1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RuntimeDyldELF.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "llvm/ADT/IntervalMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/MC/MCStreamer.h"
21 #include "llvm/Object/ELFObjectFile.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/ELF.h"
24 #include "llvm/Support/Endian.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/Support/TargetRegistry.h"
27 
28 using namespace llvm;
29 using namespace llvm::object;
30 
31 #define DEBUG_TYPE "dyld"
32 
33 namespace {
34 
35 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
36   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
37 
38   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
39   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
40   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
41   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
42 
43   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
44 
45   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
46 
47 public:
48   DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
49 
50   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
51 
52   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
53 
54   // Methods for type inquiry through isa, cast and dyn_cast
55   static inline bool classof(const Binary *v) {
56     return (isa<ELFObjectFile<ELFT>>(v) &&
57             classof(cast<ELFObjectFile<ELFT>>(v)));
58   }
59   static inline bool classof(const ELFObjectFile<ELFT> *v) {
60     return v->isDyldType();
61   }
62 };
63 
64 
65 
66 // The MemoryBuffer passed into this constructor is just a wrapper around the
67 // actual memory.  Ultimately, the Binary parent class will take ownership of
68 // this MemoryBuffer object but not the underlying memory.
69 template <class ELFT>
70 DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
71     : ELFObjectFile<ELFT>(Wrapper, EC) {
72   this->isDyldELFObject = true;
73 }
74 
75 template <class ELFT>
76 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
77                                                uint64_t Addr) {
78   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
79   Elf_Shdr *shdr =
80       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
81 
82   // This assumes the address passed in matches the target address bitness
83   // The template-based type cast handles everything else.
84   shdr->sh_addr = static_cast<addr_type>(Addr);
85 }
86 
87 template <class ELFT>
88 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
89                                               uint64_t Addr) {
90 
91   Elf_Sym *sym = const_cast<Elf_Sym *>(
92       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
93 
94   // This assumes the address passed in matches the target address bitness
95   // The template-based type cast handles everything else.
96   sym->st_value = static_cast<addr_type>(Addr);
97 }
98 
99 class LoadedELFObjectInfo final
100     : public RuntimeDyld::LoadedObjectInfoHelper<LoadedELFObjectInfo> {
101 public:
102   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
103       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
104 
105   OwningBinary<ObjectFile>
106   getObjectForDebug(const ObjectFile &Obj) const override;
107 };
108 
109 template <typename ELFT>
110 std::unique_ptr<DyldELFObject<ELFT>>
111 createRTDyldELFObject(MemoryBufferRef Buffer,
112                       const ObjectFile &SourceObject,
113                       const LoadedELFObjectInfo &L,
114                       std::error_code &ec) {
115   typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
116   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
117 
118   std::unique_ptr<DyldELFObject<ELFT>> Obj =
119     llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
120 
121   // Iterate over all sections in the object.
122   auto SI = SourceObject.section_begin();
123   for (const auto &Sec : Obj->sections()) {
124     StringRef SectionName;
125     Sec.getName(SectionName);
126     if (SectionName != "") {
127       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
128       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
129           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
130 
131       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
132         // This assumes that the address passed in matches the target address
133         // bitness. The template-based type cast handles everything else.
134         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
135       }
136     }
137     ++SI;
138   }
139 
140   return Obj;
141 }
142 
143 OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
144                                               const LoadedELFObjectInfo &L) {
145   assert(Obj.isELF() && "Not an ELF object file.");
146 
147   std::unique_ptr<MemoryBuffer> Buffer =
148     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
149 
150   std::error_code ec;
151 
152   std::unique_ptr<ObjectFile> DebugObj;
153   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
154     typedef ELFType<support::little, false> ELF32LE;
155     DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L,
156                                               ec);
157   } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
158     typedef ELFType<support::big, false> ELF32BE;
159     DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L,
160                                               ec);
161   } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
162     typedef ELFType<support::big, true> ELF64BE;
163     DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L,
164                                               ec);
165   } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
166     typedef ELFType<support::little, true> ELF64LE;
167     DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L,
168                                               ec);
169   } else
170     llvm_unreachable("Unexpected ELF format");
171 
172   assert(!ec && "Could not construct copy ELF object file");
173 
174   return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
175 }
176 
177 OwningBinary<ObjectFile>
178 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
179   return createELFDebugObject(Obj, *this);
180 }
181 
182 } // anonymous namespace
183 
184 namespace llvm {
185 
186 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
187                                JITSymbolResolver &Resolver)
188     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
189 RuntimeDyldELF::~RuntimeDyldELF() {}
190 
191 void RuntimeDyldELF::registerEHFrames() {
192   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
193     SID EHFrameSID = UnregisteredEHFrameSections[i];
194     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
195     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
196     size_t EHFrameSize = Sections[EHFrameSID].getSize();
197     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
198     RegisteredEHFrameSections.push_back(EHFrameSID);
199   }
200   UnregisteredEHFrameSections.clear();
201 }
202 
203 void RuntimeDyldELF::deregisterEHFrames() {
204   for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
205     SID EHFrameSID = RegisteredEHFrameSections[i];
206     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
207     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
208     size_t EHFrameSize = Sections[EHFrameSID].getSize();
209     MemMgr.deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
210   }
211   RegisteredEHFrameSections.clear();
212 }
213 
214 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
215 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
216   if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
217     return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
218   else {
219     HasError = true;
220     raw_string_ostream ErrStream(ErrorStr);
221     logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream, "");
222     return nullptr;
223   }
224 }
225 
226 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
227                                              uint64_t Offset, uint64_t Value,
228                                              uint32_t Type, int64_t Addend,
229                                              uint64_t SymOffset) {
230   switch (Type) {
231   default:
232     llvm_unreachable("Relocation type not implemented yet!");
233     break;
234   case ELF::R_X86_64_64: {
235     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
236         Value + Addend;
237     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
238                  << format("%p\n", Section.getAddressWithOffset(Offset)));
239     break;
240   }
241   case ELF::R_X86_64_32:
242   case ELF::R_X86_64_32S: {
243     Value += Addend;
244     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
245            (Type == ELF::R_X86_64_32S &&
246             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
247     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
248     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
249         TruncatedAddr;
250     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
251                  << format("%p\n", Section.getAddressWithOffset(Offset)));
252     break;
253   }
254   case ELF::R_X86_64_PC8: {
255     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
256     int64_t RealOffset = Value + Addend - FinalAddress;
257     assert(isInt<8>(RealOffset));
258     int8_t TruncOffset = (RealOffset & 0xFF);
259     Section.getAddress()[Offset] = TruncOffset;
260     break;
261   }
262   case ELF::R_X86_64_PC32: {
263     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
264     int64_t RealOffset = Value + Addend - FinalAddress;
265     assert(isInt<32>(RealOffset));
266     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
267     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
268         TruncOffset;
269     break;
270   }
271   case ELF::R_X86_64_PC64: {
272     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
273     int64_t RealOffset = Value + Addend - FinalAddress;
274     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
275         RealOffset;
276     break;
277   }
278   }
279 }
280 
281 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
282                                           uint64_t Offset, uint32_t Value,
283                                           uint32_t Type, int32_t Addend) {
284   switch (Type) {
285   case ELF::R_386_32: {
286     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
287         Value + Addend;
288     break;
289   }
290   case ELF::R_386_PC32: {
291     uint32_t FinalAddress =
292         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
293     uint32_t RealOffset = Value + Addend - FinalAddress;
294     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
295         RealOffset;
296     break;
297   }
298   default:
299     // There are other relocation types, but it appears these are the
300     // only ones currently used by the LLVM ELF object writer
301     llvm_unreachable("Relocation type not implemented yet!");
302     break;
303   }
304 }
305 
306 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
307                                               uint64_t Offset, uint64_t Value,
308                                               uint32_t Type, int64_t Addend) {
309   uint32_t *TargetPtr =
310       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
311   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
312 
313   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
314                << format("%llx", Section.getAddressWithOffset(Offset))
315                << " FinalAddress: 0x" << format("%llx", FinalAddress)
316                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
317                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
318                << "\n");
319 
320   switch (Type) {
321   default:
322     llvm_unreachable("Relocation type not implemented yet!");
323     break;
324   case ELF::R_AARCH64_ABS64: {
325     uint64_t *TargetPtr =
326         reinterpret_cast<uint64_t *>(Section.getAddressWithOffset(Offset));
327     *TargetPtr = Value + Addend;
328     break;
329   }
330   case ELF::R_AARCH64_PREL32: {
331     uint64_t Result = Value + Addend - FinalAddress;
332     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
333            static_cast<int64_t>(Result) <= UINT32_MAX);
334     *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
335     break;
336   }
337   case ELF::R_AARCH64_CALL26: // fallthrough
338   case ELF::R_AARCH64_JUMP26: {
339     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
340     // calculation.
