } 3200 Out << ")"; 3201 } 3202 Out << ")"; 3203 } 3204 Out << ")"; 3205 } 3206 } 3207 3208 void AssemblyWriter::printTypeIdInfo( 3209 const FunctionSummary::TypeIdInfo &TIDInfo) { 3210 Out << ", typeIdInfo: ("; 3211 FieldSeparator TIDFS; 3212 if (!TIDInfo.TypeTests.empty()) { 3213 Out << TIDFS; 3214 Out << "typeTests: ("; 3215 FieldSeparator FS; 3216 for (auto &GUID : TIDInfo.TypeTests) { 3217 auto TidIter = TheIndex->typeIds().equal_range(GUID); 3218 if (TidIter.first == TidIter.second) { 3219 Out << FS; 3220 Out << GUID; 3221 continue; 3222 } 3223 // Print all type id that correspond to this GUID. 3224 for (auto It = TidIter.first; It != TidIter.second; ++It) { 3225 Out << FS; 3226 auto Slot = Machine.getTypeIdSlot(It->second.first); 3227 assert(Slot != -1); 3228 Out << "^" << Slot; 3229 } 3230 } 3231 Out << ")"; 3232 } 3233 if (!TIDInfo.TypeTestAssumeVCalls.empty()) { 3234 Out << TIDFS; 3235 printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls"); 3236 } 3237 if (!TIDInfo.TypeCheckedLoadVCalls.empty()) { 3238 Out << TIDFS; 3239 printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls"); 3240 } 3241 if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) { 3242 Out << TIDFS; 3243 printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls, 3244 "typeTestAssumeConstVCalls"); 3245 } 3246 if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) { 3247 Out << TIDFS; 3248 printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls, 3249 "typeCheckedLoadConstVCalls"); 3250 } 3251 Out << ")"; 3252 } 3253 3254 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) { 3255 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID); 3256 if (TidIter.first == TidIter.second) { 3257 Out << "vFuncId: ("; 3258 Out << "guid: " << VFId.GUID; 3259 Out << ", offset: " << VFId.Offset; 3260 Out << ")"; 3261 return; 3262 } 3263 // Print all type id that correspond to this GUID. 3264 FieldSeparator FS; 3265 for (auto It = TidIter.first; It != TidIter.second; ++It) { 3266 Out << FS; 3267 Out << "vFuncId: ("; 3268 auto Slot = Machine.getTypeIdSlot(It->second.first); 3269 assert(Slot != -1); 3270 Out << "^" << Slot; 3271 Out << ", offset: " << VFId.Offset; 3272 Out << ")"; 3273 } 3274 } 3275 3276 void AssemblyWriter::printNonConstVCalls( 3277 const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) { 3278 Out << Tag << ": ("; 3279 FieldSeparator FS; 3280 for (auto &VFuncId : VCallList) { 3281 Out << FS; 3282 printVFuncId(VFuncId); 3283 } 3284 Out << ")"; 3285 } 3286 3287 void AssemblyWriter::printConstVCalls( 3288 const std::vector<FunctionSummary::ConstVCall> &VCallList, 3289 const char *Tag) { 3290 Out << Tag << ": ("; 3291 FieldSeparator FS; 3292 for (auto &ConstVCall : VCallList) { 3293 Out << FS; 3294 Out << "("; 3295 printVFuncId(ConstVCall.VFunc); 3296 if (!ConstVCall.Args.empty()) { 3297 Out << ", "; 3298 printArgs(ConstVCall.Args); 3299 } 3300 Out << ")"; 3301 } 3302 Out << ")"; 3303 } 3304 3305 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) { 3306 GlobalValueSummary::GVFlags GVFlags = Summary.flags(); 3307 GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage; 3308 Out << getSummaryKindName(Summary.getSummaryKind()) << ": "; 3309 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath()) 3310 << ", flags: ("; 3311 Out << "linkage: " << getLinkageName(LT); 3312 Out << ", visibility: " 3313 << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility); 3314 Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport; 3315 Out << ", live: " << GVFlags.Live; 3316 Out << ", dsoLocal: " << GVFlags.DSOLocal; 3317 Out << ", canAutoHide: " << GVFlags.CanAutoHide; 3318 Out << ")"; 3319 3320 if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind) 3321 printAliasSummary(cast<AliasSummary>(&Summary)); 3322 else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind) 3323 printFunctionSummary(cast<FunctionSummary>(&Summary)); 3324 else 3325 printGlobalVarSummary(cast<GlobalVarSummary>(&Summary)); 3326 3327 auto RefList = Summary.refs(); 3328 if (!RefList.empty()) { 3329 Out << ", refs: ("; 3330 FieldSeparator FS; 3331 for (auto &Ref : RefList) { 3332 Out << FS; 3333 if (Ref.isReadOnly()) 3334 Out << "readonly "; 3335 else if (Ref.isWriteOnly()) 3336 Out << "writeonly "; 3337 Out << "^" << Machine.getGUIDSlot(Ref.getGUID()); 3338 } 3339 Out << ")"; 3340 } 3341 3342 Out << ")"; 3343 } 3344 3345 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) { 3346 Out << "^" << Slot << " = gv: ("; 3347 if (!VI.name().empty()) 3348 Out << "name: \"" << VI.name() << "\""; 3349 else 3350 Out << "guid: " << VI.getGUID(); 3351 if (!VI.getSummaryList().empty()) { 3352 Out << ", summaries: ("; 3353 FieldSeparator FS; 3354 for (auto &Summary : VI.getSummaryList()) { 3355 Out << FS; 3356 printSummary(*Summary); 3357 } 3358 Out << ")"; 3359 } 3360 Out << ")"; 3361 if (!VI.name().empty()) 3362 Out << " ; guid = " << VI.getGUID(); 3363 Out << "\n"; 3364 } 3365 3366 static void printMetadataIdentifier(StringRef Name, 3367 formatted_raw_ostream &Out) { 3368 if (Name.empty()) { 3369 Out << "<empty name> "; 3370 } else { 3371 if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' || 3372 Name[0] == '$' || Name[0] == '.' || Name[0] == '_') 3373 Out << Name[0]; 3374 else 3375 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F); 3376 for (unsigned i = 1, e = Name.size(); i != e; ++i) { 3377 unsigned char C = Name[i]; 3378 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' || 3379 C == '.' || C == '_') 3380 Out << C; 3381 else 3382 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); 3383 } 3384 } 3385 } 3386 3387 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { 3388 Out << '!'; 3389 printMetadataIdentifier(NMD->getName(), Out); 3390 Out << " = !{"; 3391 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 3392 if (i) 3393 Out << ", "; 3394 3395 // Write DIExpressions inline. 