1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/AssemblyAnnotationWriter.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/Comdat.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalIFunc.h"
47 #include "llvm/IR/GlobalIndirectSymbol.h"
48 #include "llvm/IR/GlobalObject.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/IRPrintingPasses.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/ModuleSlotTracker.h"
61 #include "llvm/IR/ModuleSummaryIndex.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/TypeFinder.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/Support/AtomicOrdering.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/Format.h"
74 #include "llvm/Support/FormattedStream.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cctype>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <memory>
83 #include <string>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 // Make virtual table appear in this compilation unit.
91 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
92 
93 //===----------------------------------------------------------------------===//
94 // Helper Functions
95 //===----------------------------------------------------------------------===//
96 
97 using OrderMap = MapVector<const Value *, unsigned>;
98 
99 using UseListOrderMap =
100     DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
101 
102 /// Look for a value that might be wrapped as metadata, e.g. a value in a
103 /// metadata operand. Returns the input value as-is if it is not wrapped.
104 static const Value *skipMetadataWrapper(const Value *V) {
105   if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
106     if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
107       return VAM->getValue();
108   return V;
109 }
110 
111 static void orderValue(const Value *V, OrderMap &OM) {
112   if (OM.lookup(V))
113     return;
114 
115   if (const Constant *C = dyn_cast<Constant>(V))
116     if (C->getNumOperands() && !isa<GlobalValue>(C))
117       for (const Value *Op : C->operands())
118         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
119           orderValue(Op, OM);
120 
121   // Note: we cannot cache this lookup above, since inserting into the map
122   // changes the map's size, and thus affects the other IDs.
123   unsigned ID = OM.size() + 1;
124   OM[V] = ID;
125 }
126 
127 static OrderMap orderModule(const Module *M) {
128   OrderMap OM;
129 
130   for (const GlobalVariable &G : M->globals()) {
131     if (G.hasInitializer())
132       if (!isa<GlobalValue>(G.getInitializer()))
133         orderValue(G.getInitializer(), OM);
134     orderValue(&G, OM);
135   }
136   for (const GlobalAlias &A : M->aliases()) {
137     if (!isa<GlobalValue>(A.getAliasee()))
138       orderValue(A.getAliasee(), OM);
139     orderValue(&A, OM);
140   }
141   for (const GlobalIFunc &I : M->ifuncs()) {
142     if (!isa<GlobalValue>(I.getResolver()))
143       orderValue(I.getResolver(), OM);
144     orderValue(&I, OM);
145   }
146   for (const Function &F : *M) {
147     for (const Use &U : F.operands())
148       if (!isa<GlobalValue>(U.get()))
149         orderValue(U.get(), OM);
150 
151     orderValue(&F, OM);
152 
153     if (F.isDeclaration())
154       continue;
155 
156     for (const Argument &A : F.args())
157       orderValue(&A, OM);
158     for (const BasicBlock &BB : F) {
159       orderValue(&BB, OM);
160       for (const Instruction &I : BB) {
161         for (const Value *Op : I.operands()) {
162           Op = skipMetadataWrapper(Op);
163           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
164               isa<InlineAsm>(*Op))
165             orderValue(Op, OM);
166         }
167         orderValue(&I, OM);
168       }
169     }
170   }
171   return OM;
172 }
173 
174 static std::vector<unsigned>
175 predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
176   // Predict use-list order for this one.
177   using Entry = std::pair<const Use *, unsigned>;
178   SmallVector<Entry, 64> List;
179   for (const Use &U : V->uses())
180     // Check if this user will be serialized.
181     if (OM.lookup(U.getUser()))
182       List.push_back(std::make_pair(&U, List.size()));
183 
184   if (List.size() < 2)
185     // We may have lost some users.
186     return {};
187 
188   // When referencing a value before its declaration, a temporary value is
189   // created, which will later be RAUWed with the actual value. This reverses
190   // the use list. This happens for all values apart from basic blocks.
191   bool GetsReversed = !isa<BasicBlock>(V);
192   if (auto *BA = dyn_cast<BlockAddress>(V))
193     ID = OM.lookup(BA->getBasicBlock());
194   llvm::sort(List, [&](const Entry &L, const Entry &R) {
195     const Use *LU = L.first;
196     const Use *RU = R.first;
197     if (LU == RU)
198       return false;
199 
200     auto LID = OM.lookup(LU->getUser());
201     auto RID = OM.lookup(RU->getUser());
202 
203     // If ID is 4, then expect: 7 6 5 1 2 3.
204     if (LID < RID) {
205       if (GetsReversed)
206         if (RID <= ID)
207           return true;
208       return false;
209     }
210     if (RID < LID) {
211       if (GetsReversed)
212         if (LID <= ID)
213           return false;
214       return true;
215     }
216 
217     // LID and RID are equal, so we have different operands of the same user.
218     // Assume operands are added in order for all instructions.
219     if (GetsReversed)
220       if (LID <= ID)
221         return LU->getOperandNo() < RU->getOperandNo();
222     return LU->getOperandNo() > RU->getOperandNo();
223   });
224 
225   if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
226         return L.second < R.second;
227       }))
228     // Order is already correct.
229     return {};
230 
231   // Store the shuffle.
232   std::vector<unsigned> Shuffle(List.size());
233   for (size_t I = 0, E = List.size(); I != E; ++I)
234     Shuffle[I] = List[I].second;
235   return Shuffle;
236 }
237 
238 static UseListOrderMap predictUseListOrder(const Module *M) {
239   OrderMap OM = orderModule(M);
240   UseListOrderMap ULOM;
241   for (const auto &Pair : OM) {
242     const Value *V = Pair.first;
243     if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
244       continue;
245 
246     std::vector<unsigned> Shuffle =
247         predictValueUseListOrder(V, Pair.second, OM);
248     if (Shuffle.empty())
249       continue;
250 
251     const Function *F = nullptr;
252     if (auto *I = dyn_cast<Instruction>(V))
253       F = I->getFunction();
254     if (auto *A = dyn_cast<Argument>(V))
255       F = A->getParent();
256     if (auto *BB = dyn_cast<BasicBlock>(V))
257       F = BB->getParent();
258     ULOM[F][V] = std::move(Shuffle);
259   }
260   return ULOM;
261 }
262 
263 static const Module *getModuleFromVal(const Value *V) {
264   if (const Argument *MA = dyn_cast<Argument>(V))
265     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
266 
267   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
268     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
269 
270   if (const Instruction *I = dyn_cast<Instruction>(V)) {
271     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
272     return M ? M->getParent() : nullptr;
273   }
274 
275   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
276     return GV->getParent();
277 
278   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
279     for (const User *U : MAV->users())
280       if (isa<Instruction>(U))
281         if (const Module *M = getModuleFromVal(U))
282           return M;
283     return nullptr;
284   }
285 
286   return nullptr;
287 }
288 
289 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
290   switch (cc) {
291   default:                         Out << "cc" << cc; break;
292   case CallingConv::Fast:          Out << "fastcc"; break;
293   case CallingConv::Cold:          Out << "coldcc"; break;
294   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
295   case CallingConv::AnyReg:        Out << "anyregcc"; break;
296   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
297   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
298   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
299   case CallingConv::GHC:           Out << "ghccc"; break;
300   case CallingConv::Tail:          Out << "tailcc"; break;
301   case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
302   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
303   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
304   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
305   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
306   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
307   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
308   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
309   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
310   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
311   case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
312   case CallingConv::AArch64_SVE_VectorCall:
313     Out << "aarch64_sve_vector_pcs";
314     break;
315   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
316   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
317   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
318   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
319   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
320   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
321   case CallingConv::Win64:         Out << "win64cc"; break;
322   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
323   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
324   case CallingConv::Swift:         Out << "swiftcc"; break;
325   case CallingConv::SwiftTail:     Out << "swifttailcc"; break;
326   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
327   case CallingConv::HHVM:          Out << "hhvmcc"; break;
328   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
329   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
330   case CallingConv::AMDGPU_LS:     Out << "amdgpu_ls"; break;
331   case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
332   case CallingConv::AMDGPU_ES:     Out << "amdgpu_es"; break;
333   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
334   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
335   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
336   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
337   case CallingConv::AMDGPU_Gfx:    Out << "amdgpu_gfx"; break;
338   }
339 }
340 
341 enum PrefixType {
342   GlobalPrefix,
343   ComdatPrefix,
344   LabelPrefix,
345   LocalPrefix,
346   NoPrefix
347 };
348 
349 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
350   assert(!Name.empty() && "Cannot get empty name!");
351 
352   // Scan the name to see if it needs quotes first.
353   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
354   if (!NeedsQuotes) {
355     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
356       // By making this unsigned, the value passed in to isalnum will always be
357       // in the range 0-255.  This is important when building with MSVC because
358       // its implementation will assert.  This situation can arise when dealing
359       // with UTF-8 multibyte characters.
360       unsigned char C = Name[i];
361       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
362           C != '_') {
363         NeedsQuotes = true;
364         break;
365       }
366     }
367   }
368 
369   // If we didn't need any quotes, just write out the name in one blast.
370   if (!NeedsQuotes) {
371     OS << Name;
372     return;
373   }
374 
375   // Okay, we need quotes.  Output the quotes and escape any scary characters as
376   // needed.
377   OS << '"';
378   printEscapedString(Name, OS);
379   OS << '"';
380 }
381 
382 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
383 /// (if the string only contains simple characters) or is surrounded with ""'s
384 /// (if it has special chars in it). Print it out.
385 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
386   switch (Prefix) {
387   case NoPrefix:
388     break;
389   case GlobalPrefix:
390     OS << '@';
391     break;
392   case ComdatPrefix:
393     OS << '$';
394     break;
395   case LabelPrefix:
396     break;
397   case LocalPrefix:
398     OS << '%';
399     break;
400   }
401   printLLVMNameWithoutPrefix(OS, Name);
402 }
403 
404 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
405 /// (if the string only contains simple characters) or is surrounded with ""'s
406 /// (if it has special chars in it). Print it out.
407 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
408   PrintLLVMName(OS, V->getName(),
409                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
410 }
411 
412 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
413   Out << ", <";
414   if (isa<ScalableVectorType>(Ty))
415     Out << "vscale x ";
416   Out << Mask.size() << " x i32> ";
417   bool FirstElt = true;
418   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
419     Out << "zeroinitializer";
420   } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
421     Out << "undef";
422   } else {
423     Out << "<";
424     for (int Elt : Mask) {
425       if (FirstElt)
426         FirstElt = false;
427       else
428         Out << ", ";
429       Out << "i32 ";
430       if (Elt == UndefMaskElem)
431         Out << "undef";
432       else
433         Out << Elt;
434     }
435     Out << ">";
436   }
437 }
438 
439 namespace {
440 
441 class TypePrinting {
442 public:
443   TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
444 
445   TypePrinting(const TypePrinting &) = delete;
446   TypePrinting &operator=(const TypePrinting &) = delete;
447 
448   /// The named types that are used by the current module.
449   TypeFinder &getNamedTypes();
450 
451   /// The numbered types, number to type mapping.
452   std::vector<StructType *> &getNumberedTypes();
453 
454   bool empty();
455 
456   void print(Type *Ty, raw_ostream &OS);
457 
458   void printStructBody(StructType *Ty, raw_ostream &OS);
459 
460 private:
461   void incorporateTypes();
462 
463   /// A module to process lazily when needed. Set to nullptr as soon as used.
464   const Module *DeferredM;
465 
466   TypeFinder NamedTypes;
467 
468   // The numbered types, along with their value.
469   DenseMap<StructType *, unsigned> Type2Number;
470 
471   std::vector<StructType *> NumberedTypes;
472 };
473 
474 } // end anonymous namespace
475 
476 TypeFinder &TypePrinting::getNamedTypes() {
477   incorporateTypes();
478   return NamedTypes;
479 }
480 
481 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
482   incorporateTypes();
483 
484   // We know all the numbers that each type is used and we know that it is a
485   // dense assignment. Convert the map to an index table, if it's not done
486   // already (judging from the sizes):
487   if (NumberedTypes.size() == Type2Number.size())
488     return NumberedTypes;
489 
490   NumberedTypes.resize(Type2Number.size());
491   for (const auto &P : Type2Number) {
492     assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
493     assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
494     NumberedTypes[P.second] = P.first;
495   }
496   return NumberedTypes;
497 }
498 
499 bool TypePrinting::empty() {
500   incorporateTypes();
501   return NamedTypes.empty() && Type2Number.empty();
502 }
503 
504 void TypePrinting::incorporateTypes() {
505   if (!DeferredM)
506     return;
507 
508   NamedTypes.run(*DeferredM, false);
509   DeferredM = nullptr;
510 
511   // The list of struct types we got back includes all the struct types, split
512   // the unnamed ones out to a numbering and remove the anonymous structs.
513   unsigned NextNumber = 0;
514 
515   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
516   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
517     StructType *STy = *I;
518 
519     // Ignore anonymous types.
520     if (STy->isLiteral())
521       continue;
522 
523     if (STy->getName().empty())
524       Type2Number[STy] = NextNumber++;
525     else
526       *NextToUse++ = STy;
527   }
528 
529   NamedTypes.erase(NextToUse, NamedTypes.end());
530 }
531 
532 /// Write the specified type to the specified raw_ostream, making use of type
533 /// names or up references to shorten the type name where possible.
534 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
535   switch (Ty->getTypeID()) {
536   case Type::VoidTyID:      OS << "void"; return;
537   case Type::HalfTyID:      OS << "half"; return;
538   case Type::BFloatTyID:    OS << "bfloat"; return;
539   case Type::FloatTyID:     OS << "float"; return;
540   case Type::DoubleTyID:    OS << "double"; return;
541   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
542   case Type::FP128TyID:     OS << "fp128"; return;
543   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
544   case Type::LabelTyID:     OS << "label"; return;
545   case Type::MetadataTyID:  OS << "metadata"; return;
546   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
547   case Type::X86_AMXTyID:   OS << "x86_amx"; return;
548   case Type::TokenTyID:     OS << "token"; return;
549   case Type::IntegerTyID:
550     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
551     return;
552 
553   case Type::FunctionTyID: {
554     FunctionType *FTy = cast<FunctionType>(Ty);
555     print(FTy->getReturnType(), OS);
556     OS << " (";
557     for (FunctionType::param_iterator I = FTy->param_begin(),
558          E = FTy->param_end(); I != E; ++I) {
559       if (I != FTy->param_begin())
560         OS << ", ";
561       print(*I, OS);
562     }
563     if (FTy->isVarArg()) {
564       if (FTy->getNumParams()) OS << ", ";
565       OS << "...";
566     }
567     OS << ')';
568     return;
569   }
570   case Type::StructTyID: {
571     StructType *STy = cast<StructType>(Ty);
572 
573     if (STy->isLiteral())
574       return printStructBody(STy, OS);
575 
576     if (!STy->getName().empty())
577       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
578 
579     incorporateTypes();
580     const auto I = Type2Number.find(STy);
581     if (I != Type2Number.end())
582       OS << '%' << I->second;
583     else  // Not enumerated, print the hex address.
584       OS << "%\"type " << STy << '\"';
585     return;
586   }
587   case Type::PointerTyID: {
588     PointerType *PTy = cast<PointerType>(Ty);
589     if (PTy->isOpaque()) {
590       OS << "ptr";
591       if (unsigned AddressSpace = PTy->getAddressSpace())
592         OS << " addrspace(" << AddressSpace << ')';
593       return;
594     }
595     print(PTy->getElementType(), OS);
596     if (unsigned AddressSpace = PTy->getAddressSpace())
597       OS << " addrspace(" << AddressSpace << ')';
598     OS << '*';
599     return;
600   }
601   case Type::ArrayTyID: {
602     ArrayType *ATy = cast<ArrayType>(Ty);
603     OS << '[' << ATy->getNumElements() << " x ";
604     print(ATy->getElementType(), OS);
605     OS << ']';
606     return;
607   }
608   case Type::FixedVectorTyID:
609   case Type::ScalableVectorTyID: {
610     VectorType *PTy = cast<VectorType>(Ty);
611     ElementCount EC = PTy->getElementCount();
612     OS << "<";
613     if (EC.isScalable())
614       OS << "vscale x ";
615     OS << EC.getKnownMinValue() << " x ";
616     print(PTy->getElementType(), OS);
617     OS << '>';
618     return;
619   }
620   }
621   llvm_unreachable("Invalid TypeID");
622 }
623 
624 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
625   if (STy->isOpaque()) {
626     OS << "opaque";
627     return;
628   }
629 
630   if (STy->isPacked())
631     OS << '<';
632 
633   if (STy->getNumElements() == 0) {
634     OS << "{}";
635   } else {
636     StructType::element_iterator I = STy->element_begin();
637     OS << "{ ";
638     print(*I++, OS);
639     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
640       OS << ", ";
641       print(*I, OS);
642     }
643 
644     OS << " }";
645   }
646   if (STy->isPacked())
647     OS << '>';
648 }
649 
650 AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() {}
651 
652 namespace llvm {
653 
654 //===----------------------------------------------------------------------===//
655 // SlotTracker Class: Enumerate slot numbers for unnamed values
656 //===----------------------------------------------------------------------===//
657 /// This class provides computation of slot numbers for LLVM Assembly writing.
658 ///
659 class SlotTracker : public AbstractSlotTrackerStorage {
660 public:
661   /// ValueMap - A mapping of Values to slot numbers.
662   using ValueMap = DenseMap<const Value *, unsigned>;
663 
664 private:
665   /// TheModule - The module for which we are holding slot numbers.
666   const Module* TheModule;
667 
668   /// TheFunction - The function for which we are holding slot numbers.
669   const Function* TheFunction = nullptr;
670   bool FunctionProcessed = false;
671   bool ShouldInitializeAllMetadata;
672 
673   std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
674       ProcessModuleHookFn;
675   std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
676       ProcessFunctionHookFn;
677 
678   /// The summary index for which we are holding slot numbers.
679   const ModuleSummaryIndex *TheIndex = nullptr;
680 
681   /// mMap - The slot map for the module level data.
682   ValueMap mMap;
683   unsigned mNext = 0;
684 
685   /// fMap - The slot map for the function level data.
686   ValueMap fMap;
687   unsigned fNext = 0;
688 
689   /// mdnMap - Map for MDNodes.
690   DenseMap<const MDNode*, unsigned> mdnMap;
691   unsigned mdnNext = 0;
692 
693   /// asMap - The slot map for attribute sets.
