1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of ELF support for the MC-JIT runtime dynamic linker. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RuntimeDyldELF.h" 15 #include "llvm/ADT/IntervalMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/MC/MCStreamer.h" 20 #include "llvm/Object/ELFObjectFile.h" 21 #include "llvm/Object/ObjectFile.h" 22 #include "llvm/Support/ELF.h" 23 #include "llvm/Support/Endian.h" 24 #include "llvm/Support/MemoryBuffer.h" 25 #include "llvm/Support/TargetRegistry.h" 26 27 using namespace llvm; 28 using namespace llvm::object; 29 30 #define DEBUG_TYPE "dyld" 31 32 static inline std::error_code check(std::error_code Err) { 33 if (Err) { 34 report_fatal_error(Err.message()); 35 } 36 return Err; 37 } 38 39 namespace { 40 41 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> { 42 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 43 44 typedef Elf_Shdr_Impl<ELFT> Elf_Shdr; 45 typedef Elf_Sym_Impl<ELFT> Elf_Sym; 46 typedef Elf_Rel_Impl<ELFT, false> Elf_Rel; 47 typedef Elf_Rel_Impl<ELFT, true> Elf_Rela; 48 49 typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr; 50 51 typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type; 52 53 public: 54 DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec); 55 56 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr); 57 58 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr); 59 60 // Methods for type inquiry through isa, cast and dyn_cast 61 static inline bool classof(const Binary *v) { 62 return (isa<ELFObjectFile<ELFT>>(v) && 63 classof(cast<ELFObjectFile<ELFT>>(v))); 64 } 65 static inline bool classof(const ELFObjectFile<ELFT> *v) { 66 return v->isDyldType(); 67 } 68 69 }; 70 71 72 73 // The MemoryBuffer passed into this constructor is just a wrapper around the 74 // actual memory. Ultimately, the Binary parent class will take ownership of 75 // this MemoryBuffer object but not the underlying memory. 76 template <class ELFT> 77 DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC) 78 : ELFObjectFile<ELFT>(Wrapper, EC) { 79 this->isDyldELFObject = true; 80 } 81 82 template <class ELFT> 83 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec, 84 uint64_t Addr) { 85 DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); 86 Elf_Shdr *shdr = 87 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); 88 89 // This assumes the address passed in matches the target address bitness 90 // The template-based type cast handles everything else. 91 shdr->sh_addr = static_cast<addr_type>(Addr); 92 } 93 94 template <class ELFT> 95 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef, 96 uint64_t Addr) { 97 98 Elf_Sym *sym = const_cast<Elf_Sym *>( 99 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl())); 100 101 // This assumes the address passed in matches the target address bitness 102 // The template-based type cast handles everything else. 103 sym->st_value = static_cast<addr_type>(Addr); 104 } 105 106 class LoadedELFObjectInfo : public RuntimeDyld::LoadedObjectInfo { 107 public: 108 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx, 109 unsigned EndIdx) 110 : RuntimeDyld::LoadedObjectInfo(RTDyld, BeginIdx, EndIdx) {} 111 112 OwningBinary<ObjectFile> 113 getObjectForDebug(const ObjectFile &Obj) const override; 114 }; 115 116 template <typename ELFT> 117 std::unique_ptr<DyldELFObject<ELFT>> 118 createRTDyldELFObject(MemoryBufferRef Buffer, 119 const LoadedELFObjectInfo &L, 120 std::error_code &ec) { 121 typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr; 122 typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type; 123 124 std::unique_ptr<DyldELFObject<ELFT>> Obj = 125 llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec); 126 127 // Iterate over all sections in the object. 128 for (const auto &Sec : Obj->sections()) { 129 StringRef SectionName; 130 Sec.getName(SectionName); 131 if (SectionName != "") { 132 DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); 133 Elf_Shdr *shdr = const_cast<Elf_Shdr *>( 134 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); 135 136 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(SectionName)) { 137 // This assumes that the address passed in matches the target address 138 // bitness. The template-based type cast handles everything else. 139 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr); 140 } 141 } 142 } 143 144 return Obj; 145 } 146 147 OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj, 148 const LoadedELFObjectInfo &L) { 149 assert(Obj.isELF() && "Not an ELF object file."); 150 151 std::unique_ptr<MemoryBuffer> Buffer = 152 MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName()); 153 154 std::error_code ec; 155 156 std::unique_ptr<ObjectFile> DebugObj; 157 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) { 158 typedef ELFType<support::little, 2, false> ELF32LE; 159 DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), L, ec); 160 } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) { 161 typedef ELFType<support::big, 2, false> ELF32BE; 162 DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), L, ec); 163 } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) { 164 typedef ELFType<support::big, 2, true> ELF64BE; 165 DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), L, ec); 166 } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) { 167 typedef ELFType<support::little, 2, true> ELF64LE; 168 DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), L, ec); 169 } else 170 llvm_unreachable("Unexpected ELF format"); 171 172 assert(!ec && "Could not construct copy ELF object file"); 173 174 return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer)); 175 } 176 177 OwningBinary<ObjectFile> 178 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const { 179 return createELFDebugObject(Obj, *this); 180 } 181 182 } // namespace 183 184 namespace llvm { 185 186 RuntimeDyldELF::RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {} 187 RuntimeDyldELF::~RuntimeDyldELF() {} 188 189 void RuntimeDyldELF::registerEHFrames() { 190 if (!MemMgr) 191 return; 192 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) { 193 SID EHFrameSID = UnregisteredEHFrameSections[i]; 194 uint8_t *EHFrameAddr = Sections[EHFrameSID].Address; 195 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress; 196 size_t EHFrameSize = Sections[EHFrameSID].Size; 197 MemMgr->registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize); 198 RegisteredEHFrameSections.push_back(EHFrameSID); 199 } 200 UnregisteredEHFrameSections.clear(); 201 } 202 203 void RuntimeDyldELF::deregisterEHFrames() { 204 if (!MemMgr) 205 return; 206 for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) { 207 SID EHFrameSID = RegisteredEHFrameSections[i]; 208 uint8_t *EHFrameAddr = Sections[EHFrameSID].Address; 209 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress; 210 size_t EHFrameSize = Sections[EHFrameSID].Size; 211 MemMgr->deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize); 212 } 213 RegisteredEHFrameSections.clear(); 214 } 215 216 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 217 RuntimeDyldELF::loadObject(const