1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implementation of ELF support for the MC-JIT runtime dynamic linker. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "RuntimeDyldELF.h" 14 #include "RuntimeDyldCheckerImpl.h" 15 #include "Targets/RuntimeDyldELFMips.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/BinaryFormat/ELF.h" 20 #include "llvm/Object/ELFObjectFile.h" 21 #include "llvm/Object/ObjectFile.h" 22 #include "llvm/Support/Endian.h" 23 #include "llvm/Support/MemoryBuffer.h" 24 25 using namespace llvm; 26 using namespace llvm::object; 27 using namespace llvm::support::endian; 28 29 #define DEBUG_TYPE "dyld" 30 31 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); } 32 33 static void or32AArch64Imm(void *L, uint64_t Imm) { 34 or32le(L, (Imm & 0xFFF) << 10); 35 } 36 37 template <class T> static void write(bool isBE, void *P, T V) { 38 isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V); 39 } 40 41 static void write32AArch64Addr(void *L, uint64_t Imm) { 42 uint32_t ImmLo = (Imm & 0x3) << 29; 43 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; 44 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); 45 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi); 46 } 47 48 // Return the bits [Start, End] from Val shifted Start bits. 49 // For instance, getBits(0xF0, 4, 8) returns 0xF. 50 static uint64_t getBits(uint64_t Val, int Start, int End) { 51 uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1; 52 return (Val >> Start) & Mask; 53 } 54 55 namespace { 56 57 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> { 58 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 59 60 typedef Elf_Shdr_Impl<ELFT> Elf_Shdr; 61 typedef Elf_Sym_Impl<ELFT> Elf_Sym; 62 typedef Elf_Rel_Impl<ELFT, false> Elf_Rel; 63 typedef Elf_Rel_Impl<ELFT, true> Elf_Rela; 64 65 typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr; 66 67 typedef typename ELFT::uint addr_type; 68 69 DyldELFObject(ELFObjectFile<ELFT> &&Obj); 70 71 public: 72 static Expected<std::unique_ptr<DyldELFObject>> 73 create(MemoryBufferRef Wrapper); 74 75 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr); 76 77 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr); 78 79 // Methods for type inquiry through isa, cast and dyn_cast 80 static bool classof(const Binary *v) { 81 return (isa<ELFObjectFile<ELFT>>(v) && 82 classof(cast<ELFObjectFile<ELFT>>(v))); 83 } 84 static bool classof(const ELFObjectFile<ELFT> *v) { 85 return v->isDyldType(); 86 } 87 }; 88 89 90 91 // The MemoryBuffer passed into this constructor is just a wrapper around the 92 // actual memory. Ultimately, the Binary parent class will take ownership of 93 // this MemoryBuffer object but not the underlying memory. 94 template <class ELFT> 95 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj) 96 : ELFObjectFile<ELFT>(std::move(Obj)) { 97 this->isDyldELFObject = true; 98 } 99 100 template <class ELFT> 101 Expected<std::unique_ptr<DyldELFObject<ELFT>>> 102 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) { 103 auto Obj = ELFObjectFile<ELFT>::create(Wrapper); 104 if (auto E = Obj.takeError()) 105 return std::move(E); 106 std::unique_ptr<DyldELFObject<ELFT>> Ret( 107 new DyldELFObject<ELFT>(std::move(*Obj))); 108 return std::move(Ret); 109 } 110 111 template <class ELFT> 112 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec, 113 uint64_t Addr) { 114 DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); 115 Elf_Shdr *shdr = 116 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); 117 118 // This assumes the address passed in matches the target address bitness 119 // The template-based type cast handles everything else. 120 shdr->sh_addr = static_cast<addr_type>(Addr); 121 } 122 123 template <class ELFT> 124 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef, 125 uint64_t Addr) { 126 127 Elf_Sym *sym = const_cast<Elf_Sym *>( 128 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl())); 129 130 // This assumes the address passed in matches the target address bitness 131 // The template-based type cast handles everything else. 132 sym->st_value = static_cast<addr_type>(Addr); 133 } 134 135 class LoadedELFObjectInfo final 136 : public LoadedObjectInfoHelper<LoadedELFObjectInfo, 137 RuntimeDyld::LoadedObjectInfo> { 138 public: 139 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap) 140 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {} 141 142 OwningBinary<ObjectFile> 143 getObjectForDebug(const ObjectFile &Obj) const override; 144 }; 145 146 template <typename ELFT> 147 static Expected<std::unique_ptr<DyldELFObject<ELFT>>> 148 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject, 149 const LoadedELFObjectInfo &L) { 150 typedef typename ELFT::Shdr Elf_Shdr; 151 typedef typename ELFT::uint addr_type; 152 153 Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr = 154 DyldELFObject<ELFT>::create(Buffer); 155 if (Error E = ObjOrErr.takeError()) 156 return std::move(E); 157 158 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr); 159 160 // Iterate over all sections in the object. 161 auto SI = SourceObject.section_begin(); 162 for (const auto &Sec : Obj->sections()) { 163 Expected<StringRef> NameOrErr = Sec.getName(); 164 if (!NameOrErr) { 165 consumeError(NameOrErr.takeError()); 166 continue; 167 } 168 169 if (*NameOrErr != "") { 170 DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); 171 Elf_Shdr *shdr = const_cast<Elf_Shdr *>( 172 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); 173 174 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) { 175 // This assumes that the address passed in matches the target address 176 // bitness. The template-based type cast handles everything else. 177 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr); 178 } 179 } 180 ++SI; 181 } 182 183 return std::move(Obj); 184 } 185 186 static OwningBinary<ObjectFile> 187 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) { 188 assert(Obj.isELF() && "Not an ELF object file."); 189 190 std::unique_ptr<MemoryBuffer> Buffer = 191 MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName()); 192 193 Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr); 194 handleAllErrors(DebugObj.takeError()); 195 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) 196 DebugObj = 197 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L); 198 else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) 199 DebugObj = 200 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L); 201 else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) 202 DebugObj = 203 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L); 204 else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) 205 DebugObj = 206 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L); 207 else 208 llvm_unreachable("Unexpected ELF format"); 209 210 handleAllErrors(DebugObj.takeError()); 211 return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer)); 212 } 213 214 OwningBinary<ObjectFile> 215 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const { 216 return createELFDebugObject(Obj, *this); 217 } 218 219 } // anonymous namespace 220 221 namespace llvm { 222 223 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr, 224 