694   DenseMap<AttributeSet, unsigned> asMap;
695   unsigned asNext = 0;
696 
697   /// ModulePathMap - The slot map for Module paths used in the summary index.
698   StringMap<unsigned> ModulePathMap;
699   unsigned ModulePathNext = 0;
700 
701   /// GUIDMap - The slot map for GUIDs used in the summary index.
702   DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
703   unsigned GUIDNext = 0;
704 
705   /// TypeIdMap - The slot map for type ids used in the summary index.
706   StringMap<unsigned> TypeIdMap;
707   unsigned TypeIdNext = 0;
708 
709 public:
710   /// Construct from a module.
711   ///
712   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
713   /// functions, giving correct numbering for metadata referenced only from
714   /// within a function (even if no functions have been initialized).
715   explicit SlotTracker(const Module *M,
716                        bool ShouldInitializeAllMetadata = false);
717 
718   /// Construct from a function, starting out in incorp state.
719   ///
720   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
721   /// functions, giving correct numbering for metadata referenced only from
722   /// within a function (even if no functions have been initialized).
723   explicit SlotTracker(const Function *F,
724                        bool ShouldInitializeAllMetadata = false);
725 
726   /// Construct from a module summary index.
727   explicit SlotTracker(const ModuleSummaryIndex *Index);
728 
729   SlotTracker(const SlotTracker &) = delete;
730   SlotTracker &operator=(const SlotTracker &) = delete;
731 
732   ~SlotTracker() = default;
733 
734   void setProcessHook(
735       std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
736   void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
737                                          const Function *, bool)>);
738 
739   unsigned getNextMetadataSlot() override { return mdnNext; }
740 
741   void createMetadataSlot(const MDNode *N) override;
742 
743   /// Return the slot number of the specified value in it's type
744   /// plane.  If something is not in the SlotTracker, return -1.
745   int getLocalSlot(const Value *V);
746   int getGlobalSlot(const GlobalValue *V);
747   int getMetadataSlot(const MDNode *N) override;
748   int getAttributeGroupSlot(AttributeSet AS);
749   int getModulePathSlot(StringRef Path);
750   int getGUIDSlot(GlobalValue::GUID GUID);
751   int getTypeIdSlot(StringRef Id);
752 
753   /// If you'd like to deal with a function instead of just a module, use
754   /// this method to get its data into the SlotTracker.
755   void incorporateFunction(const Function *F) {
756     TheFunction = F;
757     FunctionProcessed = false;
758   }
759 
760   const Function *getFunction() const { return TheFunction; }
761 
762   /// After calling incorporateFunction, use this method to remove the
763   /// most recently incorporated function from the SlotTracker. This
764   /// will reset the state of the machine back to just the module contents.
765   void purgeFunction();
766 
767   /// MDNode map iterators.
768   using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
769 
770   mdn_iterator mdn_begin() { return mdnMap.begin(); }
771   mdn_iterator mdn_end() { return mdnMap.end(); }
772   unsigned mdn_size() const { return mdnMap.size(); }
773   bool mdn_empty() const { return mdnMap.empty(); }
774 
775   /// AttributeSet map iterators.
776   using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
777 
778   as_iterator as_begin()   { return asMap.begin(); }
779   as_iterator as_end()     { return asMap.end(); }
780   unsigned as_size() const { return asMap.size(); }
781   bool as_empty() const    { return asMap.empty(); }
782 
783   /// GUID map iterators.
784   using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
785 
786   /// These functions do the actual initialization.
787   inline void initializeIfNeeded();
788   int initializeIndexIfNeeded();
789 
790   // Implementation Details
791 private:
792   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
793   void CreateModuleSlot(const GlobalValue *V);
794 
795   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
796   void CreateMetadataSlot(const MDNode *N);
797 
798   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
799   void CreateFunctionSlot(const Value *V);
800 
801   /// Insert the specified AttributeSet into the slot table.
802   void CreateAttributeSetSlot(AttributeSet AS);
803 
804   inline void CreateModulePathSlot(StringRef Path);
805   void CreateGUIDSlot(GlobalValue::GUID GUID);
806   void CreateTypeIdSlot(StringRef Id);
807 
808   /// Add all of the module level global variables (and their initializers)
809   /// and function declarations, but not the contents of those functions.
810   void processModule();
811   // Returns number of allocated slots
812   int processIndex();
813 
814   /// Add all of the functions arguments, basic blocks, and instructions.
815   void processFunction();
816 
817   /// Add the metadata directly attached to a GlobalObject.
818   void processGlobalObjectMetadata(const GlobalObject &GO);
819 
820   /// Add all of the metadata from a function.
821   void processFunctionMetadata(const Function &F);
822 
823   /// Add all of the metadata from an instruction.
824   void processInstructionMetadata(const Instruction &I);
825 };
826 
827 } // end namespace llvm
828 
829 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
830                                      const Function *F)
831     : M(M), F(F), Machine(&Machine) {}
832 
833 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
834                                      bool ShouldInitializeAllMetadata)
835     : ShouldCreateStorage(M),
836       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
837 
838 ModuleSlotTracker::~ModuleSlotTracker() = default;
839 
840 SlotTracker *ModuleSlotTracker::getMachine() {
841   if (!ShouldCreateStorage)
842     return Machine;
843 
844   ShouldCreateStorage = false;
845   MachineStorage =
846       std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
847   Machine = MachineStorage.get();
848   if (ProcessModuleHookFn)
849     Machine->setProcessHook(ProcessModuleHookFn);
850   if (ProcessFunctionHookFn)
851     Machine->setProcessHook(ProcessFunctionHookFn);
852   return Machine;
853 }
854 
855 void ModuleSlotTracker::incorporateFunction(const Function &F) {
856   // Using getMachine() may lazily create the slot tracker.
857   if (!getMachine())
858     return;
859 
860   // Nothing to do if this is the right function already.
861   if (this->F == &F)
862     return;
863   if (this->F)
864     Machine->purgeFunction();
865   Machine->incorporateFunction(&F);
866   this->F = &F;
867 }
868 
869 int ModuleSlotTracker::getLocalSlot(const Value *V) {
870   assert(F && "No function incorporated");
871   return Machine->getLocalSlot(V);
872 }
873 
874 void ModuleSlotTracker::setProcessHook(
875     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
876         Fn) {
877   ProcessModuleHookFn = Fn;
878 }
879 
880 void ModuleSlotTracker::setProcessHook(
881     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
882         Fn) {
883   ProcessFunctionHookFn = Fn;
884 }
885 
886 static SlotTracker *createSlotTracker(const Value *V) {
887   if (const Argument *FA = dyn_cast<Argument>(V))
888     return new SlotTracker(FA->getParent());
889 
890   if (const Instruction *I = dyn_cast<Instruction>(V))
891     if (I->getParent())
892       return new SlotTracker(I->getParent()->getParent());
893 
894   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
895     return new SlotTracker(BB->getParent());
896 
897   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
898     return new SlotTracker(GV->getParent());
899 
900   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
901     return new SlotTracker(GA->getParent());
902 
903   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
904     return new SlotTracker(GIF->getParent());
905 
906   if (const Function *Func = dyn_cast<Function>(V))
907     return new SlotTracker(Func);
908 
909   return nullptr;
910 }
911 
912 #if 0
913 #define ST_DEBUG(X) dbgs() << X
914 #else
915 #define ST_DEBUG(X)
916 #endif
917 
918 // Module level constructor. Causes the contents of the Module (sans functions)
919 // to be added to the slot table.
920 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
921     : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
922 
923 // Function level constructor. Causes the contents of the Module and the one
924 // function provided to be added to the slot table.
925 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
926     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
927       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
928 
929 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
930     : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
931 
932 inline void SlotTracker::initializeIfNeeded() {
933   if (TheModule) {
934     processModule();
935     TheModule = nullptr; ///< Prevent re-processing next time we're called.
936   }
937 
938   if (TheFunction && !FunctionProcessed)
939     processFunction();
940 }
941 
942 int SlotTracker::initializeIndexIfNeeded() {
943   if (!TheIndex)
944     return 0;
945   int NumSlots = processIndex();
946   TheIndex = nullptr; ///< Prevent re-processing next time we're called.
947   return NumSlots;
948 }
949 
950 // Iterate through all the global variables, functions, and global
951 // variable initializers and create slots for them.
952 void SlotTracker::processModule() {
953   ST_DEBUG("begin processModule!\n");
954 
955   // Add all of the unnamed global variables to the value table.
956   for (const GlobalVariable &Var : TheModule->globals()) {
957     if (!Var.hasName())
958       CreateModuleSlot(&Var);
959     processGlobalObjectMetadata(Var);
960     auto Attrs = Var.getAttributes();
961     if (Attrs.hasAttributes())
962       CreateAttributeSetSlot(Attrs);
963   }
964 
965   for (const GlobalAlias &A : TheModule->aliases()) {
966     if (!A.hasName())
967       CreateModuleSlot(&A);
968   }
969 
970   for (const GlobalIFunc &I : TheModule->ifuncs()) {
971     if (!I.hasName())
972       CreateModuleSlot(&I);
973   }
974 
975   // Add metadata used by named metadata.
976   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
977     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
978       CreateMetadataSlot(NMD.getOperand(i));
979   }
980 
981   for (const Function &F : *TheModule) {
982     if (!F.hasName())
983       // Add all the unnamed functions to the table.
984       CreateModuleSlot(&F);
985 
986     if (ShouldInitializeAllMetadata)
987       processFunctionMetadata(F);
988 
989     // Add all the function attributes to the table.
990     // FIXME: Add attributes of other objects?
991     AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
992     if (FnAttrs.hasAttributes())
993       CreateAttributeSetSlot(FnAttrs);
994   }
995 
996   if (ProcessModuleHookFn)
997     ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
998 
999   ST_DEBUG("end processModule!\n");
1000 }
1001 
1002 // Process the arguments, basic blocks, and instructions  of a function.
1003 void SlotTracker::processFunction() {
1004   ST_DEBUG("begin processFunction!\n");
1005   fNext = 0;
1006 
1007   // Process function metadata if it wasn't hit at the module-level.
1008   if (!ShouldInitializeAllMetadata)
1009     processFunctionMetadata(*TheFunction);
1010 
1011   // Add all the function arguments with no names.
1012   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1013       AE = TheFunction->arg_end(); AI != AE; ++AI)
1014     if (!AI->hasName())
1015       CreateFunctionSlot(&*AI);
1016 
1017   ST_DEBUG("Inserting Instructions:\n");
1018 
1019   // Add all of the basic blocks and instructions with no names.
1020   for (auto &BB : *TheFunction) {
1021     if (!BB.hasName())
1022       CreateFunctionSlot(&BB);
1023 
1024     for (auto &I : BB) {
1025       if (!I.getType()->isVoidTy() && !I.hasName())
1026         CreateFunctionSlot(&I);
1027 
1028       // We allow direct calls to any llvm.foo function here, because the
1029       // target may not be linked into the optimizer.
1030       if (const auto *Call = dyn_cast<CallBase>(&I)) {
1031         // Add all the call attributes to the table.
1032         AttributeSet Attrs = Call->getAttributes().getFnAttrs();
1033         if (Attrs.hasAttributes())
1034           CreateAttributeSetSlot(Attrs);
1035       }
1036     }
1037   }
1038 
1039   if (ProcessFunctionHookFn)
1040     ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1041 
1042   FunctionProcessed = true;
1043 
1044   ST_DEBUG("end processFunction!\n");
1045 }
1046 
1047 // Iterate through all the GUID in the index and create slots for them.
1048 int SlotTracker::processIndex() {
1049   ST_DEBUG("begin processIndex!\n");
1050   assert(TheIndex);
1051 
1052   // The first block of slots are just the module ids, which start at 0 and are
1053   // assigned consecutively. Since the StringMap iteration order isn't
1054   // guaranteed, use a std::map to order by module ID before assigning slots.
1055   std::map<uint64_t, StringRef> ModuleIdToPathMap;
1056   for (auto &ModPath : TheIndex->modulePaths())
1057     ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1058   for (auto &ModPair : ModuleIdToPathMap)
1059     CreateModulePathSlot(ModPair.second);
1060 
1061   // Start numbering the GUIDs after the module ids.
1062   GUIDNext = ModulePathNext;
1063 
1064   for (auto &GlobalList : *TheIndex)
1065     CreateGUIDSlot(GlobalList.first);
1066 
1067   for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1068     CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1069 
1070   // Start numbering the TypeIds after the GUIDs.
1071   TypeIdNext = GUIDNext;
1072   for (const auto &TID : TheIndex->typeIds())
1073     CreateTypeIdSlot(TID.second.first);
1074 
1075   ST_DEBUG("end processIndex!\n");
1076   return TypeIdNext;
1077 }
1078 
1079 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1080   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1081   GO.getAllMetadata(MDs);
1082   for (auto &MD : MDs)
1083     CreateMetadataSlot(MD.second);
1084 }
1085 
1086 void SlotTracker::processFunctionMetadata(const Function &F) {
1087   processGlobalObjectMetadata(F);
1088   for (auto &BB : F) {
1089     for (auto &I : BB)
1090       processInstructionMetadata(I);
1091   }
1092 }
1093 
1094 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1095   // Process metadata used directly by intrinsics.
1096   if (const CallInst *CI = dyn_cast<CallInst>(&I))
1097     if (Function *F = CI->getCalledFunction())
1098       if (F->isIntrinsic())
1099         for (auto &Op : I.operands())
1100           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1101             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1102               CreateMetadataSlot(N);
1103 
1104   // Process metadata attached to this instruction.
1105   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1106   I.getAllMetadata(MDs);
1107   for (auto &MD : MDs)
1108     CreateMetadataSlot(MD.second);
1109 }
1110 
1111 /// Clean up after incorporating a function. This is the only way to get out of
1112 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1113 /// incorporation state is indicated by TheFunction != 0.
1114 void SlotTracker::purgeFunction() {
1115   ST_DEBUG("begin purgeFunction!\n");
1116   fMap.clear(); // Simply discard the function level map
1117   TheFunction = nullptr;
1118   FunctionProcessed = false;
1119   ST_DEBUG("end purgeFunction!\n");
1120 }
1121 
1122 /// getGlobalSlot - Get the slot number of a global value.
1123 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1124   // Check for uninitialized state and do lazy initialization.
1125   initializeIfNeeded();
1126 
1127   // Find the value in the module map
1128   ValueMap::iterator MI = mMap.find(V);
1129   return MI == mMap.end() ? -1 : (int)MI->second;
1130 }
1131 
1132 void SlotTracker::setProcessHook(
1133     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
1134         Fn) {
1135   ProcessModuleHookFn = Fn;
1136 }
1137 
1138 void SlotTracker::setProcessHook(
1139     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
1140         Fn) {
1141   ProcessFunctionHookFn = Fn;
1142 }
1143 
1144 /// getMetadataSlot - Get the slot number of a MDNode.
1145 void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
1146 
1147 /// getMetadataSlot - Get the slot number of a MDNode.
1148 int SlotTracker::getMetadataSlot(const MDNode *N) {
1149   // Check for uninitialized state and do lazy initialization.
1150   initializeIfNeeded();
1151 
1152   // Find the MDNode in the module map
1153   mdn_iterator MI = mdnMap.find(N);
1154   return MI == mdnMap.end() ? -1 : (int)MI->second;
1155 }
1156 
1157 /// getLocalSlot - Get the slot number for a value that is local to a function.
1158 int SlotTracker::getLocalSlot(const Value *V) {
1159   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1160 
1161   // Check for uninitialized state and do lazy initialization.
1162   initializeIfNeeded();
1163 
1164   ValueMap::iterator FI = fMap.find(V);
1165   return FI == fMap.end() ? -1 : (int)FI->second;
1166 }
1167 
1168 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1169   // Check for uninitialized state and do lazy initialization.
1170   initializeIfNeeded();
1171 
1172   // Find the AttributeSet in the module map.
1173   as_iterator AI = asMap.find(AS);
1174   return AI == asMap.end() ? -1 : (int)AI->second;
1175 }
1176 
1177 int SlotTracker::getModulePathSlot(StringRef Path) {
1178   // Check for uninitialized state and do lazy initialization.
1179   initializeIndexIfNeeded();
1180 
1181   // Find the Module path in the map
1182   auto I = ModulePathMap.find(Path);
1183   return I == ModulePathMap.end() ? -1 : (int)I->second;
1184 }
1185 
1186 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1187   // Check for uninitialized state and do lazy initialization.
1188   initializeIndexIfNeeded();
1189 
1190   // Find the GUID in the map
1191   guid_iterator I = GUIDMap.find(GUID);
1192   return I == GUIDMap.end() ? -1 : (int)I->second;
1193 }
1194 
1195 int SlotTracker::getTypeIdSlot(StringRef Id) {
1196   // Check for uninitialized state and do lazy initialization.
1197   initializeIndexIfNeeded();
1198 
1199   // Find the TypeId string in the map
1200   auto I = TypeIdMap.find(Id);
1201   return I == TypeIdMap.end() ? -1 : (int)I->second;
1202 }
1203 
1204 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1205 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1206   assert(V && "Can't insert a null Value into SlotTracker!");
1207   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1208   assert(!V->hasName() && "Doesn't need a slot!");
1209 
1210   unsigned DestSlot = mNext++;
1211   mMap[V] = DestSlot;
1212 
1213   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1214            DestSlot << " [");
1215   // G = Global, F = Function, A = Alias, I = IFunc, o = other
1216   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1217             (isa<Function>(V) ? 'F' :
1218              (isa<GlobalAlias>(V) ? 'A' :
1219               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1220 }
1221 
1222 /// CreateSlot - Create a new slot for the specified value if it has no name.
1223 void SlotTracker::CreateFunctionSlot(const Value *V) {
1224   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1225 
1226   unsigned DestSlot = fNext++;
1227   fMap[V] = DestSlot;
1228 
1229   // G = Global, F = Function, o = other
1230   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1231            DestSlot << " [o]\n");
1232 }
1233 
1234 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1235 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1236   assert(N && "Can't insert a null Value into SlotTracker!");
1237 
1238   // Don't make slots for DIExpressions or DIArgLists. We just print them inline
1239   // everywhere.
1240   if (isa<DIExpression>(N) || isa<DIArgList>(N))
1241     return;
1242 
1243   unsigned DestSlot = mdnNext;
1244   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1245     return;
1246   ++mdnNext;
1247 
1248   // Recursively add any MDNodes referenced by operands.