object::ObjectFile &O) { 218 unsigned SectionStartIdx, SectionEndIdx; 219 std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O); 220 return llvm::make_unique<LoadedELFObjectInfo>(*this, SectionStartIdx, 221 SectionEndIdx); 222 } 223 224 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, 225 uint64_t Offset, uint64_t Value, 226 uint32_t Type, int64_t Addend, 227 uint64_t SymOffset) { 228 switch (Type) { 229 default: 230 llvm_unreachable("Relocation type not implemented yet!"); 231 break; 232 case ELF::R_X86_64_64: { 233 support::ulittle64_t::ref(Section.Address + Offset) = Value + Addend; 234 DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at " 235 << format("%p\n", Section.Address + Offset)); 236 break; 237 } 238 case ELF::R_X86_64_32: 239 case ELF::R_X86_64_32S: { 240 Value += Addend; 241 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || 242 (Type == ELF::R_X86_64_32S && 243 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))); 244 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF); 245 support::ulittle32_t::ref(Section.Address + Offset) = TruncatedAddr; 246 DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at " 247 << format("%p\n", Section.Address + Offset)); 248 break; 249 } 250 case ELF::R_X86_64_GOTPCREL: { 251 // findGOTEntry returns the 'G + GOT' part of the relocation calculation 252 // based on the load/target address of the GOT (not the current/local addr). 253 uint64_t GOTAddr = findGOTEntry(Value, SymOffset); 254 uint64_t FinalAddress = Section.LoadAddress + Offset; 255 // The processRelocationRef method combines the symbol offset and the addend 256 // and in most cases that's what we want. For this relocation type, we need 257 // the raw addend, so we subtract the symbol offset to get it. 258 int64_t RealOffset = GOTAddr + Addend - SymOffset - FinalAddress; 259 assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN); 260 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); 261 support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset; 262 break; 263 } 264 case ELF::R_X86_64_PC32: { 265 // Get the placeholder value from the generated object since 266 // a previous relocation attempt may have overwritten the loaded version 267 support::ulittle32_t::ref Placeholder( 268 (void *)(Section.ObjAddress + Offset)); 269 uint64_t FinalAddress = Section.LoadAddress + Offset; 270 int64_t RealOffset = Placeholder + Value + Addend - FinalAddress; 271 assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN); 272 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); 273 support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset; 274 break; 275 } 276 case ELF::R_X86_64_PC64: { 277 // Get the placeholder value from the generated object since 278 // a previous relocation attempt may have overwritten the loaded version 279 support::ulittle64_t::ref Placeholder( 280 (void *)(Section.ObjAddress + Offset)); 281 uint64_t FinalAddress = Section.LoadAddress + Offset; 282 support::ulittle64_t::ref(Section.Address + Offset) = 283 Placeholder + Value + Addend - FinalAddress; 284 break; 285 } 286 } 287 } 288 289 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section, 290 uint64_t Offset, uint32_t Value, 291 uint32_t Type, int32_t Addend) { 292 switch (Type) { 293 case ELF::R_386_32: { 294 // Get the placeholder value from the generated object since 295 // a previous relocation attempt may have overwritten the loaded version 296 support::ulittle32_t::ref Placeholder( 297 (void *)(Section.ObjAddress + Offset)); 298 support::ulittle32_t::ref(Section.Address + Offset) = 299 Placeholder + Value + Addend; 300 break; 301 } 302 case ELF::R_386_PC32: { 303 // Get the placeholder value from the generated object since 304 // a previous relocation attempt may have overwritten the loaded version 305 support::ulittle32_t::ref Placeholder( 306 (void *)(Section.ObjAddress + Offset)); 307 uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF); 308 uint32_t RealOffset = Placeholder + Value + Addend - FinalAddress; 309 support::ulittle32_t::ref(Section.Address + Offset) = RealOffset; 310 break; 311 } 312 default: 313 // There are other relocation types, but it appears these are the 314 // only ones currently used by the LLVM ELF object writer 315 llvm_unreachable("Relocation type not implemented yet!"); 316 break; 317 } 318 } 319 320 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section, 321 uint64_t Offset, uint64_t Value, 322 uint32_t Type, int64_t Addend) { 323 uint32_t *TargetPtr = reinterpret_cast<uint32_t *>(Section.Address + Offset); 324 uint64_t FinalAddress = Section.LoadAddress + Offset; 325 326 DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x" 327 << format("%llx", Section.Address + Offset) 328 << " FinalAddress: 0x" << format("%llx", FinalAddress) 329 << " Value: 0x" << format("%llx", Value) << " Type: 0x" 330 << format("%x", Type) << " Addend: 0x" << format("%llx", Addend) 331 << "\n"); 332 333 switch (Type) { 334 default: 335 llvm_unreachable("Relocation type not implemented yet!"); 336 break; 337 case ELF::R_AARCH64_ABS64: { 338 uint64_t *TargetPtr = 339 reinterpret_cast<uint64_t *>(Section.Address + Offset); 340 *TargetPtr = Value + Addend; 341 break; 342 } 343 case ELF::R_AARCH64_PREL32: { 344 uint64_t Result = Value + Addend - FinalAddress; 345 assert(static_cast<int64_t>(Result) >= INT32_MIN && 346 static_cast<int64_t>(Result) <= UINT32_MAX); 347 *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU); 348 break; 349 } 350 case ELF::R_AARCH64_CALL26: // fallthrough 351 case ELF::R_AARCH64_JUMP26: { 352 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the 353 // calculation. 354 uint64_t BranchImm = Value + Addend - FinalAddress; 355 356 // "Check that -2^27 <= result < 2^27". 357 assert(-(1LL << 27) <= static_cast<int64_t>(BranchImm) && 358 static_cast<int64_t>(BranchImm) < (1LL << 27)); 359 360 // AArch64 code is emitted with .rela relocations. The data already in any 361 // bits affected by the relocation on entry is garbage. 362 *TargetPtr &= 0xfc000000U; 363 // Immediate goes in bits 25:0 of B and BL. 364 *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2; 365 break; 366 } 367 case ELF::R_AARCH64_MOVW_UABS_G3: { 368 uint64_t Result = Value + Addend; 369 370 // AArch64 code is emitted with .rela relocations. The data already in any 371 // bits affected by the relocation on entry is garbage. 372 *TargetPtr &= 0xffe0001fU; 373 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction 374 *TargetPtr |= Result >> (48 - 5); 375 // Shift must be "lsl #48", in bits 22:21 376 assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation"); 377 break; 378 } 379 case ELF::R_AARCH64_MOVW_UABS_G2_NC: { 380 uint64_t Result = Value + Addend; 381 382 // AArch64 code is emitted with .rela relocations. The data already in any 383 // bits affected by the relocation on entry is garbage. 384 *TargetPtr &= 0xffe0001fU; 385 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction 386 *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5)); 387 // Shift must be "lsl #32", in bits 22:21 388 assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation"); 389 break; 390 } 391 case ELF::R_AARCH64_MOVW_UABS_G1_NC: { 392 uint64_t Result = Value + Addend; 393 394 // AArch64 code is emitted with .rela relocations. The data already in any 395 // bits affected by the relocation on entry is garbage. 