3396 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose. 3397 MDNode *Op = NMD->getOperand(i); 3398 assert(!isa<DIArgList>(Op) && 3399 "DIArgLists should not appear in NamedMDNodes"); 3400 if (auto *Expr = dyn_cast<DIExpression>(Op)) { 3401 writeDIExpression(Out, Expr, AsmWriterContext::getEmpty()); 3402 continue; 3403 } 3404 3405 int Slot = Machine.getMetadataSlot(Op); 3406 if (Slot == -1) 3407 Out << "<badref>"; 3408 else 3409 Out << '!' << Slot; 3410 } 3411 Out << "}\n"; 3412 } 3413 3414 static void PrintVisibility(GlobalValue::VisibilityTypes Vis, 3415 formatted_raw_ostream &Out) { 3416 switch (Vis) { 3417 case GlobalValue::DefaultVisibility: break; 3418 case GlobalValue::HiddenVisibility: Out << "hidden "; break; 3419 case GlobalValue::ProtectedVisibility: Out << "protected "; break; 3420 } 3421 } 3422 3423 static void PrintDSOLocation(const GlobalValue &GV, 3424 formatted_raw_ostream &Out) { 3425 if (GV.isDSOLocal() && !GV.isImplicitDSOLocal()) 3426 Out << "dso_local "; 3427 } 3428 3429 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, 3430 formatted_raw_ostream &Out) { 3431 switch (SCT) { 3432 case GlobalValue::DefaultStorageClass: break; 3433 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break; 3434 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break; 3435 } 3436 } 3437 3438 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, 3439 formatted_raw_ostream &Out) { 3440 switch (TLM) { 3441 case GlobalVariable::NotThreadLocal: 3442 break; 3443 case GlobalVariable::GeneralDynamicTLSModel: 3444 Out << "thread_local "; 3445 break; 3446 case GlobalVariable::LocalDynamicTLSModel: 3447 Out << "thread_local(localdynamic) "; 3448 break; 3449 case GlobalVariable::InitialExecTLSModel: 3450 Out << "thread_local(initialexec) "; 3451 break; 3452 case GlobalVariable::LocalExecTLSModel: 3453 Out << "thread_local(localexec) "; 3454 break; 3455 } 3456 } 3457 3458 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) { 3459 switch (UA) { 3460 case GlobalVariable::UnnamedAddr::None: 3461 return ""; 3462 case GlobalVariable::UnnamedAddr::Local: 3463 return "local_unnamed_addr"; 3464 case GlobalVariable::UnnamedAddr::Global: 3465 return "unnamed_addr"; 3466 } 3467 llvm_unreachable("Unknown UnnamedAddr"); 3468 } 3469 3470 static void maybePrintComdat(formatted_raw_ostream &Out, 3471 const GlobalObject &GO) { 3472 const Comdat *C = GO.getComdat(); 3473 if (!C) 3474 return; 3475 3476 if (isa<GlobalVariable>(GO)) 3477 Out << ','; 3478 Out << " comdat"; 3479 3480 if (GO.getName() == C->getName()) 3481 return; 3482 3483 Out << '('; 3484 PrintLLVMName(Out, C->getName(), ComdatPrefix); 3485 Out << ')'; 3486 } 3487 3488 void AssemblyWriter::printGlobal(const GlobalVariable *GV) { 3489 if (GV->isMaterializable()) 3490 Out << "; Materializable\n"; 3491 3492 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent()); 3493 WriteAsOperandInternal(Out, GV, WriterCtx); 3494 Out << " = "; 3495 3496 if (!GV->hasInitializer() && GV->hasExternalLinkage()) 3497 Out << "external "; 3498 3499 Out << getLinkageNameWithSpace(GV->getLinkage()); 3500 PrintDSOLocation(*GV, Out); 3501 PrintVisibility(GV->getVisibility(), Out); 3502 PrintDLLStorageClass(GV->getDLLStorageClass(), Out); 3503 PrintThreadLocalModel(GV->getThreadLocalMode(), Out); 3504 StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr()); 3505 if (!UA.empty()) 3506 Out << UA << ' '; 3507 3508 if (unsigned AddressSpace = GV->getType()->getAddressSpace()) 3509 Out << "addrspace(" << AddressSpace << ") "; 3510 if (GV->isExternallyInitialized()) Out << "externally_initialized "; 3511 Out << (GV->isConstant() ? "constant " : "global "); 3512 TypePrinter.print(GV->getValueType(), Out); 3513 3514 if (GV->hasInitializer()) { 3515 Out << ' '; 3516 writeOperand(GV->getInitializer(), false); 3517 } 3518 3519 if (GV->hasSection()) { 3520 Out << ", section \""; 3521 printEscapedString(GV->getSection(), Out); 3522 Out << '"'; 3523 } 3524 if (GV->hasPartition()) { 3525 Out << ", partition \""; 3526 printEscapedString(GV->getPartition(), Out); 3527 Out << '"'; 3528 } 3529 3530 maybePrintComdat(Out, *GV); 3531 if (GV->getAlignment()) 3532 Out << ", align " << GV->getAlignment(); 3533 3534 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3535 GV->getAllMetadata(MDs); 3536 printMetadataAttachments(MDs, ", "); 3537 3538 auto Attrs = GV->getAttributes(); 3539 if (Attrs.hasAttributes()) 3540 Out << " #" << Machine.getAttributeGroupSlot(Attrs); 3541 3542 printInfoComment(*GV); 3543 } 3544 3545 void AssemblyWriter::printAlias(const GlobalAlias *GA) { 3546 if (GA->isMaterializable()) 3547 Out << "; Materializable\n"; 3548 3549 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GA->getParent()); 3550 WriteAsOperandInternal(Out, GA, WriterCtx); 3551 Out << " = "; 3552 3553 Out << getLinkageNameWithSpace(GA->getLinkage()); 3554 PrintDSOLocation(*GA, Out); 3555 PrintVisibility(GA->getVisibility(), Out); 3556 PrintDLLStorageClass(GA->getDLLStorageClass(), Out); 3557 PrintThreadLocalModel(GA->getThreadLocalMode(), Out); 3558 StringRef UA = getUnnamedAddrEncoding(GA->getUnnamedAddr()); 3559 if (!UA.empty()) 3560 Out << UA << ' '; 3561 3562 Out << "alias "; 3563 3564 TypePrinter.print(GA->getValueType(), Out); 3565 Out << ", "; 3566 3567 if (const Constant *Aliasee = GA->getAliasee()) { 3568 writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee)); 3569 } else { 3570 TypePrinter.print(GA->getType(), Out); 3571 Out << " <<NULL ALIASEE>>"; 3572 } 3573 3574 if (GA->hasPartition()) { 3575 Out << ", partition \""; 3576 printEscapedString(GA->getPartition(), Out); 3577 Out << '"'; 3578 } 3579 3580 printInfoComment(*GA); 3581 Out << '\n'; 3582 } 3583 3584 void AssemblyWriter::printIFunc(const GlobalIFunc *GI) { 3585 if (GI->isMaterializable()) 3586 Out << "; Materializable\n"; 3587 3588 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GI->getParent()); 3589 WriteAsOperandInternal(Out, GI, WriterCtx); 3590 Out << " = "; 3591 3592 Out << getLinkageNameWithSpace(GI->getLinkage()); 3593 PrintDSOLocation(*GI, Out); 3594 PrintVisibility(GI->getVisibility(), Out); 3595 3596 Out << "ifunc "; 3597 3598 TypePrinter.print(GI->getValueType(), Out); 3599 Out << ", "; 3600 3601 if (const Constant *Resolver = GI->getResolver()) { 3602 writeOperand(Resolver, !isa<ConstantExpr>(Resolver)); 3603 } else { 3604 TypePrinter.print(GI->getType(), Out); 3605 Out << " <<NULL RESOLVER>>"; 3606 } 3607 3608 if (GI->hasPartition()) { 3609 Out << ", partition \""; 3610 printEscapedString(GI->getPartition(), Out); 3611 Out << '"'; 3612 } 3613 3614 printInfoComment(*GI); 3615 Out << '\n'; 3616 } 3617 3618 void AssemblyWriter::printComdat(const Comdat *C) { 3619 C->print(Out); 3620 } 3621 3622 void AssemblyWriter::printTypeIdentities() { 3623 if (TypePrinter.empty()) 3624 return; 3625 3626 Out << '\n'; 3627 3628 // Emit all numbered types. 3629 auto &NumberedTypes = TypePrinter.getNumberedTypes(); 3630 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) { 3631 Out << '%' << I << " = type "; 3632 3633 // Make sure we print out at least one level of the type structure, so 3634 // that we do not get %2 = type %2 3635 TypePrinter.printStructBody(NumberedTypes[I], Out); 3636 Out << '\n'; 3637 } 3638 3639 auto &NamedTypes = TypePrinter.getNamedTypes(); 3640 for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) { 3641 PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix); 3642 Out << " = type "; 3643 3644 // Make sure we print out at least one level of the type structure, so 3645 // that we do not get %FILE = type %FILE 3646 TypePrinter.printStructBody(NamedTypes[I], Out); 3647 Out << '\n'; 3648 } 3649 } 3650 3651 /// printFunction - Print all aspects of a function. 