1249   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1250     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1251       CreateMetadataSlot(Op);
1252 }
1253 
1254 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1255   assert(AS.hasAttributes() && "Doesn't need a slot!");
1256 
1257   as_iterator I = asMap.find(AS);
1258   if (I != asMap.end())
1259     return;
1260 
1261   unsigned DestSlot = asNext++;
1262   asMap[AS] = DestSlot;
1263 }
1264 
1265 /// Create a new slot for the specified Module
1266 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1267   ModulePathMap[Path] = ModulePathNext++;
1268 }
1269 
1270 /// Create a new slot for the specified GUID
1271 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1272   GUIDMap[GUID] = GUIDNext++;
1273 }
1274 
1275 /// Create a new slot for the specified Id
1276 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1277   TypeIdMap[Id] = TypeIdNext++;
1278 }
1279 
1280 //===----------------------------------------------------------------------===//
1281 // AsmWriter Implementation
1282 //===----------------------------------------------------------------------===//
1283 
1284 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1285                                    TypePrinting *TypePrinter,
1286                                    SlotTracker *Machine,
1287                                    const Module *Context);
1288 
1289 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1290                                    TypePrinting *TypePrinter,
1291                                    SlotTracker *Machine, const Module *Context,
1292                                    bool FromValue = false);
1293 
1294 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1295   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1296     // 'Fast' is an abbreviation for all fast-math-flags.
1297     if (FPO->isFast())
1298       Out << " fast";
1299     else {
1300       if (FPO->hasAllowReassoc())
1301         Out << " reassoc";
1302       if (FPO->hasNoNaNs())
1303         Out << " nnan";
1304       if (FPO->hasNoInfs())
1305         Out << " ninf";
1306       if (FPO->hasNoSignedZeros())
1307         Out << " nsz";
1308       if (FPO->hasAllowReciprocal())
1309         Out << " arcp";
1310       if (FPO->hasAllowContract())
1311         Out << " contract";
1312       if (FPO->hasApproxFunc())
1313         Out << " afn";
1314     }
1315   }
1316 
1317   if (const OverflowingBinaryOperator *OBO =
1318         dyn_cast<OverflowingBinaryOperator>(U)) {
1319     if (OBO->hasNoUnsignedWrap())
1320       Out << " nuw";
1321     if (OBO->hasNoSignedWrap())
1322       Out << " nsw";
1323   } else if (const PossiblyExactOperator *Div =
1324                dyn_cast<PossiblyExactOperator>(U)) {
1325     if (Div->isExact())
1326       Out << " exact";
1327   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1328     if (GEP->isInBounds())
1329       Out << " inbounds";
1330   }
1331 }
1332 
1333 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1334                                   TypePrinting &TypePrinter,
1335                                   SlotTracker *Machine,
1336                                   const Module *Context) {
1337   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1338     if (CI->getType()->isIntegerTy(1)) {
1339       Out << (CI->getZExtValue() ? "true" : "false");
1340       return;
1341     }
1342     Out << CI->getValue();
1343     return;
1344   }
1345 
1346   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1347     const APFloat &APF = CFP->getValueAPF();
1348     if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1349         &APF.getSemantics() == &APFloat::IEEEdouble()) {
1350       // We would like to output the FP constant value in exponential notation,
1351       // but we cannot do this if doing so will lose precision.  Check here to
1352       // make sure that we only output it in exponential format if we can parse
1353       // the value back and get the same value.
1354       //
1355       bool ignored;
1356       bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1357       bool isInf = APF.isInfinity();
1358       bool isNaN = APF.isNaN();
1359       if (!isInf && !isNaN) {
1360         double Val = APF.convertToDouble();
1361         SmallString<128> StrVal;
1362         APF.toString(StrVal, 6, 0, false);
1363         // Check to make sure that the stringized number is not some string like
1364         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1365         // that the string matches the "[-+]?[0-9]" regex.
1366         //
1367         assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') &&
1368                                        isDigit(StrVal[1]))) &&
1369                "[-+]?[0-9] regex does not match!");
1370         // Reparse stringized version!
1371         if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1372           Out << StrVal;
1373           return;
1374         }
1375       }
1376       // Otherwise we could not reparse it to exactly the same value, so we must
1377       // output the string in hexadecimal format!  Note that loading and storing
1378       // floating point types changes the bits of NaNs on some hosts, notably
1379       // x86, so we must not use these types.
1380       static_assert(sizeof(double) == sizeof(uint64_t),
1381                     "assuming that double is 64 bits!");
1382       APFloat apf = APF;
1383       // Floats are represented in ASCII IR as double, convert.
1384       // FIXME: We should allow 32-bit hex float and remove this.
1385       if (!isDouble) {
1386         // A signaling NaN is quieted on conversion, so we need to recreate the
1387         // expected value after convert (quiet bit of the payload is clear).
1388         bool IsSNAN = apf.isSignaling();
1389         apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1390                     &ignored);
1391         if (IsSNAN) {
1392           APInt Payload = apf.bitcastToAPInt();
1393           apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(),
1394                                  &Payload);
1395         }
1396       }
1397       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1398       return;
1399     }
1400 
1401     // Either half, bfloat or some form of long double.
1402     // These appear as a magic letter identifying the type, then a
1403     // fixed number of hex digits.
1404     Out << "0x";
1405     APInt API = APF.bitcastToAPInt();
1406     if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1407       Out << 'K';
1408       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1409                                   /*Upper=*/true);
1410       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1411                                   /*Upper=*/true);
1412       return;
1413     } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1414       Out << 'L';
1415       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1416                                   /*Upper=*/true);
1417       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1418                                   /*Upper=*/true);
1419     } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1420       Out << 'M';
1421       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1422                                   /*Upper=*/true);
1423       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1424                                   /*Upper=*/true);
1425     } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1426       Out << 'H';
1427       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1428                                   /*Upper=*/true);
1429     } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1430       Out << 'R';
1431       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1432                                   /*Upper=*/true);
1433     } else
1434       llvm_unreachable("Unsupported floating point type");
1435     return;
1436   }
1437 
1438   if (isa<ConstantAggregateZero>(CV)) {
1439     Out << "zeroinitializer";
1440     return;
1441   }
1442 
1443   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1444     Out << "blockaddress(";
1445     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1446                            Context);
1447     Out << ", ";
1448     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1449                            Context);
1450     Out << ")";
1451     return;
1452   }
1453 
1454   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1455     Out << "dso_local_equivalent ";
1456     WriteAsOperandInternal(Out, Equiv->getGlobalValue(), &TypePrinter, Machine,
1457                            Context);
1458     return;
1459   }
1460 
1461   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1462     Type *ETy = CA->getType()->getElementType();
1463     Out << '[';
1464     TypePrinter.print(ETy, Out);
1465     Out << ' ';
1466     WriteAsOperandInternal(Out, CA->getOperand(0),
1467                            &TypePrinter, Machine,
1468                            Context);
1469     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1470       Out << ", ";
1471       TypePrinter.print(ETy, Out);
1472       Out << ' ';
1473       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1474                              Context);
1475     }
1476     Out << ']';
1477     return;
1478   }
1479 
1480   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1481     // As a special case, print the array as a string if it is an array of
1482     // i8 with ConstantInt values.
1483     if (CA->isString()) {
1484       Out << "c\"";
1485       printEscapedString(CA->getAsString(), Out);
1486       Out << '"';
1487       return;
1488     }
1489 
1490     Type *ETy = CA->getType()->getElementType();
1491     Out << '[';
1492     TypePrinter.print(ETy, Out);
1493     Out << ' ';
1494     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1495                            &TypePrinter, Machine,
1496                            Context);
1497     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1498       Out << ", ";
1499       TypePrinter.print(ETy, Out);
1500       Out << ' ';
1501       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1502                              Machine, Context);
1503     }
1504     Out << ']';
1505     return;
1506   }
1507 
1508   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1509     if (CS->getType()->isPacked())
1510       Out << '<';
1511     Out << '{';
1512     unsigned N = CS->getNumOperands();
1513     if (N) {
1514       Out << ' ';
1515       TypePrinter.print(CS->getOperand(0)->getType(), Out);
1516       Out << ' ';
1517 
1518       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1519                              Context);
1520 
1521       for (unsigned i = 1; i < N; i++) {
1522         Out << ", ";
1523         TypePrinter.print(CS->getOperand(i)->getType(), Out);
1524         Out << ' ';
1525 
1526         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1527                                Context);
1528       }
1529       Out << ' ';
1530     }
1531 
1532     Out << '}';
1533     if (CS->getType()->isPacked())
1534       Out << '>';
1535     return;
1536   }
1537 
1538   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1539     auto *CVVTy = cast<FixedVectorType>(CV->getType());
1540     Type *ETy = CVVTy->getElementType();
1541     Out << '<';
1542     TypePrinter.print(ETy, Out);
1543     Out << ' ';
1544     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1545                            Machine, Context);
1546     for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1547       Out << ", ";
1548       TypePrinter.print(ETy, Out);
1549       Out << ' ';
1550       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1551                              Machine, Context);
1552     }
1553     Out << '>';
1554     return;
1555   }
1556 
1557   if (isa<ConstantPointerNull>(CV)) {
1558     Out << "null";
1559     return;
1560   }
1561 
1562   if (isa<ConstantTokenNone>(CV)) {
1563     Out << "none";
1564     return;
1565   }
1566 
1567   if (isa<PoisonValue>(CV)) {
1568     Out << "poison";
1569     return;
1570   }
1571 
1572   if (isa<UndefValue>(CV)) {
1573     Out << "undef";
1574     return;
1575   }
1576 
1577   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1578     Out << CE->getOpcodeName();
1579     WriteOptimizationInfo(Out, CE);
1580     if (CE->isCompare())
1581       Out << ' ' << CmpInst::getPredicateName(
1582                         static_cast<CmpInst::Predicate>(CE->getPredicate()));
1583     Out << " (";
1584 
1585     Optional<unsigned> InRangeOp;
1586     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1587       TypePrinter.print(GEP->getSourceElementType(), Out);
1588       Out << ", ";
1589       InRangeOp = GEP->getInRangeIndex();
1590       if (InRangeOp)
1591         ++*InRangeOp;
1592     }
1593 
1594     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1595       if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1596         Out << "inrange ";
1597       TypePrinter.print((*OI)->getType(), Out);
1598       Out << ' ';
1599       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1600       if (OI+1 != CE->op_end())
1601         Out << ", ";
1602     }
1603 
1604     if (CE->hasIndices()) {
1605       ArrayRef<unsigned> Indices = CE->getIndices();
1606       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1607         Out << ", " << Indices[i];
1608     }
1609 
1610     if (CE->isCast()) {
1611       Out << " to ";
1612       TypePrinter.print(CE->getType(), Out);
1613     }
1614 
1615     if (CE->getOpcode() == Instruction::ShuffleVector)
1616       PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1617 
1618     Out << ')';
1619     return;
1620   }
1621 
1622   Out << "<placeholder or erroneous Constant>";
1623 }
1624 
1625 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1626                          TypePrinting *TypePrinter, SlotTracker *Machine,
1627                          const Module *Context) {
1628   Out << "!{";
1629   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1630     const Metadata *MD = Node->getOperand(mi);
1631     if (!MD)
1632       Out << "null";
1633     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1634       Value *V = MDV->getValue();
1635       TypePrinter->print(V->getType(), Out);
1636       Out << ' ';
1637       WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1638     } else {
1639       WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1640     }
1641     if (mi + 1 != me)
1642       Out << ", ";
1643   }
1644 
1645   Out << "}";
1646 }
1647 
1648 namespace {
1649 
1650 struct FieldSeparator {
1651   bool Skip = true;
1652   const char *Sep;
1653 
1654   FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1655 };
1656 
1657 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1658   if (FS.Skip) {
1659     FS.Skip = false;
1660     return OS;
1661   }
1662   return OS << FS.Sep;
1663 }
1664 
1665 struct MDFieldPrinter {
1666   raw_ostream &Out;
1667   FieldSeparator FS;
1668   TypePrinting *TypePrinter = nullptr;
1669   SlotTracker *Machine = nullptr;
1670   const Module *Context = nullptr;
1671 
1672   explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
1673   MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1674                  SlotTracker *Machine, const Module *Context)
1675       : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1676   }
1677 
1678   void printTag(const DINode *N);
1679   void printMacinfoType(const DIMacroNode *N);
1680   void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1681   void printString(StringRef Name, StringRef Value,
1682                    bool ShouldSkipEmpty = true);
1683   void printMetadata(StringRef Name, const Metadata *MD,
1684                      bool ShouldSkipNull = true);
1685   template <class IntTy>
1686   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1687   void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1688                   bool ShouldSkipZero);
1689   void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1690   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1691   void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1692   template <class IntTy, class Stringifier>
1693   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1694                       bool ShouldSkipZero = true);
1695   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1696   void printNameTableKind(StringRef Name,
1697                           DICompileUnit::DebugNameTableKind NTK);
1698 };
1699 
1700 } // end anonymous namespace
1701 
1702 void MDFieldPrinter::printTag(const DINode *N) {
1703   Out << FS << "tag: ";
1704   auto Tag = dwarf::TagString(N->getTag());
1705   if (!Tag.empty())
1706     Out << Tag;
1707   else
1708     Out << N->getTag();
1709 }
1710 
1711 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1712   Out << FS << "type: ";
1713   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1714   if (!Type.empty())
1715     Out << Type;
1716   else
1717     Out << N->getMacinfoType();
1718 }
1719 
1720 void MDFieldPrinter::printChecksum(
1721     const DIFile::ChecksumInfo<StringRef> &Checksum) {
1722   Out << FS << "checksumkind: " << Checksum.getKindAsString();
1723   printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1724 }
1725 
1726 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1727                                  bool ShouldSkipEmpty) {
1728   if (ShouldSkipEmpty && Value.empty())
1729     return;
1730 
1731   Out << FS << Name << ": \"";
1732   printEscapedString(Value, Out);
1733   Out << "\"";
1734 }
1735 
1736 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1737                                    TypePrinting *TypePrinter,
1738                                    SlotTracker *Machine,
1739                                    const Module *Context) {
1740   if (!MD) {
1741     Out << "null";
1742     return;
1743   }
1744   WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1745 }
1746 
1747 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1748                                    bool ShouldSkipNull) {
1749   if (ShouldSkipNull && !MD)
1750     return;
1751 
1752   Out << FS << Name << ": ";
1753   writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1754 }
1755 
1756 template <class IntTy>
1757 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1758   if (ShouldSkipZero && !Int)
1759     return;
1760 
1761   Out << FS << Name << ": " << Int;
1762 }
1763 
1764 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1765                                 bool IsUnsigned, bool ShouldSkipZero) {
1766   if (ShouldSkipZero && Int.isNullValue())
1767     return;
1768 
1769   Out << FS << Name << ": ";
1770   Int.print(Out, !IsUnsigned);
1771 }
1772 
1773 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1774                                Optional<bool> Default) {
1775   if (Default && Value == *Default)
1776     return;
1777   Out << FS << Name << ": " << (Value ? "true" : "false");
1778 }
1779 
1780 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1781   if (!Flags)
1782     return;
1783 
1784   Out << FS << Name << ": ";
1785 
1786   SmallVector<DINode::DIFlags, 8> SplitFlags;
1787   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1788 
1789   FieldSeparator FlagsFS(" | ");
1790   for (auto F : SplitFlags) {
1791     auto StringF = DINode::getFlagString(F);
1792     assert(!StringF.empty() && "Expected valid flag");
1793     Out << FlagsFS << StringF;
1794   }
1795   if (Extra || SplitFlags.empty())
1796     Out << FlagsFS << Extra;
1797 }
1798 
1799 void MDFieldPrinter::printDISPFlags(StringRef Name,
1800                                     DISubprogram::DISPFlags Flags) {
1801   // Always print this field, because no flags in the IR at all will be
1802   // interpreted as old-style isDefinition: true.
1803   Out << FS << Name << ": ";
1804 
1805   if (!Flags) {
1806     Out << 0;
1807     return;
1808   }
1809 
1810   SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1811   auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1812 
1813   FieldSeparator FlagsFS(" | ");
1814   for (auto F : SplitFlags) {
1815     auto StringF = DISubprogram::getFlagString(F);
1816     assert(!StringF.empty() && "Expected valid flag");
1817     Out << FlagsFS << StringF;
1818   }
1819   if (Extra || SplitFlags.empty())
1820     Out << FlagsFS << Extra;
1821 }
1822 
1823 void MDFieldPrinter::printEmissionKind(StringRef Name,
1824                                        DICompileUnit::DebugEmissionKind EK) {
1825   Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1826 }
1827 
1828 void MDFieldPrinter::printNameTableKind(StringRef Name,
1829                                         DICompileUnit::DebugNameTableKind NTK) {
1830   if (NTK == DICompileUnit::DebugNameTableKind::Default)
1831     return;
1832   Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1833 }
1834 
1835 template <class IntTy, class Stringifier>
1836 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1837                                     Stringifier toString, bool ShouldSkipZero) {
1838   if (!Value)
1839     return;
1840 
1841   Out << FS << Name << ": ";
1842   auto S = toString(Value);
1843   if (!S.empty())
1844     Out << S;
1845   else
1846     Out << Value;
1847 }
1848 
1849 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1850                                TypePrinting *TypePrinter, SlotTracker *Machine,
1851                                const Module *Context) {
1852   Out << "!GenericDINode(";
1853   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1854   Printer.printTag(N);
1855   Printer.printString("header", N->getHeader());
1856   if (N->getNumDwarfOperands()) {
1857     Out << Printer.FS << "operands: {";
1858     FieldSeparator IFS;
1859     for (auto &I : N->dwarf_operands()) {
1860       Out << IFS;
1861       writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1862     }
1863     Out << "}";
1864   }
1865   Out << ")";
1866 }
1867 
1868 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1869                             TypePrinting *TypePrinter, SlotTracker *Machine,
1870                             const Module *Context) {
1871   Out << "!DILocation(";
1872   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1873   // Always output the line, since 0 is a relevant and important value for it.
1874   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1875   Printer.printInt("column", DL->getColumn());
1876   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1877   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1878   Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1879                     /* Default */ false);
1880   Out << ")";
1881 }
1882 
1883 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1884                             TypePrinting *TypePrinter, SlotTracker *Machine,
1885                             const Module *Context) {
1886   Out << "!DISubrange(";
1887   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1888 
1889   auto *Count = N->getRawCountNode();
1890   if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
1891     auto *CV = cast<ConstantInt>(CE->getValue());
1892     Printer.printInt("count", CV->getSExtValue(),
1893                      /* ShouldSkipZero */ false);
1894   } else
1895     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1896 
1897   // A lowerBound of constant 0 should not be skipped, since it is different
1898   // from an unspecified lower bound (= nullptr).