JITSymbolResolver &Resolver) 225 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {} 226 RuntimeDyldELF::~RuntimeDyldELF() {} 227 228 void RuntimeDyldELF::registerEHFrames() { 229 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) { 230 SID EHFrameSID = UnregisteredEHFrameSections[i]; 231 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress(); 232 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress(); 233 size_t EHFrameSize = Sections[EHFrameSID].getSize(); 234 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize); 235 } 236 UnregisteredEHFrameSections.clear(); 237 } 238 239 std::unique_ptr<RuntimeDyldELF> 240 llvm::RuntimeDyldELF::create(Triple::ArchType Arch, 241 RuntimeDyld::MemoryManager &MemMgr, 242 JITSymbolResolver &Resolver) { 243 switch (Arch) { 244 default: 245 return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver); 246 case Triple::mips: 247 case Triple::mipsel: 248 case Triple::mips64: 249 case Triple::mips64el: 250 return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver); 251 } 252 } 253 254 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 255 RuntimeDyldELF::loadObject(const object::ObjectFile &O) { 256 if (auto ObjSectionToIDOrErr = loadObjectImpl(O)) 257 return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr); 258 else { 259 HasError = true; 260 raw_string_ostream ErrStream(ErrorStr); 261 logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream); 262 return nullptr; 263 } 264 } 265 266 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, 267 uint64_t Offset, uint64_t Value, 268 uint32_t Type, int64_t Addend, 269 uint64_t SymOffset) { 270 switch (Type) { 271 default: 272 llvm_unreachable("Relocation type not implemented yet!"); 273 break; 274 case ELF::R_X86_64_NONE: 275 break; 276 case ELF::R_X86_64_64: { 277 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 278 Value + Addend; 279 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at " 280 << format("%p\n", Section.getAddressWithOffset(Offset))); 281 break; 282 } 283 case ELF::R_X86_64_32: 284 case ELF::R_X86_64_32S: { 285 Value += Addend; 286 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || 287 (Type == ELF::R_X86_64_32S && 288 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))); 289 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF); 290 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 291 TruncatedAddr; 292 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at " 293 << format("%p\n", Section.getAddressWithOffset(Offset))); 294 break; 295 } 296 case ELF::R_X86_64_PC8: { 297 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 298 int64_t RealOffset = Value + Addend - FinalAddress; 299 assert(isInt<8>(RealOffset)); 300 int8_t TruncOffset = (RealOffset & 0xFF); 301 Section.getAddress()[Offset] = TruncOffset; 302 break; 303 } 304 case ELF::R_X86_64_PC32: { 305 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 306 int64_t RealOffset = Value + Addend - FinalAddress; 307 assert(isInt<32>(RealOffset)); 308 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); 309 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 310 TruncOffset; 311 break; 312 } 313 case ELF::R_X86_64_PC64: { 314 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 315 int64_t RealOffset = Value + Addend - FinalAddress; 316 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 317 RealOffset; 318 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at " 319 << format("%p\n", FinalAddress)); 320 break; 321 } 322 case ELF::R_X86_64_GOTOFF64: { 323 // Compute Value - GOTBase. 324 uint64_t GOTBase = 0; 325 for (const auto &Section : Sections) { 326 if (Section.getName() == ".got") { 327 GOTBase = Section.getLoadAddressWithOffset(0); 328 break; 329 } 330 } 331 assert(GOTBase != 0 && "missing GOT"); 332 int64_t GOTOffset = Value - GOTBase + Addend; 333 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset; 334 break; 335 } 336 } 337 } 338 339 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section, 340 uint64_t Offset, uint32_t Value, 341 uint32_t Type, int32_t Addend) { 342 switch (Type) { 343 case ELF::R_386_32: { 344 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 345 Value + Addend; 346 break; 347 } 348 // Handle R_386_PLT32 like R_386_PC32 since it should be able to 349 // reach any 32 bit address. 350 case ELF::R_386_PLT32: 351 case ELF::R_386_PC32: { 352 uint32_t FinalAddress = 353 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF; 354 uint32_t RealOffset = Value + Addend - FinalAddress; 355 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 356 RealOffset; 357 break; 358 } 359 default: 360 // There are other relocation types, but it appears these are the 361 // only ones currently used by the LLVM ELF object writer 362 llvm_unreachable("Relocation type not implemented yet!"); 363 break; 364 } 365 } 366 367 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section, 368 uint64_t Offset, uint64_t Value, 369 uint32_t Type, int64_t Addend) { 370 uint32_t *TargetPtr = 371 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset)); 372 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 373 // Data should use target endian. Code should always use little endian. 374 bool isBE = Arch == Triple::aarch64_be; 375 376 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x" 377 << format("%llx", Section.getAddressWithOffset(Offset)) 378 << " FinalAddress: 0x" << format("%llx", FinalAddress) 379 << " Value: 0x" << format("%llx", Value) << " Type: 0x" 380 << format("%x", Type) << " Addend: 0x" 381 << format("%llx", Addend) << "\n"); 382 383 switch (Type) { 384 default: 385 llvm_unreachable("Relocation type not implemented yet!"); 386 break; 387 case ELF::R_AARCH64_ABS16: { 388 uint64_t Result = Value + Addend; 389 assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX); 390 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU)); 391 break; 392 } 393 case ELF::R_AARCH64_ABS32: { 394 uint64_t Result = Value + Addend; 395 assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX); 396 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU)); 397 break; 398 } 399 case ELF::R_AARCH64_ABS64: 400 write(isBE, TargetPtr, Value + Addend); 401 break; 402 case ELF::R_AARCH64_PREL32: { 403 uint64_t Result = Value + Addend - FinalAddress; 404 assert(static_cast<int64_t>(Result) >= INT32_MIN && 405 static_cast<int64_t>(Result) <= UINT32_MAX); 406 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU)); 407 break; 408 } 409 case ELF::R_AARCH64_PREL64: 410 write(isBE, TargetPtr, Value + Addend - FinalAddress); 411 break; 412 case ELF::R_AARCH64_CALL26: // fallthrough 413 case ELF::R_AARCH64_JUMP26: { 414 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the 415 // calculation. 416 uint64_t BranchImm = Value + Addend - FinalAddress; 417 418 // "Check that -2^27 <= result < 2^27". 