341     uint64_t BranchImm = Value + Addend - FinalAddress;
342 
343     // "Check that -2^27 <= result < 2^27".
344     assert(isInt<28>(BranchImm));
345 
346     // AArch64 code is emitted with .rela relocations. The data already in any
347     // bits affected by the relocation on entry is garbage.
348     *TargetPtr &= 0xfc000000U;
349     // Immediate goes in bits 25:0 of B and BL.
350     *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
351     break;
352   }
353   case ELF::R_AARCH64_MOVW_UABS_G3: {
354     uint64_t Result = Value + Addend;
355 
356     // AArch64 code is emitted with .rela relocations. The data already in any
357     // bits affected by the relocation on entry is garbage.
358     *TargetPtr &= 0xffe0001fU;
359     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
360     *TargetPtr |= Result >> (48 - 5);
361     // Shift must be "lsl #48", in bits 22:21
362     assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
363     break;
364   }
365   case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
366     uint64_t Result = Value + Addend;
367 
368     // AArch64 code is emitted with .rela relocations. The data already in any
369     // bits affected by the relocation on entry is garbage.
370     *TargetPtr &= 0xffe0001fU;
371     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
372     *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
373     // Shift must be "lsl #32", in bits 22:21
374     assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
375     break;
376   }
377   case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
378     uint64_t Result = Value + Addend;
379 
380     // AArch64 code is emitted with .rela relocations. The data already in any
381     // bits affected by the relocation on entry is garbage.
382     *TargetPtr &= 0xffe0001fU;
383     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
384     *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
385     // Shift must be "lsl #16", in bits 22:2
386     assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
387     break;
388   }
389   case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
390     uint64_t Result = Value + Addend;
391 
392     // AArch64 code is emitted with .rela relocations. The data already in any
393     // bits affected by the relocation on entry is garbage.
394     *TargetPtr &= 0xffe0001fU;
395     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
396     *TargetPtr |= ((Result & 0xffffU) << 5);
397     // Shift must be "lsl #0", in bits 22:21.
398     assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
399     break;
400   }
401   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
402     // Operation: Page(S+A) - Page(P)
403     uint64_t Result =
404         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
405 
406     // Check that -2^32 <= X < 2^32
407     assert(isInt<33>(Result) && "overflow check failed for relocation");
408 
409     // AArch64 code is emitted with .rela relocations. The data already in any
410     // bits affected by the relocation on entry is garbage.
411     *TargetPtr &= 0x9f00001fU;
412     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
413     // from bits 32:12 of X.
414     *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
415     *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
416     break;
417   }
418   case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
419     // Operation: S + A
420     uint64_t Result = Value + Addend;
421 
422     // AArch64 code is emitted with .rela relocations. The data already in any
423     // bits affected by the relocation on entry is garbage.
424     *TargetPtr &= 0xffc003ffU;
425     // Immediate goes in bits 21:10 of LD/ST instruction, taken
426     // from bits 11:2 of X
427     *TargetPtr |= ((Result & 0xffc) << (10 - 2));
428     break;
429   }
430   case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
431     // Operation: S + A
432     uint64_t Result = Value + Addend;
433 
434     // AArch64 code is emitted with .rela relocations. The data already in any
435     // bits affected by the relocation on entry is garbage.
436     *TargetPtr &= 0xffc003ffU;
437     // Immediate goes in bits 21:10 of LD/ST instruction, taken
438     // from bits 11:3 of X
439     *TargetPtr |= ((Result & 0xff8) << (10 - 3));
440     break;
441   }
442   }
443 }
444 
445 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
446                                           uint64_t Offset, uint32_t Value,
447                                           uint32_t Type, int32_t Addend) {
448   // TODO: Add Thumb relocations.
449   uint32_t *TargetPtr =
450       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
451   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
452   Value += Addend;
453 
454   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
455                << Section.getAddressWithOffset(Offset)
456                << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
457                << format("%x", Value) << " Type: " << format("%x", Type)
458                << " Addend: " << format("%x", Addend) << "\n");
459 
460   switch (Type) {
461   default:
462     llvm_unreachable("Not implemented relocation type!");
463 
464   case ELF::R_ARM_NONE:
465     break;
466     // Write a 31bit signed offset
467   case ELF::R_ARM_PREL31:
468     support::ulittle32_t::ref{TargetPtr} =
469         (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
470         ((Value - FinalAddress) & ~0x80000000);
471     break;
472   case ELF::R_ARM_TARGET1:
473   case ELF::R_ARM_ABS32:
474     support::ulittle32_t::ref{TargetPtr} = Value;
475     break;
476     // Write first 16 bit of 32 bit value to the mov instruction.
477     // Last 4 bit should be shifted.
478   case ELF::R_ARM_MOVW_ABS_NC:
479   case ELF::R_ARM_MOVT_ABS:
480     if (Type == ELF::R_ARM_MOVW_ABS_NC)
481       Value = Value & 0xFFFF;
482     else if (Type == ELF::R_ARM_MOVT_ABS)
483       Value = (Value >> 16) & 0xFFFF;
484     support::ulittle32_t::ref{TargetPtr} =
485         (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
486         (((Value >> 12) & 0xF) << 16);
487     break;
488     // Write 24 bit relative value to the branch instruction.
489   case ELF::R_ARM_PC24: // Fall through.
490   case ELF::R_ARM_CALL: // Fall through.
491   case ELF::R_ARM_JUMP24:
492     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
493     RelValue = (RelValue & 0x03FFFFFC) >> 2;
494     assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
495     support::ulittle32_t::ref{TargetPtr} =
496         (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
497     break;
498   }
499 }
500 
501 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
502                                            uint64_t Offset, uint32_t Value,
503                                            uint32_t Type, int32_t Addend) {
504   uint8_t *TargetPtr = Section.getAddressWithOffset(Offset);
505   Value += Addend;
506 
507   DEBUG(dbgs() << "resolveMIPSRelocation, LocalAddress: "
508                << Section.getAddressWithOffset(Offset) << " FinalAddress: "
509                << format("%p", Section.getLoadAddressWithOffset(Offset))
510                << " Value: " << format("%x", Value)
511                << " Type: " << format("%x", Type)
512                << " Addend: " << format("%x", Addend) << "\n");
513 
514   uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
515 
516   switch (Type) {
517   default:
518     llvm_unreachable("Not implemented relocation type!");
519     break;
520   case ELF::R_MIPS_32:
521     writeBytesUnaligned(Value, TargetPtr, 4);
522     break;
523   case ELF::R_MIPS_26:
524     Insn &= 0xfc000000;
525     Insn |= (Value & 0x0fffffff) >> 2;
526     writeBytesUnaligned(Insn, TargetPtr, 4);
527     break;
528   case ELF::R_MIPS_HI16:
529     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
530     Insn &= 0xffff0000;
531     Insn |= ((Value + 0x8000) >> 16) & 0xffff;
532     writeBytesUnaligned(Insn, TargetPtr, 4);
533     break;
534   case ELF::R_MIPS_LO16:
535     Insn &= 0xffff0000;
536     Insn |= Value & 0xffff;
537     writeBytesUnaligned(Insn, TargetPtr, 4);
538     break;
539   case ELF::R_MIPS_PC32: {
540     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
541     writeBytesUnaligned(Value - FinalAddress, (uint8_t *)TargetPtr, 4);
542     break;
543   }
544   case ELF::R_MIPS_PC16: {
545     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
546     Insn &= 0xffff0000;
547     Insn |= ((Value - FinalAddress) >> 2) & 0xffff;
548     writeBytesUnaligned(Insn, TargetPtr, 4);
549     break;
550   }
551   case ELF::R_MIPS_PC19_S2: {
552     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
553     Insn &= 0xfff80000;
554     Insn |= ((Value - (FinalAddress & ~0x3)) >> 2) & 0x7ffff;
555     writeBytesUnaligned(Insn, TargetPtr, 4);
556     break;
557   }
558   case ELF::R_MIPS_PC21_S2: {
559     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
560     Insn &= 0xffe00000;
561     Insn |= ((Value - FinalAddress) >> 2) & 0x1fffff;
562     writeBytesUnaligned(Insn, TargetPtr, 4);
563     break;
564   }
565   case ELF::R_MIPS_PC26_S2: {
566     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
567     Insn &= 0xfc000000;
568     Insn |= ((Value - FinalAddress) >> 2) & 0x3ffffff;
569     writeBytesUnaligned(Insn, TargetPtr, 4);
570     break;
571   }
572   case ELF::R_MIPS_PCHI16: {
573     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
574     Insn &= 0xffff0000;
575     Insn |= ((Value - FinalAddress + 0x8000) >> 16) & 0xffff;
576     writeBytesUnaligned(Insn, TargetPtr, 4);
577     break;
578   }
579   case ELF::R_MIPS_PCLO16: {
580     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
581     Insn &= 0xffff0000;
582     Insn |= (Value - FinalAddress) & 0xffff;
583     writeBytesUnaligned(Insn, TargetPtr, 4);
584     break;
585   }
586   }
587 }
588 
589 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
590   if (Arch == Triple::UnknownArch ||
591       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
592     IsMipsO32ABI = false;
593     IsMipsN32ABI = false;
594     IsMipsN64ABI = false;
595     return;
596   }
597   unsigned AbiVariant;
598   Obj.getPlatformFlags(AbiVariant);
599   IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
600   IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
601   IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
602 }
603 
604 void RuntimeDyldELF::resolveMIPSN32Relocation(const SectionEntry &Section,
605                                               uint64_t Offset, uint64_t Value,
606                                               uint32_t Type, int64_t Addend,
607                                               uint64_t SymOffset,
608                                               SID SectionID) {
609   int64_t CalculatedValue = evaluateMIPS64Relocation(
610       Section, Offset, Value, Type, Addend, SymOffset, SectionID);
611   applyMIPS64Relocation(Section.getAddressWithOffset(Offset), CalculatedValue,
612                         Type);
613 }
614 
615 void RuntimeDyldELF::resolveMIPSN64Relocation(const SectionEntry &Section,
616                                               uint64_t Offset, uint64_t Value,
617                                               uint32_t Type, int64_t Addend,
618                                               uint64_t SymOffset,
619                                               SID SectionID) {
620   uint32_t r_type = Type & 0xff;
621   uint32_t r_type2 = (Type >> 8) & 0xff;
622   uint32_t r_type3 = (Type >> 16) & 0xff;
623 
624   // RelType is used to keep information for which relocation type we are
625   // applying relocation.