1899   auto *LBound = N->getRawLowerBound();
1900   if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
1901     auto *LV = cast<ConstantInt>(LE->getValue());
1902     Printer.printInt("lowerBound", LV->getSExtValue(),
1903                      /* ShouldSkipZero */ false);
1904   } else
1905     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1906 
1907   auto *UBound = N->getRawUpperBound();
1908   if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
1909     auto *UV = cast<ConstantInt>(UE->getValue());
1910     Printer.printInt("upperBound", UV->getSExtValue(),
1911                      /* ShouldSkipZero */ false);
1912   } else
1913     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1914 
1915   auto *Stride = N->getRawStride();
1916   if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
1917     auto *SV = cast<ConstantInt>(SE->getValue());
1918     Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
1919   } else
1920     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1921 
1922   Out << ")";
1923 }
1924 
1925 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
1926                                    TypePrinting *TypePrinter,
1927                                    SlotTracker *Machine,
1928                                    const Module *Context) {
1929   Out << "!DIGenericSubrange(";
1930   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1931 
1932   auto IsConstant = [&](Metadata *Bound) -> bool {
1933     if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
1934       return BE->isConstant() &&
1935              DIExpression::SignedOrUnsignedConstant::SignedConstant ==
1936                  *BE->isConstant();
1937     }
1938     return false;
1939   };
1940 
1941   auto GetConstant = [&](Metadata *Bound) -> int64_t {
1942     assert(IsConstant(Bound) && "Expected constant");
1943     auto *BE = dyn_cast_or_null<DIExpression>(Bound);
1944     return static_cast<int64_t>(BE->getElement(1));
1945   };
1946 
1947   auto *Count = N->getRawCountNode();
1948   if (IsConstant(Count))
1949     Printer.printInt("count", GetConstant(Count),
1950                      /* ShouldSkipZero */ false);
1951   else
1952     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1953 
1954   auto *LBound = N->getRawLowerBound();
1955   if (IsConstant(LBound))
1956     Printer.printInt("lowerBound", GetConstant(LBound),
1957                      /* ShouldSkipZero */ false);
1958   else
1959     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1960 
1961   auto *UBound = N->getRawUpperBound();
1962   if (IsConstant(UBound))
1963     Printer.printInt("upperBound", GetConstant(UBound),
1964                      /* ShouldSkipZero */ false);
1965   else
1966     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1967 
1968   auto *Stride = N->getRawStride();
1969   if (IsConstant(Stride))
1970     Printer.printInt("stride", GetConstant(Stride),
1971                      /* ShouldSkipZero */ false);
1972   else
1973     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1974 
1975   Out << ")";
1976 }
1977 
1978 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1979                               TypePrinting *, SlotTracker *, const Module *) {
1980   Out << "!DIEnumerator(";
1981   MDFieldPrinter Printer(Out);
1982   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1983   Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
1984                      /*ShouldSkipZero=*/false);
1985   if (N->isUnsigned())
1986     Printer.printBool("isUnsigned", true);
1987   Out << ")";
1988 }
1989 
1990 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1991                              TypePrinting *, SlotTracker *, const Module *) {
1992   Out << "!DIBasicType(";
1993   MDFieldPrinter Printer(Out);
1994   if (N->getTag() != dwarf::DW_TAG_base_type)
1995     Printer.printTag(N);
1996   Printer.printString("name", N->getName());
1997   Printer.printInt("size", N->getSizeInBits());
1998   Printer.printInt("align", N->getAlignInBits());
1999   Printer.printDwarfEnum("encoding", N->getEncoding(),
2000                          dwarf::AttributeEncodingString);
2001   Printer.printDIFlags("flags", N->getFlags());
2002   Out << ")";
2003 }
2004 
2005 static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
2006                               TypePrinting *TypePrinter, SlotTracker *Machine,
2007                               const Module *Context) {
2008   Out << "!DIStringType(";
2009   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2010   if (N->getTag() != dwarf::DW_TAG_string_type)
2011     Printer.printTag(N);
2012   Printer.printString("name", N->getName());
2013   Printer.printMetadata("stringLength", N->getRawStringLength());
2014   Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
2015   Printer.printInt("size", N->getSizeInBits());
2016   Printer.printInt("align", N->getAlignInBits());
2017   Printer.printDwarfEnum("encoding", N->getEncoding(),
2018                          dwarf::AttributeEncodingString);
2019   Out << ")";
2020 }
2021 
2022 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
2023                                TypePrinting *TypePrinter, SlotTracker *Machine,
2024                                const Module *Context) {
2025   Out << "!DIDerivedType(";
2026   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2027   Printer.printTag(N);
2028   Printer.printString("name", N->getName());
2029   Printer.printMetadata("scope", N->getRawScope());
2030   Printer.printMetadata("file", N->getRawFile());
2031   Printer.printInt("line", N->getLine());
2032   Printer.printMetadata("baseType", N->getRawBaseType(),
2033                         /* ShouldSkipNull */ false);
2034   Printer.printInt("size", N->getSizeInBits());
2035   Printer.printInt("align", N->getAlignInBits());
2036   Printer.printInt("offset", N->getOffsetInBits());
2037   Printer.printDIFlags("flags", N->getFlags());
2038   Printer.printMetadata("extraData", N->getRawExtraData());
2039   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2040     Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2041                      /* ShouldSkipZero */ false);
2042   Printer.printMetadata("annotations", N->getRawAnnotations());
2043   Out << ")";
2044 }
2045 
2046 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
2047                                  TypePrinting *TypePrinter,
2048                                  SlotTracker *Machine, const Module *Context) {
2049   Out << "!DICompositeType(";
2050   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2051   Printer.printTag(N);
2052   Printer.printString("name", N->getName());
2053   Printer.printMetadata("scope", N->getRawScope());
2054   Printer.printMetadata("file", N->getRawFile());
2055   Printer.printInt("line", N->getLine());
2056   Printer.printMetadata("baseType", N->getRawBaseType());
2057   Printer.printInt("size", N->getSizeInBits());
2058   Printer.printInt("align", N->getAlignInBits());
2059   Printer.printInt("offset", N->getOffsetInBits());
2060   Printer.printDIFlags("flags", N->getFlags());
2061   Printer.printMetadata("elements", N->getRawElements());
2062   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2063                          dwarf::LanguageString);
2064   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2065   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2066   Printer.printString("identifier", N->getIdentifier());
2067   Printer.printMetadata("discriminator", N->getRawDiscriminator());
2068   Printer.printMetadata("dataLocation", N->getRawDataLocation());
2069   Printer.printMetadata("associated", N->getRawAssociated());
2070   Printer.printMetadata("allocated", N->getRawAllocated());
2071   if (auto *RankConst = N->getRankConst())
2072     Printer.printInt("rank", RankConst->getSExtValue(),
2073                      /* ShouldSkipZero */ false);
2074   else
2075     Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2076   Printer.printMetadata("annotations", N->getRawAnnotations());
2077   Out << ")";
2078 }
2079 
2080 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
2081                                   TypePrinting *TypePrinter,
2082                                   SlotTracker *Machine, const Module *Context) {
2083   Out << "!DISubroutineType(";
2084   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2085   Printer.printDIFlags("flags", N->getFlags());
2086   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2087   Printer.printMetadata("types", N->getRawTypeArray(),
2088                         /* ShouldSkipNull */ false);
2089   Out << ")";
2090 }
2091 
2092 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
2093                         SlotTracker *, const Module *) {
2094   Out << "!DIFile(";
2095   MDFieldPrinter Printer(Out);
2096   Printer.printString("filename", N->getFilename(),
2097                       /* ShouldSkipEmpty */ false);
2098   Printer.printString("directory", N->getDirectory(),
2099                       /* ShouldSkipEmpty */ false);
2100   // Print all values for checksum together, or not at all.
2101   if (N->getChecksum())
2102     Printer.printChecksum(*N->getChecksum());
2103   Printer.printString("source", N->getSource().getValueOr(StringRef()),
2104                       /* ShouldSkipEmpty */ true);
2105   Out << ")";
2106 }
2107 
2108 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
2109                                TypePrinting *TypePrinter, SlotTracker *Machine,
2110                                const Module *Context) {
2111   Out << "!DICompileUnit(";
2112   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2113   Printer.printDwarfEnum("language", N->getSourceLanguage(),
2114                          dwarf::LanguageString, /* ShouldSkipZero */ false);
2115   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2116   Printer.printString("producer", N->getProducer());
2117   Printer.printBool("isOptimized", N->isOptimized());
2118   Printer.printString("flags", N->getFlags());
2119   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2120                    /* ShouldSkipZero */ false);
2121   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2122   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2123   Printer.printMetadata("enums", N->getRawEnumTypes());
2124   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2125   Printer.printMetadata("globals", N->getRawGlobalVariables());
2126   Printer.printMetadata("imports", N->getRawImportedEntities());
2127   Printer.printMetadata("macros", N->getRawMacros());
2128   Printer.printInt("dwoId", N->getDWOId());
2129   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2130   Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2131                     false);
2132   Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2133   Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2134   Printer.printString("sysroot", N->getSysRoot());
2135   Printer.printString("sdk", N->getSDK());
2136   Out << ")";
2137 }
2138 
2139 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2140                               TypePrinting *TypePrinter, SlotTracker *Machine,
2141                               const Module *Context) {
2142   Out << "!DISubprogram(";
2143   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2144   Printer.printString("name", N->getName());
2145   Printer.printString("linkageName", N->getLinkageName());
2146   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2147   Printer.printMetadata("file", N->getRawFile());
2148   Printer.printInt("line", N->getLine());
2149   Printer.printMetadata("type", N->getRawType());
2150   Printer.printInt("scopeLine", N->getScopeLine());
2151   Printer.printMetadata("containingType", N->getRawContainingType());
2152   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2153       N->getVirtualIndex() != 0)
2154     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2155   Printer.printInt("thisAdjustment", N->getThisAdjustment());
2156   Printer.printDIFlags("flags", N->getFlags());
2157   Printer.printDISPFlags("spFlags", N->getSPFlags());
2158   Printer.printMetadata("unit", N->getRawUnit());
2159   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2160   Printer.printMetadata("declaration", N->getRawDeclaration());
2161   Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2162   Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2163   Printer.printMetadata("annotations", N->getRawAnnotations());
2164   Out << ")";
2165 }
2166 
2167 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2168                                 TypePrinting *TypePrinter, SlotTracker *Machine,
2169                                 const Module *Context) {
2170   Out << "!DILexicalBlock(";
2171   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2172   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2173   Printer.printMetadata("file", N->getRawFile());
2174   Printer.printInt("line", N->getLine());
2175   Printer.printInt("column", N->getColumn());
2176   Out << ")";
2177 }
2178 
2179 static void writeDILexicalBlockFile(raw_ostream &Out,
2180                                     const DILexicalBlockFile *N,
2181                                     TypePrinting *TypePrinter,
2182                                     SlotTracker *Machine,
2183                                     const Module *Context) {
2184   Out << "!DILexicalBlockFile(";
2185   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2186   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2187   Printer.printMetadata("file", N->getRawFile());
2188   Printer.printInt("discriminator", N->getDiscriminator(),
2189                    /* ShouldSkipZero */ false);
2190   Out << ")";
2191 }
2192 
2193 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2194                              TypePrinting *TypePrinter, SlotTracker *Machine,
2195                              const Module *Context) {
2196   Out << "!DINamespace(";
2197   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2198   Printer.printString("name", N->getName());
2199   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2200   Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2201   Out << ")";
2202 }
2203 
2204 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2205                                TypePrinting *TypePrinter, SlotTracker *Machine,
2206                                const Module *Context) {
2207   Out << "!DICommonBlock(";
2208   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2209   Printer.printMetadata("scope", N->getRawScope(), false);
2210   Printer.printMetadata("declaration", N->getRawDecl(), false);
2211   Printer.printString("name", N->getName());
2212   Printer.printMetadata("file", N->getRawFile());
2213   Printer.printInt("line", N->getLineNo());
2214   Out << ")";
2215 }
2216 
2217 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2218                          TypePrinting *TypePrinter, SlotTracker *Machine,
2219                          const Module *Context) {
2220   Out << "!DIMacro(";
2221   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2222   Printer.printMacinfoType(N);
2223   Printer.printInt("line", N->getLine());
2224   Printer.printString("name", N->getName());
2225   Printer.printString("value", N->getValue());
2226   Out << ")";
2227 }
2228 
2229 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2230                              TypePrinting *TypePrinter, SlotTracker *Machine,
2231                              const Module *Context) {
2232   Out << "!DIMacroFile(";
2233   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2234   Printer.printInt("line", N->getLine());
2235   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2236   Printer.printMetadata("nodes", N->getRawElements());
2237   Out << ")";
2238 }
2239 
2240 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2241                           TypePrinting *TypePrinter, SlotTracker *Machine,
2242                           const Module *Context) {
2243   Out << "!DIModule(";
2244   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2245   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2246   Printer.printString("name", N->getName());
2247   Printer.printString("configMacros", N->getConfigurationMacros());
2248   Printer.printString("includePath", N->getIncludePath());
2249   Printer.printString("apinotes", N->getAPINotesFile());
2250   Printer.printMetadata("file", N->getRawFile());
2251   Printer.printInt("line", N->getLineNo());
2252   Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2253   Out << ")";
2254 }
2255 
2256 
2257 static void writeDITemplateTypeParameter(raw_ostream &Out,
2258                                          const DITemplateTypeParameter *N,
2259                                          TypePrinting *TypePrinter,
2260                                          SlotTracker *Machine,
2261                                          const Module *Context) {
2262   Out << "!DITemplateTypeParameter(";
2263   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2264   Printer.printString("name", N->getName());
2265   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2266   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2267   Out << ")";
2268 }
2269 
2270 static void writeDITemplateValueParameter(raw_ostream &Out,
2271                                           const DITemplateValueParameter *N,
2272                                           TypePrinting *TypePrinter,
2273                                           SlotTracker *Machine,
2274                                           const Module *Context) {
2275   Out << "!DITemplateValueParameter(";
2276   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2277   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2278     Printer.printTag(N);
2279   Printer.printString("name", N->getName());
2280   Printer.printMetadata("type", N->getRawType());
2281   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2282   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2283   Out << ")";
2284 }
2285 
2286 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2287                                   TypePrinting *TypePrinter,
2288                                   SlotTracker *Machine, const Module *Context) {
2289   Out << "!DIGlobalVariable(";
2290   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2291   Printer.printString("name", N->getName());
2292   Printer.printString("linkageName", N->getLinkageName());
2293   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2294   Printer.printMetadata("file", N->getRawFile());
2295   Printer.printInt("line", N->getLine());
2296   Printer.printMetadata("type", N->getRawType());
2297   Printer.printBool("isLocal", N->isLocalToUnit());
2298   Printer.printBool("isDefinition", N->isDefinition());
2299   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2300   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2301   Printer.printInt("align", N->getAlignInBits());
2302   Printer.printMetadata("annotations", N->getRawAnnotations());
2303   Out << ")";
2304 }
2305 
2306 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2307                                  TypePrinting *TypePrinter,
2308                                  SlotTracker *Machine, const Module *Context) {
2309   Out << "!DILocalVariable(";
2310   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2311   Printer.printString("name", N->getName());
2312   Printer.printInt("arg", N->getArg());
2313   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2314   Printer.printMetadata("file", N->getRawFile());
2315   Printer.printInt("line", N->getLine());
2316   Printer.printMetadata("type", N->getRawType());
2317   Printer.printDIFlags("flags", N->getFlags());
2318   Printer.printInt("align", N->getAlignInBits());
2319   Printer.printMetadata("annotations", N->getRawAnnotations());
2320   Out << ")";
2321 }
2322 
2323 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2324                          TypePrinting *TypePrinter,
2325                          SlotTracker *Machine, const Module *Context) {
2326   Out << "!DILabel(";
2327   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2328   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2329   Printer.printString("name", N->getName());
2330   Printer.printMetadata("file", N->getRawFile());
2331   Printer.printInt("line", N->getLine());
2332   Out << ")";
2333 }
2334 
2335 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2336                               TypePrinting *TypePrinter, SlotTracker *Machine,
2337                               const Module *Context) {
2338   Out << "!DIExpression(";
2339   FieldSeparator FS;
2340   if (N->isValid()) {
2341     for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2342       auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2343       assert(!OpStr.empty() && "Expected valid opcode");
2344 
2345       Out << FS << OpStr;
2346       if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2347         Out << FS << Op.getArg(0);
2348         Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2349       } else {
2350         for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2351           Out << FS << Op.getArg(A);
2352       }
2353     }
2354   } else {
2355     for (const auto &I : N->getElements())
2356       Out << FS << I;
2357   }
2358   Out << ")";
2359 }
2360 
2361 static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2362                            TypePrinting *TypePrinter, SlotTracker *Machine,
2363                            const Module *Context, bool FromValue = false) {
2364   assert(FromValue &&
2365          "Unexpected DIArgList metadata outside of value argument");
2366   Out << "!DIArgList(";
2367   FieldSeparator FS;
2368   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2369   for (Metadata *Arg : N->getArgs()) {
2370     Out << FS;
2371     WriteAsOperandInternal(Out, Arg, TypePrinter, Machine, Context, true);
2372   }
2373   Out << ")";
2374 }
2375 
2376 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2377                                             const DIGlobalVariableExpression *N,
2378                                             TypePrinting *TypePrinter,
2379                                             SlotTracker *Machine,
2380                                             const Module *Context) {
2381   Out << "!DIGlobalVariableExpression(";
2382   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2383   Printer.printMetadata("var", N->getVariable());
2384   Printer.printMetadata("expr", N->getExpression());
2385   Out << ")";
2386 }
2387 
2388 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2389                                 TypePrinting *TypePrinter, SlotTracker *Machine,
2390                                 const Module *Context) {
2391   Out << "!DIObjCProperty(";
2392   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2393   Printer.printString("name", N->getName());
2394   Printer.printMetadata("file", N->getRawFile());
2395   Printer.printInt("line", N->getLine());
2396   Printer.printString("setter", N->getSetterName());
2397   Printer.printString("getter", N->getGetterName());
2398   Printer.printInt("attributes", N->getAttributes());
2399   Printer.printMetadata("type", N->getRawType());
2400   Out << ")";
2401 }
2402 
2403 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2404                                   TypePrinting *TypePrinter,
2405                                   SlotTracker *Machine, const Module *Context) {
2406   Out << "!DIImportedEntity(";
2407   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2408   Printer.printTag(N);
2409   Printer.printString("name", N->getName());
2410   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2411   Printer.printMetadata("entity", N->getRawEntity());
2412   Printer.printMetadata("file", N->getRawFile());
2413   Printer.printInt("line", N->getLine());
2414   Printer.printMetadata("elements", N->getRawElements());
2415   Out << ")";
2416 }
2417 
2418 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2419                                     TypePrinting *TypePrinter,
2420                                     SlotTracker *Machine,
2421                                     const Module *Context) {
2422   if (Node->isDistinct())
2423     Out << "distinct ";
2424   else if (Node->isTemporary())
2425     Out << "<temporary!> "; // Handle broken code.
2426 
2427   switch (Node->getMetadataID()) {
2428   default:
2429     llvm_unreachable("Expected uniquable MDNode");
2430 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2431   case Metadata::CLASS##Kind:                                                  \
2432     write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context);       \
2433     break;
2434 #include "llvm/IR/Metadata.def"
2435   }
2436 }
2437 
2438 // Full implementation of printing a Value as an operand with support for
2439 // TypePrinting, etc.