3652 void AssemblyWriter::printFunction(const Function *F) { 3653 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); 3654 3655 if (F->isMaterializable()) 3656 Out << "; Materializable\n"; 3657 3658 const AttributeList &Attrs = F->getAttributes(); 3659 if (Attrs.hasFnAttrs()) { 3660 AttributeSet AS = Attrs.getFnAttrs(); 3661 std::string AttrStr; 3662 3663 for (const Attribute &Attr : AS) { 3664 if (!Attr.isStringAttribute()) { 3665 if (!AttrStr.empty()) AttrStr += ' '; 3666 AttrStr += Attr.getAsString(); 3667 } 3668 } 3669 3670 if (!AttrStr.empty()) 3671 Out << "; Function Attrs: " << AttrStr << '\n'; 3672 } 3673 3674 Machine.incorporateFunction(F); 3675 3676 if (F->isDeclaration()) { 3677 Out << "declare"; 3678 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3679 F->getAllMetadata(MDs); 3680 printMetadataAttachments(MDs, " "); 3681 Out << ' '; 3682 } else 3683 Out << "define "; 3684 3685 Out << getLinkageNameWithSpace(F->getLinkage()); 3686 PrintDSOLocation(*F, Out); 3687 PrintVisibility(F->getVisibility(), Out); 3688 PrintDLLStorageClass(F->getDLLStorageClass(), Out); 3689 3690 // Print the calling convention. 3691 if (F->getCallingConv() != CallingConv::C) { 3692 PrintCallingConv(F->getCallingConv(), Out); 3693 Out << " "; 3694 } 3695 3696 FunctionType *FT = F->getFunctionType(); 3697 if (Attrs.hasRetAttrs()) 3698 Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' '; 3699 TypePrinter.print(F->getReturnType(), Out); 3700 AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent()); 3701 Out << ' '; 3702 WriteAsOperandInternal(Out, F, WriterCtx); 3703 Out << '('; 3704 3705 // Loop over the arguments, printing them... 3706 if (F->isDeclaration() && !IsForDebug) { 3707 // We're only interested in the type here - don't print argument names. 3708 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) { 3709 // Insert commas as we go... the first arg doesn't get a comma 3710 if (I) 3711 Out << ", "; 3712 // Output type... 3713 TypePrinter.print(FT->getParamType(I), Out); 3714 3715 AttributeSet ArgAttrs = Attrs.getParamAttrs(I); 3716 if (ArgAttrs.hasAttributes()) { 3717 Out << ' '; 3718 writeAttributeSet(ArgAttrs); 3719 } 3720 } 3721 } else { 3722 // The arguments are meaningful here, print them in detail. 3723 for (const Argument &Arg : F->args()) { 3724 // Insert commas as we go... the first arg doesn't get a comma 3725 if (Arg.getArgNo() != 0) 3726 Out << ", "; 3727 printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo())); 3728 } 3729 } 3730 3731 // Finish printing arguments... 3732 if (FT->isVarArg()) { 3733 if (FT->getNumParams()) Out << ", "; 3734 Out << "..."; // Output varargs portion of signature! 3735 } 3736 Out << ')'; 3737 StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr()); 3738 if (!UA.empty()) 3739 Out << ' ' << UA; 3740 // We print the function address space if it is non-zero or if we are writing 3741 // a module with a non-zero program address space or if there is no valid 3742 // Module* so that the file can be parsed without the datalayout string. 3743 const Module *Mod = F->getParent(); 3744 if (F->getAddressSpace() != 0 || !Mod || 3745 Mod->getDataLayout().getProgramAddressSpace() != 0) 3746 Out << " addrspace(" << F->getAddressSpace() << ")"; 3747 if (Attrs.hasFnAttrs()) 3748 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs()); 3749 if (F->hasSection()) { 3750 Out << " section \""; 3751 printEscapedString(F->getSection(), Out); 3752 Out << '"'; 3753 } 3754 if (F->hasPartition()) { 3755 Out << " partition \""; 3756 printEscapedString(F->getPartition(), Out); 3757 Out << '"'; 3758 } 3759 maybePrintComdat(Out, *F); 3760 if (F->getAlignment()) 3761 Out << " align " << F->getAlignment(); 3762 if (F->hasGC()) 3763 Out << " gc \"" << F->getGC() << '"'; 3764 if (F->hasPrefixData()) { 3765 Out << " prefix "; 3766 writeOperand(F->getPrefixData(), true); 3767 } 3768 if (F->hasPrologueData()) { 3769 Out << " prologue "; 3770 writeOperand(F->getPrologueData(), true); 3771 } 3772 if (F->hasPersonalityFn()) { 3773 Out << " personality "; 3774 writeOperand(F->getPersonalityFn(), /*PrintType=*/true); 3775 } 3776 3777 if (F->isDeclaration()) { 3778 Out << '\n'; 3779 } else { 3780 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3781 F->getAllMetadata(MDs); 3782 printMetadataAttachments(MDs, " "); 3783 3784 Out << " {"; 3785 // Output all of the function's basic blocks. 3786 for (const BasicBlock &BB : *F) 3787 printBasicBlock(&BB); 3788 3789 // Output the function's use-lists. 3790 printUseLists(F); 3791 3792 Out << "}\n"; 3793 } 3794 3795 Machine.purgeFunction(); 3796 } 3797 3798 /// printArgument - This member is called for every argument that is passed into 3799 /// the function. Simply print it out 3800 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) { 3801 // Output type... 3802 TypePrinter.print(Arg->getType(), Out); 3803 3804 // Output parameter attributes list 3805 if (Attrs.hasAttributes()) { 3806 Out << ' '; 3807 writeAttributeSet(Attrs); 3808 } 3809 3810 // Output name, if available... 3811 if (Arg->hasName()) { 3812 Out << ' '; 3813 PrintLLVMName(Out, Arg); 3814 } else { 3815 int Slot = Machine.getLocalSlot(Arg); 3816 assert(Slot != -1 && "expect argument in function here"); 3817 Out << " %" << Slot; 3818 } 3819 } 3820 3821 /// printBasicBlock - This member is called for each basic block in a method. 3822 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { 3823 bool IsEntryBlock = BB->getParent() && BB->isEntryBlock(); 3824 if (BB->hasName()) { // Print out the label if it exists... 3825 Out << "\n"; 3826 PrintLLVMName(Out, BB->getName(), LabelPrefix); 3827 Out << ':'; 3828 } else if (!IsEntryBlock) { 3829 Out << "\n"; 3830 int Slot = Machine.getLocalSlot(BB); 3831 if (Slot != -1) 3832 Out << Slot << ":"; 3833 else 3834 Out << "<badref>:"; 3835 } 3836 3837 if (!IsEntryBlock) { 3838 // Output predecessors for the block. 3839 Out.PadToColumn(50); 3840 Out << ";"; 3841 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 3842 3843 if (PI == PE) { 3844 Out << " No predecessors!"; 3845 } else { 3846 Out << " preds = "; 3847 writeOperand(*PI, false); 3848 for (++PI; PI != PE; ++PI) { 3849 Out << ", "; 3850 writeOperand(*PI, false); 3851 } 3852 } 3853 } 3854 3855 Out << "\n"; 3856 3857 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out); 3858 3859 // Output all of the instructions in the basic block... 