626   uint32_t RelType = r_type;
627   int64_t CalculatedValue = evaluateMIPS64Relocation(Section, Offset, Value,
628                                                      RelType, Addend,
629                                                      SymOffset, SectionID);
630   if (r_type2 != ELF::R_MIPS_NONE) {
631     RelType = r_type2;
632     CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
633                                                CalculatedValue, SymOffset,
634                                                SectionID);
635   }
636   if (r_type3 != ELF::R_MIPS_NONE) {
637     RelType = r_type3;
638     CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
639                                                CalculatedValue, SymOffset,
640                                                SectionID);
641   }
642   applyMIPS64Relocation(Section.getAddressWithOffset(Offset), CalculatedValue,
643                         RelType);
644 }
645 
646 int64_t
647 RuntimeDyldELF::evaluateMIPS64Relocation(const SectionEntry &Section,
648                                          uint64_t Offset, uint64_t Value,
649                                          uint32_t Type, int64_t Addend,
650                                          uint64_t SymOffset, SID SectionID) {
651 
652   DEBUG(dbgs() << "evaluateMIPS64Relocation, LocalAddress: 0x"
653                << format("%llx", Section.getAddressWithOffset(Offset))
654                << " FinalAddress: 0x"
655                << format("%llx", Section.getLoadAddressWithOffset(Offset))
656                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
657                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
658                << " SymOffset: " << format("%x", SymOffset) << "\n");
659 
660   switch (Type) {
661   default:
662     llvm_unreachable("Not implemented relocation type!");
663     break;
664   case ELF::R_MIPS_JALR:
665   case ELF::R_MIPS_NONE:
666     break;
667   case ELF::R_MIPS_32:
668   case ELF::R_MIPS_64:
669     return Value + Addend;
670   case ELF::R_MIPS_26:
671     return ((Value + Addend) >> 2) & 0x3ffffff;
672   case ELF::R_MIPS_GPREL16: {
673     uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
674     return Value + Addend - (GOTAddr + 0x7ff0);
675   }
676   case ELF::R_MIPS_SUB:
677     return Value - Addend;
678   case ELF::R_MIPS_HI16:
679     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
680     return ((Value + Addend + 0x8000) >> 16) & 0xffff;
681   case ELF::R_MIPS_LO16:
682     return (Value + Addend) & 0xffff;
683   case ELF::R_MIPS_CALL16:
684   case ELF::R_MIPS_GOT_DISP:
685   case ELF::R_MIPS_GOT_PAGE: {
686     uint8_t *LocalGOTAddr =
687         getSectionAddress(SectionToGOTMap[SectionID]) + SymOffset;
688     uint64_t GOTEntry = readBytesUnaligned(LocalGOTAddr, getGOTEntrySize());
689 
690     Value += Addend;
691     if (Type == ELF::R_MIPS_GOT_PAGE)
692       Value = (Value + 0x8000) & ~0xffff;
693 
694     if (GOTEntry)
695       assert(GOTEntry == Value &&
696                    "GOT entry has two different addresses.");
697     else
698       writeBytesUnaligned(Value, LocalGOTAddr, getGOTEntrySize());
699 
700     return (SymOffset - 0x7ff0) & 0xffff;
701   }
702   case ELF::R_MIPS_GOT_OFST: {
703     int64_t page = (Value + Addend + 0x8000) & ~0xffff;
704     return (Value + Addend - page) & 0xffff;
705   }
706   case ELF::R_MIPS_GPREL32: {
707     uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
708     return Value + Addend - (GOTAddr + 0x7ff0);
709   }
710   case ELF::R_MIPS_PC16: {
711     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
712     return ((Value + Addend - FinalAddress) >> 2) & 0xffff;
713   }
714   case ELF::R_MIPS_PC32: {
715     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
716     return Value + Addend - FinalAddress;
717   }
718   case ELF::R_MIPS_PC18_S3: {
719     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
720     return ((Value + Addend - (FinalAddress & ~0x7)) >> 3) & 0x3ffff;
721   }
722   case ELF::R_MIPS_PC19_S2: {
723     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
724     return ((Value + Addend - (FinalAddress & ~0x3)) >> 2) & 0x7ffff;
725   }
726   case ELF::R_MIPS_PC21_S2: {
727     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
728     return ((Value + Addend - FinalAddress) >> 2) & 0x1fffff;
729   }
730   case ELF::R_MIPS_PC26_S2: {
731     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
732     return ((Value + Addend - FinalAddress) >> 2) & 0x3ffffff;
733   }
734   case ELF::R_MIPS_PCHI16: {
735     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
736     return ((Value + Addend - FinalAddress + 0x8000) >> 16) & 0xffff;
737   }
738   case ELF::R_MIPS_PCLO16: {
739     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
740     return (Value + Addend - FinalAddress) & 0xffff;
741   }
742   }
743   return 0;
744 }
745 
746 void RuntimeDyldELF::applyMIPS64Relocation(uint8_t *TargetPtr,
747                                            int64_t CalculatedValue,
748                                            uint32_t Type) {
749   uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
750 
751   switch (Type) {
752     default:
753       break;
754     case ELF::R_MIPS_32:
755     case ELF::R_MIPS_GPREL32:
756     case ELF::R_MIPS_PC32:
757       writeBytesUnaligned(CalculatedValue & 0xffffffff, TargetPtr, 4);
758       break;
759     case ELF::R_MIPS_64:
760     case ELF::R_MIPS_SUB:
761       writeBytesUnaligned(CalculatedValue, TargetPtr, 8);
762       break;
763     case ELF::R_MIPS_26:
764     case ELF::R_MIPS_PC26_S2:
765       Insn = (Insn & 0xfc000000) | CalculatedValue;
766       writeBytesUnaligned(Insn, TargetPtr, 4);
767       break;
768     case ELF::R_MIPS_GPREL16:
769       Insn = (Insn & 0xffff0000) | (CalculatedValue & 0xffff);
770       writeBytesUnaligned(Insn, TargetPtr, 4);
771       break;
772     case ELF::R_MIPS_HI16:
773     case ELF::R_MIPS_LO16:
774     case ELF::R_MIPS_PCHI16:
775     case ELF::R_MIPS_PCLO16:
776     case ELF::R_MIPS_PC16:
777     case ELF::R_MIPS_CALL16:
778     case ELF::R_MIPS_GOT_DISP:
779     case ELF::R_MIPS_GOT_PAGE:
780     case ELF::R_MIPS_GOT_OFST:
781       Insn = (Insn & 0xffff0000) | CalculatedValue;
782       writeBytesUnaligned(Insn, TargetPtr, 4);
783       break;
784     case ELF::R_MIPS_PC18_S3:
785       Insn = (Insn & 0xfffc0000) | CalculatedValue;
786       writeBytesUnaligned(Insn, TargetPtr, 4);
787       break;
788     case ELF::R_MIPS_PC19_S2:
789       Insn = (Insn & 0xfff80000) | CalculatedValue;
790       writeBytesUnaligned(Insn, TargetPtr, 4);
791       break;
792     case ELF::R_MIPS_PC21_S2:
793       Insn = (Insn & 0xffe00000) | CalculatedValue;
794       writeBytesUnaligned(Insn, TargetPtr, 4);
795       break;
796     }
797 }
798 
799 // Return the .TOC. section and offset.