2440 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2441                                    TypePrinting *TypePrinter,
2442                                    SlotTracker *Machine,
2443                                    const Module *Context) {
2444   if (V->hasName()) {
2445     PrintLLVMName(Out, V);
2446     return;
2447   }
2448 
2449   const Constant *CV = dyn_cast<Constant>(V);
2450   if (CV && !isa<GlobalValue>(CV)) {
2451     assert(TypePrinter && "Constants require TypePrinting!");
2452     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
2453     return;
2454   }
2455 
2456   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2457     Out << "asm ";
2458     if (IA->hasSideEffects())
2459       Out << "sideeffect ";
2460     if (IA->isAlignStack())
2461       Out << "alignstack ";
2462     // We don't emit the AD_ATT dialect as it's the assumed default.
2463     if (IA->getDialect() == InlineAsm::AD_Intel)
2464       Out << "inteldialect ";
2465     if (IA->canThrow())
2466       Out << "unwind ";
2467     Out << '"';
2468     printEscapedString(IA->getAsmString(), Out);
2469     Out << "\", \"";
2470     printEscapedString(IA->getConstraintString(), Out);
2471     Out << '"';
2472     return;
2473   }
2474 
2475   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2476     WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
2477                            Context, /* FromValue */ true);
2478     return;
2479   }
2480 
2481   char Prefix = '%';
2482   int Slot;
2483   // If we have a SlotTracker, use it.
2484   if (Machine) {
2485     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2486       Slot = Machine->getGlobalSlot(GV);
2487       Prefix = '@';
2488     } else {
2489       Slot = Machine->getLocalSlot(V);
2490 
2491       // If the local value didn't succeed, then we may be referring to a value
2492       // from a different function.  Translate it, as this can happen when using
2493       // address of blocks.
2494       if (Slot == -1)
2495         if ((Machine = createSlotTracker(V))) {
2496           Slot = Machine->getLocalSlot(V);
2497           delete Machine;
2498         }
2499     }
2500   } else if ((Machine = createSlotTracker(V))) {
2501     // Otherwise, create one to get the # and then destroy it.
2502     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2503       Slot = Machine->getGlobalSlot(GV);
2504       Prefix = '@';
2505     } else {
2506       Slot = Machine->getLocalSlot(V);
2507     }
2508     delete Machine;
2509     Machine = nullptr;
2510   } else {
2511     Slot = -1;
2512   }
2513 
2514   if (Slot != -1)
2515     Out << Prefix << Slot;
2516   else
2517     Out << "<badref>";
2518 }
2519 
2520 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2521                                    TypePrinting *TypePrinter,
2522                                    SlotTracker *Machine, const Module *Context,
2523                                    bool FromValue) {
2524   // Write DIExpressions and DIArgLists inline when used as a value. Improves
2525   // readability of debug info intrinsics.
2526   if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2527     writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
2528     return;
2529   }
2530   if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2531     writeDIArgList(Out, ArgList, TypePrinter, Machine, Context, FromValue);
2532     return;
2533   }
2534 
2535   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2536     std::unique_ptr<SlotTracker> MachineStorage;
2537     if (!Machine) {
2538       MachineStorage = std::make_unique<SlotTracker>(Context);
2539       Machine = MachineStorage.get();
2540     }
2541     int Slot = Machine->getMetadataSlot(N);
2542     if (Slot == -1) {
2543       if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2544         writeDILocation(Out, Loc, TypePrinter, Machine, Context);
2545         return;
2546       }
2547       // Give the pointer value instead of "badref", since this comes up all
2548       // the time when debugging.
2549       Out << "<" << N << ">";
2550     } else
2551       Out << '!' << Slot;
2552     return;
2553   }
2554 
2555   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2556     Out << "!\"";
2557     printEscapedString(MDS->getString(), Out);
2558     Out << '"';
2559     return;
2560   }
2561 
2562   auto *V = cast<ValueAsMetadata>(MD);
2563   assert(TypePrinter && "TypePrinter required for metadata values");
2564   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2565          "Unexpected function-local metadata outside of value argument");
2566 
2567   TypePrinter->print(V->getValue()->getType(), Out);
2568   Out << ' ';
2569   WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2570 }
2571 
2572 namespace {
2573 
2574 class AssemblyWriter {
2575   formatted_raw_ostream &Out;
2576   const Module *TheModule = nullptr;
2577   const ModuleSummaryIndex *TheIndex = nullptr;
2578   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2579   SlotTracker &Machine;
2580   TypePrinting TypePrinter;
2581   AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2582   SetVector<const Comdat *> Comdats;
2583   bool IsForDebug;
2584   bool ShouldPreserveUseListOrder;
2585   UseListOrderMap UseListOrders;
2586   SmallVector<StringRef, 8> MDNames;
2587   /// Synchronization scope names registered with LLVMContext.
2588   SmallVector<StringRef, 8> SSNs;
2589   DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2590 
2591 public:
2592   /// Construct an AssemblyWriter with an external SlotTracker
2593   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2594                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2595                  bool ShouldPreserveUseListOrder = false);
2596 
2597   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2598                  const ModuleSummaryIndex *Index, bool IsForDebug);
2599 
2600   void printMDNodeBody(const MDNode *MD);
2601   void printNamedMDNode(const NamedMDNode *NMD);
2602 
2603   void printModule(const Module *M);
2604 
2605   void writeOperand(const Value *Op, bool PrintType);
2606   void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2607   void writeOperandBundles(const CallBase *Call);
2608   void writeSyncScope(const LLVMContext &Context,
2609                       SyncScope::ID SSID);
2610   void writeAtomic(const LLVMContext &Context,
2611                    AtomicOrdering Ordering,
2612                    SyncScope::ID SSID);
2613   void writeAtomicCmpXchg(const LLVMContext &Context,
2614                           AtomicOrdering SuccessOrdering,
2615                           AtomicOrdering FailureOrdering,
2616                           SyncScope::ID SSID);
2617 
2618   void writeAllMDNodes();
2619   void writeMDNode(unsigned Slot, const MDNode *Node);
2620   void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2621   void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2622   void writeAllAttributeGroups();
2623 
2624   void printTypeIdentities();
2625   void printGlobal(const GlobalVariable *GV);
2626   void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2627   void printComdat(const Comdat *C);
2628   void printFunction(const Function *F);
2629   void printArgument(const Argument *FA, AttributeSet Attrs);
2630   void printBasicBlock(const BasicBlock *BB);
2631   void printInstructionLine(const Instruction &I);
2632   void printInstruction(const Instruction &I);
2633 
2634   void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
2635   void printUseLists(const Function *F);
2636 
2637   void printModuleSummaryIndex();
2638   void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2639   void printSummary(const GlobalValueSummary &Summary);
2640   void printAliasSummary(const AliasSummary *AS);
2641   void printGlobalVarSummary(const GlobalVarSummary *GS);
2642   void printFunctionSummary(const FunctionSummary *FS);
2643   void printTypeIdSummary(const TypeIdSummary &TIS);
2644   void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2645   void printTypeTestResolution(const TypeTestResolution &TTRes);
2646   void printArgs(const std::vector<uint64_t> &Args);
2647   void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2648   void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2649   void printVFuncId(const FunctionSummary::VFuncId VFId);
2650   void
2651   printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2652                       const char *Tag);
2653   void
2654   printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2655                    const char *Tag);
2656 
2657 private:
2658   /// Print out metadata attachments.
2659   void printMetadataAttachments(
2660       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2661       StringRef Separator);
2662 
2663   // printInfoComment - Print a little comment after the instruction indicating
2664   // which slot it occupies.
2665   void printInfoComment(const Value &V);
2666 
2667   // printGCRelocateComment - print comment after call to the gc.relocate
2668   // intrinsic indicating base and derived pointer names.
2669   void printGCRelocateComment(const GCRelocateInst &Relocate);
2670 };
2671 
2672 } // end anonymous namespace
2673 
2674 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2675                                const Module *M, AssemblyAnnotationWriter *AAW,
2676                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2677     : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2678       IsForDebug(IsForDebug),
2679       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2680   if (!TheModule)
2681     return;
2682   for (const GlobalObject &GO : TheModule->global_objects())
2683     if (const Comdat *C = GO.getComdat())
2684       Comdats.insert(C);
2685 }
2686 
2687 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2688                                const ModuleSummaryIndex *Index, bool IsForDebug)
2689     : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2690       IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2691 
2692 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2693   if (!Operand) {
2694     Out << "<null operand!>";
2695     return;
2696   }
2697   if (PrintType) {
2698     TypePrinter.print(Operand->getType(), Out);
2699     Out << ' ';
2700   }
2701   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2702 }
2703 
2704 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2705                                     SyncScope::ID SSID) {
2706   switch (SSID) {
2707   case SyncScope::System: {
2708     break;
2709   }
2710   default: {
2711     if (SSNs.empty())
2712       Context.getSyncScopeNames(SSNs);
2713 
2714     Out << " syncscope(\"";
2715     printEscapedString(SSNs[SSID], Out);
2716     Out << "\")";
2717     break;
2718   }
2719   }
2720 }
2721 
2722 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2723                                  AtomicOrdering Ordering,
2724                                  SyncScope::ID SSID) {
2725   if (Ordering == AtomicOrdering::NotAtomic)
2726     return;
2727 
2728   writeSyncScope(Context, SSID);
2729   Out << " " << toIRString(Ordering);
2730 }
2731 
2732 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2733                                         AtomicOrdering SuccessOrdering,
2734                                         AtomicOrdering FailureOrdering,
2735                                         SyncScope::ID SSID) {
2736   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2737          FailureOrdering != AtomicOrdering::NotAtomic);
2738 
2739   writeSyncScope(Context, SSID);
2740   Out << " " << toIRString(SuccessOrdering);
2741   Out << " " << toIRString(FailureOrdering);
2742 }
2743 
2744 void AssemblyWriter::writeParamOperand(const Value *Operand,
2745                                        AttributeSet Attrs) {
2746   if (!Operand) {
2747     Out << "<null operand!>";
2748     return;
2749   }
2750 
2751   // Print the type
2752   TypePrinter.print(Operand->getType(), Out);
2753   // Print parameter attributes list
2754   if (Attrs.hasAttributes()) {
2755     Out << ' ';
2756     writeAttributeSet(Attrs);
2757   }
2758   Out << ' ';
2759   // Print the operand
2760   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2761 }
2762 
2763 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2764   if (!Call->hasOperandBundles())
2765     return;
2766 
2767   Out << " [ ";
2768 
2769   bool FirstBundle = true;
2770   for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2771     OperandBundleUse BU = Call->getOperandBundleAt(i);
2772 
2773     if (!FirstBundle)
2774       Out << ", ";
2775     FirstBundle = false;
2776 
2777     Out << '"';
2778     printEscapedString(BU.getTagName(), Out);
2779     Out << '"';
2780 
2781     Out << '(';
2782 
2783     bool FirstInput = true;
2784     for (const auto &Input : BU.Inputs) {
2785       if (!FirstInput)
2786         Out << ", ";
2787       FirstInput = false;
2788 
2789       TypePrinter.print(Input->getType(), Out);
2790       Out << " ";
2791       WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2792     }
2793 
2794     Out << ')';
2795   }
2796 
2797   Out << " ]";
2798 }
2799 
2800 void AssemblyWriter::printModule(const Module *M) {
2801   Machine.initializeIfNeeded();
2802 
2803   if (ShouldPreserveUseListOrder)
2804     UseListOrders = predictUseListOrder(M);
2805 
2806   if (!M->getModuleIdentifier().empty() &&
2807       // Don't print the ID if it will start a new line (which would
2808       // require a comment char before it).
2809       M->getModuleIdentifier().find('\n') == std::string::npos)
2810     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2811 
2812   if (!M->getSourceFileName().empty()) {
2813     Out << "source_filename = \"";
2814     printEscapedString(M->getSourceFileName(), Out);
2815     Out << "\"\n";
2816   }
2817 
2818   const std::string &DL = M->getDataLayoutStr();
2819   if (!DL.empty())
2820     Out << "target datalayout = \"" << DL << "\"\n";
2821   if (!M->getTargetTriple().empty())
2822     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2823 
2824   if (!M->getModuleInlineAsm().empty()) {
2825     Out << '\n';
2826 
2827     // Split the string into lines, to make it easier to read the .ll file.
2828     StringRef Asm = M->getModuleInlineAsm();
2829     do {
2830       StringRef Front;
2831       std::tie(Front, Asm) = Asm.split('\n');
2832 
2833       // We found a newline, print the portion of the asm string from the
2834       // last newline up to this newline.
2835       Out << "module asm \"";
2836       printEscapedString(Front, Out);
2837       Out << "\"\n";
2838     } while (!Asm.empty());
2839   }
2840 
2841   printTypeIdentities();
2842 
2843   // Output all comdats.
2844   if (!Comdats.empty())
2845     Out << '\n';
2846   for (const Comdat *C : Comdats) {
2847     printComdat(C);
2848     if (C != Comdats.back())
2849       Out << '\n';
2850   }
2851 
2852   // Output all globals.
2853   if (!M->global_empty()) Out << '\n';
2854   for (const GlobalVariable &GV : M->globals()) {
2855     printGlobal(&GV); Out << '\n';
2856   }
2857 
2858   // Output all aliases.
2859   if (!M->alias_empty()) Out << "\n";
2860   for (const GlobalAlias &GA : M->aliases())
2861     printIndirectSymbol(&GA);
2862 
2863   // Output all ifuncs.
2864   if (!M->ifunc_empty()) Out << "\n";
2865   for (const GlobalIFunc &GI : M->ifuncs())
2866     printIndirectSymbol(&GI);
2867 
2868   // Output all of the functions.
2869   for (const Function &F : *M) {
2870     Out << '\n';
2871     printFunction(&F);
2872   }
2873 
2874   // Output global use-lists.
2875   printUseLists(nullptr);
2876 
2877   // Output all attribute groups.
2878   if (!Machine.as_empty()) {
2879     Out << '\n';
2880     writeAllAttributeGroups();
2881   }
2882 
2883   // Output named metadata.
2884   if (!M->named_metadata_empty()) Out << '\n';
2885 
2886   for (const NamedMDNode &Node : M->named_metadata())
2887     printNamedMDNode(&Node);
2888 
2889   // Output metadata.
2890   if (!Machine.mdn_empty()) {
2891     Out << '\n';
2892     writeAllMDNodes();
2893   }
2894 }
2895 
2896 void AssemblyWriter::printModuleSummaryIndex() {
2897   assert(TheIndex);
2898   int NumSlots = Machine.initializeIndexIfNeeded();
2899 
2900   Out << "\n";
2901 
2902   // Print module path entries. To print in order, add paths to a vector
2903   // indexed by module slot.
2904   std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2905   std::string RegularLTOModuleName =
2906       ModuleSummaryIndex::getRegularLTOModuleName();
2907   moduleVec.resize(TheIndex->modulePaths().size());
2908   for (auto &ModPath : TheIndex->modulePaths())
2909     moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2910         // A module id of -1 is a special entry for a regular LTO module created
2911         // during the thin link.
2912         ModPath.second.first == -1u ? RegularLTOModuleName
2913                                     : (std::string)std::string(ModPath.first()),
2914         ModPath.second.second);
2915 
2916   unsigned i = 0;
2917   for (auto &ModPair : moduleVec) {
2918     Out << "^" << i++ << " = module: (";
2919     Out << "path: \"";
2920     printEscapedString(ModPair.first, Out);
2921     Out << "\", hash: (";
2922     FieldSeparator FS;
2923     for (auto Hash : ModPair.second)
2924       Out << FS << Hash;
2925     Out << "))\n";
2926   }
2927 
2928   // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2929   // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2930   for (auto &GlobalList : *TheIndex) {
2931     auto GUID = GlobalList.first;
2932     for (auto &Summary : GlobalList.second.SummaryList)
2933       SummaryToGUIDMap[Summary.get()] = GUID;
2934   }
2935 
2936   // Print the global value summary entries.
2937   for (auto &GlobalList : *TheIndex) {
2938     auto GUID = GlobalList.first;
2939     auto VI = TheIndex->getValueInfo(GlobalList);
2940     printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2941   }
2942 
2943   // Print the TypeIdMap entries.
2944   for (const auto &TID : TheIndex->typeIds()) {
2945     Out << "^" << Machine.getTypeIdSlot(TID.second.first)
2946         << " = typeid: (name: \"" << TID.second.first << "\"";
2947     printTypeIdSummary(TID.second.second);
2948     Out << ") ; guid = " << TID.first << "\n";
2949   }
2950 
2951   // Print the TypeIdCompatibleVtableMap entries.
2952   for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2953     auto GUID = GlobalValue::getGUID(TId.first);
2954     Out << "^" << Machine.getGUIDSlot(GUID)
2955         << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2956     printTypeIdCompatibleVtableSummary(TId.second);
2957     Out << ") ; guid = " << GUID << "\n";
2958   }
2959 
2960   // Don't emit flags when it's not really needed (value is zero by default).