3860 for (const Instruction &I : *BB) { 3861 printInstructionLine(I); 3862 } 3863 3864 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out); 3865 } 3866 3867 /// printInstructionLine - Print an instruction and a newline character. 3868 void AssemblyWriter::printInstructionLine(const Instruction &I) { 3869 printInstruction(I); 3870 Out << '\n'; 3871 } 3872 3873 /// printGCRelocateComment - print comment after call to the gc.relocate 3874 /// intrinsic indicating base and derived pointer names. 3875 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) { 3876 Out << " ; ("; 3877 writeOperand(Relocate.getBasePtr(), false); 3878 Out << ", "; 3879 writeOperand(Relocate.getDerivedPtr(), false); 3880 Out << ")"; 3881 } 3882 3883 /// printInfoComment - Print a little comment after the instruction indicating 3884 /// which slot it occupies. 3885 void AssemblyWriter::printInfoComment(const Value &V) { 3886 if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V)) 3887 printGCRelocateComment(*Relocate); 3888 3889 if (AnnotationWriter) 3890 AnnotationWriter->printInfoComment(V, Out); 3891 } 3892 3893 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I, 3894 raw_ostream &Out) { 3895 // We print the address space of the call if it is non-zero. 3896 unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace(); 3897 bool PrintAddrSpace = CallAddrSpace != 0; 3898 if (!PrintAddrSpace) { 3899 const Module *Mod = getModuleFromVal(I); 3900 // We also print it if it is zero but not equal to the program address space 3901 // or if we can't find a valid Module* to make it possible to parse 3902 // the resulting file even without a datalayout string. 3903 if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0) 3904 PrintAddrSpace = true; 3905 } 3906 if (PrintAddrSpace) 3907 Out << " addrspace(" << CallAddrSpace << ")"; 3908 } 3909 3910 // This member is called for each Instruction in a function.. 3911 void AssemblyWriter::printInstruction(const Instruction &I) { 3912 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out); 3913 3914 // Print out indentation for an instruction. 3915 Out << " "; 3916 3917 // Print out name if it exists... 3918 if (I.hasName()) { 3919 PrintLLVMName(Out, &I); 3920 Out << " = "; 3921 } else if (!I.getType()->isVoidTy()) { 3922 // Print out the def slot taken. 3923 int SlotNum = Machine.getLocalSlot(&I); 3924 if (SlotNum == -1) 3925 Out << "<badref> = "; 3926 else 3927 Out << '%' << SlotNum << " = "; 3928 } 3929 3930 if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 3931 if (CI->isMustTailCall()) 3932 Out << "musttail "; 3933 else if (CI->isTailCall()) 3934 Out << "tail "; 3935 else if (CI->isNoTailCall()) 3936 Out << "notail "; 3937 } 3938 3939 // Print out the opcode... 3940 Out << I.getOpcodeName(); 3941 3942 // If this is an atomic load or store, print out the atomic marker. 3943 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) || 3944 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic())) 3945 Out << " atomic"; 3946 3947 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak()) 3948 Out << " weak"; 3949 3950 // If this is a volatile operation, print out the volatile marker. 3951 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || 3952 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) || 3953 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) || 3954 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile())) 3955 Out << " volatile"; 3956 3957 // Print out optimization information. 3958 WriteOptimizationInfo(Out, &I); 3959 3960 // Print out the compare instruction predicates 3961 if (const CmpInst *CI = dyn_cast<CmpInst>(&I)) 3962 Out << ' ' << CmpInst::getPredicateName(CI->getPredicate()); 3963 3964 // Print out the atomicrmw operation 3965 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) 3966 Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation()); 3967 3968 // Print out the type of the operands... 3969 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr; 3970 3971 // Special case conditional branches to swizzle the condition out to the front 3972 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) { 3973 const BranchInst &BI(cast<BranchInst>(I)); 3974 Out << ' '; 3975 writeOperand(BI.getCondition(), true); 3976 Out << ", "; 3977 writeOperand(BI.getSuccessor(0), true); 3978 Out << ", "; 3979 writeOperand(BI.getSuccessor(1), true); 3980 3981 } else if (isa<SwitchInst>(I)) { 3982 const SwitchInst& SI(cast<SwitchInst>(I)); 3983 // Special case switch instruction to get formatting nice and correct. 3984 Out << ' '; 3985 writeOperand(SI.getCondition(), true); 3986 Out << ", "; 3987 writeOperand(SI.getDefaultDest(), true); 3988 Out << " ["; 3989 for (auto Case : SI.cases()) { 3990 Out << "\n "; 3991 writeOperand(Case.getCaseValue(), true); 3992 Out << ", "; 3993 writeOperand(Case.getCaseSuccessor(), true); 3994 } 3995 Out << "\n ]"; 3996 } else if (isa<IndirectBrInst>(I)) { 3997 // Special case indirectbr instruction to get formatting nice and correct. 3998 Out << ' '; 3999 writeOperand(Operand, true); 4000 Out << ", ["; 4001 4002 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 4003 if (i != 1) 4004 Out << ", "; 4005 writeOperand(I.getOperand(i), true); 4006 } 4007 Out << ']'; 4008 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) { 4009 Out << ' '; 4010 TypePrinter.print(I.getType(), Out); 4011 Out << ' '; 4012 4013 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) { 4014 if (op) Out << ", "; 4015 Out << "[ "; 4016 writeOperand(PN->getIncomingValue(op), false); Out << ", "; 4017 writeOperand(PN->getIncomingBlock(op), false); Out << " ]"; 4018 } 4019 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) { 4020 Out << ' '; 4021 writeOperand(I.getOperand(0), true); 4022 for (unsigned i : EVI->indices()) 4023 Out << ", " << i; 4024 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) { 4025 Out << ' '; 4026 writeOperand(I.getOperand(0), true); Out << ", "; 4027 writeOperand(I.getOperand(1), true); 4028 for (unsigned i : IVI->indices()) 4029 Out << ", " << i; 4030 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) { 4031 Out << ' '; 4032 TypePrinter.print(I.getType(), Out); 4033 if (LPI->isCleanup() || LPI->getNumClauses() != 0) 4034 Out << '\n'; 4035 4036 if (LPI->isCleanup()) 4037 Out << " cleanup"; 4038 4039 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) { 4040 if (i != 0 || LPI->isCleanup()) Out << "\n"; 4041 if (LPI->isCatch(i)) 4042 Out << " catch "; 4043 else 4044 Out << " filter "; 4045 4046 writeOperand(LPI->getClause(i), true); 4047 } 4048 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) { 4049 Out << " within "; 4050 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false); 