800 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
801                                           ObjSectionToIDMap &LocalSections,
802                                           RelocationValueRef &Rel) {
803   // Set a default SectionID in case we do not find a TOC section below.
804   // This may happen for references to TOC base base (sym@toc, .odp
805   // relocation) without a .toc directive.  In this case just use the
806   // first section (which is usually the .odp) since the code won't
807   // reference the .toc base directly.
808   Rel.SymbolName = nullptr;
809   Rel.SectionID = 0;
810 
811   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
812   // order. The TOC starts where the first of these sections starts.
813   for (auto &Section: Obj.sections()) {
814     StringRef SectionName;
815     if (auto EC = Section.getName(SectionName))
816       return errorCodeToError(EC);
817 
818     if (SectionName == ".got"
819         || SectionName == ".toc"
820         || SectionName == ".tocbss"
821         || SectionName == ".plt") {
822       if (auto SectionIDOrErr =
823             findOrEmitSection(Obj, Section, false, LocalSections))
824         Rel.SectionID = *SectionIDOrErr;
825       else
826         return SectionIDOrErr.takeError();
827       break;
828     }
829   }
830 
831   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
832   // thus permitting a full 64 Kbytes segment.
833   Rel.Addend = 0x8000;
834 
835   return Error::success();
836 }
837 
838 // Returns the sections and offset associated with the ODP entry referenced
839 // by Symbol.
840 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
841                                           ObjSectionToIDMap &LocalSections,
842                                           RelocationValueRef &Rel) {
843   // Get the ELF symbol value (st_value) to compare with Relocation offset in
844   // .opd entries
845   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
846        si != se; ++si) {
847     section_iterator RelSecI = si->getRelocatedSection();
848     if (RelSecI == Obj.section_end())
849       continue;
850 
851     StringRef RelSectionName;
852     if (auto EC = RelSecI->getName(RelSectionName))
853       return errorCodeToError(EC);
854 
855     if (RelSectionName != ".opd")
856       continue;
857 
858     for (elf_relocation_iterator i = si->relocation_begin(),
859                                  e = si->relocation_end();
860          i != e;) {
861       // The R_PPC64_ADDR64 relocation indicates the first field
862       // of a .opd entry
863       uint64_t TypeFunc = i->getType();
864       if (TypeFunc != ELF::R_PPC64_ADDR64) {
865         ++i;
866         continue;
867       }
868 
869       uint64_t TargetSymbolOffset = i->getOffset();
870       symbol_iterator TargetSymbol = i->getSymbol();
871       int64_t Addend;
872       if (auto AddendOrErr = i->getAddend())
873         Addend = *AddendOrErr;
874       else
875         return errorCodeToError(AddendOrErr.getError());
876 
877       ++i;
878       if (i == e)
879         break;
880 
881       // Just check if following relocation is a R_PPC64_TOC
882       uint64_t TypeTOC = i->getType();
883       if (TypeTOC != ELF::R_PPC64_TOC)
884         continue;
885 
886       // Finally compares the Symbol value and the target symbol offset
887       // to check if this .opd entry refers to the symbol the relocation
888       // points to.
889       if (Rel.Addend != (int64_t)TargetSymbolOffset)
890         continue;
891 
892       section_iterator TSI = Obj.section_end();
893       if (auto TSIOrErr = TargetSymbol->getSection())
894         TSI = *TSIOrErr;
895       else
896         return TSIOrErr.takeError();
897       assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
898 
899       bool IsCode = TSI->isText();
900       if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
901                                                   LocalSections))
902         Rel.SectionID = *SectionIDOrErr;
903       else
904         return SectionIDOrErr.takeError();
905       Rel.Addend = (intptr_t)Addend;
906       return Error::success();
907     }
908   }
909   llvm_unreachable("Attempting to get address of ODP entry!");
910 }
911 
912 // Relocation masks following the #lo(value), #hi(value), #ha(value),
913 // #higher(value), #highera(value), #highest(value), and #highesta(value)
914 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
915 // document.
916 
917 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
918 
919 static inline uint16_t applyPPChi(uint64_t value) {
920   return (value >> 16) & 0xffff;
921 }
922 
923 static inline uint16_t applyPPCha (uint64_t value) {
924   return ((value + 0x8000) >> 16) & 0xffff;
925 }
926 
927 static inline uint16_t applyPPChigher(uint64_t value) {
928   return (value >> 32) & 0xffff;
929 }
930 
931 static inline uint16_t applyPPChighera (uint64_t value) {
932   return ((value + 0x8000) >> 32) & 0xffff;
933 }
934 
935 static inline uint16_t applyPPChighest(uint64_t value) {
936   return (value >> 48) & 0xffff;
937 }
938 
939 static inline uint16_t applyPPChighesta (uint64_t value) {
940   return ((value + 0x8000) >> 48) & 0xffff;
941 }
942 
943 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
944                                             uint64_t Offset, uint64_t Value,
945                                             uint32_t Type, int64_t Addend) {
946   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
947   switch (Type) {
948   default:
949     llvm_unreachable("Relocation type not implemented yet!");
950     break;
951   case ELF::R_PPC_ADDR16_LO:
952     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
953     break;
954   case ELF::R_PPC_ADDR16_HI:
955     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
956     break;
957   case ELF::R_PPC_ADDR16_HA:
958     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
959     break;
960   }
961 }
962 
963 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
964                                             uint64_t Offset, uint64_t Value,
965                                             uint32_t Type, int64_t Addend) {
966   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
967   switch (Type) {
968   default:
969     llvm_unreachable("Relocation type not implemented yet!");
970     break;
971   case ELF::R_PPC64_ADDR16:
972     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
973     break;
974   case ELF::R_PPC64_ADDR16_DS:
975     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
976     break;
977   case ELF::R_PPC64_ADDR16_LO:
978     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
979     break;
980   case ELF::R_PPC64_ADDR16_LO_DS:
981     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
982     break;
983   case ELF::R_PPC64_ADDR16_HI:
984     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
985     break;
986   case ELF::R_PPC64_ADDR16_HA:
987     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
988     break;
989   case ELF::R_PPC64_ADDR16_HIGHER:
990     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
991     break;
992   case ELF::R_PPC64_ADDR16_HIGHERA:
993     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
994     break;
995   case ELF::R_PPC64_ADDR16_HIGHEST:
996     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
997     break;
998   case ELF::R_PPC64_ADDR16_HIGHESTA:
999     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
1000     break;
1001   case ELF::R_PPC64_ADDR14: {
1002     assert(((Value + Addend) & 3) == 0);
1003     // Preserve the AA/LK bits in the branch instruction
1004     uint8_t aalk = *(LocalAddress + 3);
1005     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
1006   } break;
1007   case ELF::R_PPC64_REL16_LO: {
1008     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1009     uint64_t Delta = Value - FinalAddress + Addend;
1010     writeInt16BE(LocalAddress, applyPPClo(Delta));
1011   } break;
1012   case ELF::R_PPC64_REL16_HI: {
1013     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1014     uint64_t Delta = Value - FinalAddress + Addend;
1015     writeInt16BE(LocalAddress, applyPPChi(Delta));
1016   } break;
1017   case ELF::R_PPC64_REL16_HA: {
1018     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1019     uint64_t Delta = Value - FinalAddress + Addend;
1020     writeInt16BE(LocalAddress, applyPPCha(Delta));
1021   } break;
1022   case ELF::R_PPC64_ADDR32: {
1023     int32_t Result = static_cast<int32_t>(Value + Addend);
1024     if (SignExtend32<32>(Result) != Result)
1025       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
1026     writeInt32BE(LocalAddress, Result);
1027   } break;
1028   case ELF::R_PPC64_REL24: {
1029     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1030     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
1031     if (SignExtend32<26>(delta) != delta)
1032       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
1033     // Generates a 'bl <address>' instruction
1034     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
1035   } break;
1036   case ELF::R_PPC64_REL32: {
1037     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1038     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
1039     if (SignExtend32<32>(delta) != delta)
1040       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
1041     writeInt32BE(LocalAddress, delta);
1042   } break;
1043   case ELF::R_PPC64_REL64: {
1044     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1045     uint64_t Delta = Value - FinalAddress + Addend;
1046     writeInt64BE(LocalAddress, Delta);
1047   } break;
1048   case ELF::R_PPC64_ADDR64:
1049     writeInt64BE(LocalAddress, Value + Addend);
1050     break;
1051   }
1052 }
1053 
1054 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
1055                                               uint64_t Offset, uint64_t Value,
1056                                               uint32_t Type, int64_t Addend) {
1057   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
1058   switch (Type) {
1059   default:
1060     llvm_unreachable("Relocation type not implemented yet!");
1061     break;
1062   case ELF::R_390_PC16DBL:
1063   case ELF::R_390_PLT16DBL: {
1064     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1065     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
1066     writeInt16BE(LocalAddress, Delta / 2);
1067     break;
1068   }
1069   case ELF::R_390_PC32DBL:
1070   case ELF::R_390_PLT32DBL: {
1071     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1072     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
1073     writeInt32BE(LocalAddress, Delta / 2);
1074     break;
1075   }
1076   case ELF::R_390_PC32: {
1077     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1078     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
1079     writeInt32BE(LocalAddress, Delta);
1080     break;
1081   }
1082   case ELF::R_390_64:
1083     writeInt64BE(LocalAddress, Value + Addend);
1084     break;
1085   case ELF::R_390_PC64: {
1086     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1087     writeInt64BE(LocalAddress, Delta);
1088     break;
1089   }
1090   }
1091 }
1092 
1093 // The target location for the relocation is described by RE.SectionID and
1094 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
1095 // SectionEntry has three members describing its location.