396 *TargetPtr &= 0xffe0001fU; 397 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction 398 *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5)); 399 // Shift must be "lsl #16", in bits 22:2 400 assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation"); 401 break; 402 } 403 case ELF::R_AARCH64_MOVW_UABS_G0_NC: { 404 uint64_t Result = Value + Addend; 405 406 // AArch64 code is emitted with .rela relocations. The data already in any 407 // bits affected by the relocation on entry is garbage. 408 *TargetPtr &= 0xffe0001fU; 409 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction 410 *TargetPtr |= ((Result & 0xffffU) << 5); 411 // Shift must be "lsl #0", in bits 22:21. 412 assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation"); 413 break; 414 } 415 case ELF::R_AARCH64_ADR_PREL_PG_HI21: { 416 // Operation: Page(S+A) - Page(P) 417 uint64_t Result = 418 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL); 419 420 // Check that -2^32 <= X < 2^32 421 assert(static_cast<int64_t>(Result) >= (-1LL << 32) && 422 static_cast<int64_t>(Result) < (1LL << 32) && 423 "overflow check failed for relocation"); 424 425 // AArch64 code is emitted with .rela relocations. The data already in any 426 // bits affected by the relocation on entry is garbage. 427 *TargetPtr &= 0x9f00001fU; 428 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken 429 // from bits 32:12 of X. 430 *TargetPtr |= ((Result & 0x3000U) << (29 - 12)); 431 *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5)); 432 break; 433 } 434 case ELF::R_AARCH64_LDST32_ABS_LO12_NC: { 435 // Operation: S + A 436 uint64_t Result = Value + Addend; 437 438 // AArch64 code is emitted with .rela relocations. The data already in any 439 // bits affected by the relocation on entry is garbage. 440 *TargetPtr &= 0xffc003ffU; 441 // Immediate goes in bits 21:10 of LD/ST instruction, taken 442 // from bits 11:2 of X 443 *TargetPtr |= ((Result & 0xffc) << (10 - 2)); 444 break; 445 } 446 case ELF::R_AARCH64_LDST64_ABS_LO12_NC: { 447 // Operation: S + A 448 uint64_t Result = Value + Addend; 449 450 // AArch64 code is emitted with .rela relocations. The data already in any 451 // bits affected by the relocation on entry is garbage. 452 *TargetPtr &= 0xffc003ffU; 453 // Immediate goes in bits 21:10 of LD/ST instruction, taken 454 // from bits 11:3 of X 455 *TargetPtr |= ((Result & 0xff8) << (10 - 3)); 456 break; 457 } 458 } 459 } 460 461 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section, 462 uint64_t Offset, uint32_t Value, 463 uint32_t Type, int32_t Addend) { 464 // TODO: Add Thumb relocations. 465 uint32_t *Placeholder = 466 reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset); 467 uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset); 468 uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF); 469 Value += Addend; 470 471 DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " 472 << Section.Address + Offset 473 << " FinalAddress: " << format("%p", FinalAddress) << " Value: " 474 << format("%x", Value) << " Type: " << format("%x", Type) 475 << " Addend: " << format("%x", Addend) << "\n"); 476 477 switch (Type) { 478 default: 479 llvm_unreachable("Not implemented relocation type!"); 480 481 case ELF::R_ARM_NONE: 482 break; 483 // Write a 32bit value to relocation address, taking into account the 484 // implicit addend encoded in the target. 485 case ELF::R_ARM_PREL31: 486 case ELF::R_ARM_TARGET1: 487 case ELF::R_ARM_ABS32: 488 *TargetPtr = *Placeholder + Value; 489 break; 490 // Write first 16 bit of 32 bit value to the mov instruction. 491 // Last 4 bit should be shifted. 492 case ELF::R_ARM_MOVW_ABS_NC: 493 // We are not expecting any other addend in the relocation address. 494 // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2 495 // non-contiguous fields. 496 assert((*Placeholder & 0x000F0FFF) == 0); 497 Value = Value & 0xFFFF; 498 *TargetPtr = *Placeholder | (Value & 0xFFF); 499 *TargetPtr |= ((Value >> 12) & 0xF) << 16; 500 break; 501 // Write last 16 bit of 32 bit value to the mov instruction. 502 // Last 4 bit should be shifted. 503 case ELF::R_ARM_MOVT_ABS: 504 // We are not expecting any other addend in the relocation address. 505 // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC. 506 assert((*Placeholder & 0x000F0FFF) == 0); 507 508 Value = (Value >> 16) & 0xFFFF; 509 *TargetPtr = *Placeholder | (Value & 0xFFF); 510 *TargetPtr |= ((Value >> 12) & 0xF) << 16; 511 break; 512 // Write 24 bit relative value to the branch instruction. 513 case ELF::R_ARM_PC24: // Fall through. 514 case ELF::R_ARM_CALL: // Fall through. 515 case ELF::R_ARM_JUMP24: { 516 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8); 517 RelValue = (RelValue & 0x03FFFFFC) >> 2; 518 assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE); 519 *TargetPtr &= 0xFF000000; 520 *TargetPtr |= RelValue; 521 break; 522 } 523 case ELF::R_ARM_PRIVATE_0: 524 // This relocation is reserved by the ARM ELF ABI for internal use. We 525 // appropriate it here to act as an R_ARM_ABS32 without any addend for use 526 // in the stubs created during JIT (which can't put an addend into the 527 // original object file). 528 *TargetPtr = Value; 529 break; 530 } 531 } 532 533 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section, 534 uint64_t Offset, uint32_t Value, 535 uint32_t Type, int32_t Addend) { 536 uint32_t *Placeholder = 537 reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset); 538 uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset); 539 Value += Addend; 540 541 DEBUG(dbgs() << "resolveMipselocation, LocalAddress: " 542 << Section.Address + Offset << " FinalAddress: " 543 << format("%p", Section.LoadAddress + Offset) << " Value: " 544 << format("%x", Value) << " Type: " << format("%x", Type) 545 << " Addend: " << format("%x", Addend) << "\n"); 546 547 switch (Type) { 548 default: 549 llvm_unreachable("Not implemented relocation type!"); 550 break; 551 case ELF::R_MIPS_32: 552 *TargetPtr = Value + (*Placeholder); 553 break; 554 case ELF::R_MIPS_26: 555 *TargetPtr = ((*Placeholder) & 0xfc000000) | ((Value & 0x0fffffff) >> 2); 556 break; 557 case ELF::R_MIPS_HI16: 558 // Get the higher 16-bits. Also add 1 if bit 15 is 1. 559 Value += ((*Placeholder) & 0x0000ffff) << 16; 560 *TargetPtr = 561 ((*Placeholder) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff); 562 break; 563 case ELF::R_MIPS_LO16: 564 Value += ((*Placeholder) & 0x0000ffff); 565 *TargetPtr = ((*Placeholder) & 0xffff0000) | (Value & 0xffff); 566 break; 567 case ELF::R_MIPS_UNUSED1: 568 // Similar to ELF::R_ARM_PRIVATE_0, R_MIPS_UNUSED1 and R_MIPS_UNUSED2 569 // are used for internal JIT purpose. These relocations are similar to 570 // R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into 571 // account. 