4051 Out << " ["; 4052 unsigned Op = 0; 4053 for (const BasicBlock *PadBB : CatchSwitch->handlers()) { 4054 if (Op > 0) 4055 Out << ", "; 4056 writeOperand(PadBB, /*PrintType=*/true); 4057 ++Op; 4058 } 4059 Out << "] unwind "; 4060 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest()) 4061 writeOperand(UnwindDest, /*PrintType=*/true); 4062 else 4063 Out << "to caller"; 4064 } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) { 4065 Out << " within "; 4066 writeOperand(FPI->getParentPad(), /*PrintType=*/false); 4067 Out << " ["; 4068 for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps; 4069 ++Op) { 4070 if (Op > 0) 4071 Out << ", "; 4072 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true); 4073 } 4074 Out << ']'; 4075 } else if (isa<ReturnInst>(I) && !Operand) { 4076 Out << " void"; 4077 } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) { 4078 Out << " from "; 4079 writeOperand(CRI->getOperand(0), /*PrintType=*/false); 4080 4081 Out << " to "; 4082 writeOperand(CRI->getOperand(1), /*PrintType=*/true); 4083 } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) { 4084 Out << " from "; 4085 writeOperand(CRI->getOperand(0), /*PrintType=*/false); 4086 4087 Out << " unwind "; 4088 if (CRI->hasUnwindDest()) 4089 writeOperand(CRI->getOperand(1), /*PrintType=*/true); 4090 else 4091 Out << "to caller"; 4092 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 4093 // Print the calling convention being used. 4094 if (CI->getCallingConv() != CallingConv::C) { 4095 Out << " "; 4096 PrintCallingConv(CI->getCallingConv(), Out); 4097 } 4098 4099 Operand = CI->getCalledOperand(); 4100 FunctionType *FTy = CI->getFunctionType(); 4101 Type *RetTy = FTy->getReturnType(); 4102 const AttributeList &PAL = CI->getAttributes(); 4103 4104 if (PAL.hasRetAttrs()) 4105 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 4106 4107 // Only print addrspace(N) if necessary: 4108 maybePrintCallAddrSpace(Operand, &I, Out); 4109 4110 // If possible, print out the short form of the call instruction. We can 4111 // only do this if the first argument is a pointer to a nonvararg function, 4112 // and if the return type is not a pointer to a function. 4113 // 4114 Out << ' '; 4115 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 4116 Out << ' '; 4117 writeOperand(Operand, false); 4118 Out << '('; 4119 for (unsigned op = 0, Eop = CI->arg_size(); op < Eop; ++op) { 4120 if (op > 0) 4121 Out << ", "; 4122 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op)); 4123 } 4124 4125 // Emit an ellipsis if this is a musttail call in a vararg function. This 4126 // is only to aid readability, musttail calls forward varargs by default. 4127 if (CI->isMustTailCall() && CI->getParent() && 4128 CI->getParent()->getParent() && 4129 CI->getParent()->getParent()->isVarArg()) 4130 Out << ", ..."; 4131 4132 Out << ')'; 4133 if (PAL.hasFnAttrs()) 4134 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs()); 4135 4136 writeOperandBundles(CI); 4137 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 4138 Operand = II->getCalledOperand(); 4139 FunctionType *FTy = II->getFunctionType(); 4140 Type *RetTy = FTy->getReturnType(); 4141 const AttributeList &PAL = II->getAttributes(); 4142 4143 // Print the calling convention being used. 4144 if (II->getCallingConv() != CallingConv::C) { 4145 Out << " "; 4146 PrintCallingConv(II->getCallingConv(), Out); 4147 } 4148 4149 if (PAL.hasRetAttrs()) 4150 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 4151 4152 // Only print addrspace(N) if necessary: 4153 maybePrintCallAddrSpace(Operand, &I, Out); 4154 4155 // If possible, print out the short form of the invoke instruction. We can 4156 // only do this if the first argument is a pointer to a nonvararg function, 4157 // and if the return type is not a pointer to a function. 4158 // 4159 Out << ' '; 4160 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 4161 Out << ' '; 4162 writeOperand(Operand, false); 4163 Out << '('; 4164 for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) { 4165 if (op) 4166 Out << ", "; 4167 writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op)); 4168 } 4169 4170 Out << ')'; 4171 if (PAL.hasFnAttrs()) 4172 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs()); 4173 4174 writeOperandBundles(II); 4175 4176 Out << "\n to "; 4177 writeOperand(II->getNormalDest(), true); 4178 Out << " unwind "; 4179 writeOperand(II->getUnwindDest(), true); 4180 } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) { 4181 Operand = CBI->getCalledOperand(); 4182 FunctionType *FTy = CBI->getFunctionType(); 4183 Type *RetTy = FTy->getReturnType(); 4184 const AttributeList &PAL = CBI->getAttributes(); 4185 4186 // Print the calling convention being used. 4187 if (CBI->getCallingConv() != CallingConv::C) { 4188 Out << " "; 4189 PrintCallingConv(CBI->getCallingConv(), Out); 4190 } 4191 4192 if (PAL.hasRetAttrs()) 4193 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 4194 4195 // If possible, print out the short form of the callbr instruction. We can 4196 // only do this if the first argument is a pointer to a nonvararg function, 4197 // and if the return type is not a pointer to a function. 4198 // 4199 Out << ' '; 4200 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 4201 Out << ' '; 4202 writeOperand(Operand, false); 4203 Out << '('; 4204 for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) { 4205 if (op) 4206 Out << ", "; 4207 writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op)); 4208 } 4209 4210 Out << ')'; 4211 if (PAL.hasFnAttrs()) 4212 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs()); 4213 4214 writeOperandBundles(CBI); 4215 4216 Out << "\n to "; 4217 writeOperand(CBI->getDefaultDest(), true); 4218 Out << " ["; 4219 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) { 4220 if (i != 0) 4221 Out << ", "; 4222 writeOperand(CBI->getIndirectDest(i), true); 4223 } 4224 Out << ']'; 4225 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 4226 Out << ' '; 4227 if (AI->isUsedWithInAlloca()) 4228 Out << "inalloca "; 4229 if (AI->isSwiftError()) 4230 Out << "swifterror "; 4231 TypePrinter.print(AI->getAllocatedType(), Out); 4232 4233 // Explicitly write the array size if the code is broken, if it's an array 4234 // allocation, or if the type is not canonical for scalar allocations. The 4235 // latter case prevents the type from mutating when round-tripping through 4236 // assembly. 