1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RuntimeDyldELF.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "Targets/RuntimeDyldELFMips.h"
17 #include "llvm/ADT/IntervalMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/MC/MCStreamer.h"
22 #include "llvm/Object/ELFObjectFile.h"
23 #include "llvm/Object/ObjectFile.h"
24 #include "llvm/Support/ELF.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/Support/TargetRegistry.h"
28 
29 using namespace llvm;
30 using namespace llvm::object;
31 using namespace llvm::support::endian;
32 
33 #define DEBUG_TYPE "dyld"
34 
35 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
36 
37 static void or32AArch64Imm(void *L, uint64_t Imm) {
38   or32le(L, (Imm & 0xFFF) << 10);
39 }
40 
41 template <class T> static void write(bool isBE, void *P, T V) {
42   isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
43 }
44 
45 static void write32AArch64Addr(void *L, uint64_t Imm) {
46   uint32_t ImmLo = (Imm & 0x3) << 29;
47   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
48   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
49   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
50 }
51 
52 // Return the bits [Start, End] from Val shifted Start bits.
53 // For instance, getBits(0xF0, 4, 8) returns 0xF.
54 static uint64_t getBits(uint64_t Val, int Start, int End) {
55   uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
56   return (Val >> Start) & Mask;
57 }
58 
59 namespace {
60 
61 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
62   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
63 
64   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
65   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
66   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
67   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
68 
69   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
70 
71   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
72 
73 public:
74   DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
75 
76   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
77 
78   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
79 
80   // Methods for type inquiry through isa, cast and dyn_cast
81   static inline bool classof(const Binary *v) {
82     return (isa<ELFObjectFile<ELFT>>(v) &&
83             classof(cast<ELFObjectFile<ELFT>>(v)));
84   }
85   static inline bool classof(const ELFObjectFile<ELFT> *v) {
86     return v->isDyldType();
87   }
88 };
89 
90 
91 
92 // The MemoryBuffer passed into this constructor is just a wrapper around the
93 // actual memory.  Ultimately, the Binary parent class will take ownership of
94 // this MemoryBuffer object but not the underlying memory.
95 template <class ELFT>
96 DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
97     : ELFObjectFile<ELFT>(Wrapper, EC) {
98   this->isDyldELFObject = true;
99 }
100 
101 template <class ELFT>
102 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
103                                                uint64_t Addr) {
104   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
105   Elf_Shdr *shdr =
106       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
107 
108   // This assumes the address passed in matches the target address bitness
109   // The template-based type cast handles everything else.
110   shdr->sh_addr = static_cast<addr_type>(Addr);
111 }
112 
113 template <class ELFT>
114 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
115                                               uint64_t Addr) {
116 
117   Elf_Sym *sym = const_cast<Elf_Sym *>(
118       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
119 
120   // This assumes the address passed in matches the target address bitness
121   // The template-based type cast handles everything else.
122   sym->st_value = static_cast<addr_type>(Addr);
123 }
124 
125 class LoadedELFObjectInfo final
126     : public RuntimeDyld::LoadedObjectInfoHelper<LoadedELFObjectInfo> {
127 public:
128   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
129       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
130 
131   OwningBinary<ObjectFile>
132   getObjectForDebug(const ObjectFile &Obj) const override;
133 };
134 
135 template <typename ELFT>
136 std::unique_ptr<DyldELFObject<ELFT>>
137 createRTDyldELFObject(MemoryBufferRef Buffer,
138                       const ObjectFile &SourceObject,
139                       const LoadedELFObjectInfo &L,
140                       std::error_code &ec) {
141   typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
142   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
143 
144   std::unique_ptr<DyldELFObject<ELFT>> Obj =
145     llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
146 
147   // Iterate over all sections in the object.
148   auto SI = SourceObject.section_begin();
149   for (const auto &Sec : Obj->sections()) {
150     StringRef SectionName;
151     Sec.getName(SectionName);
152     if (SectionName != "") {
153       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
154       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
155           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
156 
157       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
158         // This assumes that the address passed in matches the target address
159         // bitness. The template-based type cast handles everything else.
160         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
161       }
162     }
163     ++SI;
164   }
165 
166   return Obj;
167 }
168 
169 OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
170                                               const LoadedELFObjectInfo &L) {
171   assert(Obj.isELF() && "Not an ELF object file.");
172 
173   std::unique_ptr<MemoryBuffer> Buffer =
174     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
175 
176   std::error_code ec;
177 
178   std::unique_ptr<ObjectFile> DebugObj;
179   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
180     typedef ELFType<support::little, false> ELF32LE;
181     DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L,
182                                               ec);
183   } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
184     typedef ELFType<support::big, false> ELF32BE;
185     DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L,
186                                               ec);
187   } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
188     typedef ELFType<support::big, true> ELF64BE;
189     DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L,
190                                               ec);
191   } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
192     typedef ELFType<support::little, true> ELF64LE;
193     DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L,
194                                               ec);
195   } else
196     llvm_unreachable("Unexpected ELF format");
197 
198   assert(!ec && "Could not construct copy ELF object file");
199 
200   return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
201 }
202 
203 OwningBinary<ObjectFile>
204 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
205   return createELFDebugObject(Obj, *this);
206 }
207 
208 } // anonymous namespace
209 
210 namespace llvm {
211 
212 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
213                                JITSymbolResolver &Resolver)
214     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
215 RuntimeDyldELF::~RuntimeDyldELF() {}
216 
217 void RuntimeDyldELF::registerEHFrames() {
218   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
219     SID EHFrameSID = UnregisteredEHFrameSections[i];
220     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
221     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
222     size_t EHFrameSize = Sections[EHFrameSID].getSize();
223     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
224     RegisteredEHFrameSections.push_back(EHFrameSID);
225   }
226   UnregisteredEHFrameSections.clear();
227 }
228 
229 void RuntimeDyldELF::deregisterEHFrames() {
230   for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
231     SID EHFrameSID = RegisteredEHFrameSections[i];
232     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
233     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
234     size_t EHFrameSize = Sections[EHFrameSID].getSize();
235     MemMgr.deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
236   }
237   RegisteredEHFrameSections.clear();
238 }
239 
240 std::unique_ptr<RuntimeDyldELF>
241 llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
242                              RuntimeDyld::MemoryManager &MemMgr,
243                              JITSymbolResolver &Resolver) {
244   switch (Arch) {
245   default:
246     return make_unique<RuntimeDyldELF>(MemMgr, Resolver);
247   case Triple::mips:
248   case Triple::mipsel:
249   case Triple::mips64:
250   case Triple::mips64el:
251     return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
252   }
253 }
254 
255 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
256 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
257   if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
258     return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
259   else {
260     HasError = true;
261     raw_string_ostream ErrStream(ErrorStr);
262     logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream, "");
263     return nullptr;
264   }
265 }
266 