2961   if (TheIndex->getFlags()) {
2962     Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
2963     ++NumSlots;
2964   }
2965 
2966   Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
2967       << "\n";
2968 }
2969 
2970 static const char *
2971 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2972   switch (K) {
2973   case WholeProgramDevirtResolution::Indir:
2974     return "indir";
2975   case WholeProgramDevirtResolution::SingleImpl:
2976     return "singleImpl";
2977   case WholeProgramDevirtResolution::BranchFunnel:
2978     return "branchFunnel";
2979   }
2980   llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2981 }
2982 
2983 static const char *getWholeProgDevirtResByArgKindName(
2984     WholeProgramDevirtResolution::ByArg::Kind K) {
2985   switch (K) {
2986   case WholeProgramDevirtResolution::ByArg::Indir:
2987     return "indir";
2988   case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2989     return "uniformRetVal";
2990   case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2991     return "uniqueRetVal";
2992   case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2993     return "virtualConstProp";
2994   }
2995   llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2996 }
2997 
2998 static const char *getTTResKindName(TypeTestResolution::Kind K) {
2999   switch (K) {
3000   case TypeTestResolution::Unknown:
3001     return "unknown";
3002   case TypeTestResolution::Unsat:
3003     return "unsat";
3004   case TypeTestResolution::ByteArray:
3005     return "byteArray";
3006   case TypeTestResolution::Inline:
3007     return "inline";
3008   case TypeTestResolution::Single:
3009     return "single";
3010   case TypeTestResolution::AllOnes:
3011     return "allOnes";
3012   }
3013   llvm_unreachable("invalid TypeTestResolution kind");
3014 }
3015 
3016 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
3017   Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
3018       << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
3019 
3020   // The following fields are only used if the target does not support the use
3021   // of absolute symbols to store constants. Print only if non-zero.
3022   if (TTRes.AlignLog2)
3023     Out << ", alignLog2: " << TTRes.AlignLog2;
3024   if (TTRes.SizeM1)
3025     Out << ", sizeM1: " << TTRes.SizeM1;
3026   if (TTRes.BitMask)
3027     // BitMask is uint8_t which causes it to print the corresponding char.
3028     Out << ", bitMask: " << (unsigned)TTRes.BitMask;
3029   if (TTRes.InlineBits)
3030     Out << ", inlineBits: " << TTRes.InlineBits;
3031 
3032   Out << ")";
3033 }
3034 
3035 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
3036   Out << ", summary: (";
3037   printTypeTestResolution(TIS.TTRes);
3038   if (!TIS.WPDRes.empty()) {
3039     Out << ", wpdResolutions: (";
3040     FieldSeparator FS;
3041     for (auto &WPDRes : TIS.WPDRes) {
3042       Out << FS;
3043       Out << "(offset: " << WPDRes.first << ", ";
3044       printWPDRes(WPDRes.second);
3045       Out << ")";
3046     }
3047     Out << ")";
3048   }
3049   Out << ")";
3050 }
3051 
3052 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3053     const TypeIdCompatibleVtableInfo &TI) {
3054   Out << ", summary: (";
3055   FieldSeparator FS;
3056   for (auto &P : TI) {
3057     Out << FS;
3058     Out << "(offset: " << P.AddressPointOffset << ", ";
3059     Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3060     Out << ")";
3061   }
3062   Out << ")";
3063 }
3064 
3065 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3066   Out << "args: (";
3067   FieldSeparator FS;
3068   for (auto arg : Args) {
3069     Out << FS;
3070     Out << arg;
3071   }
3072   Out << ")";
3073 }
3074 
3075 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3076   Out << "wpdRes: (kind: ";
3077   Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
3078 
3079   if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
3080     Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3081 
3082   if (!WPDRes.ResByArg.empty()) {
3083     Out << ", resByArg: (";
3084     FieldSeparator FS;
3085     for (auto &ResByArg : WPDRes.ResByArg) {
3086       Out << FS;
3087       printArgs(ResByArg.first);
3088       Out << ", byArg: (kind: ";
3089       Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3090       if (ResByArg.second.TheKind ==
3091               WholeProgramDevirtResolution::ByArg::UniformRetVal ||
3092           ResByArg.second.TheKind ==
3093               WholeProgramDevirtResolution::ByArg::UniqueRetVal)
3094         Out << ", info: " << ResByArg.second.Info;
3095 
3096       // The following fields are only used if the target does not support the
3097       // use of absolute symbols to store constants. Print only if non-zero.
3098       if (ResByArg.second.Byte || ResByArg.second.Bit)
3099         Out << ", byte: " << ResByArg.second.Byte
3100             << ", bit: " << ResByArg.second.Bit;
3101 
3102       Out << ")";
3103     }
3104     Out << ")";
3105   }
3106   Out << ")";
3107 }
3108 
3109 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
3110   switch (SK) {
3111   case GlobalValueSummary::AliasKind:
3112     return "alias";
3113   case GlobalValueSummary::FunctionKind:
3114     return "function";
3115   case GlobalValueSummary::GlobalVarKind:
3116     return "variable";
3117   }
3118   llvm_unreachable("invalid summary kind");
3119 }
3120 
3121 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3122   Out << ", aliasee: ";
3123   // The indexes emitted for distributed backends may not include the
3124   // aliasee summary (only if it is being imported directly). Handle
3125   // that case by just emitting "null" as the aliasee.
3126   if (AS->hasAliasee())
3127     Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3128   else
3129     Out << "null";
3130 }
3131 
3132 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3133   auto VTableFuncs = GS->vTableFuncs();
3134   Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3135       << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3136       << "constant: " << GS->VarFlags.Constant;
3137   if (!VTableFuncs.empty())
3138     Out << ", "
3139         << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3140   Out << ")";
3141 
3142   if (!VTableFuncs.empty()) {
3143     Out << ", vTableFuncs: (";
3144     FieldSeparator FS;
3145     for (auto &P : VTableFuncs) {
3146       Out << FS;
3147       Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3148           << ", offset: " << P.VTableOffset;
3149       Out << ")";
3150     }
3151     Out << ")";
3152   }
3153 }
3154 
3155 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3156   switch (LT) {
3157   case GlobalValue::ExternalLinkage:
3158     return "external";
3159   case GlobalValue::PrivateLinkage:
3160     return "private";
3161   case GlobalValue::InternalLinkage:
3162     return "internal";
3163   case GlobalValue::LinkOnceAnyLinkage:
3164     return "linkonce";
3165   case GlobalValue::LinkOnceODRLinkage:
3166     return "linkonce_odr";
3167   case GlobalValue::WeakAnyLinkage:
3168     return "weak";
3169   case GlobalValue::WeakODRLinkage:
3170     return "weak_odr";
3171   case GlobalValue::CommonLinkage:
3172     return "common";
3173   case GlobalValue::AppendingLinkage:
3174     return "appending";
3175   case GlobalValue::ExternalWeakLinkage:
3176     return "extern_weak";
3177   case GlobalValue::AvailableExternallyLinkage:
3178     return "available_externally";
3179   }
3180   llvm_unreachable("invalid linkage");
3181 }
3182 
3183 // When printing the linkage types in IR where the ExternalLinkage is
3184 // not printed, and other linkage types are expected to be printed with
3185 // a space after the name.
3186 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3187   if (LT == GlobalValue::ExternalLinkage)
3188     return "";
3189   return getLinkageName(LT) + " ";
3190 }
3191 
3192 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
3193   switch (Vis) {
3194   case GlobalValue::DefaultVisibility:
3195     return "default";
3196   case GlobalValue::HiddenVisibility:
3197     return "hidden";
3198   case GlobalValue::ProtectedVisibility:
3199     return "protected";
3200   }
3201   llvm_unreachable("invalid visibility");
3202 }
3203 
3204 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3205   Out << ", insts: " << FS->instCount();
3206   if (FS->fflags().anyFlagSet())
3207     Out << ", " << FS->fflags();
3208 
3209   if (!FS->calls().empty()) {
3210     Out << ", calls: (";
3211     FieldSeparator IFS;
3212     for (auto &Call : FS->calls()) {
3213       Out << IFS;
3214       Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3215       if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3216         Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3217       else if (Call.second.RelBlockFreq)
3218         Out << ", relbf: " << Call.second.RelBlockFreq;
3219       Out << ")";
3220     }
3221     Out << ")";
3222   }
3223 
3224   if (const auto *TIdInfo = FS->getTypeIdInfo())
3225     printTypeIdInfo(*TIdInfo);
3226 
3227   auto PrintRange = [&](const ConstantRange &Range) {
3228     Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3229   };
3230 
3231   if (!FS->paramAccesses().empty()) {
3232     Out << ", params: (";
3233     FieldSeparator IFS;
3234     for (auto &PS : FS->paramAccesses()) {
3235       Out << IFS;
3236       Out << "(param: " << PS.ParamNo;
3237       Out << ", offset: ";
3238       PrintRange(PS.Use);
3239       if (!PS.Calls.empty()) {
3240         Out << ", calls: (";
3241         FieldSeparator IFS;
3242         for (auto &Call : PS.Calls) {
3243           Out << IFS;
3244           Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3245           Out << ", param: " << Call.ParamNo;
3246           Out << ", offset: ";
3247           PrintRange(Call.Offsets);
3248           Out << ")";
3249         }
3250         Out << ")";
3251       }
3252       Out << ")";
3253     }
3254     Out << ")";
3255   }
3256 }
3257 
3258 void AssemblyWriter::printTypeIdInfo(
3259     const FunctionSummary::TypeIdInfo &TIDInfo) {
3260   Out << ", typeIdInfo: (";
3261   FieldSeparator TIDFS;
3262   if (!TIDInfo.TypeTests.empty()) {
3263     Out << TIDFS;
3264     Out << "typeTests: (";
3265     FieldSeparator FS;
3266     for (auto &GUID : TIDInfo.TypeTests) {
3267       auto TidIter = TheIndex->typeIds().equal_range(GUID);
3268       if (TidIter.first == TidIter.second) {
3269         Out << FS;
3270         Out << GUID;
3271         continue;
3272       }
3273       // Print all type id that correspond to this GUID.
3274       for (auto It = TidIter.first; It != TidIter.second; ++It) {
3275         Out << FS;
3276         auto Slot = Machine.getTypeIdSlot(It->second.first);
3277         assert(Slot != -1);
3278         Out << "^" << Slot;
3279       }
3280     }
3281     Out << ")";
3282   }
3283   if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3284     Out << TIDFS;
3285     printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3286   }
3287   if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3288     Out << TIDFS;
3289     printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3290   }
3291   if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3292     Out << TIDFS;
3293     printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3294                      "typeTestAssumeConstVCalls");
3295   }
3296   if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3297     Out << TIDFS;
3298     printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3299                      "typeCheckedLoadConstVCalls");
3300   }
3301   Out << ")";
3302 }
3303 
3304 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3305   auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3306   if (TidIter.first == TidIter.second) {
3307     Out << "vFuncId: (";
3308     Out << "guid: " << VFId.GUID;
3309     Out << ", offset: " << VFId.Offset;
3310     Out << ")";
3311     return;
3312   }
3313   // Print all type id that correspond to this GUID.
3314   FieldSeparator FS;
3315   for (auto It = TidIter.first; It != TidIter.second; ++It) {
3316     Out << FS;
3317     Out << "vFuncId: (";
3318     auto Slot = Machine.getTypeIdSlot(It->second.first);
3319     assert(Slot != -1);
3320     Out << "^" << Slot;
3321     Out << ", offset: " << VFId.Offset;
3322     Out << ")";
3323   }
3324 }
3325 
3326 void AssemblyWriter::printNonConstVCalls(
3327     const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3328   Out << Tag << ": (";
3329   FieldSeparator FS;
3330   for (auto &VFuncId : VCallList) {
3331     Out << FS;
3332     printVFuncId(VFuncId);
3333   }
3334   Out << ")";
3335 }
3336 
3337 void AssemblyWriter::printConstVCalls(
3338     const std::vector<FunctionSummary::ConstVCall> &VCallList,
3339     const char *Tag) {
3340   Out << Tag << ": (";
3341   FieldSeparator FS;
3342   for (auto &ConstVCall : VCallList) {
3343     Out << FS;
3344     Out << "(";
3345     printVFuncId(ConstVCall.VFunc);
3346     if (!ConstVCall.Args.empty()) {
3347       Out << ", ";
3348       printArgs(ConstVCall.Args);
3349     }
3350     Out << ")";
3351   }
3352   Out << ")";
3353 }
3354 
3355 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3356   GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3357   GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3358   Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3359   Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3360       << ", flags: (";
3361   Out << "linkage: " << getLinkageName(LT);
3362   Out << ", visibility: "
3363       << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
3364   Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3365   Out << ", live: " << GVFlags.Live;
3366   Out << ", dsoLocal: " << GVFlags.DSOLocal;
3367   Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3368   Out << ")";
3369 
3370   if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3371     printAliasSummary(cast<AliasSummary>(&Summary));
3372   else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3373     printFunctionSummary(cast<FunctionSummary>(&Summary));
3374   else
3375     printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3376 
3377   auto RefList = Summary.refs();
3378   if (!RefList.empty()) {
3379     Out << ", refs: (";
3380     FieldSeparator FS;
3381     for (auto &Ref : RefList) {
3382       Out << FS;
3383       if (Ref.isReadOnly())
3384         Out << "readonly ";
3385       else if (Ref.isWriteOnly())
3386         Out << "writeonly ";
3387       Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3388     }
3389     Out << ")";
3390   }
3391 
3392   Out << ")";
3393 }
3394 
3395 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3396   Out << "^" << Slot << " = gv: (";
3397   if (!VI.name().empty())
3398     Out << "name: \"" << VI.name() << "\"";
3399   else
3400     Out << "guid: " << VI.getGUID();
3401   if (!VI.getSummaryList().empty()) {
3402     Out << ", summaries: (";
3403     FieldSeparator FS;
3404     for (auto &Summary : VI.getSummaryList()) {
3405       Out << FS;
3406       printSummary(*Summary);
3407     }
3408     Out << ")";
3409   }
3410   Out << ")";
3411   if (!VI.name().empty())
3412     Out << " ; guid = " << VI.getGUID();
3413   Out << "\n";
3414 }
3415 
3416 static void printMetadataIdentifier(StringRef Name,
3417                                     formatted_raw_ostream &Out) {
3418   if (Name.empty()) {
3419     Out << "<empty name> ";
3420   } else {
3421     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3422         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3423       Out << Name[0];
3424     else
3425       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3426     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3427       unsigned char C = Name[i];
3428       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3429           C == '.' || C == '_')
3430         Out << C;
3431       else
3432         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3433     }
3434   }
3435 }
3436 
3437 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3438   Out << '!';
3439   printMetadataIdentifier(NMD->getName(), Out);
3440   Out << " = !{";
3441   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3442     if (i)
3443       Out << ", ";
3444 
3445     // Write DIExpressions inline.
3446     // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3447     MDNode *Op = NMD->getOperand(i);
3448     assert(!isa<DIArgList>(Op) &&
3449            "DIArgLists should not appear in NamedMDNodes");
3450     if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3451       writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
3452       continue;
3453     }
3454 
3455     int Slot = Machine.getMetadataSlot(Op);
3456     if (Slot == -1)
3457       Out << "<badref>";
3458     else
3459       Out << '!' << Slot;
3460   }
3461   Out << "}\n";
3462 }
3463 
3464 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3465                             formatted_raw_ostream &Out) {
3466   switch (Vis) {
3467   case GlobalValue::DefaultVisibility: break;
3468   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
3469   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3470   }
3471 }
3472 
3473 static void PrintDSOLocation(const GlobalValue &GV,
3474                              formatted_raw_ostream &Out) {
3475   if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3476     Out << "dso_local ";
3477 }
3478 
3479 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3480                                  formatted_raw_ostream &Out) {
3481   switch (SCT) {
3482   case GlobalValue::DefaultStorageClass: break;
3483   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3484   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3485   }
3486 }
3487 
3488 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3489                                   formatted_raw_ostream &Out) {
3490   switch (TLM) {
3491     case GlobalVariable::NotThreadLocal:
3492       break;
3493     case GlobalVariable::GeneralDynamicTLSModel:
3494       Out << "thread_local ";
3495       break;
3496     case GlobalVariable::LocalDynamicTLSModel:
3497       Out << "thread_local(localdynamic) ";
3498       break;
3499     case GlobalVariable::InitialExecTLSModel:
3500       Out << "thread_local(initialexec) ";
3501       break;
3502     case GlobalVariable::LocalExecTLSModel:
3503       Out << "thread_local(localexec) ";
3504       break;
3505   }
3506 }
3507 
3508 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3509   switch (UA) {
3510   case GlobalVariable::UnnamedAddr::None:
3511     return "";
3512   case GlobalVariable::UnnamedAddr::Local:
3513     return "local_unnamed_addr";
3514   case GlobalVariable::UnnamedAddr::Global:
3515     return "unnamed_addr";
3516   }
3517   llvm_unreachable("Unknown UnnamedAddr");
3518 }
3519 
3520 static void maybePrintComdat(formatted_raw_ostream &Out,
3521                              const GlobalObject &GO) {
3522   const Comdat *C = GO.getComdat();
3523   if (!C)
3524     return;
3525 
3526   if (isa<GlobalVariable>(GO))
3527     Out << ',';
3528   Out << " comdat";
3529 
3530   if (GO.getName() == C->getName())
3531     return;
3532 
3533   Out << '(';
3534   PrintLLVMName(Out, C->getName(), ComdatPrefix);
3535   Out << ')';
3536 }
3537 
3538 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3539   if (GV->isMaterializable())
3540     Out << "; Materializable\n";
3541 
3542   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
3543   Out << " = ";
3544 
3545   if (!GV->hasInitializer() && GV->hasExternalLinkage())
3546     Out << "external ";
3547 
3548   Out << getLinkageNameWithSpace(GV->getLinkage());
3549   PrintDSOLocation(*GV, Out);
3550   PrintVisibility(GV->getVisibility(), Out);
3551   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3552   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3553   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3554   if (!UA.empty())
3555       Out << UA << ' ';
3556 
3557   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3558     Out << "addrspace(" << AddressSpace << ") ";
3559   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3560   Out << (GV->isConstant() ? "constant " : "global ");
3561   TypePrinter.print(GV->getValueType(), Out);
3562 
3563   if (GV->hasInitializer()) {
3564     Out << ' ';
3565     writeOperand(GV->getInitializer(), false);
3566   }
3567 
3568   if (GV->hasSection()) {
3569     Out << ", section \"";
3570     printEscapedString(GV->getSection(), Out);
3571     Out << '"';
3572   }
3573   if (GV->hasPartition()) {
3574     Out << ", partition \"";
3575     printEscapedString(GV->getPartition(), Out);
3576     Out << '"';
3577   }
3578 
3579   maybePrintComdat(Out, *GV);
3580   if (GV->getAlignment())
3581     Out << ", align " << GV->getAlignment();
3582 
3583   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3584   GV->getAllMetadata(MDs);
3585   printMetadataAttachments(MDs, ", ");
3586 
3587   auto Attrs = GV->getAttributes();
3588   if (Attrs.hasAttributes())
3589     Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3590 
3591   printInfoComment(*GV);
3592 }
3593 
3594 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
3595   if (GIS->isMaterializable())
3596     Out << "; Materializable\n";
3597 
3598   WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
3599   Out << " = ";
3600 
3601   Out << getLinkageNameWithSpace(GIS->getLinkage());
3602   PrintDSOLocation(*GIS, Out);
3603   PrintVisibility(GIS->getVisibility(), Out);
3604   PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
3605   PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
3606   StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
3607   if (!UA.empty())
3608       Out << UA << ' ';
3609 
3610   if (isa<GlobalAlias>(GIS))
3611     Out << "alias ";
3612   else if (isa<GlobalIFunc>(GIS))
3613     Out << "ifunc ";
3614   else
3615     llvm_unreachable("Not an alias or ifunc!");
3616 
3617   TypePrinter.print(GIS->getValueType(), Out);
3618 
3619   Out << ", ";
3620 
3621   const Constant *IS = GIS->getIndirectSymbol();
3622 
3623   if (!IS) {
3624     TypePrinter.print(GIS->getType(), Out);
3625     Out << " <<NULL ALIASEE>>";
3626   } else {
3627     writeOperand(IS, !isa<ConstantExpr>(IS));
3628   }
3629 
3630   if (GIS->hasPartition()) {
3631     Out << ", partition \"";
3632     printEscapedString(GIS->getPartition(), Out);
3633     Out << '"';
3634   }
3635 
3636   printInfoComment(*GIS);
3637   Out << '\n';
3638 }
3639 
3640 void AssemblyWriter::printComdat(const Comdat *C) {
3641   C->print(Out);
3642 }
3643 
3644 void AssemblyWriter::printTypeIdentities() {
3645   if (TypePrinter.empty())
3646     return;
3647 
3648   Out << '\n';
3649 
3650   // Emit all numbered types.