572 *TargetPtr = 573 ((*TargetPtr) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff); 574 break; 575 case ELF::R_MIPS_UNUSED2: 576 *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff); 577 break; 578 } 579 } 580 581 // Return the .TOC. section and offset. 582 void RuntimeDyldELF::findPPC64TOCSection(const ObjectFile &Obj, 583 ObjSectionToIDMap &LocalSections, 584 RelocationValueRef &Rel) { 585 // Set a default SectionID in case we do not find a TOC section below. 586 // This may happen for references to TOC base base (sym@toc, .odp 587 // relocation) without a .toc directive. In this case just use the 588 // first section (which is usually the .odp) since the code won't 589 // reference the .toc base directly. 590 Rel.SymbolName = NULL; 591 Rel.SectionID = 0; 592 593 // The TOC consists of sections .got, .toc, .tocbss, .plt in that 594 // order. The TOC starts where the first of these sections starts. 595 for (section_iterator si = Obj.section_begin(), se = Obj.section_end(); 596 si != se; ++si) { 597 598 StringRef SectionName; 599 check(si->getName(SectionName)); 600 601 if (SectionName == ".got" 602 || SectionName == ".toc" 603 || SectionName == ".tocbss" 604 || SectionName == ".plt") { 605 Rel.SectionID = findOrEmitSection(Obj, *si, false, LocalSections); 606 break; 607 } 608 } 609 610 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 611 // thus permitting a full 64 Kbytes segment. 612 Rel.Addend = 0x8000; 613 } 614 615 // Returns the sections and offset associated with the ODP entry referenced 616 // by Symbol. 617 void RuntimeDyldELF::findOPDEntrySection(const ObjectFile &Obj, 618 ObjSectionToIDMap &LocalSections, 619 RelocationValueRef &Rel) { 620 // Get the ELF symbol value (st_value) to compare with Relocation offset in 621 // .opd entries 622 for (section_iterator si = Obj.section_begin(), se = Obj.section_end(); 623 si != se; ++si) { 624 section_iterator RelSecI = si->getRelocatedSection(); 625 if (RelSecI == Obj.section_end()) 626 continue; 627 628 StringRef RelSectionName; 629 check(RelSecI->getName(RelSectionName)); 630 if (RelSectionName != ".opd") 631 continue; 632 633 for (relocation_iterator i = si->relocation_begin(), 634 e = si->relocation_end(); 635 i != e;) { 636 // The R_PPC64_ADDR64 relocation indicates the first field 637 // of a .opd entry 638 uint64_t TypeFunc; 639 check(i->getType(TypeFunc)); 640 if (TypeFunc != ELF::R_PPC64_ADDR64) { 641 ++i; 642 continue; 643 } 644 645 uint64_t TargetSymbolOffset; 646 symbol_iterator TargetSymbol = i->getSymbol(); 647 check(i->getOffset(TargetSymbolOffset)); 648 int64_t Addend; 649 check(getELFRelocationAddend(*i, Addend)); 650 651 ++i; 652 if (i == e) 653 break; 654 655 // Just check if following relocation is a R_PPC64_TOC 656 uint64_t TypeTOC; 657 check(i->getType(TypeTOC)); 658 if (TypeTOC != ELF::R_PPC64_TOC) 659 continue; 660 661 // Finally compares the Symbol value and the target symbol offset 662 // to check if this .opd entry refers to the symbol the relocation 663 // points to. 664 if (Rel.Addend != (int64_t)TargetSymbolOffset) 665 continue; 666 667 section_iterator tsi(Obj.section_end()); 668 check(TargetSymbol->getSection(tsi)); 669 bool IsCode = tsi->isText(); 670 Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections); 671 Rel.Addend = (intptr_t)Addend; 672 return; 673 } 674 } 675 llvm_unreachable("Attempting to get address of ODP entry!"); 676 } 677 678 // Relocation masks following the #lo(value), #hi(value), #ha(value), 679 // #higher(value), #highera(value), #highest(value), and #highesta(value) 680 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 681 // document. 682 683 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; } 684 685 static inline uint16_t applyPPChi(uint64_t value) { 686 return (value >> 16) & 0xffff; 687 } 688 689 static inline uint16_t applyPPCha (uint64_t value) { 690 return ((value + 0x8000) >> 16) & 0xffff; 691 } 692 693 static inline uint16_t applyPPChigher(uint64_t value) { 694 return (value >> 32) & 0xffff; 695 } 696 697 static inline uint16_t applyPPChighera (uint64_t value) { 698 return ((value + 0x8000) >> 32) & 0xffff; 699 } 700 701 static inline uint16_t applyPPChighest(uint64_t value) { 702 return (value >> 48) & 0xffff; 703 } 704 705 static inline uint16_t applyPPChighesta (uint64_t value) { 706 return ((value + 0x8000) >> 48) & 0xffff; 707 } 708 709 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, 710 uint64_t Offset, uint64_t Value, 711 uint32_t Type, int64_t Addend) { 712 uint8_t *LocalAddress = Section.Address + Offset; 713 switch (Type) { 714 default: 715 llvm_unreachable("Relocation type not implemented yet!"); 716 break; 717 case ELF::R_PPC64_ADDR16: 718 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 719 break; 720 case ELF::R_PPC64_ADDR16_DS: 721 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); 722 break; 723 case ELF::R_PPC64_ADDR16_LO: 724 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 725 break; 726 case ELF::R_PPC64_ADDR16_LO_DS: 727 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); 728 break; 729 case ELF::R_PPC64_ADDR16_HI: 730 writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); 731 break; 732 case ELF::R_PPC64_ADDR16_HA: 733 writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); 734 break; 735 case ELF::R_PPC64_ADDR16_HIGHER: 736 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend)); 737 break; 738 case ELF::R_PPC64_ADDR16_HIGHERA: 739 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend)); 740 break; 741 case ELF::R_PPC64_ADDR16_HIGHEST: 742 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend)); 743 break; 744 case ELF::R_PPC64_ADDR16_HIGHESTA: 745 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend)); 746 break; 747 case ELF::R_PPC64_ADDR14: { 748 assert(((Value + Addend) & 3) == 0); 749 // Preserve the AA/LK bits in the branch instruction 750 uint8_t aalk = *(LocalAddress + 3); 751 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc)); 752 } break; 753 case ELF::R_PPC64_REL16_LO: { 754 uint64_t FinalAddress = (Section.LoadAddress + Offset); 755 uint64_t Delta = Value - FinalAddress + Addend; 756 writeInt16BE(LocalAddress, applyPPClo(Delta)); 757 } break; 758 case ELF::R_PPC64_REL16_HI: { 759 uint64_t FinalAddress = (Section.LoadAddress + Offset); 760 uint64_t Delta = Value - FinalAddress + Addend; 761 writeInt16BE(LocalAddress, applyPPChi(Delta)); 762 } break; 763 case ELF::R_PPC64_REL16_HA: { 764 uint64_t FinalAddress = (Section.LoadAddress + Offset); 765 uint64_t Delta = Value - FinalAddress + Addend; 766 writeInt16BE(LocalAddress, applyPPCha(Delta)); 767 } break; 768 case ELF::R_PPC64_ADDR32: { 769 int32_t Result = static_cast<int32_t>(Value + Addend); 770 if (SignExtend32<32>(Result) != Result) 771 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow"); 772 writeInt32BE(LocalAddress, Result); 773 } break; 774 case ELF::R_PPC64_REL24: { 775 uint64_t FinalAddress = (Section.LoadAddress + Offset); 776 int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend); 777 if (SignExtend32<24>(delta) != delta) 778 llvm_unreachable("Relocation R_PPC64_REL24 overflow"); 779 // Generates a 'bl <address>' instruction 780 writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC)); 781 } break; 