267 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
268                                              uint64_t Offset, uint64_t Value,
269                                              uint32_t Type, int64_t Addend,
270                                              uint64_t SymOffset) {
271   switch (Type) {
272   default:
273     llvm_unreachable("Relocation type not implemented yet!");
274     break;
275   case ELF::R_X86_64_NONE:
276     break;
277   case ELF::R_X86_64_64: {
278     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
279         Value + Addend;
280     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
281                  << format("%p\n", Section.getAddressWithOffset(Offset)));
282     break;
283   }
284   case ELF::R_X86_64_32:
285   case ELF::R_X86_64_32S: {
286     Value += Addend;
287     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
288            (Type == ELF::R_X86_64_32S &&
289             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
290     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
291     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
292         TruncatedAddr;
293     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
294                  << format("%p\n", Section.getAddressWithOffset(Offset)));
295     break;
296   }
297   case ELF::R_X86_64_PC8: {
298     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
299     int64_t RealOffset = Value + Addend - FinalAddress;
300     assert(isInt<8>(RealOffset));
301     int8_t TruncOffset = (RealOffset & 0xFF);
302     Section.getAddress()[Offset] = TruncOffset;
303     break;
304   }
305   case ELF::R_X86_64_PC32: {
306     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
307     int64_t RealOffset = Value + Addend - FinalAddress;
308     assert(isInt<32>(RealOffset));
309     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
310     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
311         TruncOffset;
312     break;
313   }
314   case ELF::R_X86_64_PC64: {
315     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
316     int64_t RealOffset = Value + Addend - FinalAddress;
317     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
318         RealOffset;
319     break;
320   }
321   }
322 }
323 
324 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
325                                           uint64_t Offset, uint32_t Value,
326                                           uint32_t Type, int32_t Addend) {
327   switch (Type) {
328   case ELF::R_386_32: {
329     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
330         Value + Addend;
331     break;
332   }
333   case ELF::R_386_PC32: {
334     uint32_t FinalAddress =
335         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
336     uint32_t RealOffset = Value + Addend - FinalAddress;
337     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
338         RealOffset;
339     break;
340   }
341   default:
342     // There are other relocation types, but it appears these are the
343     // only ones currently used by the LLVM ELF object writer
344     llvm_unreachable("Relocation type not implemented yet!");
345     break;
346   }
347 }
348 
349 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
350                                               uint64_t Offset, uint64_t Value,
351                                               uint32_t Type, int64_t Addend) {
352   uint32_t *TargetPtr =
353       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
354   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
355   // Data should use target endian. Code should always use little endian.
356   bool isBE = Arch == Triple::aarch64_be;
357 
358   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
359                << format("%llx", Section.getAddressWithOffset(Offset))
360                << " FinalAddress: 0x" << format("%llx", FinalAddress)
361                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
362                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
363                << "\n");
364 
365   switch (Type) {
366   default:
367     llvm_unreachable("Relocation type not implemented yet!");
368     break;
369   case ELF::R_AARCH64_ABS64:
370     write(isBE, TargetPtr, Value + Addend);
371     break;
372   case ELF::R_AARCH64_PREL32: {
373     uint64_t Result = Value + Addend - FinalAddress;
374     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
375            static_cast<int64_t>(Result) <= UINT32_MAX);
376     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
377     break;
378   }
379   case ELF::R_AARCH64_PREL64:
380     write(isBE, TargetPtr, Value + Addend - FinalAddress);
381     break;
382   case ELF::R_AARCH64_CALL26: // fallthrough
383   case ELF::R_AARCH64_JUMP26: {
384     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
385     // calculation.
386     uint64_t BranchImm = Value + Addend - FinalAddress;
387 
388     // "Check that -2^27 <= result < 2^27".
389     assert(isInt<28>(BranchImm));
390     or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
391     break;
392   }
393   case ELF::R_AARCH64_MOVW_UABS_G3:
394     or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
395     break;
396   case ELF::R_AARCH64_MOVW_UABS_G2_NC:
397     or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
398     break;
399   case ELF::R_AARCH64_MOVW_UABS_G1_NC:
400     or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
401     break;
402   case ELF::R_AARCH64_MOVW_UABS_G0_NC:
403     or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
404     break;
405   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
406     // Operation: Page(S+A) - Page(P)
407     uint64_t Result =
408         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
409 
410     // Check that -2^32 <= X < 2^32
411     assert(isInt<33>(Result) && "overflow check failed for relocation");
412 
413     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
414     // from bits 32:12 of X.
415     write32AArch64Addr(TargetPtr, Result >> 12);
416     break;
417   }
418   case ELF::R_AARCH64_ADD_ABS_LO12_NC:
419     // Operation: S + A
420     // Immediate goes in bits 21:10 of LD/ST instruction, taken
421     // from bits 11:0 of X
422     or32AArch64Imm(TargetPtr, Value + Addend);
423     break;
424   case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
425     // Operation: S + A
426     // Immediate goes in bits 21:10 of LD/ST instruction, taken
427     // from bits 11:0 of X
428     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
429     break;
430   case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
431     // Operation: S + A
432     // Immediate goes in bits 21:10 of LD/ST instruction, taken
433     // from bits 11:1 of X
434     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
435     break;
436   case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
437     // Operation: S + A
438     // Immediate goes in bits 21:10 of LD/ST instruction, taken
439     // from bits 11:2 of X
440     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
441     break;
442   case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
443     // Operation: S + A
444     // Immediate goes in bits 21:10 of LD/ST instruction, taken
445     // from bits 11:3 of X
446     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
447     break;
448   case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
449     // Operation: S + A
450     // Immediate goes in bits 21:10 of LD/ST instruction, taken
451     // from bits 11:4 of X
452     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
453     break;
454   }
455 }
456 
457 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
458                                           uint64_t Offset, uint32_t Value,
459                                           uint32_t Type, int32_t Addend) {
460   // TODO: Add Thumb relocations.
461   uint32_t *TargetPtr =
462       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
463   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
464   Value += Addend;
465 
466   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
467                << Section.getAddressWithOffset(Offset)
468                << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
469                << format("%x", Value) << " Type: " << format("%x", Type)
470                << " Addend: " << format("%x", Addend) << "\n");
471 
472   switch (Type) {
473   default:
474     llvm_unreachable("Not implemented relocation type!");
475 
476   case ELF::R_ARM_NONE:
477     break;
478     // Write a 31bit signed offset
479   case ELF::R_ARM_PREL31:
480     support::ulittle32_t::ref{TargetPtr} =
481         (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
482         ((Value - FinalAddress) & ~0x80000000);
483     break;
484   case ELF::R_ARM_TARGET1:
485   case ELF::R_ARM_ABS32:
486     support::ulittle32_t::ref{TargetPtr} = Value;
487     break;
488     // Write first 16 bit of 32 bit value to the mov instruction.
489     // Last 4 bit should be shifted.
490   case ELF::R_ARM_MOVW_ABS_NC:
491   case ELF::R_ARM_MOVT_ABS:
492     if (Type == ELF::R_ARM_MOVW_ABS_NC)
493       Value = Value & 0xFFFF;
494     else if (Type == ELF::R_ARM_MOVT_ABS)
495       Value = (Value >> 16) & 0xFFFF;
496     support::ulittle32_t::ref{TargetPtr} =
497         (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
498         (((Value >> 12) & 0xF) << 16);
499     break;
500     // Write 24 bit relative value to the branch instruction.