1096 // SectionEntry::Address is the address at which the section has been loaded
1097 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
1098 // address that the section will have in the target process.
1099 // SectionEntry::ObjAddress is the address of the bits for this section in the
1100 // original emitted object image (also in the current address space).
1101 //
1102 // Relocations will be applied as if the section were loaded at
1103 // SectionEntry::LoadAddress, but they will be applied at an address based
1104 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
1105 // Target memory contents if they are required for value calculations.
1106 //
1107 // The Value parameter here is the load address of the symbol for the
1108 // relocation to be applied.  For relocations which refer to symbols in the
1109 // current object Value will be the LoadAddress of the section in which
1110 // the symbol resides (RE.Addend provides additional information about the
1111 // symbol location).  For external symbols, Value will be the address of the
1112 // symbol in the target address space.
1113 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1114                                        uint64_t Value) {
1115   const SectionEntry &Section = Sections[RE.SectionID];
1116   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1117                            RE.SymOffset, RE.SectionID);
1118 }
1119 
1120 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1121                                        uint64_t Offset, uint64_t Value,
1122                                        uint32_t Type, int64_t Addend,
1123                                        uint64_t SymOffset, SID SectionID) {
1124   switch (Arch) {
1125   case Triple::x86_64:
1126     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1127     break;
1128   case Triple::x86:
1129     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1130                          (uint32_t)(Addend & 0xffffffffL));
1131     break;
1132   case Triple::aarch64:
1133   case Triple::aarch64_be:
1134     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1135     break;
1136   case Triple::arm: // Fall through.
1137   case Triple::armeb:
1138   case Triple::thumb:
1139   case Triple::thumbeb:
1140     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1141                          (uint32_t)(Addend & 0xffffffffL));
1142     break;
1143   case Triple::mips: // Fall through.
1144   case Triple::mipsel:
1145   case Triple::mips64:
1146   case Triple::mips64el:
1147     if (IsMipsO32ABI)
1148       resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
1149                             Type, (uint32_t)(Addend & 0xffffffffL));
1150     else if (IsMipsN32ABI)
1151       resolveMIPSN32Relocation(Section, Offset, Value, Type, Addend, SymOffset,
1152                                SectionID);
1153     else if (IsMipsN64ABI)
1154       resolveMIPSN64Relocation(Section, Offset, Value, Type, Addend, SymOffset,
1155                                SectionID);
1156     else
1157       llvm_unreachable("Mips ABI not handled");
1158     break;
1159   case Triple::ppc:
1160     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1161     break;
1162   case Triple::ppc64: // Fall through.
1163   case Triple::ppc64le:
1164     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1165     break;
1166   case Triple::systemz:
1167     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1168     break;
1169   default:
1170     llvm_unreachable("Unsupported CPU type!");
1171   }
1172 }
1173 
1174 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
1175   return (void *)(Sections[SectionID].getObjAddress() + Offset);
1176 }
1177 
1178 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1179   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1180   if (Value.SymbolName)
1181     addRelocationForSymbol(RE, Value.SymbolName);
1182   else
1183     addRelocationForSection(RE, Value.SectionID);
1184 }
1185 
1186 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1187                                                  bool IsLocal) const {
1188   switch (RelType) {
1189   case ELF::R_MICROMIPS_GOT16:
1190     if (IsLocal)
1191       return ELF::R_MICROMIPS_LO16;
1192     break;
1193   case ELF::R_MICROMIPS_HI16:
1194     return ELF::R_MICROMIPS_LO16;
1195   case ELF::R_MIPS_GOT16:
1196     if (IsLocal)
1197       return ELF::R_MIPS_LO16;
1198     break;
1199   case ELF::R_MIPS_HI16:
1200     return ELF::R_MIPS_LO16;
1201   case ELF::R_MIPS_PCHI16:
1202     return ELF::R_MIPS_PCLO16;
1203   default:
1204     break;
1205   }
1206   return ELF::R_MIPS_NONE;
1207 }
1208 
1209 Expected<relocation_iterator>
1210 RuntimeDyldELF::processRelocationRef(
1211     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1212     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1213   const auto &Obj = cast<ELFObjectFileBase>(O);
1214   uint64_t RelType = RelI->getType();
1215   ErrorOr<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend();
1216   int64_t Addend = AddendOrErr ? *AddendOrErr : 0;
1217   elf_symbol_iterator Symbol = RelI->getSymbol();
1218 
1219   // Obtain the symbol name which is referenced in the relocation
1220   StringRef TargetName;
1221   if (Symbol != Obj.symbol_end()) {
1222     if (auto TargetNameOrErr = Symbol->getName())
1223       TargetName = *TargetNameOrErr;
1224     else
1225       return TargetNameOrErr.takeError();
1226   }
1227   DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1228                << " TargetName: " << TargetName << "\n");
1229   RelocationValueRef Value;
1230   // First search for the symbol in the local symbol table
1231   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1232 
1233   // Search for the symbol in the global symbol table
1234   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1235   if (Symbol != Obj.symbol_end()) {
1236     gsi = GlobalSymbolTable.find(TargetName.data());
1237     Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1238     if (!SymTypeOrErr) {
1239       std::string Buf;
1240       raw_string_ostream OS(Buf);
1241       logAllUnhandledErrors(SymTypeOrErr.takeError(), OS, "");
1242       OS.flush();
1243       report_fatal_error(Buf);
1244     }
1245     SymType = *SymTypeOrErr;
1246   }
1247   if (gsi != GlobalSymbolTable.end()) {
1248     const auto &SymInfo = gsi->second;
1249     Value.SectionID = SymInfo.getSectionID();
1250     Value.Offset = SymInfo.getOffset();
1251     Value.Addend = SymInfo.getOffset() + Addend;
1252   } else {
1253     switch (SymType) {
1254     case SymbolRef::ST_Debug: {
1255       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1256       // and can be changed by another developers. Maybe best way is add
1257       // a new symbol type ST_Section to SymbolRef and use it.