782 case ELF::R_PPC64_REL32: { 783 uint64_t FinalAddress = (Section.LoadAddress + Offset); 784 int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend); 785 if (SignExtend32<32>(delta) != delta) 786 llvm_unreachable("Relocation R_PPC64_REL32 overflow"); 787 writeInt32BE(LocalAddress, delta); 788 } break; 789 case ELF::R_PPC64_REL64: { 790 uint64_t FinalAddress = (Section.LoadAddress + Offset); 791 uint64_t Delta = Value - FinalAddress + Addend; 792 writeInt64BE(LocalAddress, Delta); 793 } break; 794 case ELF::R_PPC64_ADDR64: 795 writeInt64BE(LocalAddress, Value + Addend); 796 break; 797 } 798 } 799 800 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section, 801 uint64_t Offset, uint64_t Value, 802 uint32_t Type, int64_t Addend) { 803 uint8_t *LocalAddress = Section.Address + Offset; 804 switch (Type) { 805 default: 806 llvm_unreachable("Relocation type not implemented yet!"); 807 break; 808 case ELF::R_390_PC16DBL: 809 case ELF::R_390_PLT16DBL: { 810 int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset); 811 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow"); 812 writeInt16BE(LocalAddress, Delta / 2); 813 break; 814 } 815 case ELF::R_390_PC32DBL: 816 case ELF::R_390_PLT32DBL: { 817 int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset); 818 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow"); 819 writeInt32BE(LocalAddress, Delta / 2); 820 break; 821 } 822 case ELF::R_390_PC32: { 823 int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset); 824 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow"); 825 writeInt32BE(LocalAddress, Delta); 826 break; 827 } 828 case ELF::R_390_64: 829 writeInt64BE(LocalAddress, Value + Addend); 830 break; 831 } 832 } 833 834 // The target location for the relocation is described by RE.SectionID and 835 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each 836 // SectionEntry has three members describing its location. 837 // SectionEntry::Address is the address at which the section has been loaded 838 // into memory in the current (host) process. SectionEntry::LoadAddress is the 839 // address that the section will have in the target process. 840 // SectionEntry::ObjAddress is the address of the bits for this section in the 841 // original emitted object image (also in the current address space). 842 // 843 // Relocations will be applied as if the section were loaded at 844 // SectionEntry::LoadAddress, but they will be applied at an address based 845 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to 846 // Target memory contents if they are required for value calculations. 847 // 848 // The Value parameter here is the load address of the symbol for the 849 // relocation to be applied. For relocations which refer to symbols in the 850 // current object Value will be the LoadAddress of the section in which 851 // the symbol resides (RE.Addend provides additional information about the 852 // symbol location). For external symbols, Value will be the address of the 853 // symbol in the target address space. 854 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE, 855 uint64_t Value) { 856 const SectionEntry &Section = Sections[RE.SectionID]; 857 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend, 858 RE.SymOffset); 859 } 860 861 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section, 862 uint64_t Offset, uint64_t Value, 863 uint32_t Type, int64_t Addend, 864 uint64_t SymOffset) { 865 switch (Arch) { 866 case Triple::x86_64: 867 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset); 868 break; 869 case Triple::x86: 870 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, 871 (uint32_t)(Addend & 0xffffffffL)); 872 break; 873 case Triple::aarch64: 874 case Triple::aarch64_be: 875 resolveAArch64Relocation(Section, Offset, Value, Type, Addend); 876 break; 877 case Triple::arm: // Fall through. 878 case Triple::armeb: 879 case Triple::thumb: 880 case Triple::thumbeb: 881 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, 882 (uint32_t)(Addend & 0xffffffffL)); 883 break; 884 case Triple::mips: // Fall through. 885 case Triple::mipsel: 886 resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), 887 Type, (uint32_t)(Addend & 0xffffffffL)); 888 break; 889 case Triple::ppc64: // Fall through. 890 case Triple::ppc64le: 891 resolvePPC64Relocation(Section, Offset, Value, Type, Addend); 892 break; 893 case Triple::systemz: 894 resolveSystemZRelocation(Section, Offset, Value, Type, Addend); 895 break; 896 default: 897 llvm_unreachable("Unsupported CPU type!"); 898 } 899 } 900 901 relocation_iterator RuntimeDyldELF::processRelocationRef( 902 unsigned SectionID, relocation_iterator RelI, 903 const ObjectFile &Obj, 904 ObjSectionToIDMap &ObjSectionToID, 905 StubMap &Stubs) { 906 uint64_t RelType; 907 Check(RelI->getType(RelType)); 908 int64_t Addend; 909 Check(getELFRelocationAddend(*RelI, Addend)); 910 symbol_iterator Symbol = RelI->getSymbol(); 911 912 // Obtain the symbol name which is referenced in the relocation 913 StringRef TargetName; 914 if (Symbol != Obj.symbol_end()) 915 Symbol->getName(TargetName); 916 DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend 917 << " TargetName: " << TargetName << "\n"); 918 RelocationValueRef Value; 919 // First search for the symbol in the local symbol table 920 SymbolRef::Type SymType = SymbolRef::ST_Unknown; 921 922 // Search for the symbol in the global symbol table 923 RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end(); 924 if (Symbol != Obj.symbol_end()) { 925 gsi = GlobalSymbolTable.find(TargetName.data()); 926 Symbol->getType(SymType); 927 } 928 if (gsi != GlobalSymbolTable.end()) { 929 const auto &SymInfo = gsi->second; 930 Value.SectionID = SymInfo.getSectionID(); 931 Value.Offset = SymInfo.getOffset(); 932 Value.Addend = SymInfo.getOffset() + Addend; 933 } else { 934 switch (SymType) { 935 case SymbolRef::ST_Debug: { 936 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously 937 // and can be changed by another developers. Maybe best way is add 938 // a new symbol type ST_Section to SymbolRef and use it. 939 section_iterator si(Obj.section_end()); 940 Symbol->getSection(si); 941 if (si == Obj.section_end()) 942 llvm_unreachable("Symbol section not found, bad object file format!"); 943 DEBUG(dbgs() << "\t\tThis is section symbol\n"); 944 bool isCode = si->isText(); 945 Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID); 946 Value.Addend = Addend; 947 break; 948 } 949 case SymbolRef::ST_Data: 950 case SymbolRef::ST_Unknown: { 951 Value.SymbolName = TargetName.data(); 952 Value.Addend = Addend; 953 954 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which 955 // will manifest here as a NULL symbol name. 956 // We can set this as a valid (but empty) symbol name, and rely 957 // on addRelocationForSymbol to handle this. 958 if (!Value.SymbolName) 959 Value.SymbolName = ""; 960 break; 961 } 962 default: 963 llvm_unreachable("Unresolved symbol type!"); 964 break; 965 } 966 } 967 968 uint64_t Offset; 969 Check(RelI->getOffset(Offset)); 970 971 DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset 972 << "\n"); 973 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) && 974 (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) { 975 // This is an AArch64 branch relocation, need to use a stub function. 