3651   auto &NumberedTypes = TypePrinter.getNumberedTypes();
3652   for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3653     Out << '%' << I << " = type ";
3654 
3655     // Make sure we print out at least one level of the type structure, so
3656     // that we do not get %2 = type %2
3657     TypePrinter.printStructBody(NumberedTypes[I], Out);
3658     Out << '\n';
3659   }
3660 
3661   auto &NamedTypes = TypePrinter.getNamedTypes();
3662   for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
3663     PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
3664     Out << " = type ";
3665 
3666     // Make sure we print out at least one level of the type structure, so
3667     // that we do not get %FILE = type %FILE
3668     TypePrinter.printStructBody(NamedTypes[I], Out);
3669     Out << '\n';
3670   }
3671 }
3672 
3673 /// printFunction - Print all aspects of a function.
3674 void AssemblyWriter::printFunction(const Function *F) {
3675   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3676 
3677   if (F->isMaterializable())
3678     Out << "; Materializable\n";
3679 
3680   const AttributeList &Attrs = F->getAttributes();
3681   if (Attrs.hasFnAttrs()) {
3682     AttributeSet AS = Attrs.getFnAttrs();
3683     std::string AttrStr;
3684 
3685     for (const Attribute &Attr : AS) {
3686       if (!Attr.isStringAttribute()) {
3687         if (!AttrStr.empty()) AttrStr += ' ';
3688         AttrStr += Attr.getAsString();
3689       }
3690     }
3691 
3692     if (!AttrStr.empty())
3693       Out << "; Function Attrs: " << AttrStr << '\n';
3694   }
3695 
3696   Machine.incorporateFunction(F);
3697 
3698   if (F->isDeclaration()) {
3699     Out << "declare";
3700     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3701     F->getAllMetadata(MDs);
3702     printMetadataAttachments(MDs, " ");
3703     Out << ' ';
3704   } else
3705     Out << "define ";
3706 
3707   Out << getLinkageNameWithSpace(F->getLinkage());
3708   PrintDSOLocation(*F, Out);
3709   PrintVisibility(F->getVisibility(), Out);
3710   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3711 
3712   // Print the calling convention.
3713   if (F->getCallingConv() != CallingConv::C) {
3714     PrintCallingConv(F->getCallingConv(), Out);
3715     Out << " ";
3716   }
3717 
3718   FunctionType *FT = F->getFunctionType();
3719   if (Attrs.hasRetAttrs())
3720     Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3721   TypePrinter.print(F->getReturnType(), Out);
3722   Out << ' ';
3723   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
3724   Out << '(';
3725 
3726   // Loop over the arguments, printing them...
3727   if (F->isDeclaration() && !IsForDebug) {
3728     // We're only interested in the type here - don't print argument names.
3729     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3730       // Insert commas as we go... the first arg doesn't get a comma
3731       if (I)
3732         Out << ", ";
3733       // Output type...
3734       TypePrinter.print(FT->getParamType(I), Out);
3735 
3736       AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
3737       if (ArgAttrs.hasAttributes()) {
3738         Out << ' ';
3739         writeAttributeSet(ArgAttrs);
3740       }
3741     }
3742   } else {
3743     // The arguments are meaningful here, print them in detail.
3744     for (const Argument &Arg : F->args()) {
3745       // Insert commas as we go... the first arg doesn't get a comma
3746       if (Arg.getArgNo() != 0)
3747         Out << ", ";
3748       printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
3749     }
3750   }
3751 
3752   // Finish printing arguments...
3753   if (FT->isVarArg()) {
3754     if (FT->getNumParams()) Out << ", ";
3755     Out << "...";  // Output varargs portion of signature!
3756   }
3757   Out << ')';
3758   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3759   if (!UA.empty())
3760     Out << ' ' << UA;
3761   // We print the function address space if it is non-zero or if we are writing
3762   // a module with a non-zero program address space or if there is no valid
3763   // Module* so that the file can be parsed without the datalayout string.
3764   const Module *Mod = F->getParent();
3765   if (F->getAddressSpace() != 0 || !Mod ||
3766       Mod->getDataLayout().getProgramAddressSpace() != 0)
3767     Out << " addrspace(" << F->getAddressSpace() << ")";
3768   if (Attrs.hasFnAttrs())
3769     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
3770   if (F->hasSection()) {
3771     Out << " section \"";
3772     printEscapedString(F->getSection(), Out);
3773     Out << '"';
3774   }
3775   if (F->hasPartition()) {
3776     Out << " partition \"";
3777     printEscapedString(F->getPartition(), Out);
3778     Out << '"';
3779   }
3780   maybePrintComdat(Out, *F);
3781   if (F->getAlignment())
3782     Out << " align " << F->getAlignment();
3783   if (F->hasGC())
3784     Out << " gc \"" << F->getGC() << '"';
3785   if (F->hasPrefixData()) {
3786     Out << " prefix ";
3787     writeOperand(F->getPrefixData(), true);
3788   }
3789   if (F->hasPrologueData()) {
3790     Out << " prologue ";
3791     writeOperand(F->getPrologueData(), true);
3792   }
3793   if (F->hasPersonalityFn()) {
3794     Out << " personality ";
3795     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3796   }
3797 
3798   if (F->isDeclaration()) {
3799     Out << '\n';
3800   } else {
3801     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3802     F->getAllMetadata(MDs);
3803     printMetadataAttachments(MDs, " ");
3804 
3805     Out << " {";
3806     // Output all of the function's basic blocks.
3807     for (const BasicBlock &BB : *F)
3808       printBasicBlock(&BB);
3809 
3810     // Output the function's use-lists.
3811     printUseLists(F);
3812 
3813     Out << "}\n";
3814   }
3815 
3816   Machine.purgeFunction();
3817 }
3818 
3819 /// printArgument - This member is called for every argument that is passed into
3820 /// the function.  Simply print it out
3821 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3822   // Output type...
3823   TypePrinter.print(Arg->getType(), Out);
3824 
3825   // Output parameter attributes list
3826   if (Attrs.hasAttributes()) {
3827     Out << ' ';
3828     writeAttributeSet(Attrs);
3829   }
3830 
3831   // Output name, if available...
3832   if (Arg->hasName()) {
3833     Out << ' ';
3834     PrintLLVMName(Out, Arg);
3835   } else {
3836     int Slot = Machine.getLocalSlot(Arg);
3837     assert(Slot != -1 && "expect argument in function here");
3838     Out << " %" << Slot;
3839   }
3840 }
3841 
3842 /// printBasicBlock - This member is called for each basic block in a method.
3843 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3844   bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
3845   if (BB->hasName()) {              // Print out the label if it exists...
3846     Out << "\n";
3847     PrintLLVMName(Out, BB->getName(), LabelPrefix);
3848     Out << ':';
3849   } else if (!IsEntryBlock) {
3850     Out << "\n";
3851     int Slot = Machine.getLocalSlot(BB);
3852     if (Slot != -1)
3853       Out << Slot << ":";
3854     else
3855       Out << "<badref>:";
3856   }
3857 
3858   if (!IsEntryBlock) {
3859     // Output predecessors for the block.
3860     Out.PadToColumn(50);
3861     Out << ";";
3862     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3863 
3864     if (PI == PE) {
3865       Out << " No predecessors!";
3866     } else {
3867       Out << " preds = ";
3868       writeOperand(*PI, false);
3869       for (++PI; PI != PE; ++PI) {
3870         Out << ", ";
3871         writeOperand(*PI, false);
3872       }
3873     }
3874   }
3875 
3876   Out << "\n";
3877 
3878   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3879 
3880   // Output all of the instructions in the basic block...
3881   for (const Instruction &I : *BB) {
3882     printInstructionLine(I);
3883   }
3884 
3885   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3886 }
3887 
3888 /// printInstructionLine - Print an instruction and a newline character.
3889 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3890   printInstruction(I);
3891   Out << '\n';
3892 }
3893 
3894 /// printGCRelocateComment - print comment after call to the gc.relocate
3895 /// intrinsic indicating base and derived pointer names.
3896 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3897   Out << " ; (";
3898   writeOperand(Relocate.getBasePtr(), false);
3899   Out << ", ";
3900   writeOperand(Relocate.getDerivedPtr(), false);
3901   Out << ")";
3902 }
3903 
3904 /// printInfoComment - Print a little comment after the instruction indicating
3905 /// which slot it occupies.
3906 void AssemblyWriter::printInfoComment(const Value &V) {
3907   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3908     printGCRelocateComment(*Relocate);
3909 
3910   if (AnnotationWriter)
3911     AnnotationWriter->printInfoComment(V, Out);
3912 }
3913 
3914 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3915                                     raw_ostream &Out) {
3916   // We print the address space of the call if it is non-zero.
3917   unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3918   bool PrintAddrSpace = CallAddrSpace != 0;
3919   if (!PrintAddrSpace) {
3920     const Module *Mod = getModuleFromVal(I);
3921     // We also print it if it is zero but not equal to the program address space
3922     // or if we can't find a valid Module* to make it possible to parse
3923     // the resulting file even without a datalayout string.
3924     if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3925       PrintAddrSpace = true;
3926   }
3927   if (PrintAddrSpace)
3928     Out << " addrspace(" << CallAddrSpace << ")";
3929 }
3930 
3931 // This member is called for each Instruction in a function..
3932 void AssemblyWriter::printInstruction(const Instruction &I) {
3933   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3934 
3935   // Print out indentation for an instruction.
3936   Out << "  ";
3937 
3938   // Print out name if it exists...
3939   if (I.hasName()) {
3940     PrintLLVMName(Out, &I);
3941     Out << " = ";
3942   } else if (!I.getType()->isVoidTy()) {
3943     // Print out the def slot taken.
3944     int SlotNum = Machine.getLocalSlot(&I);
3945     if (SlotNum == -1)
3946       Out << "<badref> = ";
3947     else
3948       Out << '%' << SlotNum << " = ";
3949   }
3950 
3951   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3952     if (CI->isMustTailCall())
3953       Out << "musttail ";
3954     else if (CI->isTailCall())
3955       Out << "tail ";
3956     else if (CI->isNoTailCall())
3957       Out << "notail ";
3958   }
3959 
3960   // Print out the opcode...
3961   Out << I.getOpcodeName();
3962 
3963   // If this is an atomic load or store, print out the atomic marker.
3964   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
3965       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3966     Out << " atomic";
3967 
3968   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3969     Out << " weak";
3970 
3971   // If this is a volatile operation, print out the volatile marker.
3972   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
3973       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3974       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3975       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3976     Out << " volatile";
3977 
3978   // Print out optimization information.
3979   WriteOptimizationInfo(Out, &I);
3980 
3981   // Print out the compare instruction predicates
3982   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3983     Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3984 
3985   // Print out the atomicrmw operation
3986   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3987     Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3988 
3989   // Print out the type of the operands...
3990   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3991 
3992   // Special case conditional branches to swizzle the condition out to the front
3993   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
3994     const BranchInst &BI(cast<BranchInst>(I));
3995     Out << ' ';
3996     writeOperand(BI.getCondition(), true);
3997     Out << ", ";
3998     writeOperand(BI.getSuccessor(0), true);
3999     Out << ", ";
4000     writeOperand(BI.getSuccessor(1), true);
4001 
4002   } else if (isa<SwitchInst>(I)) {
4003     const SwitchInst& SI(cast<SwitchInst>(I));
4004     // Special case switch instruction to get formatting nice and correct.
4005     Out << ' ';
4006     writeOperand(SI.getCondition(), true);
4007     Out << ", ";
4008     writeOperand(SI.getDefaultDest(), true);
4009     Out << " [";
4010     for (auto Case : SI.cases()) {
4011       Out << "\n    ";
4012       writeOperand(Case.getCaseValue(), true);
4013       Out << ", ";
4014       writeOperand(Case.getCaseSuccessor(), true);
4015     }
4016     Out << "\n  ]";
4017   } else if (isa<IndirectBrInst>(I)) {
4018     // Special case indirectbr instruction to get formatting nice and correct.
4019     Out << ' ';
4020     writeOperand(Operand, true);
4021     Out << ", [";
4022 
4023     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4024       if (i != 1)
4025         Out << ", ";
4026       writeOperand(I.getOperand(i), true);
4027     }
4028     Out << ']';
4029   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
4030     Out << ' ';
4031     TypePrinter.print(I.getType(), Out);
4032     Out << ' ';
4033 
4034     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4035       if (op) Out << ", ";
4036       Out << "[ ";
4037       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4038       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4039     }
4040   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
4041     Out << ' ';
4042     writeOperand(I.getOperand(0), true);
4043     for (unsigned i : EVI->indices())
4044       Out << ", " << i;
4045   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
4046     Out << ' ';
4047     writeOperand(I.getOperand(0), true); Out << ", ";
4048     writeOperand(I.getOperand(1), true);
4049     for (unsigned i : IVI->indices())
4050       Out << ", " << i;
4051   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
4052     Out << ' ';
4053     TypePrinter.print(I.getType(), Out);
4054     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4055       Out << '\n';
4056 
4057     if (LPI->isCleanup())
4058       Out << "          cleanup";
4059 
4060     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4061       if (i != 0 || LPI->isCleanup()) Out << "\n";
4062       if (LPI->isCatch(i))
4063         Out << "          catch ";
4064       else
4065         Out << "          filter ";
4066 
4067       writeOperand(LPI->getClause(i), true);
4068     }
4069   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
4070     Out << " within ";
4071     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4072     Out << " [";
4073     unsigned Op = 0;
4074     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4075       if (Op > 0)
4076         Out << ", ";
4077       writeOperand(PadBB, /*PrintType=*/true);
4078       ++Op;
4079     }
4080     Out << "] unwind ";
4081     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4082       writeOperand(UnwindDest, /*PrintType=*/true);
4083     else
4084       Out << "to caller";
4085   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
4086     Out << " within ";
4087     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4088     Out << " [";
4089     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
4090          ++Op) {
4091       if (Op > 0)
4092         Out << ", ";
4093       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4094     }
4095     Out << ']';
4096   } else if (isa<ReturnInst>(I) && !Operand) {
4097     Out << " void";
4098   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
4099     Out << " from ";
4100     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4101 
4102     Out << " to ";
4103     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4104   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
4105     Out << " from ";
4106     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4107 
4108     Out << " unwind ";
4109     if (CRI->hasUnwindDest())
4110       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4111     else
4112       Out << "to caller";
4113   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4114     // Print the calling convention being used.
4115     if (CI->getCallingConv() != CallingConv::C) {
4116       Out << " ";
4117       PrintCallingConv(CI->getCallingConv(), Out);
4118     }
4119 
4120     Operand = CI->getCalledOperand();
4121     FunctionType *FTy = CI->getFunctionType();
4122     Type *RetTy = FTy->getReturnType();
4123     const AttributeList &PAL = CI->getAttributes();
4124 
4125     if (PAL.hasRetAttrs())
4126       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4127 
4128     // Only print addrspace(N) if necessary:
4129     maybePrintCallAddrSpace(Operand, &I, Out);
4130 
4131     // If possible, print out the short form of the call instruction.  We can
4132     // only do this if the first argument is a pointer to a nonvararg function,
4133     // and if the return type is not a pointer to a function.
4134     //
4135     Out << ' ';
4136     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4137     Out << ' ';
4138     writeOperand(Operand, false);
4139     Out << '(';
4140     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
4141       if (op > 0)
4142         Out << ", ";
4143       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op));
4144     }
4145 
4146     // Emit an ellipsis if this is a musttail call in a vararg function.  This
4147     // is only to aid readability, musttail calls forward varargs by default.
4148     if (CI->isMustTailCall() && CI->getParent() &&
4149         CI->getParent()->getParent() &&
4150         CI->getParent()->getParent()->isVarArg())
4151       Out << ", ...";
4152 
4153     Out << ')';
4154     if (PAL.hasFnAttrs())
4155       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4156 
4157     writeOperandBundles(CI);
4158   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4159     Operand = II->getCalledOperand();
4160     FunctionType *FTy = II->getFunctionType();
4161     Type *RetTy = FTy->getReturnType();
4162     const AttributeList &PAL = II->getAttributes();
4163 
4164     // Print the calling convention being used.