419 assert(isInt<28>(BranchImm)); 420 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2); 421 break; 422 } 423 case ELF::R_AARCH64_MOVW_UABS_G3: 424 or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43); 425 break; 426 case ELF::R_AARCH64_MOVW_UABS_G2_NC: 427 or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27); 428 break; 429 case ELF::R_AARCH64_MOVW_UABS_G1_NC: 430 or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11); 431 break; 432 case ELF::R_AARCH64_MOVW_UABS_G0_NC: 433 or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5); 434 break; 435 case ELF::R_AARCH64_ADR_PREL_PG_HI21: { 436 // Operation: Page(S+A) - Page(P) 437 uint64_t Result = 438 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL); 439 440 // Check that -2^32 <= X < 2^32 441 assert(isInt<33>(Result) && "overflow check failed for relocation"); 442 443 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken 444 // from bits 32:12 of X. 445 write32AArch64Addr(TargetPtr, Result >> 12); 446 break; 447 } 448 case ELF::R_AARCH64_ADD_ABS_LO12_NC: 449 // Operation: S + A 450 // Immediate goes in bits 21:10 of LD/ST instruction, taken 451 // from bits 11:0 of X 452 or32AArch64Imm(TargetPtr, Value + Addend); 453 break; 454 case ELF::R_AARCH64_LDST8_ABS_LO12_NC: 455 // Operation: S + A 456 // Immediate goes in bits 21:10 of LD/ST instruction, taken 457 // from bits 11:0 of X 458 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11)); 459 break; 460 case ELF::R_AARCH64_LDST16_ABS_LO12_NC: 461 // Operation: S + A 462 // Immediate goes in bits 21:10 of LD/ST instruction, taken 463 // from bits 11:1 of X 464 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11)); 465 break; 466 case ELF::R_AARCH64_LDST32_ABS_LO12_NC: 467 // Operation: S + A 468 // Immediate goes in bits 21:10 of LD/ST instruction, taken 469 // from bits 11:2 of X 470 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11)); 471 break; 472 case ELF::R_AARCH64_LDST64_ABS_LO12_NC: 473 // Operation: S + A 474 // Immediate goes in bits 21:10 of LD/ST instruction, taken 475 // from bits 11:3 of X 476 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11)); 477 break; 478 case ELF::R_AARCH64_LDST128_ABS_LO12_NC: 479 // Operation: S + A 480 // Immediate goes in bits 21:10 of LD/ST instruction, taken 481 // from bits 11:4 of X 482 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11)); 483 break; 484 } 485 } 486 487 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section, 488 uint64_t Offset, uint32_t Value, 489 uint32_t Type, int32_t Addend) { 490 // TODO: Add Thumb relocations. 491 uint32_t *TargetPtr = 492 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset)); 493 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF; 494 Value += Addend; 495 496 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " 497 << Section.getAddressWithOffset(Offset) 498 << " FinalAddress: " << format("%p", FinalAddress) 499 << " Value: " << format("%x", Value) 500 << " Type: " << format("%x", Type) 501 << " Addend: " << format("%x", Addend) << "\n"); 502 503 switch (Type) { 504 default: 505 llvm_unreachable("Not implemented relocation type!"); 506 507 case ELF::R_ARM_NONE: 508 break; 509 // Write a 31bit signed offset 510 case ELF::R_ARM_PREL31: 511 support::ulittle32_t::ref{TargetPtr} = 512 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) | 513 ((Value - FinalAddress) & ~0x80000000); 514 break; 515 case ELF::R_ARM_TARGET1: 516 case ELF::R_ARM_ABS32: 517 support::ulittle32_t::ref{TargetPtr} = Value; 518 break; 519 // Write first 16 bit of 32 bit value to the mov instruction. 520 // Last 4 bit should be shifted. 521 case ELF::R_ARM_MOVW_ABS_NC: 522 case ELF::R_ARM_MOVT_ABS: 523 if (Type == ELF::R_ARM_MOVW_ABS_NC) 524 Value = Value & 0xFFFF; 525 else if (Type == ELF::R_ARM_MOVT_ABS) 526 Value = (Value >> 16) & 0xFFFF; 527 support::ulittle32_t::ref{TargetPtr} = 528 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) | 529 (((Value >> 12) & 0xF) << 16); 530 break; 531 // Write 24 bit relative value to the branch instruction. 532 case ELF::R_ARM_PC24: // Fall through. 533 case ELF::R_ARM_CALL: // Fall through. 534 case ELF::R_ARM_JUMP24: 535 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8); 536 RelValue = (RelValue & 0x03FFFFFC) >> 2; 537 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE); 538 support::ulittle32_t::ref{TargetPtr} = 539 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue; 540 break; 541 } 542 } 543 544 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) { 545 if (Arch == Triple::UnknownArch || 546 !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) { 547 IsMipsO32ABI = false; 548 IsMipsN32ABI = false; 549 IsMipsN64ABI = false; 550 return; 551 } 552 if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) { 553 unsigned AbiVariant = E->getPlatformFlags(); 554 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32; 555 IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2; 556 } 557 IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips"); 558 } 559 560 // Return the .TOC. section and offset. 561 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj, 562 ObjSectionToIDMap &LocalSections, 563 RelocationValueRef &Rel) { 564 // Set a default SectionID in case we do not find a TOC section below. 565 // This may happen for references to TOC base base (sym@toc, .odp 566 // relocation) without a .toc directive. In this case just use the 567 // first section (which is usually the .odp) since the code won't 568 // reference the .toc base directly. 569 Rel.SymbolName = nullptr; 570 Rel.SectionID = 0; 571 572 // The TOC consists of sections .got, .toc, .tocbss, .plt in that 573 // order. The TOC starts where the first of these sections starts. 574 for (auto &Section : Obj.sections()) { 575 Expected<StringRef> NameOrErr = Section.getName(); 576 if (!NameOrErr) 577 return NameOrErr.takeError(); 578 StringRef SectionName = *NameOrErr; 579 580 if (SectionName == ".got" 581 || SectionName == ".toc" 582 || SectionName == ".tocbss" 583 || SectionName == ".plt") { 584 if (auto SectionIDOrErr = 585 findOrEmitSection(Obj, Section, false, LocalSections)) 586 Rel.SectionID = *SectionIDOrErr; 587 else 588 return SectionIDOrErr.takeError(); 589 break; 590 } 591 } 592 593 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 594 // thus permitting a full 64 Kbytes segment. 595 Rel.Addend = 0x8000; 596 597 return Error::success(); 598 } 599 600 // Returns the sections and offset associated with the ODP entry referenced 601 // by Symbol. 602 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj, 603 ObjSectionToIDMap &LocalSections, 604 RelocationValueRef &Rel) { 605 // Get the ELF symbol value (st_value) to compare with Relocation offset in 606 // .opd entries 607 for (section_iterator si = Obj.section_begin(), se = Obj.section_end(); 608 si != se; ++si) { 609 section_iterator RelSecI = si->getRelocatedSection(); 610 if (RelSecI == Obj.section_end()) 611 continue; 612 613 Expected<StringRef> NameOrErr = RelSecI->getName(); 614 if (!NameOrErr) 615 return NameOrErr.takeError(); 616 StringRef RelSectionName = *NameOrErr; 617 618 if (RelSectionName != ".opd") 619 continue; 620 621 for (elf_relocation_iterator i = si->relocation_begin(), 622 e = si->relocation_end(); 623 i != e;) { 624 // The R_PPC64_ADDR64 relocation indicates the first field 625 // of a .opd entry 626 uint64_t TypeFunc = i->getType(); 627 if (TypeFunc != ELF::R_PPC64_ADDR64) { 628 ++i; 629 continue; 630 } 631 632 uint64_t TargetSymbolOffset = i->getOffset(); 633 symbol_iterator TargetSymbol = i->getSymbol(); 634 int64_t Addend; 635 if (auto AddendOrErr = i->getAddend()) 636 Addend = *AddendOrErr; 637 else 638 return AddendOrErr.takeError(); 639 640 ++i; 641 if (i == e) 642 break; 643 644 // Just check if following relocation is a R_PPC64_TOC 645 uint64_t TypeTOC = i->getType(); 646 if (TypeTOC != ELF::R_PPC64_TOC) 647 continue; 648 649 // Finally compares the Symbol value and the target symbol offset 650 // to check if this .opd entry refers to the symbol the relocation 651 // points to. 652 if (Rel.Addend != (int64_t)TargetSymbolOffset) 653 continue; 654 655 section_iterator TSI = Obj.section_end(); 656 if (auto TSIOrErr = TargetSymbol->getSection()) 657 TSI = *TSIOrErr; 658 else 659 return TSIOrErr.takeError(); 660 assert(TSI != Obj.section_end() && "TSI should refer to a valid section"); 661 662 bool IsCode = TSI->isText(); 663 if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode, 664 LocalSections)) 665 Rel.SectionID = *SectionIDOrErr; 666 else 667 return SectionIDOrErr.takeError(); 668 Rel.Addend = (intptr_t)Addend; 669 return Error::success(); 670 } 671 } 672 llvm_unreachable("Attempting to get address of ODP entry!"); 673 } 674 675 // Relocation masks following the #lo(value), #hi(value), #ha(value), 676 // #higher(value), #highera(value), #highest(value), and #highesta(value) 677 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 678 // document. 679 680 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; } 681 682 static inline uint16_t applyPPChi(uint64_t value) { 683 return (value >> 16) & 0xffff; 684 } 685 686 static inline uint16_t applyPPCha (uint64_t value) { 687 return ((value + 0x8000) >> 16) & 0xffff; 688 } 689 690 static inline uint16_t applyPPChigher(uint64_t value) { 691 return (value >> 32) & 0xffff; 692 } 693 694 static inline uint16_t applyPPChighera (uint64_t value) { 695 return ((value + 0x8000) >> 32) & 0xffff; 696 } 697 698 static inline uint16_t applyPPChighest(uint64_t value) { 699 return (value >> 48) & 0xffff; 700 } 701 702 static inline uint16_t applyPPChighesta (uint64_t value) { 703 return ((value + 0x8000) >> 48) & 0xffff; 704 } 705 706 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section, 707 uint64_t Offset, uint64_t Value, 708 uint32_t Type, int64_t Addend) { 709 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); 710 switch (Type) { 711 default: 712 llvm_unreachable("Relocation type not implemented yet!"); 713 break; 714 case ELF::R_PPC_ADDR16_LO: 715 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 716 break; 717 case ELF::R_PPC_ADDR16_HI: 718 writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); 719 break; 720 case ELF::R_PPC_ADDR16_HA: 721 writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); 722 break; 723 } 724 } 725 726 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, 727 uint64_t Offset, uint64_t Value, 728 uint32_t Type, int64_t Addend) { 729 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); 730 switch (Type) { 731 default: 732 llvm_unreachable("Relocation type not implemented yet!"); 733 break; 734 case ELF::R_PPC64_ADDR16: 735 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 736 break; 737 case ELF::R_PPC64_ADDR16_DS: 738 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); 739 break; 740 case ELF::R_PPC64_ADDR16_LO: 741 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 742 break; 743 case ELF::R_PPC64_ADDR16_LO_DS: 744 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); 745 break; 746 case ELF::R_PPC64_ADDR16_HI: 747 case ELF::R_PPC64_ADDR16_HIGH: 748 writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); 749 break; 750 case ELF::R_PPC64_ADDR16_HA: 751 case ELF::R_PPC64_ADDR16_HIGHA: 752 writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); 753 break; 754 case ELF::R_PPC64_ADDR16_HIGHER: 755 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend)); 756 break; 757 case ELF::R_PPC64_ADDR16_HIGHERA: 758 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend)); 759 break; 760 case ELF::R_PPC64_ADDR16_HIGHEST: 761 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend)); 762 break; 763 case ELF::R_PPC64_ADDR16_HIGHESTA: 764 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend)); 765 break; 766 case ELF::R_PPC64_ADDR14: { 767 assert(((Value + Addend) & 3) == 0); 768 // Preserve the AA/LK bits in the branch instruction 769 uint8_t aalk = *(LocalAddress + 3); 770 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc)); 771 } break; 772 case ELF::R_PPC64_REL16_LO: { 773 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 774 uint64_t Delta = Value - FinalAddress + Addend; 775 writeInt16BE(LocalAddress, applyPPClo(Delta)); 776 } break; 777 case ELF::R_PPC64_REL16_HI: { 778 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 779 uint64_t Delta = Value - FinalAddress + Addend; 780 writeInt16BE(LocalAddress, applyPPChi(Delta)); 781 } break; 782 case ELF::R_PPC64_REL16_HA: { 783 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 784 uint64_t Delta = Value - FinalAddress + Addend; 785 writeInt16BE(LocalAddress, applyPPCha(Delta)); 786 } break; 787 case ELF::R_PPC64_ADDR32: { 788 int64_t Result = static_cast<int64_t>(Value + Addend); 789 if (SignExtend64<32>(Result) != Result) 790 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow"); 791 writeInt32BE(LocalAddress, Result); 792 } break; 793 case ELF::R_PPC64_REL24: { 794 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 795 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend); 796 if (SignExtend64<26>(delta) != delta) 797 llvm_unreachable("Relocation R_PPC64_REL24 overflow"); 798 // We preserve bits other than LI field, i.e. PO and AA/LK fields. 799 uint32_t Inst = readBytesUnaligned(LocalAddress, 4); 800 writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC)); 801 } break; 802 case ELF::R_PPC64_REL32: { 803 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 804 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend); 805 if (SignExtend64<32>(delta) != delta) 806 llvm_unreachable("Relocation R_PPC64_REL32 overflow"); 807 writeInt32BE(LocalAddress, delta); 808 } break; 809 case ELF::R_PPC64_REL64: { 810 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 811 uint64_t Delta = Value - FinalAddress + Addend; 812 writeInt64BE(LocalAddress, Delta); 813 } break; 814 case ELF::R_PPC64_ADDR64: 815 writeInt64BE(LocalAddress, Value + Addend); 816 break; 817 } 818 } 819 820 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section, 821 uint64_t Offset, uint64_t Value, 822 uint32_t Type, int64_t Addend) { 823 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); 824 switch (Type) { 825 default: 826 llvm_unreachable("Relocation type not implemented yet!"); 827 break; 828 case ELF::R_390_PC16DBL: 829 case ELF::R_390_PLT16DBL: { 830 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 831 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow"); 832 writeInt16BE(LocalAddress, Delta / 2); 833 break; 834 } 835 case ELF::R_390_PC32DBL: 836 case ELF::R_390_PLT32DBL: { 837 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 838 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow"); 839 writeInt32BE(LocalAddress, Delta / 2); 840 break; 841 } 842 case ELF::R_390_PC16: { 843 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 