4237 if (!AI->getArraySize() || AI->isArrayAllocation() || 4238 !AI->getArraySize()->getType()->isIntegerTy(32)) { 4239 Out << ", "; 4240 writeOperand(AI->getArraySize(), true); 4241 } 4242 if (AI->getAlignment()) { 4243 Out << ", align " << AI->getAlignment(); 4244 } 4245 4246 unsigned AddrSpace = AI->getType()->getAddressSpace(); 4247 if (AddrSpace != 0) { 4248 Out << ", addrspace(" << AddrSpace << ')'; 4249 } 4250 } else if (isa<CastInst>(I)) { 4251 if (Operand) { 4252 Out << ' '; 4253 writeOperand(Operand, true); // Work with broken code 4254 } 4255 Out << " to "; 4256 TypePrinter.print(I.getType(), Out); 4257 } else if (isa<VAArgInst>(I)) { 4258 if (Operand) { 4259 Out << ' '; 4260 writeOperand(Operand, true); // Work with broken code 4261 } 4262 Out << ", "; 4263 TypePrinter.print(I.getType(), Out); 4264 } else if (Operand) { // Print the normal way. 4265 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4266 Out << ' '; 4267 TypePrinter.print(GEP->getSourceElementType(), Out); 4268 Out << ','; 4269 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) { 4270 Out << ' '; 4271 TypePrinter.print(LI->getType(), Out); 4272 Out << ','; 4273 } 4274 4275 // PrintAllTypes - Instructions who have operands of all the same type 4276 // omit the type from all but the first operand. If the instruction has 4277 // different type operands (for example br), then they are all printed. 4278 bool PrintAllTypes = false; 4279 Type *TheType = Operand->getType(); 4280 4281 // Select, Store and ShuffleVector always print all types. 4282 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) 4283 || isa<ReturnInst>(I)) { 4284 PrintAllTypes = true; 4285 } else { 4286 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { 4287 Operand = I.getOperand(i); 4288 // note that Operand shouldn't be null, but the test helps make dump() 4289 // more tolerant of malformed IR 4290 if (Operand && Operand->getType() != TheType) { 4291 PrintAllTypes = true; // We have differing types! Print them all! 4292 break; 4293 } 4294 } 4295 } 4296 4297 if (!PrintAllTypes) { 4298 Out << ' '; 4299 TypePrinter.print(TheType, Out); 4300 } 4301 4302 Out << ' '; 4303 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { 4304 if (i) Out << ", "; 4305 writeOperand(I.getOperand(i), PrintAllTypes); 4306 } 4307 } 4308 4309 // Print atomic ordering/alignment for memory operations 4310 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 4311 if (LI->isAtomic()) 4312 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID()); 4313 if (LI->getAlignment()) 4314 Out << ", align " << LI->getAlignment(); 4315 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 4316 if (SI->isAtomic()) 4317 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID()); 4318 if (SI->getAlignment()) 4319 Out << ", align " << SI->getAlignment(); 4320 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) { 4321 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(), 4322 CXI->getFailureOrdering(), CXI->getSyncScopeID()); 4323 Out << ", align " << CXI->getAlign().value(); 4324 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) { 4325 writeAtomic(RMWI->getContext(), RMWI->getOrdering(), 4326 RMWI->getSyncScopeID()); 4327 Out << ", align " << RMWI->getAlign().value(); 4328 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) { 4329 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID()); 4330 } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) { 4331 PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask()); 4332 } 4333 4334 // Print Metadata info. 4335 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD; 4336 I.getAllMetadata(InstMD); 4337 printMetadataAttachments(InstMD, ", "); 4338 4339 // Print a nice comment. 4340 printInfoComment(I); 4341 } 4342 4343 void AssemblyWriter::printMetadataAttachments( 4344 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs, 4345 StringRef Separator) { 4346 if (MDs.empty()) 4347 return; 4348 4349 if (MDNames.empty()) 4350 MDs[0].second->getContext().getMDKindNames(MDNames); 4351 4352 auto WriterCtx = getContext(); 4353 for (const auto &I : MDs) { 4354 unsigned Kind = I.first; 4355 Out << Separator; 4356 if (Kind < MDNames.size()) { 4357 Out << "!"; 4358 printMetadataIdentifier(MDNames[Kind], Out); 4359 } else 4360 Out << "!<unknown kind #" << Kind << ">"; 4361 Out << ' '; 4362 WriteAsOperandInternal(Out, I.second, WriterCtx); 4363 } 4364 } 4365 4366 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) { 4367 Out << '!' << Slot << " = "; 4368 printMDNodeBody(Node); 4369 Out << "\n"; 4370 } 4371 4372 void AssemblyWriter::writeAllMDNodes() { 4373 SmallVector<const MDNode *, 16> Nodes; 4374 Nodes.resize(Machine.mdn_size()); 4375 for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end())) 4376 Nodes[I.second] = cast<MDNode>(I.first); 4377 4378 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 4379 writeMDNode(i, Nodes[i]); 4380 } 4381 } 4382 4383 void AssemblyWriter::printMDNodeBody(const MDNode *Node) { 4384 auto WriterCtx = getContext(); 4385 WriteMDNodeBodyInternal(Out, Node, WriterCtx); 4386 } 4387 4388 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) { 4389 if (!Attr.isTypeAttribute()) { 4390 Out << Attr.getAsString(InAttrGroup); 4391 return; 4392 } 4393 4394 Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum()); 4395 if (Type *Ty = Attr.getValueAsType()) { 4396 Out << '('; 4397 TypePrinter.print(Ty, Out); 4398 Out << ')'; 4399 } 4400 } 4401 4402 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet, 4403 bool InAttrGroup) { 4404 bool FirstAttr = true; 4405 for (const auto &Attr : AttrSet) { 4406 if (!FirstAttr) 4407 Out << ' '; 4408 writeAttribute(Attr, InAttrGroup); 4409 FirstAttr = false; 4410 } 4411 } 4412 4413 void AssemblyWriter::writeAllAttributeGroups() { 4414 std::vector<std::pair<AttributeSet, unsigned>> asVec; 4415 asVec.resize(Machine.as_size()); 4416 4417 for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end())) 4418 asVec[I.second] = I; 4419 4420 for (const auto &I : asVec) 4421 Out << "attributes #" << I.second << " = { " 4422 << I.first.getAsString(true) << " }\n"; 4423 } 4424 4425 void AssemblyWriter::printUseListOrder(const Value *V, 4426 const std::vector<unsigned> &Shuffle) { 4427 bool IsInFunction = Machine.getFunction(); 4428 if (IsInFunction) 4429 Out << " "; 4430 4431 Out << "uselistorder"; 4432 if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) { 4433 Out << "_bb "; 4434 writeOperand(BB->getParent(), false); 4435 Out << ", "; 4436 writeOperand(BB, false); 4437 } else { 4438 Out << " "; 4439 writeOperand(V, true); 4440 } 4441 Out << ", { "; 4442 4443 assert(Shuffle.size() >= 2 && "Shuffle too small"); 4444 Out << Shuffle[0]; 4445 for (unsigned I = 1, E = Shuffle.size(); I != E; ++I) 4446 Out << ", " << Shuffle[I]; 4447 Out << " }\n"; 4448 } 4449 4450 void AssemblyWriter::printUseLists(const Function *F) { 4451 