1258       auto SectionOrErr = Symbol->getSection();
1259       if (!SectionOrErr) {
1260         std::string Buf;
1261         raw_string_ostream OS(Buf);
1262         logAllUnhandledErrors(SectionOrErr.takeError(), OS, "");
1263         OS.flush();
1264         report_fatal_error(Buf);
1265       }
1266       section_iterator si = *SectionOrErr;
1267       if (si == Obj.section_end())
1268         llvm_unreachable("Symbol section not found, bad object file format!");
1269       DEBUG(dbgs() << "\t\tThis is section symbol\n");
1270       bool isCode = si->isText();
1271       if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1272                                                   ObjSectionToID))
1273         Value.SectionID = *SectionIDOrErr;
1274       else
1275         return SectionIDOrErr.takeError();
1276       Value.Addend = Addend;
1277       break;
1278     }
1279     case SymbolRef::ST_Data:
1280     case SymbolRef::ST_Function:
1281     case SymbolRef::ST_Unknown: {
1282       Value.SymbolName = TargetName.data();
1283       Value.Addend = Addend;
1284 
1285       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1286       // will manifest here as a NULL symbol name.
1287       // We can set this as a valid (but empty) symbol name, and rely
1288       // on addRelocationForSymbol to handle this.
1289       if (!Value.SymbolName)
1290         Value.SymbolName = "";
1291       break;
1292     }
1293     default:
1294       llvm_unreachable("Unresolved symbol type!");
1295       break;
1296     }
1297   }
1298 
1299   uint64_t Offset = RelI->getOffset();
1300 
1301   DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1302                << "\n");
1303   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
1304       (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
1305     // This is an AArch64 branch relocation, need to use a stub function.
1306     DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1307     SectionEntry &Section = Sections[SectionID];
1308 
1309     // Look for an existing stub.
1310     StubMap::const_iterator i = Stubs.find(Value);
1311     if (i != Stubs.end()) {
1312       resolveRelocation(Section, Offset,
1313                         (uint64_t)Section.getAddressWithOffset(i->second),
1314                         RelType, 0);
1315       DEBUG(dbgs() << " Stub function found\n");
1316     } else {
1317       // Create a new stub function.
1318       DEBUG(dbgs() << " Create a new stub function\n");
1319       Stubs[Value] = Section.getStubOffset();
1320       uint8_t *StubTargetAddr = createStubFunction(
1321           Section.getAddressWithOffset(Section.getStubOffset()));
1322 
1323       RelocationEntry REmovz_g3(SectionID,
1324                                 StubTargetAddr - Section.getAddress(),
1325                                 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1326       RelocationEntry REmovk_g2(SectionID, StubTargetAddr -
1327                                                Section.getAddress() + 4,
1328                                 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1329       RelocationEntry REmovk_g1(SectionID, StubTargetAddr -
1330                                                Section.getAddress() + 8,
1331                                 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1332       RelocationEntry REmovk_g0(SectionID, StubTargetAddr -
1333                                                Section.getAddress() + 12,
1334                                 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1335 
1336       if (Value.SymbolName) {
1337         addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1338         addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1339         addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1340         addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1341       } else {
1342         addRelocationForSection(REmovz_g3, Value.SectionID);
1343         addRelocationForSection(REmovk_g2, Value.SectionID);
1344         addRelocationForSection(REmovk_g1, Value.SectionID);
1345         addRelocationForSection(REmovk_g0, Value.SectionID);
1346       }
1347       resolveRelocation(Section, Offset,
1348                         reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1349                             Section.getStubOffset())),
1350                         RelType, 0);
1351       Section.advanceStubOffset(getMaxStubSize());
1352     }
1353   } else if (Arch == Triple::arm) {
1354     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1355       RelType == ELF::R_ARM_JUMP24) {
1356       // This is an ARM branch relocation, need to use a stub function.
1357       DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1358       SectionEntry &Section = Sections[SectionID];
1359 
1360       // Look for an existing stub.
1361       StubMap::const_iterator i = Stubs.find(Value);
1362       if (i != Stubs.end()) {
1363         resolveRelocation(
1364             Section, Offset,
1365             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1366             RelType, 0);
1367         DEBUG(dbgs() << " Stub function found\n");
1368       } else {
1369         // Create a new stub function.
1370         DEBUG(dbgs() << " Create a new stub function\n");
1371         Stubs[Value] = Section.getStubOffset();
1372         uint8_t *StubTargetAddr = createStubFunction(
1373             Section.getAddressWithOffset(Section.getStubOffset()));
1374         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1375                            ELF::R_ARM_ABS32, Value.Addend);
1376         if (Value.SymbolName)
1377           addRelocationForSymbol(RE, Value.SymbolName);
1378         else
1379           addRelocationForSection(RE, Value.SectionID);
1380 
1381         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1382                                                Section.getAddressWithOffset(
1383                                                    Section.getStubOffset())),
1384                           RelType, 0);
1385         Section.advanceStubOffset(getMaxStubSize());
1386       }
1387     } else {
1388       uint32_t *Placeholder =
1389         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1390       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1391           RelType == ELF::R_ARM_ABS32) {
1392         Value.Addend += *Placeholder;
1393       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1394         // See ELF for ARM documentation
1395         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1396       }
1397       processSimpleRelocation(SectionID, Offset, RelType, Value);
1398     }
1399   } else if (IsMipsO32ABI) {
1400     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1401         computePlaceholderAddress(SectionID, Offset));
1402     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1403     if (RelType == ELF::R_MIPS_26) {
1404       // This is an Mips branch relocation, need to use a stub function.
1405       DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1406       SectionEntry &Section = Sections[SectionID];
1407 
1408       // Extract the addend from the instruction.
1409       // We shift up by two since the Value will be down shifted again
1410       // when applying the relocation.
1411       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1412 
1413       Value.Addend += Addend;
1414 
1415       //  Look up for existing stub.
1416       StubMap::const_iterator i = Stubs.find(Value);
1417       if (i != Stubs.end()) {
1418         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1419         addRelocationForSection(RE, SectionID);
1420         DEBUG(dbgs() << " Stub function found\n");
1421       } else {
1422         // Create a new stub function.
1423         DEBUG(dbgs() << " Create a new stub function\n");
1424         Stubs[Value] = Section.getStubOffset();
1425 
1426         unsigned AbiVariant;
1427         O.getPlatformFlags(AbiVariant);
1428 
1429         uint8_t *StubTargetAddr = createStubFunction(
1430             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1431 
1432         // Creating Hi and Lo relocations for the filled stub instructions.
1433         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1434                              ELF::R_MIPS_HI16, Value.Addend);
1435         RelocationEntry RELo(SectionID,
1436                              StubTargetAddr - Section.getAddress() + 4,
1437                              ELF::R_MIPS_LO16, Value.Addend);
1438 
1439         if (Value.SymbolName) {
1440           addRelocationForSymbol(REHi, Value.SymbolName);
1441           addRelocationForSymbol(RELo, Value.SymbolName);
1442         }
1443         else {
1444           addRelocationForSection(REHi, Value.SectionID);
1445           addRelocationForSection(RELo, Value.SectionID);
1446         }
1447 
1448         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1449         addRelocationForSection(RE, SectionID);
1450         Section.advanceStubOffset(getMaxStubSize());
1451       }
1452     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1453       int64_t Addend = (Opcode & 0x0000ffff) << 16;
1454       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1455       PendingRelocs.push_back(std::make_pair(Value, RE));
1456     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1457       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1458       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1459         const RelocationValueRef &MatchingValue = I->first;
1460         RelocationEntry &Reloc = I->second;
1461         if (MatchingValue == Value &&
1462             RelType == getMatchingLoRelocation(Reloc.RelType) &&
1463             SectionID == Reloc.SectionID) {
1464           Reloc.Addend += Addend;
1465           if (Value.SymbolName)
1466             addRelocationForSymbol(Reloc, Value.SymbolName);
1467           else
1468             addRelocationForSection(Reloc, Value.SectionID);
1469           I = PendingRelocs.erase(I);
1470         } else
1471           ++I;
1472       }
1473       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1474       if (Value.SymbolName)
1475         addRelocationForSymbol(RE, Value.SymbolName);
1476       else
1477         addRelocationForSection(RE, Value.SectionID);
1478     } else {
1479       if (RelType == ELF::R_MIPS_32)
1480         Value.Addend += Opcode;
1481       else if (RelType == ELF::R_MIPS_PC16)
1482         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1483       else if (RelType == ELF::R_MIPS_PC19_S2)
1484         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1485       else if (RelType == ELF::R_MIPS_PC21_S2)
1486         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1487       else if (RelType == ELF::R_MIPS_PC26_S2)
1488         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1489       processSimpleRelocation(SectionID, Offset, RelType, Value);
1490     }
1491   } else if (IsMipsN32ABI || IsMipsN64ABI) {
1492     uint32_t r_type = RelType & 0xff;
1493     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1494     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1495         || r_type == ELF::R_MIPS_GOT_DISP) {
1496       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1497       if (i != GOTSymbolOffsets.end())
1498         RE.SymOffset = i->second;
1499       else {
1500         RE.SymOffset = allocateGOTEntries(SectionID, 1);
1501         GOTSymbolOffsets[TargetName] = RE.SymOffset;
1502       }
1503     }
1504     if (Value.SymbolName)
1505       addRelocationForSymbol(RE, Value.SymbolName);
1506     else
1507       addRelocationForSection(RE, Value.SectionID);
1508   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1509     if (RelType == ELF::R_PPC64_REL24) {
1510       // Determine ABI variant in use for this object.