844 assert(int16_t(Delta) == Delta && "R_390_PC16 overflow"); 845 writeInt16BE(LocalAddress, Delta); 846 break; 847 } 848 case ELF::R_390_PC32: { 849 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 850 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow"); 851 writeInt32BE(LocalAddress, Delta); 852 break; 853 } 854 case ELF::R_390_PC64: { 855 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 856 writeInt64BE(LocalAddress, Delta); 857 break; 858 } 859 case ELF::R_390_8: 860 *LocalAddress = (uint8_t)(Value + Addend); 861 break; 862 case ELF::R_390_16: 863 writeInt16BE(LocalAddress, Value + Addend); 864 break; 865 case ELF::R_390_32: 866 writeInt32BE(LocalAddress, Value + Addend); 867 break; 868 case ELF::R_390_64: 869 writeInt64BE(LocalAddress, Value + Addend); 870 break; 871 } 872 } 873 874 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section, 875 uint64_t Offset, uint64_t Value, 876 uint32_t Type, int64_t Addend) { 877 bool isBE = Arch == Triple::bpfeb; 878 879 switch (Type) { 880 default: 881 llvm_unreachable("Relocation type not implemented yet!"); 882 break; 883 case ELF::R_BPF_NONE: 884 break; 885 case ELF::R_BPF_64_64: { 886 write(isBE, Section.getAddressWithOffset(Offset), Value + Addend); 887 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at " 888 << format("%p\n", Section.getAddressWithOffset(Offset))); 889 break; 890 } 891 case ELF::R_BPF_64_32: { 892 Value += Addend; 893 assert(Value <= UINT32_MAX); 894 write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value)); 895 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at " 896 << format("%p\n", Section.getAddressWithOffset(Offset))); 897 break; 898 } 899 } 900 } 901 902 // The target location for the relocation is described by RE.SectionID and 903 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each 904 // SectionEntry has three members describing its location. 905 // SectionEntry::Address is the address at which the section has been loaded 906 // into memory in the current (host) process. SectionEntry::LoadAddress is the 907 // address that the section will have in the target process. 908 // SectionEntry::ObjAddress is the address of the bits for this section in the 909 // original emitted object image (also in the current address space). 910 // 911 // Relocations will be applied as if the section were loaded at 912 // SectionEntry::LoadAddress, but they will be applied at an address based 913 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to 914 // Target memory contents if they are required for value calculations. 915 // 916 // The Value parameter here is the load address of the symbol for the 917 // relocation to be applied. For relocations which refer to symbols in the 918 // current object Value will be the LoadAddress of the section in which 919 // the symbol resides (RE.Addend provides additional information about the 920 // symbol location). For external symbols, Value will be the address of the 921 // symbol in the target address space. 922 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE, 923 uint64_t Value) { 924 const SectionEntry &Section = Sections[RE.SectionID]; 925 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend, 926 RE.SymOffset, RE.SectionID); 927 } 928 929 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section, 930 uint64_t Offset, uint64_t Value, 931 uint32_t Type, int64_t Addend, 932 uint64_t SymOffset, SID SectionID) { 933 switch (Arch) { 934 case Triple::x86_64: 935 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset); 936 break; 937 case Triple::x86: 938 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, 939 (uint32_t)(Addend & 0xffffffffL)); 940 break; 941 case Triple::aarch64: 942 case Triple::aarch64_be: 943 resolveAArch64Relocation(Section, Offset, Value, Type, Addend); 944 break; 945 case Triple::arm: // Fall through. 946 case Triple::armeb: 947 case Triple::thumb: 948 case Triple::thumbeb: 949 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, 950 (uint32_t)(Addend & 0xffffffffL)); 951 break; 952 case Triple::ppc: 953 resolvePPC32Relocation(Section, Offset, Value, Type, Addend); 954 break; 955 case Triple::ppc64: // Fall through. 956 case Triple::ppc64le: 957 resolvePPC64Relocation(Section, Offset, Value, Type, Addend); 958 break; 959 case Triple::systemz: 960 resolveSystemZRelocation(Section, Offset, Value, Type, Addend); 961 break; 962 case Triple::bpfel: 963 case Triple::bpfeb: 964 resolveBPFRelocation(Section, Offset, Value, Type, Addend); 965 break; 966 default: 967 llvm_unreachable("Unsupported CPU type!"); 968 } 969 } 970 971 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const { 972 return (void *)(Sections[SectionID].getObjAddress() + Offset); 973 } 974 975 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) { 976 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset); 977 if (Value.SymbolName) 978 addRelocationForSymbol(RE, Value.SymbolName); 979 else 980 addRelocationForSection(RE, Value.SectionID); 981 } 982 983 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType, 984 bool IsLocal) const { 985 switch (RelType) { 986 case ELF::R_MICROMIPS_GOT16: 987 if (IsLocal) 988 return ELF::R_MICROMIPS_LO16; 989 break; 990 case ELF::R_MICROMIPS_HI16: 991 return ELF::R_MICROMIPS_LO16; 992 case ELF::R_MIPS_GOT16: 993 if (IsLocal) 994 return ELF::R_MIPS_LO16; 995 break; 996 case ELF::R_MIPS_HI16: 997 return ELF::R_MIPS_LO16; 998 case ELF::R_MIPS_PCHI16: 999 return ELF::R_MIPS_PCLO16; 1000 default: 1001 break; 1002 } 1003 return ELF::R_MIPS_NONE; 1004 } 1005 1006 // Sometimes we don't need to create thunk for a branch. 1007 // This typically happens when branch target is located 1008 // in the same object file. In such case target is either 1009 // a weak symbol or symbol in a different executable section. 1010 // This function checks if branch target is located in the 1011 // same object file and if distance between source and target 1012 // fits R_AARCH64_CALL26 relocation. If both conditions are 1013 // met, it emits direct jump to the target and returns true. 1014 // Otherwise false is returned and thunk is created. 1015 bool RuntimeDyldELF::resolveAArch64ShortBranch( 1016 unsigned SectionID, relocation_iterator RelI, 1017 const RelocationValueRef &Value) { 1018 uint64_t Address; 1019 if (Value.SymbolName) { 1020 auto Loc = GlobalSymbolTable.find(Value.SymbolName); 1021 1022 // Don't create direct branch for external symbols. 1023 if (Loc == GlobalSymbolTable.end()) 1024 return false; 1025 1026 const auto &SymInfo = Loc->second; 1027 Address = 1028 uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset( 1029 SymInfo.getOffset())); 1030 } else { 1031 Address = uint64_t(Sections[Value.SectionID].getLoadAddress()); 1032 } 1033 uint64_t Offset = RelI->getOffset(); 1034 uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset); 1035 1036 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27 1037 // If distance between source and target is out of range then we should 1038 // create thunk. 