501   case ELF::R_ARM_PC24: // Fall through.
502   case ELF::R_ARM_CALL: // Fall through.
503   case ELF::R_ARM_JUMP24:
504     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
505     RelValue = (RelValue & 0x03FFFFFC) >> 2;
506     assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
507     support::ulittle32_t::ref{TargetPtr} =
508         (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
509     break;
510   }
511 }
512 
513 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
514   if (Arch == Triple::UnknownArch ||
515       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
516     IsMipsO32ABI = false;
517     IsMipsN32ABI = false;
518     IsMipsN64ABI = false;
519     return;
520   }
521   unsigned AbiVariant;
522   Obj.getPlatformFlags(AbiVariant);
523   IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
524   IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
525   IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
526 }
527 
528 // Return the .TOC. section and offset.
529 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
530                                           ObjSectionToIDMap &LocalSections,
531                                           RelocationValueRef &Rel) {
532   // Set a default SectionID in case we do not find a TOC section below.
533   // This may happen for references to TOC base base (sym@toc, .odp
534   // relocation) without a .toc directive.  In this case just use the
535   // first section (which is usually the .odp) since the code won't
536   // reference the .toc base directly.
537   Rel.SymbolName = nullptr;
538   Rel.SectionID = 0;
539 
540   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
541   // order. The TOC starts where the first of these sections starts.
542   for (auto &Section: Obj.sections()) {
543     StringRef SectionName;
544     if (auto EC = Section.getName(SectionName))
545       return errorCodeToError(EC);
546 
547     if (SectionName == ".got"
548         || SectionName == ".toc"
549         || SectionName == ".tocbss"
550         || SectionName == ".plt") {
551       if (auto SectionIDOrErr =
552             findOrEmitSection(Obj, Section, false, LocalSections))
553         Rel.SectionID = *SectionIDOrErr;
554       else
555         return SectionIDOrErr.takeError();
556       break;
557     }
558   }
559 
560   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
561   // thus permitting a full 64 Kbytes segment.
562   Rel.Addend = 0x8000;
563 
564   return Error::success();
565 }
566 
567 // Returns the sections and offset associated with the ODP entry referenced
568 // by Symbol.
569 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
570                                           ObjSectionToIDMap &LocalSections,
571                                           RelocationValueRef &Rel) {
572   // Get the ELF symbol value (st_value) to compare with Relocation offset in
573   // .opd entries
574   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
575        si != se; ++si) {
576     section_iterator RelSecI = si->getRelocatedSection();
577     if (RelSecI == Obj.section_end())
578       continue;
579 
580     StringRef RelSectionName;
581     if (auto EC = RelSecI->getName(RelSectionName))
582       return errorCodeToError(EC);
583 
584     if (RelSectionName != ".opd")
585       continue;
586 
587     for (elf_relocation_iterator i = si->relocation_begin(),
588                                  e = si->relocation_end();
589          i != e;) {
590       // The R_PPC64_ADDR64 relocation indicates the first field
591       // of a .opd entry
592       uint64_t TypeFunc = i->getType();
593       if (TypeFunc != ELF::R_PPC64_ADDR64) {
594         ++i;
595         continue;
596       }
597 
598       uint64_t TargetSymbolOffset = i->getOffset();
599       symbol_iterator TargetSymbol = i->getSymbol();
600       int64_t Addend;
601       if (auto AddendOrErr = i->getAddend())
602         Addend = *AddendOrErr;
603       else
604         return errorCodeToError(AddendOrErr.getError());
605 
606       ++i;
607       if (i == e)
608         break;
609 
610       // Just check if following relocation is a R_PPC64_TOC
611       uint64_t TypeTOC = i->getType();
612       if (TypeTOC != ELF::R_PPC64_TOC)
613         continue;
614 
615       // Finally compares the Symbol value and the target symbol offset
616       // to check if this .opd entry refers to the symbol the relocation
617       // points to.
618       if (Rel.Addend != (int64_t)TargetSymbolOffset)
619         continue;
620 
621       section_iterator TSI = Obj.section_end();
622       if (auto TSIOrErr = TargetSymbol->getSection())
623         TSI = *TSIOrErr;
624       else
625         return TSIOrErr.takeError();
626       assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
627 
628       bool IsCode = TSI->isText();
629       if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
630                                                   LocalSections))
631         Rel.SectionID = *SectionIDOrErr;
632       else
633         return SectionIDOrErr.takeError();
634       Rel.Addend = (intptr_t)Addend;
635       return Error::success();
636     }
637   }
638   llvm_unreachable("Attempting to get address of ODP entry!");
639 }
640 
641 // Relocation masks following the #lo(value), #hi(value), #ha(value),
642 // #higher(value), #highera(value), #highest(value), and #highesta(value)
643 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
644 // document.
645 
646 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
647 
648 static inline uint16_t applyPPChi(uint64_t value) {
649   return (value >> 16) & 0xffff;
650 }
651 
652 static inline uint16_t applyPPCha (uint64_t value) {
653   return ((value + 0x8000) >> 16) & 0xffff;
654 }
655 
656 static inline uint16_t applyPPChigher(uint64_t value) {
657   return (value >> 32) & 0xffff;
658 }
659 
660 static inline uint16_t applyPPChighera (uint64_t value) {
661   return ((value + 0x8000) >> 32) & 0xffff;
662 }
663 
664 static inline uint16_t applyPPChighest(uint64_t value) {
665   return (value >> 48) & 0xffff;
666 }
667 
668 static inline uint16_t applyPPChighesta (uint64_t value) {
669   return ((value + 0x8000) >> 48) & 0xffff;
670 }
671 
672 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
673                                             uint64_t Offset, uint64_t Value,
674                                             uint32_t Type, int64_t Addend) {
675   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
676   switch (Type) {
677   default:
678     llvm_unreachable("Relocation type not implemented yet!");
679     break;
680   case ELF::R_PPC_ADDR16_LO:
681     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
682     break;
683   case ELF::R_PPC_ADDR16_HI:
684     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
685     break;
686   case ELF::R_PPC_ADDR16_HA:
687     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
688     break;
689   }
690 }
691 
692 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
693                                             uint64_t Offset, uint64_t Value,
694                                             uint32_t Type, int64_t Addend) {
695   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
696   switch (Type) {
697   default:
698     llvm_unreachable("Relocation type not implemented yet!");
699     break;
700   case ELF::R_PPC64_ADDR16:
701     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
702     break;
703   case ELF::R_PPC64_ADDR16_DS:
704     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
705     break;
706   case ELF::R_PPC64_ADDR16_LO:
707     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
708     break;
709   case ELF::R_PPC64_ADDR16_LO_DS:
710     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
711     break;
712   case ELF::R_PPC64_ADDR16_HI:
713     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
714     break;
715   case ELF::R_PPC64_ADDR16_HA:
716     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
717     break;
718   case ELF::R_PPC64_ADDR16_HIGHER:
719     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
720     break;
721   case ELF::R_PPC64_ADDR16_HIGHERA:
722     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
723     break;
724   case ELF::R_PPC64_ADDR16_HIGHEST:
725     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
726     break;
727   case ELF::R_PPC64_ADDR16_HIGHESTA:
728     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
729     break;
730   case ELF::R_PPC64_ADDR14: {