auto It = UseListOrders.find(F); 4452 if (It == UseListOrders.end()) 4453 return; 4454 4455 Out << "\n; uselistorder directives\n"; 4456 for (const auto &Pair : It->second) 4457 printUseListOrder(Pair.first, Pair.second); 4458 } 4459 4460 //===----------------------------------------------------------------------===// 4461 // External Interface declarations 4462 //===----------------------------------------------------------------------===// 4463 4464 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, 4465 bool ShouldPreserveUseListOrder, 4466 bool IsForDebug) const { 4467 SlotTracker SlotTable(this->getParent()); 4468 formatted_raw_ostream OS(ROS); 4469 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW, 4470 IsForDebug, 4471 ShouldPreserveUseListOrder); 4472 W.printFunction(this); 4473 } 4474 4475 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, 4476 bool ShouldPreserveUseListOrder, 4477 bool IsForDebug) const { 4478 SlotTracker SlotTable(this->getParent()); 4479 formatted_raw_ostream OS(ROS); 4480 AssemblyWriter W(OS, SlotTable, this->getModule(), AAW, 4481 IsForDebug, 4482 ShouldPreserveUseListOrder); 4483 W.printBasicBlock(this); 4484 } 4485 4486 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, 4487 bool ShouldPreserveUseListOrder, bool IsForDebug) const { 4488 SlotTracker SlotTable(this); 4489 formatted_raw_ostream OS(ROS); 4490 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug, 4491 ShouldPreserveUseListOrder); 4492 W.printModule(this); 4493 } 4494 4495 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const { 4496 SlotTracker SlotTable(getParent()); 4497 formatted_raw_ostream OS(ROS); 4498 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug); 4499 W.printNamedMDNode(this); 4500 } 4501 4502 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST, 4503 bool IsForDebug) const { 4504 Optional<SlotTracker> LocalST; 4505 SlotTracker *SlotTable; 4506 if (auto *ST = MST.getMachine()) 4507 SlotTable = ST; 4508 else { 4509 LocalST.emplace(getParent()); 4510 SlotTable = &*LocalST; 4511 } 4512 4513 formatted_raw_ostream OS(ROS); 4514 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug); 4515 W.printNamedMDNode(this); 4516 } 4517 4518 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const { 4519 PrintLLVMName(ROS, getName(), ComdatPrefix); 4520 ROS << " = comdat "; 4521 4522 switch (getSelectionKind()) { 4523 case Comdat::Any: 4524 ROS << "any"; 4525 break; 4526 case Comdat::ExactMatch: 4527 ROS << "exactmatch"; 4528 break; 4529 case Comdat::Largest: 4530 ROS << "largest"; 4531 break; 4532 case Comdat::NoDeduplicate: 4533 ROS << "nodeduplicate"; 4534 break; 4535 case Comdat::SameSize: 4536 ROS << "samesize"; 4537 break; 4538 } 4539 4540 ROS << '\n'; 4541 } 4542 4543 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const { 4544 TypePrinting TP; 4545 TP.print(const_cast<Type*>(this), OS); 4546 4547 if (NoDetails) 4548 return; 4549 4550 // If the type is a named struct type, print the body as well. 4551 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this))) 4552 if (!STy->isLiteral()) { 4553 OS << " = type "; 4554 TP.printStructBody(STy, OS); 4555 } 4556 } 4557 4558 static bool isReferencingMDNode(const Instruction &I) { 4559 if (const auto *CI = dyn_cast<CallInst>(&I)) 4560 if (Function *F = CI->getCalledFunction()) 4561 if (F->isIntrinsic()) 4562 for (auto &Op : I.operands()) 4563 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) 4564 if (isa<MDNode>(V->getMetadata())) 4565 return true; 4566 return false; 4567 } 4568 4569 void Value::print(raw_ostream &ROS, bool IsForDebug) const { 4570 bool ShouldInitializeAllMetadata = false; 4571 if (auto *I = dyn_cast<Instruction>(this)) 4572 ShouldInitializeAllMetadata = isReferencingMDNode(*I); 4573 else if (isa<Function>(this) || isa<MetadataAsValue>(this)) 4574 ShouldInitializeAllMetadata = true; 4575 4576 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata); 4577 print(ROS, MST, IsForDebug); 4578 } 4579 4580 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST, 4581 bool IsForDebug) const { 4582 formatted_raw_ostream OS(ROS); 4583 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr)); 4584 SlotTracker &SlotTable = 4585 MST.getMachine() ? *MST.getMachine() : EmptySlotTable; 4586 auto incorporateFunction = [&](const Function *F) { 4587 if (F) 4588 MST.incorporateFunction(*F); 4589 }; 4590 4591 if (const Instruction *I = dyn_cast<Instruction>(this)) { 4592 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr); 4593 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug); 4594 W.printInstruction(*I); 4595 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) { 4596 incorporateFunction(BB->getParent()); 4597 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug); 4598 W.printBasicBlock(BB); 4599 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { 4600 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug); 4601 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) 4602 W.printGlobal(V); 4603 else if (const Function *F = dyn_cast<Function>(GV)) 4604 W.printFunction(F); 4605 else if (const GlobalAlias *A = dyn_cast<GlobalAlias>(GV)) 4606 W.printAlias(A); 4607 else if (const GlobalIFunc *I = dyn_cast<GlobalIFunc>(GV)) 4608 W.printIFunc(I); 4609 else 4610 llvm_unreachable("Unknown GlobalValue to print out!"); 4611 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) { 4612 V->getMetadata()->print(ROS, MST, getModuleFromVal(V)); 4613 } else if (const Constant *C = dyn_cast<Constant>(this)) { 4614 TypePrinting TypePrinter; 4615 TypePrinter.print(C->getType(), OS); 4616 OS << ' '; 4617 AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine()); 4618 WriteConstantInternal(OS, C, WriterCtx); 4619 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) { 4620 this->printAsOperand(OS, /* PrintType */ true, MST); 4621 } else { 4622 llvm_unreachable("Unknown value to print out!"); 4623 } 4624 } 4625 4626 /// Print without a type, skipping the TypePrinting object. 4627 /// 4628 /// \return \c true iff printing was successful. 