1039 if (!isInt<28>(Address + Value.Addend - SourceAddress)) 1040 return false; 1041 1042 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(), 1043 Value.Addend); 1044 1045 return true; 1046 } 1047 1048 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID, 1049 const RelocationValueRef &Value, 1050 relocation_iterator RelI, 1051 StubMap &Stubs) { 1052 1053 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation."); 1054 SectionEntry &Section = Sections[SectionID]; 1055 1056 uint64_t Offset = RelI->getOffset(); 1057 unsigned RelType = RelI->getType(); 1058 // Look for an existing stub. 1059 StubMap::const_iterator i = Stubs.find(Value); 1060 if (i != Stubs.end()) { 1061 resolveRelocation(Section, Offset, 1062 (uint64_t)Section.getAddressWithOffset(i->second), 1063 RelType, 0); 1064 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1065 } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) { 1066 // Create a new stub function. 1067 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1068 Stubs[Value] = Section.getStubOffset(); 1069 uint8_t *StubTargetAddr = createStubFunction( 1070 Section.getAddressWithOffset(Section.getStubOffset())); 1071 1072 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(), 1073 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend); 1074 RelocationEntry REmovk_g2(SectionID, 1075 StubTargetAddr - Section.getAddress() + 4, 1076 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend); 1077 RelocationEntry REmovk_g1(SectionID, 1078 StubTargetAddr - Section.getAddress() + 8, 1079 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend); 1080 RelocationEntry REmovk_g0(SectionID, 1081 StubTargetAddr - Section.getAddress() + 12, 1082 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend); 1083 1084 if (Value.SymbolName) { 1085 addRelocationForSymbol(REmovz_g3, Value.SymbolName); 1086 addRelocationForSymbol(REmovk_g2, Value.SymbolName); 1087 addRelocationForSymbol(REmovk_g1, Value.SymbolName); 1088 addRelocationForSymbol(REmovk_g0, Value.SymbolName); 1089 } else { 1090 addRelocationForSection(REmovz_g3, Value.SectionID); 1091 addRelocationForSection(REmovk_g2, Value.SectionID); 1092 addRelocationForSection(REmovk_g1, Value.SectionID); 1093 addRelocationForSection(REmovk_g0, Value.SectionID); 1094 } 1095 resolveRelocation(Section, Offset, 1096 reinterpret_cast<uint64_t>(Section.getAddressWithOffset( 1097 Section.getStubOffset())), 1098 RelType, 0); 1099 Section.advanceStubOffset(getMaxStubSize()); 1100 } 1101 } 1102 1103 Expected<relocation_iterator> 1104 RuntimeDyldELF::processRelocationRef( 1105 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O, 1106 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) { 1107 const auto &Obj = cast<ELFObjectFileBase>(O); 1108 uint64_t RelType = RelI->getType(); 1109 int64_t Addend = 0; 1110 if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend()) 1111 Addend = *AddendOrErr; 1112 else 1113 consumeError(AddendOrErr.takeError()); 1114 elf_symbol_iterator Symbol = RelI->getSymbol(); 1115 1116 // Obtain the symbol name which is referenced in the relocation 1117 StringRef TargetName; 1118 if (Symbol != Obj.symbol_end()) { 1119 if (auto TargetNameOrErr = Symbol->getName()) 1120 TargetName = *TargetNameOrErr; 1121 else 1122 return TargetNameOrErr.takeError(); 1123 } 1124 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend 1125 << " TargetName: " << TargetName << "\n"); 1126 RelocationValueRef Value; 1127 // First search for the symbol in the local symbol table 1128 SymbolRef::Type SymType = SymbolRef::ST_Unknown; 1129 1130 // Search for the symbol in the global symbol table 1131 RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end(); 1132 if (Symbol != Obj.symbol_end()) { 1133 gsi = GlobalSymbolTable.find(TargetName.data()); 1134 Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType(); 1135 if (!SymTypeOrErr) { 1136 std::string Buf; 1137 raw_string_ostream OS(Buf); 1138 logAllUnhandledErrors(SymTypeOrErr.takeError(), OS); 1139 OS.flush(); 1140 report_fatal_error(Buf); 1141 } 1142 SymType = *SymTypeOrErr; 1143 } 1144 if (gsi != GlobalSymbolTable.end()) { 1145 const auto &SymInfo = gsi->second; 1146 Value.SectionID = SymInfo.getSectionID(); 1147 Value.Offset = SymInfo.getOffset(); 1148 Value.Addend = SymInfo.getOffset() + Addend; 1149 } else { 1150 switch (SymType) { 1151 case SymbolRef::ST_Debug: { 1152 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously 1153 // and can be changed by another developers. Maybe best way is add 1154 // a new symbol type ST_Section to SymbolRef and use it. 1155 auto SectionOrErr = Symbol->getSection(); 1156 if (!SectionOrErr) { 1157 std::string Buf; 1158 raw_string_ostream OS(Buf); 1159 logAllUnhandledErrors(SectionOrErr.takeError(), OS); 1160 OS.flush(); 1161 report_fatal_error(Buf); 1162 } 1163 section_iterator si = *SectionOrErr; 1164 if (si == Obj.section_end()) 1165 llvm_unreachable("Symbol section not found, bad object file format!"); 1166 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n"); 1167 bool isCode = si->isText(); 1168 if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode, 1169 ObjSectionToID)) 1170 Value.SectionID = *SectionIDOrErr; 1171 else 1172 return SectionIDOrErr.takeError(); 1173 Value.Addend = Addend; 1174 break; 1175 } 1176 case SymbolRef::ST_Data: 1177 case SymbolRef::ST_Function: 1178 case SymbolRef::ST_Unknown: { 1179 Value.SymbolName = TargetName.data(); 1180 Value.Addend = Addend; 1181 1182 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which 1183 // will manifest here as a NULL symbol name. 1184 // We can set this as a valid (but empty) symbol name, and rely 1185 // on addRelocationForSymbol to handle this. 1186 if (!Value.SymbolName) 1187 Value.SymbolName = ""; 1188 break; 1189 } 1190 default: 1191 llvm_unreachable("Unresolved symbol type!"); 1192 break; 1193 } 1194 } 1195 1196 uint64_t Offset = RelI->getOffset(); 1197 1198 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset 1199 << "\n"); 1200 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) { 1201 if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) { 1202 resolveAArch64Branch(SectionID, Value, RelI, Stubs); 1203 } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) { 1204 // Craete new GOT entry or find existing one. If GOT entry is 1205 // to be created, then we also emit ABS64 relocation for it. 1206 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64); 1207 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, 1208 ELF::R_AARCH64_ADR_PREL_PG_HI21); 1209 1210 } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) { 1211 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64); 1212 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, 1213 ELF::R_AARCH64_LDST64_ABS_LO12_NC); 1214 } else { 1215 processSimpleRelocation(SectionID, Offset, RelType, Value); 1216 } 1217 } else if (Arch == Triple::arm) { 1218 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL || 1219 RelType == ELF::R_ARM_JUMP24) { 1220 // This is an ARM branch relocation, need to use a stub function. 1221 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n"); 1222 SectionEntry &Section = Sections[SectionID]; 1223 1224 // Look for an existing stub. 1225 StubMap::const_iterator i = Stubs.find(Value); 1226 if (i != Stubs.end()) { 1227 resolveRelocation( 1228 Section, Offset, 1229 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)), 1230 RelType, 0); 1231 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1232 } else { 1233 // Create a new stub function. 