976 DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation."); 977 SectionEntry &Section = Sections[SectionID]; 978 979 // Look for an existing stub. 980 StubMap::const_iterator i = Stubs.find(Value); 981 if (i != Stubs.end()) { 982 resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second, 983 RelType, 0); 984 DEBUG(dbgs() << " Stub function found\n"); 985 } else { 986 // Create a new stub function. 987 DEBUG(dbgs() << " Create a new stub function\n"); 988 Stubs[Value] = Section.StubOffset; 989 uint8_t *StubTargetAddr = 990 createStubFunction(Section.Address + Section.StubOffset); 991 992 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.Address, 993 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend); 994 RelocationEntry REmovk_g2(SectionID, StubTargetAddr - Section.Address + 4, 995 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend); 996 RelocationEntry REmovk_g1(SectionID, StubTargetAddr - Section.Address + 8, 997 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend); 998 RelocationEntry REmovk_g0(SectionID, 999 StubTargetAddr - Section.Address + 12, 1000 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend); 1001 1002 if (Value.SymbolName) { 1003 addRelocationForSymbol(REmovz_g3, Value.SymbolName); 1004 addRelocationForSymbol(REmovk_g2, Value.SymbolName); 1005 addRelocationForSymbol(REmovk_g1, Value.SymbolName); 1006 addRelocationForSymbol(REmovk_g0, Value.SymbolName); 1007 } else { 1008 addRelocationForSection(REmovz_g3, Value.SectionID); 1009 addRelocationForSection(REmovk_g2, Value.SectionID); 1010 addRelocationForSection(REmovk_g1, Value.SectionID); 1011 addRelocationForSection(REmovk_g0, Value.SectionID); 1012 } 1013 resolveRelocation(Section, Offset, 1014 (uint64_t)Section.Address + Section.StubOffset, RelType, 1015 0); 1016 Section.StubOffset += getMaxStubSize(); 1017 } 1018 } else if (Arch == Triple::arm && 1019 (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL || 1020 RelType == ELF::R_ARM_JUMP24)) { 1021 // This is an ARM branch relocation, need to use a stub function. 1022 DEBUG(dbgs() << "\t\tThis is an ARM branch relocation."); 1023 SectionEntry &Section = Sections[SectionID]; 1024 1025 // Look for an existing stub. 1026 StubMap::const_iterator i = Stubs.find(Value); 1027 if (i != Stubs.end()) { 1028 resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second, 1029 RelType, 0); 1030 DEBUG(dbgs() << " Stub function found\n"); 1031 } else { 1032 // Create a new stub function. 1033 DEBUG(dbgs() << " Create a new stub function\n"); 1034 Stubs[Value] = Section.StubOffset; 1035 uint8_t *StubTargetAddr = 1036 createStubFunction(Section.Address + Section.StubOffset); 1037 RelocationEntry RE(SectionID, StubTargetAddr - Section.Address, 1038 ELF::R_ARM_PRIVATE_0, Value.Addend); 1039 if (Value.SymbolName) 1040 addRelocationForSymbol(RE, Value.SymbolName); 1041 else 1042 addRelocationForSection(RE, Value.SectionID); 1043 1044 resolveRelocation(Section, Offset, 1045 (uint64_t)Section.Address + Section.StubOffset, RelType, 1046 0); 1047 Section.StubOffset += getMaxStubSize(); 1048 } 1049 } else if ((Arch == Triple::mipsel || Arch == Triple::mips) && 1050 RelType == ELF::R_MIPS_26) { 1051 // This is an Mips branch relocation, need to use a stub function. 1052 DEBUG(dbgs() << "\t\tThis is a Mips branch relocation."); 1053 SectionEntry &Section = Sections[SectionID]; 1054 uint8_t *Target = Section.Address + Offset; 1055 uint32_t *TargetAddress = (uint32_t *)Target; 1056 1057 // Extract the addend from the instruction. 1058 uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2; 1059 1060 Value.Addend += Addend; 1061 1062 // Look up for existing stub. 1063 StubMap::const_iterator i = Stubs.find(Value); 1064 if (i != Stubs.end()) { 1065 RelocationEntry RE(SectionID, Offset, RelType, i->second); 1066 addRelocationForSection(RE, SectionID); 1067 DEBUG(dbgs() << " Stub function found\n"); 1068 } else { 1069 // Create a new stub function. 1070 DEBUG(dbgs() << " Create a new stub function\n"); 1071 Stubs[Value] = Section.StubOffset; 1072 uint8_t *StubTargetAddr = 1073 createStubFunction(Section.Address + Section.StubOffset); 1074 1075 // Creating Hi and Lo relocations for the filled stub instructions. 1076 RelocationEntry REHi(SectionID, StubTargetAddr - Section.Address, 1077 ELF::R_MIPS_UNUSED1, Value.Addend); 1078 RelocationEntry RELo(SectionID, StubTargetAddr - Section.Address + 4, 1079 ELF::R_MIPS_UNUSED2, Value.Addend); 1080 1081 if (Value.SymbolName) { 1082 addRelocationForSymbol(REHi, Value.SymbolName); 1083 addRelocationForSymbol(RELo, Value.SymbolName); 1084 } else { 1085 addRelocationForSection(REHi, Value.SectionID); 1086 addRelocationForSection(RELo, Value.SectionID); 1087 } 1088 1089 RelocationEntry RE(SectionID, Offset, RelType, Section.StubOffset); 1090 addRelocationForSection(RE, SectionID); 1091 Section.StubOffset += getMaxStubSize(); 1092 } 1093 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 1094 if (RelType == ELF::R_PPC64_REL24) { 1095 // Determine ABI variant in use for this object. 1096 unsigned AbiVariant; 1097 Obj.getPlatformFlags(AbiVariant); 1098 AbiVariant &= ELF::EF_PPC64_ABI; 1099 // A PPC branch relocation will need a stub function if the target is 1100 // an external symbol (Symbol::ST_Unknown) or if the target address 1101 // is not within the signed 24-bits branch address. 1102 SectionEntry &Section = Sections[SectionID]; 1103 uint8_t *Target = Section.Address + Offset; 1104 bool RangeOverflow = false; 1105 if (SymType != SymbolRef::ST_Unknown) { 1106 if (AbiVariant != 2) { 1107 // In the ELFv1 ABI, a function call may point to the .opd entry, 1108 // so the final symbol value is calculated based on the relocation 1109 // values in the .opd section. 1110 findOPDEntrySection(Obj, ObjSectionToID, Value); 1111 } else { 1112 // In the ELFv2 ABI, a function symbol may provide a local entry 1113 // point, which must be used for direct calls. 1114 uint8_t SymOther; 1115 Symbol->getOther(SymOther); 1116 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther); 1117 } 1118 uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend; 1119 int32_t delta = static_cast<int32_t>(Target - RelocTarget); 1120 // If it is within 24-bits branch range, just set the branch target 1121 if (SignExtend32<24>(delta) == delta) { 1122 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1123 if (Value.SymbolName) 1124 addRelocationForSymbol(RE, Value.SymbolName); 1125 else 1126 addRelocationForSection(RE, Value.SectionID); 1127 } else { 1128 RangeOverflow = true; 1129 } 1130 } 1131 if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) { 1132 // It is an external symbol (SymbolRef::ST_Unknown) or within a range 1133 // larger than 24-bits. 1134 StubMap::const_iterator i = Stubs.find(Value); 1135 if (i != Stubs.end()) { 1136 // Symbol function stub already created, just relocate to it 1137 resolveRelocation(Section, Offset, 1138 (uint64_t)Section.Address + i->second, RelType, 0); 1139 DEBUG(dbgs() << " Stub function found\n"); 1140 } else { 1141 // Create a new stub function. 