1511       unsigned AbiVariant;
1512       Obj.getPlatformFlags(AbiVariant);
1513       AbiVariant &= ELF::EF_PPC64_ABI;
1514       // A PPC branch relocation will need a stub function if the target is
1515       // an external symbol (Symbol::ST_Unknown) or if the target address
1516       // is not within the signed 24-bits branch address.
1517       SectionEntry &Section = Sections[SectionID];
1518       uint8_t *Target = Section.getAddressWithOffset(Offset);
1519       bool RangeOverflow = false;
1520       if (SymType != SymbolRef::ST_Unknown) {
1521         if (AbiVariant != 2) {
1522           // In the ELFv1 ABI, a function call may point to the .opd entry,
1523           // so the final symbol value is calculated based on the relocation
1524           // values in the .opd section.
1525           if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1526             return std::move(Err);
1527         } else {
1528           // In the ELFv2 ABI, a function symbol may provide a local entry
1529           // point, which must be used for direct calls.
1530           uint8_t SymOther = Symbol->getOther();
1531           Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1532         }
1533         uint8_t *RelocTarget =
1534             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1535         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
1536         // If it is within 26-bits branch range, just set the branch target
1537         if (SignExtend32<26>(delta) == delta) {
1538           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1539           if (Value.SymbolName)
1540             addRelocationForSymbol(RE, Value.SymbolName);
1541           else
1542             addRelocationForSection(RE, Value.SectionID);
1543         } else {
1544           RangeOverflow = true;
1545         }
1546       }
1547       if (SymType == SymbolRef::ST_Unknown || RangeOverflow) {
1548         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
1549         // larger than 24-bits.
1550         StubMap::const_iterator i = Stubs.find(Value);
1551         if (i != Stubs.end()) {
1552           // Symbol function stub already created, just relocate to it
1553           resolveRelocation(Section, Offset,
1554                             reinterpret_cast<uint64_t>(
1555                                 Section.getAddressWithOffset(i->second)),
1556                             RelType, 0);
1557           DEBUG(dbgs() << " Stub function found\n");
1558         } else {
1559           // Create a new stub function.
1560           DEBUG(dbgs() << " Create a new stub function\n");
1561           Stubs[Value] = Section.getStubOffset();
1562           uint8_t *StubTargetAddr = createStubFunction(
1563               Section.getAddressWithOffset(Section.getStubOffset()),
1564               AbiVariant);
1565           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1566                              ELF::R_PPC64_ADDR64, Value.Addend);
1567 
1568           // Generates the 64-bits address loads as exemplified in section
1569           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1570           // apply to the low part of the instructions, so we have to update
1571           // the offset according to the target endianness.
1572           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1573           if (!IsTargetLittleEndian)
1574             StubRelocOffset += 2;
1575 
1576           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1577                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1578           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1579                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1580           RelocationEntry REh(SectionID, StubRelocOffset + 12,
1581                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
1582           RelocationEntry REl(SectionID, StubRelocOffset + 16,
1583                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
1584 
1585           if (Value.SymbolName) {
1586             addRelocationForSymbol(REhst, Value.SymbolName);
1587             addRelocationForSymbol(REhr, Value.SymbolName);
1588             addRelocationForSymbol(REh, Value.SymbolName);
1589             addRelocationForSymbol(REl, Value.SymbolName);
1590           } else {
1591             addRelocationForSection(REhst, Value.SectionID);
1592             addRelocationForSection(REhr, Value.SectionID);
1593             addRelocationForSection(REh, Value.SectionID);
1594             addRelocationForSection(REl, Value.SectionID);
1595           }
1596 
1597           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1598                                                  Section.getAddressWithOffset(
1599                                                      Section.getStubOffset())),
1600                             RelType, 0);
1601           Section.advanceStubOffset(getMaxStubSize());
1602         }
1603         if (SymType == SymbolRef::ST_Unknown) {
1604           // Restore the TOC for external calls
1605           if (AbiVariant == 2)
1606             writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
1607           else
1608             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1609         }
1610       }
1611     } else if (RelType == ELF::R_PPC64_TOC16 ||
1612                RelType == ELF::R_PPC64_TOC16_DS ||
1613                RelType == ELF::R_PPC64_TOC16_LO ||
1614                RelType == ELF::R_PPC64_TOC16_LO_DS ||
1615                RelType == ELF::R_PPC64_TOC16_HI ||
1616                RelType == ELF::R_PPC64_TOC16_HA) {
1617       // These relocations are supposed to subtract the TOC address from
1618       // the final value.  This does not fit cleanly into the RuntimeDyld
1619       // scheme, since there may be *two* sections involved in determining
1620       // the relocation value (the section of the symbol referred to by the
1621       // relocation, and the TOC section associated with the current module).
1622       //
1623       // Fortunately, these relocations are currently only ever generated
1624       // referring to symbols that themselves reside in the TOC, which means
1625       // that the two sections are actually the same.  Thus they cancel out
1626       // and we can immediately resolve the relocation right now.
1627       switch (RelType) {
1628       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1629       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1630       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1631       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1632       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1633       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1634       default: llvm_unreachable("Wrong relocation type.");
1635       }
1636 
1637       RelocationValueRef TOCValue;
1638       if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1639         return std::move(Err);
1640       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1641         llvm_unreachable("Unsupported TOC relocation.");
1642       Value.Addend -= TOCValue.Addend;
1643       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1644     } else {
1645       // There are two ways to refer to the TOC address directly: either
1646       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1647       // ignored), or via any relocation that refers to the magic ".TOC."
1648       // symbols (in which case the addend is respected).
1649       if (RelType == ELF::R_PPC64_TOC) {
1650         RelType = ELF::R_PPC64_ADDR64;
1651         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1652           return std::move(Err);
1653       } else if (TargetName == ".TOC.") {
1654         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1655           return std::move(Err);
1656         Value.Addend += Addend;
1657       }
1658 
1659       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1660 
1661       if (Value.SymbolName)
1662         addRelocationForSymbol(RE, Value.SymbolName);
1663       else
1664         addRelocationForSection(RE, Value.SectionID);
1665     }
1666   } else if (Arch == Triple::systemz &&
1667              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1668     // Create function stubs for both PLT and GOT references, regardless of
1669     // whether the GOT reference is to data or code.  The stub contains the
1670     // full address of the symbol, as needed by GOT references, and the
1671     // executable part only adds an overhead of 8 bytes.
1672     //
1673     // We could try to conserve space by allocating the code and data
1674     // parts of the stub separately.  However, as things stand, we allocate
1675     // a stub for every relocation, so using a GOT in JIT code should be
1676     // no less space efficient than using an explicit constant pool.
1677     DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1678     SectionEntry &Section = Sections[SectionID];
1679 
1680     // Look for an existing stub.
1681     StubMap::const_iterator i = Stubs.find(Value);
1682     uintptr_t StubAddress;
1683     if (i != Stubs.end()) {
1684       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1685       DEBUG(dbgs() << " Stub function found\n");
1686     } else {
1687       // Create a new stub function.
1688       DEBUG(dbgs() << " Create a new stub function\n");
1689 
1690       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1691       uintptr_t StubAlignment = getStubAlignment();
1692       StubAddress =
1693           (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1694           -StubAlignment;
1695       unsigned StubOffset = StubAddress - BaseAddress;
1696 
1697       Stubs[Value] = StubOffset;
1698       createStubFunction((uint8_t *)StubAddress);
1699       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1700                          Value.Offset);
1701       if (Value.SymbolName)
1702         addRelocationForSymbol(RE, Value.SymbolName);
1703       else
1704         addRelocationForSection(RE, Value.SectionID);
1705       Section.advanceStubOffset(getMaxStubSize());
1706     }
1707 
1708     if (RelType == ELF::R_390_GOTENT)
1709       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1710                         Addend);
1711     else
1712       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1713   } else if (Arch == Triple::x86_64) {
1714     if (RelType == ELF::R_X86_64_PLT32) {
1715       // The way the PLT relocations normally work is that the linker allocates
1716       // the
1717       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1718       // entry will then jump to an address provided by the GOT.  On first call,
1719       // the
1720       // GOT address will point back into PLT code that resolves the symbol. After
1721       // the first call, the GOT entry points to the actual function.