731     assert(((Value + Addend) & 3) == 0);
732     // Preserve the AA/LK bits in the branch instruction
733     uint8_t aalk = *(LocalAddress + 3);
734     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
735   } break;
736   case ELF::R_PPC64_REL16_LO: {
737     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
738     uint64_t Delta = Value - FinalAddress + Addend;
739     writeInt16BE(LocalAddress, applyPPClo(Delta));
740   } break;
741   case ELF::R_PPC64_REL16_HI: {
742     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
743     uint64_t Delta = Value - FinalAddress + Addend;
744     writeInt16BE(LocalAddress, applyPPChi(Delta));
745   } break;
746   case ELF::R_PPC64_REL16_HA: {
747     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
748     uint64_t Delta = Value - FinalAddress + Addend;
749     writeInt16BE(LocalAddress, applyPPCha(Delta));
750   } break;
751   case ELF::R_PPC64_ADDR32: {
752     int32_t Result = static_cast<int32_t>(Value + Addend);
753     if (SignExtend32<32>(Result) != Result)
754       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
755     writeInt32BE(LocalAddress, Result);
756   } break;
757   case ELF::R_PPC64_REL24: {
758     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
759     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
760     if (SignExtend32<26>(delta) != delta)
761       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
762     // Generates a 'bl <address>' instruction
763     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
764   } break;
765   case ELF::R_PPC64_REL32: {
766     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
767     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
768     if (SignExtend32<32>(delta) != delta)
769       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
770     writeInt32BE(LocalAddress, delta);
771   } break;
772   case ELF::R_PPC64_REL64: {
773     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
774     uint64_t Delta = Value - FinalAddress + Addend;
775     writeInt64BE(LocalAddress, Delta);
776   } break;
777   case ELF::R_PPC64_ADDR64:
778     writeInt64BE(LocalAddress, Value + Addend);
779     break;
780   }
781 }
782 
783 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
784                                               uint64_t Offset, uint64_t Value,
785                                               uint32_t Type, int64_t Addend) {
786   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
787   switch (Type) {
788   default:
789     llvm_unreachable("Relocation type not implemented yet!");
790     break;
791   case ELF::R_390_PC16DBL:
792   case ELF::R_390_PLT16DBL: {
793     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
794     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
795     writeInt16BE(LocalAddress, Delta / 2);
796     break;
797   }
798   case ELF::R_390_PC32DBL:
799   case ELF::R_390_PLT32DBL: {
800     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
801     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
802     writeInt32BE(LocalAddress, Delta / 2);
803     break;
804   }
805   case ELF::R_390_PC32: {
806     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
807     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
808     writeInt32BE(LocalAddress, Delta);
809     break;
810   }
811   case ELF::R_390_64:
812     writeInt64BE(LocalAddress, Value + Addend);
813     break;
814   case ELF::R_390_PC64: {
815     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
816     writeInt64BE(LocalAddress, Delta);
817     break;
818   }
819   }
820 }
821 
822 // The target location for the relocation is described by RE.SectionID and
823 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
824 // SectionEntry has three members describing its location.
825 // SectionEntry::Address is the address at which the section has been loaded
826 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
827 // address that the section will have in the target process.
828 // SectionEntry::ObjAddress is the address of the bits for this section in the
829 // original emitted object image (also in the current address space).
830 //
831 // Relocations will be applied as if the section were loaded at
832 // SectionEntry::LoadAddress, but they will be applied at an address based
833 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
834 // Target memory contents if they are required for value calculations.
835 //
836 // The Value parameter here is the load address of the symbol for the
837 // relocation to be applied.  For relocations which refer to symbols in the
838 // current object Value will be the LoadAddress of the section in which
839 // the symbol resides (RE.Addend provides additional information about the
840 // symbol location).  For external symbols, Value will be the address of the
841 // symbol in the target address space.
842 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
843                                        uint64_t Value) {
844   const SectionEntry &Section = Sections[RE.SectionID];
845   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
846                            RE.SymOffset, RE.SectionID);
847 }
848 
849 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
850                                        uint64_t Offset, uint64_t Value,
851                                        uint32_t Type, int64_t Addend,
852                                        uint64_t SymOffset, SID SectionID) {
853   switch (Arch) {
854   case Triple::x86_64:
855     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
856     break;
857   case Triple::x86:
858     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
859                          (uint32_t)(Addend & 0xffffffffL));
860     break;
861   case Triple::aarch64:
862   case Triple::aarch64_be:
863     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
864     break;
865   case Triple::arm: // Fall through.
866   case Triple::armeb:
867   case Triple::thumb:
868   case Triple::thumbeb:
869     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
870                          (uint32_t)(Addend & 0xffffffffL));
871     break;
872   case Triple::ppc:
873     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
874     break;
875   case Triple::ppc64: // Fall through.
876   case Triple::ppc64le:
877     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
878     break;
879   case Triple::systemz:
880     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
881     break;
882   default:
883     llvm_unreachable("Unsupported CPU type!");
884   }
885 }
886 
887 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
888   return (void *)(Sections[SectionID].getObjAddress() + Offset);
889 }
890 
891 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
892   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
893   if (Value.SymbolName)
894     addRelocationForSymbol(RE, Value.SymbolName);
895   else
896     addRelocationForSection(RE, Value.SectionID);
897 }
898 
899 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
900                                                  bool IsLocal) const {
901   switch (RelType) {
902   case ELF::R_MICROMIPS_GOT16:
903     if (IsLocal)
904       return ELF::R_MICROMIPS_LO16;
905     break;
906   case ELF::R_MICROMIPS_HI16:
907     return ELF::R_MICROMIPS_LO16;
908   case ELF::R_MIPS_GOT16:
909     if (IsLocal)
910       return ELF::R_MIPS_LO16;
911     break;
912   case ELF::R_MIPS_HI16:
913     return ELF::R_MIPS_LO16;
914   case ELF::R_MIPS_PCHI16:
915     return ELF::R_MIPS_PCLO16;
916   default:
917     break;
918   }
919   return ELF::R_MIPS_NONE;
920 }
921 
922 // Sometimes we don't need to create thunk for a branch.
923 // This typically happens when branch target is located
924 // in the same object file. In such case target is either
925 // a weak symbol or symbol in a different executable section.
926 // This function checks if branch target is located in the
927 // same object file and if distance between source and target
928 // fits R_AARCH64_CALL26 relocation. If both conditions are
929 // met, it emits direct jump to the target and returns true.
930 // Otherwise false is returned and thunk is created.
931 bool RuntimeDyldELF::resolveAArch64ShortBranch(
932     unsigned SectionID, relocation_iterator RelI,
933     const RelocationValueRef &Value) {
934   uint64_t Address;
935   if (Value.SymbolName) {
936     auto Loc = GlobalSymbolTable.find(Value.SymbolName);
937 
938     // Don't create direct branch for external symbols.