1234 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1235 Stubs[Value] = Section.getStubOffset(); 1236 uint8_t *StubTargetAddr = createStubFunction( 1237 Section.getAddressWithOffset(Section.getStubOffset())); 1238 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), 1239 ELF::R_ARM_ABS32, Value.Addend); 1240 if (Value.SymbolName) 1241 addRelocationForSymbol(RE, Value.SymbolName); 1242 else 1243 addRelocationForSection(RE, Value.SectionID); 1244 1245 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>( 1246 Section.getAddressWithOffset( 1247 Section.getStubOffset())), 1248 RelType, 0); 1249 Section.advanceStubOffset(getMaxStubSize()); 1250 } 1251 } else { 1252 uint32_t *Placeholder = 1253 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset)); 1254 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 || 1255 RelType == ELF::R_ARM_ABS32) { 1256 Value.Addend += *Placeholder; 1257 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) { 1258 // See ELF for ARM documentation 1259 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12)); 1260 } 1261 processSimpleRelocation(SectionID, Offset, RelType, Value); 1262 } 1263 } else if (IsMipsO32ABI) { 1264 uint8_t *Placeholder = reinterpret_cast<uint8_t *>( 1265 computePlaceholderAddress(SectionID, Offset)); 1266 uint32_t Opcode = readBytesUnaligned(Placeholder, 4); 1267 if (RelType == ELF::R_MIPS_26) { 1268 // This is an Mips branch relocation, need to use a stub function. 1269 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation."); 1270 SectionEntry &Section = Sections[SectionID]; 1271 1272 // Extract the addend from the instruction. 1273 // We shift up by two since the Value will be down shifted again 1274 // when applying the relocation. 1275 uint32_t Addend = (Opcode & 0x03ffffff) << 2; 1276 1277 Value.Addend += Addend; 1278 1279 // Look up for existing stub. 1280 StubMap::const_iterator i = Stubs.find(Value); 1281 if (i != Stubs.end()) { 1282 RelocationEntry RE(SectionID, Offset, RelType, i->second); 1283 addRelocationForSection(RE, SectionID); 1284 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1285 } else { 1286 // Create a new stub function. 1287 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1288 Stubs[Value] = Section.getStubOffset(); 1289 1290 unsigned AbiVariant = Obj.getPlatformFlags(); 1291 1292 uint8_t *StubTargetAddr = createStubFunction( 1293 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant); 1294 1295 // Creating Hi and Lo relocations for the filled stub instructions. 1296 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(), 1297 ELF::R_MIPS_HI16, Value.Addend); 1298 RelocationEntry RELo(SectionID, 1299 StubTargetAddr - Section.getAddress() + 4, 1300 ELF::R_MIPS_LO16, Value.Addend); 1301 1302 if (Value.SymbolName) { 1303 addRelocationForSymbol(REHi, Value.SymbolName); 1304 addRelocationForSymbol(RELo, Value.SymbolName); 1305 } else { 1306 addRelocationForSection(REHi, Value.SectionID); 1307 addRelocationForSection(RELo, Value.SectionID); 1308 } 1309 1310 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset()); 1311 addRelocationForSection(RE, SectionID); 1312 Section.advanceStubOffset(getMaxStubSize()); 1313 } 1314 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) { 1315 int64_t Addend = (Opcode & 0x0000ffff) << 16; 1316 RelocationEntry RE(SectionID, Offset, RelType, Addend); 1317 PendingRelocs.push_back(std::make_pair(Value, RE)); 1318 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) { 1319 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff); 1320 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) { 1321 const RelocationValueRef &MatchingValue = I->first; 1322 RelocationEntry &Reloc = I->second; 1323 if (MatchingValue == Value && 1324 RelType == getMatchingLoRelocation(Reloc.RelType) && 1325 SectionID == Reloc.SectionID) { 1326 Reloc.Addend += Addend; 1327 if (Value.SymbolName) 1328 addRelocationForSymbol(Reloc, Value.SymbolName); 1329 else 1330 addRelocationForSection(Reloc, Value.SectionID); 1331 I = PendingRelocs.erase(I); 1332 } else 1333 ++I; 1334 } 1335 RelocationEntry RE(SectionID, Offset, RelType, Addend); 1336 if (Value.SymbolName) 1337 addRelocationForSymbol(RE, Value.SymbolName); 1338 else 1339 addRelocationForSection(RE, Value.SectionID); 1340 } else { 1341 if (RelType == ELF::R_MIPS_32) 1342 Value.Addend += Opcode; 1343 else if (RelType == ELF::R_MIPS_PC16) 1344 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2); 1345 else if (RelType == ELF::R_MIPS_PC19_S2) 1346 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2); 1347 else if (RelType == ELF::R_MIPS_PC21_S2) 1348 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2); 1349 else if (RelType == ELF::R_MIPS_PC26_S2) 1350 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2); 1351 processSimpleRelocation(SectionID, Offset, RelType, Value); 1352 } 1353 } else if (IsMipsN32ABI || IsMipsN64ABI) { 1354 uint32_t r_type = RelType & 0xff; 1355 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1356 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE 1357 || r_type == ELF::R_MIPS_GOT_DISP) { 1358 StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName); 1359 if (i != GOTSymbolOffsets.end()) 1360 RE.SymOffset = i->second; 1361 else { 1362 RE.SymOffset = allocateGOTEntries(1); 1363 GOTSymbolOffsets[TargetName] = RE.SymOffset; 1364 } 1365 if (Value.SymbolName) 1366 addRelocationForSymbol(RE, Value.SymbolName); 1367 else 1368 addRelocationForSection(RE, Value.SectionID); 1369 } else if (RelType == ELF::R_MIPS_26) { 1370 // This is an Mips branch relocation, need to use a stub function. 1371 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation."); 1372 SectionEntry &Section = Sections[SectionID]; 1373 1374 // Look up for existing stub. 1375 StubMap::const_iterator i = Stubs.find(Value); 1376 if (i != Stubs.end()) { 1377 RelocationEntry RE(SectionID, Offset, RelType, i->second); 1378 addRelocationForSection(RE, SectionID); 1379 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1380 } else { 1381 // Create a new stub function. 1382 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1383 Stubs[Value] = Section.getStubOffset(); 1384 1385 unsigned AbiVariant = Obj.getPlatformFlags(); 1386 1387 uint8_t *StubTargetAddr = createStubFunction( 1388 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant); 1389 1390 if (IsMipsN32ABI) { 1391 // Creating Hi and Lo relocations for the filled stub instructions. 1392 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(), 1393 ELF::R_MIPS_HI16, Value.Addend); 1394 RelocationEntry RELo(SectionID, 1395 StubTargetAddr - Section.getAddress() + 4, 1396 ELF::R_MIPS_LO16, Value.Addend); 1397 if (Value.SymbolName) { 1398 addRelocationForSymbol(REHi, Value.SymbolName); 1399 addRelocationForSymbol(RELo, Value.SymbolName); 1400 } else { 1401 addRelocationForSection(REHi, Value.SectionID); 1402 addRelocationForSection(RELo, Value.SectionID); 1403 } 1404 } else { 1405 // Creating Highest, Higher, Hi and Lo relocations for the filled stub 1406 // instructions. 