4165     if (II->getCallingConv() != CallingConv::C) {
4166       Out << " ";
4167       PrintCallingConv(II->getCallingConv(), Out);
4168     }
4169 
4170     if (PAL.hasRetAttrs())
4171       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4172 
4173     // Only print addrspace(N) if necessary:
4174     maybePrintCallAddrSpace(Operand, &I, Out);
4175 
4176     // If possible, print out the short form of the invoke instruction. We can
4177     // only do this if the first argument is a pointer to a nonvararg function,
4178     // and if the return type is not a pointer to a function.
4179     //
4180     Out << ' ';
4181     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4182     Out << ' ';
4183     writeOperand(Operand, false);
4184     Out << '(';
4185     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
4186       if (op)
4187         Out << ", ";
4188       writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op));
4189     }
4190 
4191     Out << ')';
4192     if (PAL.hasFnAttrs())
4193       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4194 
4195     writeOperandBundles(II);
4196 
4197     Out << "\n          to ";
4198     writeOperand(II->getNormalDest(), true);
4199     Out << " unwind ";
4200     writeOperand(II->getUnwindDest(), true);
4201   } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4202     Operand = CBI->getCalledOperand();
4203     FunctionType *FTy = CBI->getFunctionType();
4204     Type *RetTy = FTy->getReturnType();
4205     const AttributeList &PAL = CBI->getAttributes();
4206 
4207     // Print the calling convention being used.
4208     if (CBI->getCallingConv() != CallingConv::C) {
4209       Out << " ";
4210       PrintCallingConv(CBI->getCallingConv(), Out);
4211     }
4212 
4213     if (PAL.hasRetAttrs())
4214       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4215 
4216     // If possible, print out the short form of the callbr instruction. We can
4217     // only do this if the first argument is a pointer to a nonvararg function,
4218     // and if the return type is not a pointer to a function.
4219     //
4220     Out << ' ';
4221     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4222     Out << ' ';
4223     writeOperand(Operand, false);
4224     Out << '(';
4225     for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) {
4226       if (op)
4227         Out << ", ";
4228       writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
4229     }
4230 
4231     Out << ')';
4232     if (PAL.hasFnAttrs())
4233       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4234 
4235     writeOperandBundles(CBI);
4236 
4237     Out << "\n          to ";
4238     writeOperand(CBI->getDefaultDest(), true);
4239     Out << " [";
4240     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4241       if (i != 0)
4242         Out << ", ";
4243       writeOperand(CBI->getIndirectDest(i), true);
4244     }
4245     Out << ']';
4246   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4247     Out << ' ';
4248     if (AI->isUsedWithInAlloca())
4249       Out << "inalloca ";
4250     if (AI->isSwiftError())
4251       Out << "swifterror ";
4252     TypePrinter.print(AI->getAllocatedType(), Out);
4253 
4254     // Explicitly write the array size if the code is broken, if it's an array
4255     // allocation, or if the type is not canonical for scalar allocations.  The
4256     // latter case prevents the type from mutating when round-tripping through
4257     // assembly.
4258     if (!AI->getArraySize() || AI->isArrayAllocation() ||
4259         !AI->getArraySize()->getType()->isIntegerTy(32)) {
4260       Out << ", ";
4261       writeOperand(AI->getArraySize(), true);
4262     }
4263     if (AI->getAlignment()) {
4264       Out << ", align " << AI->getAlignment();
4265     }
4266 
4267     unsigned AddrSpace = AI->getType()->getAddressSpace();
4268     if (AddrSpace != 0) {
4269       Out << ", addrspace(" << AddrSpace << ')';
4270     }
4271   } else if (isa<CastInst>(I)) {
4272     if (Operand) {
4273       Out << ' ';
4274       writeOperand(Operand, true);   // Work with broken code
4275     }
4276     Out << " to ";
4277     TypePrinter.print(I.getType(), Out);
4278   } else if (isa<VAArgInst>(I)) {
4279     if (Operand) {
4280       Out << ' ';
4281       writeOperand(Operand, true);   // Work with broken code
4282     }
4283     Out << ", ";
4284     TypePrinter.print(I.getType(), Out);
4285   } else if (Operand) {   // Print the normal way.
4286     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4287       Out << ' ';
4288       TypePrinter.print(GEP->getSourceElementType(), Out);
4289       Out << ',';
4290     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4291       Out << ' ';
4292       TypePrinter.print(LI->getType(), Out);
4293       Out << ',';
4294     }
4295 
4296     // PrintAllTypes - Instructions who have operands of all the same type
4297     // omit the type from all but the first operand.  If the instruction has
4298     // different type operands (for example br), then they are all printed.
4299     bool PrintAllTypes = false;
4300     Type *TheType = Operand->getType();
4301 
4302     // Select, Store and ShuffleVector always print all types.
4303     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
4304         || isa<ReturnInst>(I)) {
4305       PrintAllTypes = true;
4306     } else {
4307       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4308         Operand = I.getOperand(i);
4309         // note that Operand shouldn't be null, but the test helps make dump()
4310         // more tolerant of malformed IR
4311         if (Operand && Operand->getType() != TheType) {
4312           PrintAllTypes = true;    // We have differing types!  Print them all!
4313           break;
4314         }
4315       }
4316     }
4317 
4318     if (!PrintAllTypes) {
4319       Out << ' ';
4320       TypePrinter.print(TheType, Out);
4321     }
4322 
4323     Out << ' ';
4324     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4325       if (i) Out << ", ";
4326       writeOperand(I.getOperand(i), PrintAllTypes);
4327     }
4328   }
4329 
4330   // Print atomic ordering/alignment for memory operations
4331   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4332     if (LI->isAtomic())
4333       writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4334     if (LI->getAlignment())
4335       Out << ", align " << LI->getAlignment();
4336   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4337     if (SI->isAtomic())
4338       writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4339     if (SI->getAlignment())
4340       Out << ", align " << SI->getAlignment();
4341   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4342     writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4343                        CXI->getFailureOrdering(), CXI->getSyncScopeID());
4344     Out << ", align " << CXI->getAlign().value();
4345   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4346     writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4347                 RMWI->getSyncScopeID());
4348     Out << ", align " << RMWI->getAlign().value();
4349   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4350     writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4351   } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4352     PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4353   }
4354 
4355   // Print Metadata info.
4356   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4357   I.getAllMetadata(InstMD);
4358   printMetadataAttachments(InstMD, ", ");
4359 
4360   // Print a nice comment.
4361   printInfoComment(I);
4362 }
4363 
4364 void AssemblyWriter::printMetadataAttachments(
4365     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4366     StringRef Separator) {
4367   if (MDs.empty())
4368     return;
4369 
4370   if (MDNames.empty())
4371     MDs[0].second->getContext().getMDKindNames(MDNames);
4372 
4373   for (const auto &I : MDs) {
4374     unsigned Kind = I.first;
4375     Out << Separator;
4376     if (Kind < MDNames.size()) {
4377       Out << "!";
4378       printMetadataIdentifier(MDNames[Kind], Out);
4379     } else
4380       Out << "!<unknown kind #" << Kind << ">";
4381     Out << ' ';
4382     WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
4383   }
4384 }
4385 
4386 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4387   Out << '!' << Slot << " = ";
4388   printMDNodeBody(Node);
4389   Out << "\n";
4390 }
4391 
4392 void AssemblyWriter::writeAllMDNodes() {
4393   SmallVector<const MDNode *, 16> Nodes;
4394   Nodes.resize(Machine.mdn_size());
4395   for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4396     Nodes[I.second] = cast<MDNode>(I.first);
4397 
4398   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4399     writeMDNode(i, Nodes[i]);
4400   }
4401 }
4402 
4403 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4404   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
4405 }
4406 
4407 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4408   if (!Attr.isTypeAttribute()) {
4409     Out << Attr.getAsString(InAttrGroup);
4410     return;
4411   }
4412 
4413   Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
4414   if (Type *Ty = Attr.getValueAsType()) {
4415     Out << '(';
4416     TypePrinter.print(Ty, Out);
4417     Out << ')';
4418   }
4419 }
4420 
4421 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4422                                        bool InAttrGroup) {
4423   bool FirstAttr = true;
4424   for (const auto &Attr : AttrSet) {
4425     if (!FirstAttr)
4426       Out << ' ';
4427     writeAttribute(Attr, InAttrGroup);
4428     FirstAttr = false;
4429   }
4430 }
4431 
4432 void AssemblyWriter::writeAllAttributeGroups() {
4433   std::vector<std::pair<AttributeSet, unsigned>> asVec;
4434   asVec.resize(Machine.as_size());
4435 
4436   for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4437     asVec[I.second] = I;
4438 
4439   for (const auto &I : asVec)
4440     Out << "attributes #" << I.second << " = { "
4441         << I.first.getAsString(true) << " }\n";
4442 }
4443 
4444 void AssemblyWriter::printUseListOrder(const Value *V,
4445                                        const std::vector<unsigned> &Shuffle) {
4446   bool IsInFunction = Machine.getFunction();
4447   if (IsInFunction)
4448     Out << "  ";
4449 
4450   Out << "uselistorder";
4451   if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
4452     Out << "_bb ";
4453     writeOperand(BB->getParent(), false);
4454     Out << ", ";
4455     writeOperand(BB, false);
4456   } else {
4457     Out << " ";
4458     writeOperand(V, true);
4459   }
4460   Out << ", { ";
4461 
4462   assert(Shuffle.size() >= 2 && "Shuffle too small");
4463   Out << Shuffle[0];
4464   for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4465     Out << ", " << Shuffle[I];
4466   Out << " }\n";
4467 }
4468 
4469 void AssemblyWriter::printUseLists(const Function *F) {
4470   auto It = UseListOrders.find(F);
4471   if (It == UseListOrders.end())
4472     return;
4473 
4474   Out << "\n; uselistorder directives\n";
4475   for (const auto &Pair : It->second)
4476     printUseListOrder(Pair.first, Pair.second);
4477 }
4478 
4479 //===----------------------------------------------------------------------===//
4480 //                       External Interface declarations
4481 //===----------------------------------------------------------------------===//
4482 
4483 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4484                      bool ShouldPreserveUseListOrder,
4485                      bool IsForDebug) const {
4486   SlotTracker SlotTable(this->getParent());
4487   formatted_raw_ostream OS(ROS);
4488   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4489                    IsForDebug,
4490                    ShouldPreserveUseListOrder);
4491   W.printFunction(this);
4492 }
4493 
4494 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4495                      bool ShouldPreserveUseListOrder,
4496                      bool IsForDebug) const {
4497   SlotTracker SlotTable(this->getParent());
4498   formatted_raw_ostream OS(ROS);
4499   AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4500                    IsForDebug,
4501                    ShouldPreserveUseListOrder);
4502   W.printBasicBlock(this);
4503 }
4504 
4505 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4506                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4507   SlotTracker SlotTable(this);
4508   formatted_raw_ostream OS(ROS);
4509   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4510                    ShouldPreserveUseListOrder);
4511   W.printModule(this);
4512 }
4513 
4514 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4515   SlotTracker SlotTable(getParent());
4516   formatted_raw_ostream OS(ROS);
4517   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4518   W.printNamedMDNode(this);
4519 }
4520 
4521 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4522                         bool IsForDebug) const {
4523   Optional<SlotTracker> LocalST;
4524   SlotTracker *SlotTable;
4525   if (auto *ST = MST.getMachine())
4526     SlotTable = ST;
4527   else {
4528     LocalST.emplace(getParent());
4529     SlotTable = &*LocalST;
4530   }
4531 
4532   formatted_raw_ostream OS(ROS);
4533   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4534   W.printNamedMDNode(this);
4535 }
4536 
4537 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4538   PrintLLVMName(ROS, getName(), ComdatPrefix);
4539   ROS << " = comdat ";
4540 
4541   switch (getSelectionKind()) {
4542   case Comdat::Any:
4543     ROS << "any";
4544     break;
4545   case Comdat::ExactMatch:
4546     ROS << "exactmatch";
4547     break;
4548   case Comdat::Largest:
4549     ROS << "largest";
4550     break;
4551   case Comdat::NoDeduplicate:
4552     ROS << "nodeduplicate";
4553     break;
4554   case Comdat::SameSize:
4555     ROS << "samesize";
4556     break;
4557   }
4558 
4559   ROS << '\n';
4560 }
4561 
4562 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4563   TypePrinting TP;
4564   TP.print(const_cast<Type*>(this), OS);
4565 
4566   if (NoDetails)
4567     return;
4568 
4569   // If the type is a named struct type, print the body as well.
4570   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4571     if (!STy->isLiteral()) {
4572       OS << " = type ";
4573       TP.printStructBody(STy, OS);
4574     }
4575 }
4576 
4577 static bool isReferencingMDNode(const Instruction &I) {
4578   if (const auto *CI = dyn_cast<CallInst>(&I))
4579     if (Function *F = CI->getCalledFunction())
4580       if (F->isIntrinsic())
4581         for (auto &Op : I.operands())
4582           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4583             if (isa<MDNode>(V->getMetadata()))
4584               return true;
4585   return false;
4586 }
4587 
4588 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4589   bool ShouldInitializeAllMetadata = false;
4590   if (auto *I = dyn_cast<Instruction>(this))
4591     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4592   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4593     ShouldInitializeAllMetadata = true;
4594 
4595   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4596   print(ROS, MST, IsForDebug);
4597 }
4598 
4599 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4600                   bool IsForDebug) const {
4601   formatted_raw_ostream OS(ROS);
4602   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4603   SlotTracker &SlotTable =
4604       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4605   auto incorporateFunction = [&](const Function *F) {
4606     if (F)
4607       MST.incorporateFunction(*F);
4608   };
4609 
4610   if (const Instruction *I = dyn_cast<Instruction>(this)) {
4611     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4612     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4613     W.printInstruction(*I);
4614   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4615     incorporateFunction(BB->getParent());
4616     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4617     W.printBasicBlock(BB);
4618   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4619     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4620     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4621       W.printGlobal(V);
4622     else if (const Function *F = dyn_cast<Function>(GV))
4623       W.printFunction(F);
4624     else
4625       W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
4626   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4627     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4628   } else if (const Constant *C = dyn_cast<Constant>(this)) {
4629     TypePrinting TypePrinter;
4630     TypePrinter.print(C->getType(), OS);
4631     OS << ' ';
4632     WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
4633   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4634     this->printAsOperand(OS, /* PrintType */ true, MST);
4635   } else {
4636     llvm_unreachable("Unknown value to print out!");
4637   }
4638 }
4639 
4640 /// Print without a type, skipping the TypePrinting object.
4641 ///
4642 /// \return \c true iff printing was successful.
4643 static bool printWithoutType(const Value &V, raw_ostream &O,
4644                              SlotTracker *Machine, const Module *M) {
4645   if (V.hasName() || isa<GlobalValue>(V) ||
4646       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4647     WriteAsOperandInternal(O, &V, nullptr, Machine, M);
4648     return true;
4649   }
4650   return false;
4651 }
4652 
4653 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4654                                ModuleSlotTracker &MST) {
4655   TypePrinting TypePrinter(MST.getModule());
4656   if (PrintType) {
4657     TypePrinter.print(V.getType(), O);
4658     O << ' ';
4659   }
4660 
4661   WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
4662                          MST.getModule());
4663 }
4664 
4665 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4666                            const Module *M) const {
4667   if (!M)
4668     M = getModuleFromVal(this);
4669 
4670   if (!PrintType)
4671     if (printWithoutType(*this, O, nullptr, M))
4672       return;
4673 
4674   SlotTracker Machine(
4675       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4676   ModuleSlotTracker MST(Machine, M);
4677   printAsOperandImpl(*this, O, PrintType, MST);
4678 }
4679 
4680 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4681                            ModuleSlotTracker &MST) const {
4682   if (!PrintType)
4683     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4684       return;
4685 
4686   printAsOperandImpl(*this, O, PrintType, MST);
4687 }
4688 
4689 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4690                               ModuleSlotTracker &MST, const Module *M,
4691                               bool OnlyAsOperand) {
4692   formatted_raw_ostream OS(ROS);
4693 
4694   TypePrinting TypePrinter(M);
4695 
4696   WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
4697                          /* FromValue */ true);
4698 
4699   auto *N = dyn_cast<MDNode>(&MD);
4700   if (OnlyAsOperand || !N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
4701     return;
4702 
4703   OS << " = ";
4704   WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
4705 }
4706 
4707 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4708   ModuleSlotTracker MST(M, isa<MDNode>(this));
4709   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4710 }
4711 
4712 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4713                               const Module *M) const {
4714   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4715 }
4716 
4717 void Metadata::print(raw_ostream &OS, const Module *M,
4718                      bool /*IsForDebug*/) const {
4719   ModuleSlotTracker MST(M, isa<MDNode>(this));
4720   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4721 }
4722 
4723 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4724                      const Module *M, bool /*IsForDebug*/) const {
4725   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4726 }
4727 
4728 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4729   SlotTracker SlotTable(this);
4730   formatted_raw_ostream OS(ROS);
4731   AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4732   W.printModuleSummaryIndex();
4733 }
4734 
4735 void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
4736                                        unsigned UB) const {
4737   SlotTracker *ST = MachineStorage.get();
4738   if (!ST)
4739     return;
4740 
4741   for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
4742     if (I.second >= LB && I.second < UB)
4743       L.push_back(std::make_pair(I.second, I.first));
4744 }
4745 
4746 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4747 // Value::dump - allow easy printing of Values from the debugger.
4748 LLVM_DUMP_METHOD
4749 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4750 
4751 // Type::dump - allow easy printing of Types from the debugger.
4752 LLVM_DUMP_METHOD
4753 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4754 
4755 // Module::dump() - Allow printing of Modules from the debugger.
4756 LLVM_DUMP_METHOD
4757 void Module::dump() const {
4758   print(dbgs(), nullptr,
4759         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4760 }
4761 
4762 // Allow printing of Comdats from the debugger.
4763 LLVM_DUMP_METHOD
4764 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4765 
4766 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4767 LLVM_DUMP_METHOD
4768 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4769 
4770 LLVM_DUMP_METHOD
4771 void Metadata::dump() const { dump(nullptr); }
4772 
4773 LLVM_DUMP_METHOD
4774 void Metadata::dump(const Module *M) const {
4775   print(dbgs(), M, /*IsForDebug=*/true);
4776   dbgs() << '\n';
4777 }
4778 
4779 // Allow printing of ModuleSummaryIndex from the debugger.
4780 LLVM_DUMP_METHOD
4781 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4782 #endif
4783