1722       //
1723       // For local functions we're ignoring all of that here and just replacing
1724       // the PLT32 relocation type with PC32, which will translate the relocation
1725       // into a PC-relative call directly to the function. For external symbols we
1726       // can't be sure the function will be within 2^32 bytes of the call site, so
1727       // we need to create a stub, which calls into the GOT.  This case is
1728       // equivalent to the usual PLT implementation except that we use the stub
1729       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1730       // rather than allocating a PLT section.
1731       if (Value.SymbolName) {
1732         // This is a call to an external function.
1733         // Look for an existing stub.
1734         SectionEntry &Section = Sections[SectionID];
1735         StubMap::const_iterator i = Stubs.find(Value);
1736         uintptr_t StubAddress;
1737         if (i != Stubs.end()) {
1738           StubAddress = uintptr_t(Section.getAddress()) + i->second;
1739           DEBUG(dbgs() << " Stub function found\n");
1740         } else {
1741           // Create a new stub function (equivalent to a PLT entry).
1742           DEBUG(dbgs() << " Create a new stub function\n");
1743 
1744           uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1745           uintptr_t StubAlignment = getStubAlignment();
1746           StubAddress =
1747               (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1748               -StubAlignment;
1749           unsigned StubOffset = StubAddress - BaseAddress;
1750           Stubs[Value] = StubOffset;
1751           createStubFunction((uint8_t *)StubAddress);
1752 
1753           // Bump our stub offset counter
1754           Section.advanceStubOffset(getMaxStubSize());
1755 
1756           // Allocate a GOT Entry
1757           uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1758 
1759           // The load of the GOT address has an addend of -4
1760           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4);
1761 
1762           // Fill in the value of the symbol we're targeting into the GOT
1763           addRelocationForSymbol(
1764               computeGOTOffsetRE(SectionID, GOTOffset, 0, ELF::R_X86_64_64),
1765               Value.SymbolName);
1766         }
1767 
1768         // Make the target call a call into the stub table.
1769         resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1770                           Addend);
1771       } else {
1772         RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1773                   Value.Offset);
1774         addRelocationForSection(RE, Value.SectionID);
1775       }
1776     } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1777                RelType == ELF::R_X86_64_GOTPCRELX ||
1778                RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1779       uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1780       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend);
1781 
1782       // Fill in the value of the symbol we're targeting into the GOT
1783       RelocationEntry RE = computeGOTOffsetRE(SectionID, GOTOffset, Value.Offset, ELF::R_X86_64_64);
1784       if (Value.SymbolName)
1785         addRelocationForSymbol(RE, Value.SymbolName);
1786       else
1787         addRelocationForSection(RE, Value.SectionID);
1788     } else if (RelType == ELF::R_X86_64_PC32) {
1789       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1790       processSimpleRelocation(SectionID, Offset, RelType, Value);
1791     } else if (RelType == ELF::R_X86_64_PC64) {
1792       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1793       processSimpleRelocation(SectionID, Offset, RelType, Value);
1794     } else {
1795       processSimpleRelocation(SectionID, Offset, RelType, Value);
1796     }
1797   } else {
1798     if (Arch == Triple::x86) {
1799       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1800     }
1801     processSimpleRelocation(SectionID, Offset, RelType, Value);
1802   }
1803   return ++RelI;
1804 }
1805 
1806 size_t RuntimeDyldELF::getGOTEntrySize() {
1807   // We don't use the GOT in all of these cases, but it's essentially free
1808   // to put them all here.
1809   size_t Result = 0;
1810   switch (Arch) {
1811   case Triple::x86_64:
1812   case Triple::aarch64:
1813   case Triple::aarch64_be:
1814   case Triple::ppc64:
1815   case Triple::ppc64le:
1816   case Triple::systemz:
1817     Result = sizeof(uint64_t);
1818     break;
1819   case Triple::x86:
1820   case Triple::arm:
1821   case Triple::thumb:
1822     Result = sizeof(uint32_t);
1823     break;
1824   case Triple::mips:
1825   case Triple::mipsel:
1826   case Triple::mips64:
1827   case Triple::mips64el:
1828     if (IsMipsO32ABI || IsMipsN32ABI)
1829       Result = sizeof(uint32_t);
1830     else if (IsMipsN64ABI)
1831       Result = sizeof(uint64_t);
1832     else
1833       llvm_unreachable("Mips ABI not handled");
1834     break;
1835   default:
1836     llvm_unreachable("Unsupported CPU type!");
1837   }
1838   return Result;
1839 }
1840 
1841 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned SectionID, unsigned no)
1842 {
1843   (void)SectionID; // The GOT Section is the same for all section in the object file
1844   if (GOTSectionID == 0) {
1845     GOTSectionID = Sections.size();
1846     // Reserve a section id. We'll allocate the section later
1847     // once we know the total size
1848     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1849   }
1850   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1851   CurrentGOTIndex += no;
1852   return StartOffset;
1853 }
1854 
1855 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset)
1856 {
1857   // Fill in the relative address of the GOT Entry into the stub
1858   RelocationEntry GOTRE(SectionID, Offset, ELF::R_X86_64_PC32, GOTOffset);
1859   addRelocationForSection(GOTRE, GOTSectionID);
1860 }
1861 
1862 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(unsigned SectionID, uint64_t GOTOffset, uint64_t SymbolOffset,
1863                                                    uint32_t Type)
1864 {
1865   (void)SectionID; // The GOT Section is the same for all section in the object file
1866   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1867 }
1868 
1869 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1870                                   ObjSectionToIDMap &SectionMap) {
1871   if (IsMipsO32ABI)
1872     if (!PendingRelocs.empty())
1873       return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
1874 
1875   // If necessary, allocate the global offset table
1876   if (GOTSectionID != 0) {
1877     // Allocate memory for the section
1878     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1879     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1880                                                 GOTSectionID, ".got", false);
1881     if (!Addr)
1882       return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
1883 
1884     Sections[GOTSectionID] =
1885         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1886 
1887     if (Checker)
1888       Checker->registerSection(Obj.getFileName(), GOTSectionID);
1889 
1890     // For now, initialize all GOT entries to zero.  We'll fill them in as
1891     // needed when GOT-based relocations are applied.
1892     memset(Addr, 0, TotalSize);
1893     if (IsMipsN32ABI || IsMipsN64ABI) {
1894       // To correctly resolve Mips GOT relocations, we need a mapping from
1895       // object's sections to GOTs.
1896       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1897            SI != SE; ++SI) {
1898         if (SI->relocation_begin() != SI->relocation_end()) {
1899           section_iterator RelocatedSection = SI->getRelocatedSection();
1900           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1901           assert (i != SectionMap.end());
1902           SectionToGOTMap[i->second] = GOTSectionID;
1903         }
1904       }
1905       GOTSymbolOffsets.clear();
1906     }
1907   }
1908 
1909   // Look for and record the EH frame section.
1910   ObjSectionToIDMap::iterator i, e;
1911   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1912     const SectionRef &Section = i->first;
1913     StringRef Name;
1914     Section.getName(Name);
1915     if (Name == ".eh_frame") {
1916       UnregisteredEHFrameSections.push_back(i->second);
1917       break;
1918     }
1919   }
1920 
1921   GOTSectionID = 0;
1922   CurrentGOTIndex = 0;
1923 
1924   return Error::success();
1925 }
1926 
1927 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1928   return Obj.isELF();
1929 }
1930 
1931 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1932   if (Arch != Triple::x86_64)
1933     return true;  // Conservative answer
1934 
1935   switch (R.getType()) {
1936   default:
1937     return true;  // Conservative answer
1938 
1939 
1940   case ELF::R_X86_64_GOTPCREL:
1941   case ELF::R_X86_64_GOTPCRELX:
1942   case ELF::R_X86_64_REX_GOTPCRELX:
1943   case ELF::R_X86_64_PC32:
1944   case ELF::R_X86_64_PC64:
1945   case ELF::R_X86_64_64:
1946     // We know that these reloation types won't need a stub function.  This list
1947     // can be extended as needed.
1948     return false;
1949   }
1950 }
1951 
1952 } // namespace llvm
1953