939     if (Loc == GlobalSymbolTable.end())
940       return false;
941 
942     const auto &SymInfo = Loc->second;
943     Address =
944         uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
945             SymInfo.getOffset()));
946   } else {
947     Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
948   }
949   uint64_t Offset = RelI->getOffset();
950   uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
951 
952   // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
953   // If distance between source and target is out of range then we should
954   // create thunk.
955   if (!isInt<28>(Address + Value.Addend - SourceAddress))
956     return false;
957 
958   resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
959                     Value.Addend);
960 
961   return true;
962 }
963 
964 Expected<relocation_iterator>
965 RuntimeDyldELF::processRelocationRef(
966     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
967     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
968   const auto &Obj = cast<ELFObjectFileBase>(O);
969   uint64_t RelType = RelI->getType();
970   ErrorOr<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend();
971   int64_t Addend = AddendOrErr ? *AddendOrErr : 0;
972   elf_symbol_iterator Symbol = RelI->getSymbol();
973 
974   // Obtain the symbol name which is referenced in the relocation
975   StringRef TargetName;
976   if (Symbol != Obj.symbol_end()) {
977     if (auto TargetNameOrErr = Symbol->getName())
978       TargetName = *TargetNameOrErr;
979     else
980       return TargetNameOrErr.takeError();
981   }
982   DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
983                << " TargetName: " << TargetName << "\n");
984   RelocationValueRef Value;
985   // First search for the symbol in the local symbol table
986   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
987 
988   // Search for the symbol in the global symbol table
989   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
990   if (Symbol != Obj.symbol_end()) {
991     gsi = GlobalSymbolTable.find(TargetName.data());
992     Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
993     if (!SymTypeOrErr) {
994       std::string Buf;
995       raw_string_ostream OS(Buf);
996       logAllUnhandledErrors(SymTypeOrErr.takeError(), OS, "");
997       OS.flush();
998       report_fatal_error(Buf);
999     }
1000     SymType = *SymTypeOrErr;
1001   }
1002   if (gsi != GlobalSymbolTable.end()) {
1003     const auto &SymInfo = gsi->second;
1004     Value.SectionID = SymInfo.getSectionID();
1005     Value.Offset = SymInfo.getOffset();
1006     Value.Addend = SymInfo.getOffset() + Addend;
1007   } else {
1008     switch (SymType) {
1009     case SymbolRef::ST_Debug: {
1010       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1011       // and can be changed by another developers. Maybe best way is add
1012       // a new symbol type ST_Section to SymbolRef and use it.
1013       auto SectionOrErr = Symbol->getSection();
1014       if (!SectionOrErr) {
1015         std::string Buf;
1016         raw_string_ostream OS(Buf);
1017         logAllUnhandledErrors(SectionOrErr.takeError(), OS, "");
1018         OS.flush();
1019         report_fatal_error(Buf);
1020       }
1021       section_iterator si = *SectionOrErr;
1022       if (si == Obj.section_end())
1023         llvm_unreachable("Symbol section not found, bad object file format!");
1024       DEBUG(dbgs() << "\t\tThis is section symbol\n");
1025       bool isCode = si->isText();
1026       if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1027                                                   ObjSectionToID))
1028         Value.SectionID = *SectionIDOrErr;
1029       else
1030         return SectionIDOrErr.takeError();
1031       Value.Addend = Addend;
1032       break;
1033     }
1034     case SymbolRef::ST_Data:
1035     case SymbolRef::ST_Function:
1036     case SymbolRef::ST_Unknown: {
1037       Value.SymbolName = TargetName.data();
1038       Value.Addend = Addend;
1039 
1040       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1041       // will manifest here as a NULL symbol name.
1042       // We can set this as a valid (but empty) symbol name, and rely
1043       // on addRelocationForSymbol to handle this.
1044       if (!Value.SymbolName)
1045         Value.SymbolName = "";
1046       break;
1047     }
1048     default:
1049       llvm_unreachable("Unresolved symbol type!");
1050       break;
1051     }
1052   }
1053 
1054   uint64_t Offset = RelI->getOffset();
1055 
1056   DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1057                << "\n");
1058   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
1059       (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
1060     // This is an AArch64 branch relocation, need to use a stub function.
1061     DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1062     SectionEntry &Section = Sections[SectionID];
1063 
1064     // Look for an existing stub.
1065     StubMap::const_iterator i = Stubs.find(Value);
1066     if (i != Stubs.end()) {
1067       resolveRelocation(Section, Offset,
1068                         (uint64_t)Section.getAddressWithOffset(i->second),
1069                         RelType, 0);
1070       DEBUG(dbgs() << " Stub function found\n");
1071     } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1072       // Create a new stub function.
1073       DEBUG(dbgs() << " Create a new stub function\n");
1074       Stubs[Value] = Section.getStubOffset();
1075       uint8_t *StubTargetAddr = createStubFunction(
1076           Section.getAddressWithOffset(Section.getStubOffset()));
1077 
1078       RelocationEntry REmovz_g3(SectionID,
1079                                 StubTargetAddr - Section.getAddress(),
1080                                 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1081       RelocationEntry REmovk_g2(SectionID, StubTargetAddr -
1082                                                Section.getAddress() + 4,
1083                                 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1084       RelocationEntry REmovk_g1(SectionID, StubTargetAddr -
1085                                                Section.getAddress() + 8,
1086                                 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1087       RelocationEntry REmovk_g0(SectionID, StubTargetAddr -
1088                                                Section.getAddress() + 12,
1089                                 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1090 
1091       if (Value.SymbolName) {
1092         addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1093         addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1094         addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1095         addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1096       } else {
1097         addRelocationForSection(REmovz_g3, Value.SectionID);
1098         addRelocationForSection(REmovk_g2, Value.SectionID);
1099         addRelocationForSection(REmovk_g1, Value.SectionID);
1100         addRelocationForSection(REmovk_g0, Value.SectionID);
1101       }
1102       resolveRelocation(Section, Offset,
1103                         reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1104                             Section.getStubOffset())),
1105                         RelType, 0);
1106       Section.advanceStubOffset(getMaxStubSize());
1107     }
1108   } else if (Arch == Triple::arm) {
1109     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1110       RelType == ELF::R_ARM_JUMP24) {
1111       // This is an ARM branch relocation, need to use a stub function.
1112       DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1113       SectionEntry &Section = Sections[SectionID];
1114 
1115       // Look for an existing stub.
1116       StubMap::const_iterator i = Stubs.find(Value);
1117       if (i != Stubs.end()) {
1118         resolveRelocation(
1119             Section, Offset,
1120             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1121             RelType, 0);
1122         DEBUG(dbgs() << " Stub function found\n");
1123       } else {
1124         // Create a new stub function.