1142 DEBUG(dbgs() << " Create a new stub function\n"); 1143 Stubs[Value] = Section.StubOffset; 1144 uint8_t *StubTargetAddr = 1145 createStubFunction(Section.Address + Section.StubOffset, 1146 AbiVariant); 1147 RelocationEntry RE(SectionID, StubTargetAddr - Section.Address, 1148 ELF::R_PPC64_ADDR64, Value.Addend); 1149 1150 // Generates the 64-bits address loads as exemplified in section 1151 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to 1152 // apply to the low part of the instructions, so we have to update 1153 // the offset according to the target endianness. 1154 uint64_t StubRelocOffset = StubTargetAddr - Section.Address; 1155 if (!IsTargetLittleEndian) 1156 StubRelocOffset += 2; 1157 1158 RelocationEntry REhst(SectionID, StubRelocOffset + 0, 1159 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend); 1160 RelocationEntry REhr(SectionID, StubRelocOffset + 4, 1161 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend); 1162 RelocationEntry REh(SectionID, StubRelocOffset + 12, 1163 ELF::R_PPC64_ADDR16_HI, Value.Addend); 1164 RelocationEntry REl(SectionID, StubRelocOffset + 16, 1165 ELF::R_PPC64_ADDR16_LO, Value.Addend); 1166 1167 if (Value.SymbolName) { 1168 addRelocationForSymbol(REhst, Value.SymbolName); 1169 addRelocationForSymbol(REhr, Value.SymbolName); 1170 addRelocationForSymbol(REh, Value.SymbolName); 1171 addRelocationForSymbol(REl, Value.SymbolName); 1172 } else { 1173 addRelocationForSection(REhst, Value.SectionID); 1174 addRelocationForSection(REhr, Value.SectionID); 1175 addRelocationForSection(REh, Value.SectionID); 1176 addRelocationForSection(REl, Value.SectionID); 1177 } 1178 1179 resolveRelocation(Section, Offset, 1180 (uint64_t)Section.Address + Section.StubOffset, 1181 RelType, 0); 1182 Section.StubOffset += getMaxStubSize(); 1183 } 1184 if (SymType == SymbolRef::ST_Unknown) { 1185 // Restore the TOC for external calls 1186 if (AbiVariant == 2) 1187 writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1) 1188 else 1189 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1) 1190 } 1191 } 1192 } else if (RelType == ELF::R_PPC64_TOC16 || 1193 RelType == ELF::R_PPC64_TOC16_DS || 1194 RelType == ELF::R_PPC64_TOC16_LO || 1195 RelType == ELF::R_PPC64_TOC16_LO_DS || 1196 RelType == ELF::R_PPC64_TOC16_HI || 1197 RelType == ELF::R_PPC64_TOC16_HA) { 1198 // These relocations are supposed to subtract the TOC address from 1199 // the final value. This does not fit cleanly into the RuntimeDyld 1200 // scheme, since there may be *two* sections involved in determining 1201 // the relocation value (the section of the symbol refered to by the 1202 // relocation, and the TOC section associated with the current module). 1203 // 1204 // Fortunately, these relocations are currently only ever generated 1205 // refering to symbols that themselves reside in the TOC, which means 1206 // that the two sections are actually the same. Thus they cancel out 1207 // and we can immediately resolve the relocation right now. 1208 switch (RelType) { 1209 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break; 1210 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break; 1211 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break; 1212 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break; 1213 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break; 1214 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break; 1215 default: llvm_unreachable("Wrong relocation type."); 1216 } 1217 1218 RelocationValueRef TOCValue; 1219 findPPC64TOCSection(Obj, ObjSectionToID, TOCValue); 1220 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID) 1221 llvm_unreachable("Unsupported TOC relocation."); 1222 Value.Addend -= TOCValue.Addend; 1223 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0); 1224 } else { 1225 // There are two ways to refer to the TOC address directly: either 1226 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are 1227 // ignored), or via any relocation that refers to the magic ".TOC." 1228 // symbols (in which case the addend is respected). 1229 if (RelType == ELF::R_PPC64_TOC) { 1230 RelType = ELF::R_PPC64_ADDR64; 1231 findPPC64TOCSection(Obj, ObjSectionToID, Value); 1232 } else if (TargetName == ".TOC.") { 1233 findPPC64TOCSection(Obj, ObjSectionToID, Value); 1234 Value.Addend += Addend; 1235 } 1236 1237 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1238 1239 if (Value.SymbolName) 1240 addRelocationForSymbol(RE, Value.SymbolName); 1241 else 1242 addRelocationForSection(RE, Value.SectionID); 1243 } 1244 } else if (Arch == Triple::systemz && 1245 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) { 1246 // Create function stubs for both PLT and GOT references, regardless of 1247 // whether the GOT reference is to data or code. The stub contains the 1248 // full address of the symbol, as needed by GOT references, and the 1249 // executable part only adds an overhead of 8 bytes. 1250 // 1251 // We could try to conserve space by allocating the code and data 1252 // parts of the stub separately. However, as things stand, we allocate 1253 // a stub for every relocation, so using a GOT in JIT code should be 1254 // no less space efficient than using an explicit constant pool. 1255 DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation."); 1256 SectionEntry &Section = Sections[SectionID]; 1257 1258 // Look for an existing stub. 1259 StubMap::const_iterator i = Stubs.find(Value); 1260 uintptr_t StubAddress; 1261 if (i != Stubs.end()) { 1262 StubAddress = uintptr_t(Section.Address) + i->second; 1263 DEBUG(dbgs() << " Stub function found\n"); 1264 } else { 1265 // Create a new stub function. 1266 DEBUG(dbgs() << " Create a new stub function\n"); 1267 1268 uintptr_t BaseAddress = uintptr_t(Section.Address); 1269 uintptr_t StubAlignment = getStubAlignment(); 1270 StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) & 1271 -StubAlignment; 1272 unsigned StubOffset = StubAddress - BaseAddress; 1273 1274 Stubs[Value] = StubOffset; 1275 createStubFunction((uint8_t *)StubAddress); 1276 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64, 1277 Value.Offset); 1278 if (Value.SymbolName) 1279 addRelocationForSymbol(RE, Value.SymbolName); 1280 else 1281 addRelocationForSection(RE, Value.SectionID); 1282 Section.StubOffset = StubOffset + getMaxStubSize(); 1283 } 1284 1285 if (RelType == ELF::R_390_GOTENT) 1286 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL, 1287 Addend); 1288 else 1289 resolveRelocation(Section, Offset, StubAddress, RelType, Addend); 1290 } else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_PLT32) { 1291 // The way the PLT relocations normally work is that the linker allocates 1292 // the 1293 // PLT and this relocation makes a PC-relative call into the PLT. The PLT 1294 // entry will then jump to an address provided by the GOT. On first call, 1295 // the 1296 // GOT address will point back into PLT code that resolves the symbol. After 1297 // the first call, the GOT entry points to the actual function. 