4629 static bool printWithoutType(const Value &V, raw_ostream &O, 4630 SlotTracker *Machine, const Module *M) { 4631 if (V.hasName() || isa<GlobalValue>(V) || 4632 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) { 4633 AsmWriterContext WriterCtx(nullptr, Machine, M); 4634 WriteAsOperandInternal(O, &V, WriterCtx); 4635 return true; 4636 } 4637 return false; 4638 } 4639 4640 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, 4641 ModuleSlotTracker &MST) { 4642 TypePrinting TypePrinter(MST.getModule()); 4643 if (PrintType) { 4644 TypePrinter.print(V.getType(), O); 4645 O << ' '; 4646 } 4647 4648 AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine(), MST.getModule()); 4649 WriteAsOperandInternal(O, &V, WriterCtx); 4650 } 4651 4652 void Value::printAsOperand(raw_ostream &O, bool PrintType, 4653 const Module *M) const { 4654 if (!M) 4655 M = getModuleFromVal(this); 4656 4657 if (!PrintType) 4658 if (printWithoutType(*this, O, nullptr, M)) 4659 return; 4660 4661 SlotTracker Machine( 4662 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this)); 4663 ModuleSlotTracker MST(Machine, M); 4664 printAsOperandImpl(*this, O, PrintType, MST); 4665 } 4666 4667 void Value::printAsOperand(raw_ostream &O, bool PrintType, 4668 ModuleSlotTracker &MST) const { 4669 if (!PrintType) 4670 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule())) 4671 return; 4672 4673 printAsOperandImpl(*this, O, PrintType, MST); 4674 } 4675 4676 /// Recursive version of printMetadataImpl. 4677 static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD, 4678 AsmWriterContext &WriterCtx) { 4679 formatted_raw_ostream OS(ROS); 4680 WriteAsOperandInternal(OS, &MD, WriterCtx, /* FromValue */ true); 4681 4682 auto *N = dyn_cast<MDNode>(&MD); 4683 if (!N || isa<DIExpression>(MD) || isa<DIArgList>(MD)) 4684 return; 4685 4686 OS << " = "; 4687 WriteMDNodeBodyInternal(OS, N, WriterCtx); 4688 } 4689 4690 namespace { 4691 struct MDTreeAsmWriterContext : public AsmWriterContext { 4692 unsigned Level; 4693 // {Level, Printed string} 4694 using EntryTy = std::pair<unsigned, std::string>; 4695 SmallVector<EntryTy, 4> Buffer; 4696 4697 // Used to break the cycle in case there is any. 4698 SmallPtrSet<const Metadata *, 4> Visited; 4699 4700 raw_ostream &MainOS; 4701 4702 MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M, 4703 raw_ostream &OS, const Metadata *InitMD) 4704 : AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {} 4705 4706 void onWriteMetadataAsOperand(const Metadata *MD) override { 4707 if (Visited.count(MD)) 4708 return; 4709 Visited.insert(MD); 4710 4711 std::string Str; 4712 raw_string_ostream SS(Str); 4713 ++Level; 4714 // A placeholder entry to memorize the correct 4715 // position in buffer. 4716 Buffer.emplace_back(std::make_pair(Level, "")); 4717 unsigned InsertIdx = Buffer.size() - 1; 4718 4719 printMetadataImplRec(SS, *MD, *this); 4720 Buffer[InsertIdx].second = std::move(SS.str()); 4721 --Level; 4722 } 4723 4724 ~MDTreeAsmWriterContext() { 4725 for (const auto &Entry : Buffer) { 4726 MainOS << "\n"; 4727 unsigned NumIndent = Entry.first * 2U; 4728 MainOS.indent(NumIndent) << Entry.second; 4729 } 4730 } 4731 }; 4732 } // end anonymous namespace 4733 4734 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, 4735 ModuleSlotTracker &MST, const Module *M, 4736 bool OnlyAsOperand, bool PrintAsTree = false) { 4737 formatted_raw_ostream OS(ROS); 4738 4739 TypePrinting TypePrinter(M); 4740 4741 std::unique_ptr<AsmWriterContext> WriterCtx; 4742 if (PrintAsTree && !OnlyAsOperand) 4743 WriterCtx = std::make_unique<MDTreeAsmWriterContext>( 4744 &TypePrinter, MST.getMachine(), M, OS, &MD); 4745 else 4746 WriterCtx = 4747 std::make_unique<AsmWriterContext>(&TypePrinter, MST.getMachine(), M); 4748 4749 WriteAsOperandInternal(OS, &MD, *WriterCtx, /* FromValue */ true); 4750 4751 auto *N = dyn_cast<MDNode>(&MD); 4752 if (OnlyAsOperand || !N || isa<DIExpression>(MD) || isa<DIArgList>(MD)) 4753 return; 4754 4755 OS << " = "; 4756 WriteMDNodeBodyInternal(OS, N, *WriterCtx); 4757 } 4758 4759 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const { 4760 ModuleSlotTracker MST(M, isa<MDNode>(this)); 4761 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); 4762 } 4763 4764 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST, 4765 const Module *M) const { 4766 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); 4767 } 4768 4769 void Metadata::print(raw_ostream &OS, const Module *M, 4770 bool /*IsForDebug*/) const { 4771 ModuleSlotTracker MST(M, isa<MDNode>(this)); 4772 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); 4773 } 4774 4775 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST, 4776 const Module *M, bool /*IsForDebug*/) const { 4777 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); 4778 } 4779 4780 void MDNode::printTree(raw_ostream &OS, const Module *M) const { 4781 ModuleSlotTracker MST(M, true); 4782 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false, 4783 /*PrintAsTree=*/true); 4784 } 4785 4786 void MDNode::printTree(raw_ostream &OS, ModuleSlotTracker &MST, 4787 const Module *M) const { 4788 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false, 4789 /*PrintAsTree=*/true); 4790 } 4791 4792 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const { 4793 SlotTracker SlotTable(this); 4794 formatted_raw_ostream OS(ROS); 4795 AssemblyWriter W(OS, SlotTable, this, IsForDebug); 4796 W.printModuleSummaryIndex(); 4797 } 4798 4799 void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB, 4800 unsigned UB) const { 4801 SlotTracker *ST = MachineStorage.get(); 4802 if (!ST) 4803 return; 4804 4805 for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end())) 4806 if (I.second >= LB && I.second < UB) 4807 L.push_back(std::make_pair(I.second, I.first)); 4808 } 4809 4810 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4811 // Value::dump - allow easy printing of Values from the debugger. 4812 LLVM_DUMP_METHOD 4813 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } 4814 4815 // Type::dump - allow easy printing of Types from the debugger. 4816 LLVM_DUMP_METHOD 4817 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } 4818 4819 // Module::dump() - Allow printing of Modules from the debugger. 4820 LLVM_DUMP_METHOD 4821 void Module::dump() const { 4822 print(dbgs(), nullptr, 4823 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true); 4824 } 4825 4826 // Allow printing of Comdats from the debugger. 4827 LLVM_DUMP_METHOD 4828 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4829 4830 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger. 4831 LLVM_DUMP_METHOD 4832 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4833 4834 LLVM_DUMP_METHOD 4835 void Metadata::dump() const { dump(nullptr); } 4836 4837 LLVM_DUMP_METHOD 4838 void Metadata::dump(const Module *M) const { 4839 print(dbgs(), M, /*IsForDebug=*/true); 4840 dbgs() << '\n'; 4841 } 4842 4843 LLVM_DUMP_METHOD 4844 void MDNode::dumpTree() const { dumpTree(nullptr); } 4845 4846 LLVM_DUMP_METHOD 4847 void MDNode::dumpTree(const Module *M) const { 4848 printTree(dbgs(), M); 4849 dbgs() << '\n'; 4850 } 4851 4852 // Allow printing of ModuleSummaryIndex from the debugger. 4853 LLVM_DUMP_METHOD 4854 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4855 #endif 4856