1125         DEBUG(dbgs() << " Create a new stub function\n");
1126         Stubs[Value] = Section.getStubOffset();
1127         uint8_t *StubTargetAddr = createStubFunction(
1128             Section.getAddressWithOffset(Section.getStubOffset()));
1129         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1130                            ELF::R_ARM_ABS32, Value.Addend);
1131         if (Value.SymbolName)
1132           addRelocationForSymbol(RE, Value.SymbolName);
1133         else
1134           addRelocationForSection(RE, Value.SectionID);
1135 
1136         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1137                                                Section.getAddressWithOffset(
1138                                                    Section.getStubOffset())),
1139                           RelType, 0);
1140         Section.advanceStubOffset(getMaxStubSize());
1141       }
1142     } else {
1143       uint32_t *Placeholder =
1144         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1145       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1146           RelType == ELF::R_ARM_ABS32) {
1147         Value.Addend += *Placeholder;
1148       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1149         // See ELF for ARM documentation
1150         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1151       }
1152       processSimpleRelocation(SectionID, Offset, RelType, Value);
1153     }
1154   } else if (IsMipsO32ABI) {
1155     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1156         computePlaceholderAddress(SectionID, Offset));
1157     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1158     if (RelType == ELF::R_MIPS_26) {
1159       // This is an Mips branch relocation, need to use a stub function.
1160       DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1161       SectionEntry &Section = Sections[SectionID];
1162 
1163       // Extract the addend from the instruction.
1164       // We shift up by two since the Value will be down shifted again
1165       // when applying the relocation.
1166       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1167 
1168       Value.Addend += Addend;
1169 
1170       //  Look up for existing stub.
1171       StubMap::const_iterator i = Stubs.find(Value);
1172       if (i != Stubs.end()) {
1173         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1174         addRelocationForSection(RE, SectionID);
1175         DEBUG(dbgs() << " Stub function found\n");
1176       } else {
1177         // Create a new stub function.
1178         DEBUG(dbgs() << " Create a new stub function\n");
1179         Stubs[Value] = Section.getStubOffset();
1180 
1181         unsigned AbiVariant;
1182         O.getPlatformFlags(AbiVariant);
1183 
1184         uint8_t *StubTargetAddr = createStubFunction(
1185             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1186 
1187         // Creating Hi and Lo relocations for the filled stub instructions.
1188         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1189                              ELF::R_MIPS_HI16, Value.Addend);
1190         RelocationEntry RELo(SectionID,
1191                              StubTargetAddr - Section.getAddress() + 4,
1192                              ELF::R_MIPS_LO16, Value.Addend);
1193 
1194         if (Value.SymbolName) {
1195           addRelocationForSymbol(REHi, Value.SymbolName);
1196           addRelocationForSymbol(RELo, Value.SymbolName);
1197         }
1198         else {
1199           addRelocationForSection(REHi, Value.SectionID);
1200           addRelocationForSection(RELo, Value.SectionID);
1201         }
1202 
1203         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1204         addRelocationForSection(RE, SectionID);
1205         Section.advanceStubOffset(getMaxStubSize());
1206       }
1207     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1208       int64_t Addend = (Opcode & 0x0000ffff) << 16;
1209       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1210       PendingRelocs.push_back(std::make_pair(Value, RE));
1211     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1212       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1213       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1214         const RelocationValueRef &MatchingValue = I->first;
1215         RelocationEntry &Reloc = I->second;
1216         if (MatchingValue == Value &&
1217             RelType == getMatchingLoRelocation(Reloc.RelType) &&
1218             SectionID == Reloc.SectionID) {
1219           Reloc.Addend += Addend;
1220           if (Value.SymbolName)
1221             addRelocationForSymbol(Reloc, Value.SymbolName);
1222           else
1223             addRelocationForSection(Reloc, Value.SectionID);
1224           I = PendingRelocs.erase(I);
1225         } else
1226           ++I;
1227       }
1228       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1229       if (Value.SymbolName)
1230         addRelocationForSymbol(RE, Value.SymbolName);
1231       else
1232         addRelocationForSection(RE, Value.SectionID);
1233     } else {
1234       if (RelType == ELF::R_MIPS_32)
1235         Value.Addend += Opcode;
1236       else if (RelType == ELF::R_MIPS_PC16)
1237         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1238       else if (RelType == ELF::R_MIPS_PC19_S2)
1239         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1240       else if (RelType == ELF::R_MIPS_PC21_S2)
1241         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1242       else if (RelType == ELF::R_MIPS_PC26_S2)
1243         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1244       processSimpleRelocation(SectionID, Offset, RelType, Value);
1245     }
1246   } else if (IsMipsN32ABI || IsMipsN64ABI) {
1247     uint32_t r_type = RelType & 0xff;
1248     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1249     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1250         || r_type == ELF::R_MIPS_GOT_DISP) {
1251       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1252       if (i != GOTSymbolOffsets.end())
1253         RE.SymOffset = i->second;
1254       else {
1255         RE.SymOffset = allocateGOTEntries(SectionID, 1);
1256         GOTSymbolOffsets[TargetName] = RE.SymOffset;
1257       }
1258     }
1259     if (Value.SymbolName)
1260       addRelocationForSymbol(RE, Value.SymbolName);
1261     else
1262       addRelocationForSection(RE, Value.SectionID);
1263   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1264     if (RelType == ELF::R_PPC64_REL24) {
1265       // Determine ABI variant in use for this object.
1266       unsigned AbiVariant;
1267       Obj.getPlatformFlags(AbiVariant);
1268       AbiVariant &= ELF::EF_PPC64_ABI;
1269       // A PPC branch relocation will need a stub function if the target is
1270       // an external symbol (Symbol::ST_Unknown) or if the target address
1271       // is not within the signed 24-bits branch address.
1272       SectionEntry &Section = Sections[SectionID];
1273       uint8_t *Target = Section.getAddressWithOffset(Offset);
1274       bool RangeOverflow = false;
1275       if (SymType != SymbolRef::ST_Unknown) {
1276         if (AbiVariant != 2) {
1277           // In the ELFv1 ABI, a function call may point to the .opd entry,
1278           // so the final symbol value is calculated based on the relocation
1279           // values in the .opd section.
1280           if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1281             return std::move(Err);
1282         } else {
1283           // In the ELFv2 ABI, a function symbol may provide a local entry
1284           // point, which must be used for direct calls.
1285           uint8_t SymOther = Symbol->getOther();
1286           Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1287         }
1288         uint8_t *RelocTarget =
1289             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1290         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
1291         // If it is within 26-bits branch range, just set the branch target
1292         if (SignExtend32<26>(delta) == delta) {
1293           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1294           if (Value.SymbolName)
1295             addRelocationForSymbol(RE, Value.SymbolName);
1296           else
1297             addRelocationForSection(RE, Value.SectionID);
1298         } else {
1299           RangeOverflow = true;
1300         }
1301       }
1302       if (SymType == SymbolRef::ST_Unknown || RangeOverflow) {
1303         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
1304         // larger than 24-bits.
1305         StubMap::const_iterator i = Stubs.find(Value);
1306         if (i != Stubs.end()) {
1307           // Symbol function stub already created, just relocate to it
1308           resolveRelocation(Section, Offset,
1309                             reinterpret_cast<uint64_t>(
1310                                 Section.getAddressWithOffset(i->second)),
1311                             RelType, 0);
1312           DEBUG(dbgs() << " Stub function found\n");
1313         } else {
1314           // Create a new stub function.