1298 // 1299 // For local functions we're ignoring all of that here and just replacing 1300 // the PLT32 relocation type with PC32, which will translate the relocation 1301 // into a PC-relative call directly to the function. For external symbols we 1302 // can't be sure the function will be within 2^32 bytes of the call site, so 1303 // we need to create a stub, which calls into the GOT. This case is 1304 // equivalent to the usual PLT implementation except that we use the stub 1305 // mechanism in RuntimeDyld (which puts stubs at the end of the section) 1306 // rather than allocating a PLT section. 1307 if (Value.SymbolName) { 1308 // This is a call to an external function. 1309 // Look for an existing stub. 1310 SectionEntry &Section = Sections[SectionID]; 1311 StubMap::const_iterator i = Stubs.find(Value); 1312 uintptr_t StubAddress; 1313 if (i != Stubs.end()) { 1314 StubAddress = uintptr_t(Section.Address) + i->second; 1315 DEBUG(dbgs() << " Stub function found\n"); 1316 } else { 1317 // Create a new stub function (equivalent to a PLT entry). 1318 DEBUG(dbgs() << " Create a new stub function\n"); 1319 1320 uintptr_t BaseAddress = uintptr_t(Section.Address); 1321 uintptr_t StubAlignment = getStubAlignment(); 1322 StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) & 1323 -StubAlignment; 1324 unsigned StubOffset = StubAddress - BaseAddress; 1325 Stubs[Value] = StubOffset; 1326 createStubFunction((uint8_t *)StubAddress); 1327 1328 // Create a GOT entry for the external function. 1329 GOTEntries.push_back(Value); 1330 1331 // Make our stub function a relative call to the GOT entry. 1332 RelocationEntry RE(SectionID, StubOffset + 2, ELF::R_X86_64_GOTPCREL, 1333 -4); 1334 addRelocationForSymbol(RE, Value.SymbolName); 1335 1336 // Bump our stub offset counter 1337 Section.StubOffset = StubOffset + getMaxStubSize(); 1338 } 1339 1340 // Make the target call a call into the stub table. 1341 resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32, 1342 Addend); 1343 } else { 1344 RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend, 1345 Value.Offset); 1346 addRelocationForSection(RE, Value.SectionID); 1347 } 1348 } else { 1349 if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_GOTPCREL) { 1350 GOTEntries.push_back(Value); 1351 } 1352 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset); 1353 if (Value.SymbolName) 1354 addRelocationForSymbol(RE, Value.SymbolName); 1355 else 1356 addRelocationForSection(RE, Value.SectionID); 1357 } 1358 return ++RelI; 1359 } 1360 1361 void RuntimeDyldELF::updateGOTEntries(StringRef Name, uint64_t Addr) { 1362 1363 SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator it; 1364 SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator end = GOTs.end(); 1365 1366 for (it = GOTs.begin(); it != end; ++it) { 1367 GOTRelocations &GOTEntries = it->second; 1368 for (int i = 0, e = GOTEntries.size(); i != e; ++i) { 1369 if (GOTEntries[i].SymbolName != nullptr && 1370 GOTEntries[i].SymbolName == Name) { 1371 GOTEntries[i].Offset = Addr; 1372 } 1373 } 1374 } 1375 } 1376 1377 size_t RuntimeDyldELF::getGOTEntrySize() { 1378 // We don't use the GOT in all of these cases, but it's essentially free 1379 // to put them all here. 1380 size_t Result = 0; 1381 switch (Arch) { 1382 case Triple::x86_64: 1383 case Triple::aarch64: 1384 case Triple::aarch64_be: 1385 case Triple::ppc64: 1386 case Triple::ppc64le: 1387 case Triple::systemz: 1388 Result = sizeof(uint64_t); 1389 break; 1390 case Triple::x86: 1391 case Triple::arm: 1392 case Triple::thumb: 1393 case Triple::mips: 1394 case Triple::mipsel: 1395 Result = sizeof(uint32_t); 1396 break; 1397 default: 1398 llvm_unreachable("Unsupported CPU type!"); 1399 } 1400 return Result; 1401 } 1402 1403 uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, uint64_t Offset) { 1404 1405 const size_t GOTEntrySize = getGOTEntrySize(); 1406 1407 SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator it; 1408 SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator end = 1409 GOTs.end(); 1410 1411 int GOTIndex = -1; 1412 for (it = GOTs.begin(); it != end; ++it) { 1413 SID GOTSectionID = it->first; 1414 const GOTRelocations &GOTEntries = it->second; 1415 1416 // Find the matching entry in our vector. 1417 uint64_t SymbolOffset = 0; 1418 for (int i = 0, e = GOTEntries.size(); i != e; ++i) { 1419 if (!GOTEntries[i].SymbolName) { 1420 if (getSectionLoadAddress(GOTEntries[i].SectionID) == LoadAddress && 1421 GOTEntries[i].Offset == Offset) { 1422 GOTIndex = i; 1423 SymbolOffset = GOTEntries[i].Offset; 1424 break; 1425 } 1426 } else { 1427 // GOT entries for external symbols use the addend as the address when 1428 // the external symbol has been resolved. 1429 if (GOTEntries[i].Offset == LoadAddress) { 1430 GOTIndex = i; 1431 // Don't use the Addend here. The relocation handler will use it. 1432 break; 1433 } 1434 } 1435 } 1436 1437 if (GOTIndex != -1) { 1438 if (GOTEntrySize == sizeof(uint64_t)) { 1439 uint64_t *LocalGOTAddr = (uint64_t *)getSectionAddress(GOTSectionID); 1440 // Fill in this entry with the address of the symbol being referenced. 1441 LocalGOTAddr[GOTIndex] = LoadAddress + SymbolOffset; 1442 } else { 1443 uint32_t *LocalGOTAddr = (uint32_t *)getSectionAddress(GOTSectionID); 1444 // Fill in this entry with the address of the symbol being referenced. 1445 LocalGOTAddr[GOTIndex] = (uint32_t)(LoadAddress + SymbolOffset); 1446 } 1447 1448 // Calculate the load address of this entry 1449 return getSectionLoadAddress(GOTSectionID) + (GOTIndex * GOTEntrySize); 1450 } 1451 } 1452 1453 assert(GOTIndex != -1 && "Unable to find requested GOT entry."); 1454 return 0; 1455 } 1456 1457 void RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj, 1458 ObjSectionToIDMap &SectionMap) { 1459 // If necessary, allocate the global offset table 1460 if (MemMgr) { 1461 // Allocate the GOT if necessary 1462 size_t numGOTEntries = GOTEntries.size(); 1463 if (numGOTEntries != 0) { 1464 // Allocate memory for the section 1465 unsigned SectionID = Sections.size(); 1466 size_t TotalSize = numGOTEntries * getGOTEntrySize(); 1467 uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, getGOTEntrySize(), 1468 SectionID, ".got", false); 1469 if (!Addr) 1470 report_fatal_error("Unable to allocate memory for GOT!"); 1471 1472 GOTs.push_back(std::make_pair(SectionID, GOTEntries)); 1473 Sections.push_back(SectionEntry(".got", Addr, TotalSize, 0)); 1474 // For now, initialize all GOT entries to zero. We'll fill them in as 1475 // needed when GOT-based relocations are applied. 1476 memset(Addr, 0, TotalSize); 1477 } 1478 } else { 1479 report_fatal_error("Unable to allocate memory for GOT!"); 1480 } 1481 1482 // Look for and record the EH frame section. 1483 ObjSectionToIDMap::iterator i, e; 1484 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) { 1485 const SectionRef &Section = i->first; 1486 StringRef Name; 1487 Section.getName(Name); 1488 if (Name == ".eh_frame") { 1489 UnregisteredEHFrameSections.push_back(i->second); 1490 break; 1491 } 1492 } 1493 } 1494 1495 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const { 1496 return Obj.isELF(); 1497 } 1498 1499 } // namespace llvm 1500