1315           DEBUG(dbgs() << " Create a new stub function\n");
1316           Stubs[Value] = Section.getStubOffset();
1317           uint8_t *StubTargetAddr = createStubFunction(
1318               Section.getAddressWithOffset(Section.getStubOffset()),
1319               AbiVariant);
1320           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1321                              ELF::R_PPC64_ADDR64, Value.Addend);
1322 
1323           // Generates the 64-bits address loads as exemplified in section
1324           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1325           // apply to the low part of the instructions, so we have to update
1326           // the offset according to the target endianness.
1327           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1328           if (!IsTargetLittleEndian)
1329             StubRelocOffset += 2;
1330 
1331           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1332                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1333           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1334                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1335           RelocationEntry REh(SectionID, StubRelocOffset + 12,
1336                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
1337           RelocationEntry REl(SectionID, StubRelocOffset + 16,
1338                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
1339 
1340           if (Value.SymbolName) {
1341             addRelocationForSymbol(REhst, Value.SymbolName);
1342             addRelocationForSymbol(REhr, Value.SymbolName);
1343             addRelocationForSymbol(REh, Value.SymbolName);
1344             addRelocationForSymbol(REl, Value.SymbolName);
1345           } else {
1346             addRelocationForSection(REhst, Value.SectionID);
1347             addRelocationForSection(REhr, Value.SectionID);
1348             addRelocationForSection(REh, Value.SectionID);
1349             addRelocationForSection(REl, Value.SectionID);
1350           }
1351 
1352           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1353                                                  Section.getAddressWithOffset(
1354                                                      Section.getStubOffset())),
1355                             RelType, 0);
1356           Section.advanceStubOffset(getMaxStubSize());
1357         }
1358         if (SymType == SymbolRef::ST_Unknown) {
1359           // Restore the TOC for external calls
1360           if (AbiVariant == 2)
1361             writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
1362           else
1363             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1364         }
1365       }
1366     } else if (RelType == ELF::R_PPC64_TOC16 ||
1367                RelType == ELF::R_PPC64_TOC16_DS ||
1368                RelType == ELF::R_PPC64_TOC16_LO ||
1369                RelType == ELF::R_PPC64_TOC16_LO_DS ||
1370                RelType == ELF::R_PPC64_TOC16_HI ||
1371                RelType == ELF::R_PPC64_TOC16_HA) {
1372       // These relocations are supposed to subtract the TOC address from
1373       // the final value.  This does not fit cleanly into the RuntimeDyld
1374       // scheme, since there may be *two* sections involved in determining
1375       // the relocation value (the section of the symbol referred to by the
1376       // relocation, and the TOC section associated with the current module).
1377       //
1378       // Fortunately, these relocations are currently only ever generated
1379       // referring to symbols that themselves reside in the TOC, which means
1380       // that the two sections are actually the same.  Thus they cancel out
1381       // and we can immediately resolve the relocation right now.
1382       switch (RelType) {
1383       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1384       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1385       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1386       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1387       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1388       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1389       default: llvm_unreachable("Wrong relocation type.");
1390       }
1391 
1392       RelocationValueRef TOCValue;
1393       if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1394         return std::move(Err);
1395       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1396         llvm_unreachable("Unsupported TOC relocation.");
1397       Value.Addend -= TOCValue.Addend;
1398       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1399     } else {
1400       // There are two ways to refer to the TOC address directly: either
1401       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1402       // ignored), or via any relocation that refers to the magic ".TOC."
1403       // symbols (in which case the addend is respected).
1404       if (RelType == ELF::R_PPC64_TOC) {
1405         RelType = ELF::R_PPC64_ADDR64;
1406         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1407           return std::move(Err);
1408       } else if (TargetName == ".TOC.") {
1409         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1410           return std::move(Err);
1411         Value.Addend += Addend;
1412       }
1413 
1414       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1415 
1416       if (Value.SymbolName)
1417         addRelocationForSymbol(RE, Value.SymbolName);
1418       else
1419         addRelocationForSection(RE, Value.SectionID);
1420     }
1421   } else if (Arch == Triple::systemz &&
1422              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1423     // Create function stubs for both PLT and GOT references, regardless of
1424     // whether the GOT reference is to data or code.  The stub contains the
1425     // full address of the symbol, as needed by GOT references, and the
1426     // executable part only adds an overhead of 8 bytes.
1427     //
1428     // We could try to conserve space by allocating the code and data
1429     // parts of the stub separately.  However, as things stand, we allocate
1430     // a stub for every relocation, so using a GOT in JIT code should be
1431     // no less space efficient than using an explicit constant pool.
1432     DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1433     SectionEntry &Section = Sections[SectionID];
1434 
1435     // Look for an existing stub.
1436     StubMap::const_iterator i = Stubs.find(Value);
1437     uintptr_t StubAddress;
1438     if (i != Stubs.end()) {
1439       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1440       DEBUG(dbgs() << " Stub function found\n");
1441     } else {
1442       // Create a new stub function.
1443       DEBUG(dbgs() << " Create a new stub function\n");
1444 
1445       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1446       uintptr_t StubAlignment = getStubAlignment();
1447       StubAddress =
1448           (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1449           -StubAlignment;
1450       unsigned StubOffset = StubAddress - BaseAddress;
1451 
1452       Stubs[Value] = StubOffset;
1453       createStubFunction((uint8_t *)StubAddress);
1454       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1455                          Value.Offset);
1456       if (Value.SymbolName)
1457         addRelocationForSymbol(RE, Value.SymbolName);
1458       else
1459         addRelocationForSection(RE, Value.SectionID);
1460       Section.advanceStubOffset(getMaxStubSize());
1461     }
1462 
1463     if (RelType == ELF::R_390_GOTENT)
1464       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1465                         Addend);
1466     else
1467       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1468   } else if (Arch == Triple::x86_64) {
1469     if (RelType == ELF::R_X86_64_PLT32) {
1470       // The way the PLT relocations normally work is that the linker allocates
1471       // the
1472       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1473       // entry will then jump to an address provided by the GOT.  On first call,
1474       // the
1475       // GOT address will point back into PLT code that resolves the symbol. After
1476       // the first call, the GOT entry points to the actual function.
1477       //
1478       // For local functions we're ignoring all of that here and just replacing
1479       // the PLT32 relocation type with PC32, which will translate the relocation
1480       // into a PC-relative call directly to the function. For external symbols we
1481       // can't be sure the function will be within 2^32 bytes of the call site, so
1482       // we need to create a stub, which calls into the GOT.  This case is
1483       // equivalent to the usual PLT implementation except that we use the stub
1484       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1485       // rather than allocating a PLT section.
1486       if (Value.SymbolName) {
1487         // This is a call to an external function.
1488         // Look for an existing stub.
1489         SectionEntry &Section = Sections[SectionID];
1490         StubMap::const_iterator i = Stubs.find(Value);
1491         uintptr_t StubAddress;
1492         if (i != Stubs.end()) {
1493           StubAddress = uintptr_t(Section.getAddress()) + i->second;
1494           DEBUG(dbgs() << " Stub function found\n");
1495         } else {
1496           // Create a new stub function (equivalent to a PLT entry).
1497           DEBUG(dbgs() << " Create a new stub function\n");
1498 
1499           uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1500           uintptr_t StubAlignment = getStubAlignment();
1501           StubAddress =
1502               (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1503               -StubAlignment;
1504           unsigned StubOffset = StubAddress - BaseAddress;
1505           Stubs[Value] = StubOffset;
1506           createStubFunction((uint8_t *)StubAddress);
1507 
1508           // Bump our stub offset counter
1509           Section.advanceStubOffset(getMaxStubSize());
1510 
1511           // Allocate a GOT Entry
1512           uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1513 
1514           // The load of the GOT address has an addend of -4
1515           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4);
1516 
1517           // Fill in the value of the symbol we're targeting into the GOT
1518           addRelocationForSymbol(
1519               computeGOTOffsetRE(SectionID, GOTOffset, 0, ELF::R_X86_64_64),
1520               Value.SymbolName);
1521         }
1522 
1523         // Make the target call a call into the stub table.
1524         resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1525                           Addend);
1526       } else {
1527         RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1528                   Value.Offset);
1529         addRelocationForSection(RE, Value.SectionID);
1530       }
1531     } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1532                RelType == ELF::R_X86_64_GOTPCRELX ||
1533                RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1534       uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1535       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend);
1536 
1537       // Fill in the value of the symbol we're targeting into the GOT
1538       RelocationEntry RE = computeGOTOffsetRE(SectionID, GOTOffset, Value.Offset, ELF::R_X86_64_64);
1539       if (Value.SymbolName)
1540         addRelocationForSymbol(RE, Value.SymbolName);
1541       else
1542         addRelocationForSection(RE, Value.SectionID);
1543     } else if (RelType == ELF::R_X86_64_PC32) {
1544       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1545       processSimpleRelocation(SectionID, Offset, RelType, Value);
1546     } else if (RelType == ELF::R_X86_64_PC64) {
1547       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1548       processSimpleRelocation(SectionID, Offset, RelType, Value);
1549     } else {
1550       processSimpleRelocation(SectionID, Offset, RelType, Value);
1551     }
1552   } else {
1553     if (Arch == Triple::x86) {
1554       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1555     }
1556     processSimpleRelocation(SectionID, Offset, RelType, Value);
1557   }
1558   return ++RelI;
1559 }
1560 
1561 size_t RuntimeDyldELF::getGOTEntrySize() {
1562   // We don't use the GOT in all of these cases, but it's essentially free
1563   // to put them all here.
1564   size_t Result = 0;
1565   switch (Arch) {
1566   case Triple::x86_64:
1567   case Triple::aarch64:
1568   case Triple::aarch64_be:
1569   case Triple::ppc64:
1570   case Triple::ppc64le:
1571   case Triple::systemz:
1572     Result = sizeof(uint64_t);
1573     break;
1574   case Triple::x86:
1575   case Triple::arm:
1576   case Triple::thumb:
1577     Result = sizeof(uint32_t);
1578     break;
1579   case Triple::mips:
1580   case Triple::mipsel:
1581   case Triple::mips64:
1582   case Triple::mips64el:
1583     if (IsMipsO32ABI || IsMipsN32ABI)
1584       Result = sizeof(uint32_t);
1585     else if (IsMipsN64ABI)
1586       Result = sizeof(uint64_t);
1587     else
1588       llvm_unreachable("Mips ABI not handled");
1589     break;
1590   default:
1591     llvm_unreachable("Unsupported CPU type!");
1592   }
1593   return Result;
1594 }
1595 
1596 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned SectionID, unsigned no)
1597 {
1598   (void)SectionID; // The GOT Section is the same for all section in the object file
1599   if (GOTSectionID == 0) {
1600     GOTSectionID = Sections.size();
1601     // Reserve a section id. We'll allocate the section later
1602     // once we know the total size
1603     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1604   }
1605   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1606   CurrentGOTIndex += no;
1607   return StartOffset;
1608 }
1609 
1610 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset)
1611 {
1612   // Fill in the relative address of the GOT Entry into the stub
1613   RelocationEntry GOTRE(SectionID, Offset, ELF::R_X86_64_PC32, GOTOffset);
1614   addRelocationForSection(GOTRE, GOTSectionID);
1615 }
1616 
1617 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(unsigned SectionID, uint64_t GOTOffset, uint64_t SymbolOffset,
1618                                                    uint32_t Type)
1619 {
1620   (void)SectionID; // The GOT Section is the same for all section in the object file
1621   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1622 }
1623 
1624 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1625                                   ObjSectionToIDMap &SectionMap) {
1626   if (IsMipsO32ABI)
1627     if (!PendingRelocs.empty())
1628       return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
1629 
1630   // If necessary, allocate the global offset table
1631   if (GOTSectionID != 0) {
1632     // Allocate memory for the section
1633     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1634     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1635                                                 GOTSectionID, ".got", false);
1636     if (!Addr)
1637       return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
1638 
1639     Sections[GOTSectionID] =
1640         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1641 
1642     if (Checker)
1643       Checker->registerSection(Obj.getFileName(), GOTSectionID);
1644 
1645     // For now, initialize all GOT entries to zero.  We'll fill them in as
1646     // needed when GOT-based relocations are applied.
1647     memset(Addr, 0, TotalSize);
1648     if (IsMipsN32ABI || IsMipsN64ABI) {
1649       // To correctly resolve Mips GOT relocations, we need a mapping from
1650       // object's sections to GOTs.
1651       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1652            SI != SE; ++SI) {
1653         if (SI->relocation_begin() != SI->relocation_end()) {
1654           section_iterator RelocatedSection = SI->getRelocatedSection();
1655           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1656           assert (i != SectionMap.end());
1657           SectionToGOTMap[i->second] = GOTSectionID;
1658         }
1659       }
1660       GOTSymbolOffsets.clear();
1661     }
1662   }
1663 
1664   // Look for and record the EH frame section.
1665   ObjSectionToIDMap::iterator i, e;
1666   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1667     const SectionRef &Section = i->first;
1668     StringRef Name;
1669     Section.getName(Name);
1670     if (Name == ".eh_frame") {
1671       UnregisteredEHFrameSections.push_back(i->second);
1672       break;
1673     }
1674   }
1675 
1676   GOTSectionID = 0;
1677   CurrentGOTIndex = 0;
1678 
1679   return Error::success();
1680 }
1681 
1682 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1683   return Obj.isELF();
1684 }
1685 
1686 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1687   if (Arch != Triple::x86_64)
1688     return true;  // Conservative answer
1689 
1690   switch (R.getType()) {
1691   default:
1692     return true;  // Conservative answer
1693 
1694 
1695   case ELF::R_X86_64_GOTPCREL:
1696   case ELF::R_X86_64_GOTPCRELX:
1697   case ELF::R_X86_64_REX_GOTPCRELX:
1698   case ELF::R_X86_64_PC32:
1699   case ELF::R_X86_64_PC64:
1700   case ELF::R_X86_64_64:
1701     // We know that these reloation types won't need a stub function.  This list
1702     // can be extended as needed.
1703     return false;
1704   }
1705 }
1706 
1707 } // namespace llvm
1708