1407 RelocationEntry REHighest(SectionID, 1408 StubTargetAddr - Section.getAddress(), 1409 ELF::R_MIPS_HIGHEST, Value.Addend); 1410 RelocationEntry REHigher(SectionID, 1411 StubTargetAddr - Section.getAddress() + 4, 1412 ELF::R_MIPS_HIGHER, Value.Addend); 1413 RelocationEntry REHi(SectionID, 1414 StubTargetAddr - Section.getAddress() + 12, 1415 ELF::R_MIPS_HI16, Value.Addend); 1416 RelocationEntry RELo(SectionID, 1417 StubTargetAddr - Section.getAddress() + 20, 1418 ELF::R_MIPS_LO16, Value.Addend); 1419 if (Value.SymbolName) { 1420 addRelocationForSymbol(REHighest, Value.SymbolName); 1421 addRelocationForSymbol(REHigher, Value.SymbolName); 1422 addRelocationForSymbol(REHi, Value.SymbolName); 1423 addRelocationForSymbol(RELo, Value.SymbolName); 1424 } else { 1425 addRelocationForSection(REHighest, Value.SectionID); 1426 addRelocationForSection(REHigher, Value.SectionID); 1427 addRelocationForSection(REHi, Value.SectionID); 1428 addRelocationForSection(RELo, Value.SectionID); 1429 } 1430 } 1431 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset()); 1432 addRelocationForSection(RE, SectionID); 1433 Section.advanceStubOffset(getMaxStubSize()); 1434 } 1435 } else { 1436 processSimpleRelocation(SectionID, Offset, RelType, Value); 1437 } 1438 1439 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 1440 if (RelType == ELF::R_PPC64_REL24) { 1441 // Determine ABI variant in use for this object. 1442 unsigned AbiVariant = Obj.getPlatformFlags(); 1443 AbiVariant &= ELF::EF_PPC64_ABI; 1444 // A PPC branch relocation will need a stub function if the target is 1445 // an external symbol (either Value.SymbolName is set, or SymType is 1446 // Symbol::ST_Unknown) or if the target address is not within the 1447 // signed 24-bits branch address. 1448 SectionEntry &Section = Sections[SectionID]; 1449 uint8_t *Target = Section.getAddressWithOffset(Offset); 1450 bool RangeOverflow = false; 1451 bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown; 1452 if (!IsExtern) { 1453 if (AbiVariant != 2) { 1454 // In the ELFv1 ABI, a function call may point to the .opd entry, 1455 // so the final symbol value is calculated based on the relocation 1456 // values in the .opd section. 1457 if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value)) 1458 return std::move(Err); 1459 } else { 1460 // In the ELFv2 ABI, a function symbol may provide a local entry 1461 // point, which must be used for direct calls. 1462 if (Value.SectionID == SectionID){ 1463 uint8_t SymOther = Symbol->getOther(); 1464 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther); 1465 } 1466 } 1467 uint8_t *RelocTarget = 1468 Sections[Value.SectionID].getAddressWithOffset(Value.Addend); 1469 int64_t delta = static_cast<int64_t>(Target - RelocTarget); 1470 // If it is within 26-bits branch range, just set the branch target 1471 if (SignExtend64<26>(delta) != delta) { 1472 RangeOverflow = true; 1473 } else if ((AbiVariant != 2) || 1474 (AbiVariant == 2 && Value.SectionID == SectionID)) { 1475 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1476 addRelocationForSection(RE, Value.SectionID); 1477 } 1478 } 1479 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) || 1480 RangeOverflow) { 1481 // It is an external symbol (either Value.SymbolName is set, or 1482 // SymType is SymbolRef::ST_Unknown) or out of range. 1483 StubMap::const_iterator i = Stubs.find(Value); 1484 if (i != Stubs.end()) { 1485 // Symbol function stub already created, just relocate to it 1486 resolveRelocation(Section, Offset, 1487 reinterpret_cast<uint64_t>( 1488 Section.getAddressWithOffset(i->second)), 1489 RelType, 0); 1490 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1491 } else { 1492 // Create a new stub function. 1493 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1494 Stubs[Value] = Section.getStubOffset(); 1495 uint8_t *StubTargetAddr = createStubFunction( 1496 Section.getAddressWithOffset(Section.getStubOffset()), 1497 AbiVariant); 1498 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), 1499 ELF::R_PPC64_ADDR64, Value.Addend); 1500 1501 // Generates the 64-bits address loads as exemplified in section 1502 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to 1503 // apply to the low part of the instructions, so we have to update 1504 // the offset according to the target endianness. 1505 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress(); 1506 if (!IsTargetLittleEndian) 1507 StubRelocOffset += 2; 1508 1509 RelocationEntry REhst(SectionID, StubRelocOffset + 0, 1510 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend); 1511 RelocationEntry REhr(SectionID, StubRelocOffset + 4, 1512 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend); 1513 RelocationEntry REh(SectionID, StubRelocOffset + 12, 1514 ELF::R_PPC64_ADDR16_HI, Value.Addend); 1515 RelocationEntry REl(SectionID, StubRelocOffset + 16, 1516 ELF::R_PPC64_ADDR16_LO, Value.Addend); 1517 1518 if (Value.SymbolName) { 1519 addRelocationForSymbol(REhst, Value.SymbolName); 1520 addRelocationForSymbol(REhr, Value.SymbolName); 1521 addRelocationForSymbol(REh, Value.SymbolName); 1522 addRelocationForSymbol(REl, Value.SymbolName); 1523 } else { 1524 addRelocationForSection(REhst, Value.SectionID); 1525 addRelocationForSection(REhr, Value.SectionID); 1526 addRelocationForSection(REh, Value.SectionID); 1527 addRelocationForSection(REl, Value.SectionID); 1528 } 1529 1530 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>( 1531 Section.getAddressWithOffset( 1532 Section.getStubOffset())), 1533 RelType, 0); 1534 Section.advanceStubOffset(getMaxStubSize()); 1535 } 1536 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) { 1537 // Restore the TOC for external calls 1538 if (AbiVariant == 2) 1539 writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1) 1540 else 1541 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1) 1542 } 1543 } 1544 } else if (RelType == ELF::R_PPC64_TOC16 || 1545 RelType == ELF::R_PPC64_TOC16_DS || 1546 RelType == ELF::R_PPC64_TOC16_LO || 1547 RelType == ELF::R_PPC64_TOC16_LO_DS || 1548 RelType == ELF::R_PPC64_TOC16_HI || 1549 RelType == ELF::R_PPC64_TOC16_HA) { 1550 // These relocations are supposed to subtract the TOC address from 1551 // the final value. This does not fit cleanly into the RuntimeDyld 1552 // scheme, since there may be *two* sections involved in determining 1553 // the relocation value (the section of the symbol referred to by the 1554 // relocation, and the TOC section associated with the current module). 1555 // 1556 // Fortunately, these relocations are currently only ever generated 1557 // referring to symbols that themselves reside in the TOC, which means 1558 // that the two sections are actually the same. Thus they cancel out 1559 // and we can immediately resolve the relocation right now. 1560 switch (RelType) { 1561 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break; 1562 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break; 1563 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break; 1564 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break; 1565 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break; 1566 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break; 1567 default: llvm_unreachable("Wrong relocation type."); 1568 } 1569 1570 RelocationValueRef TOCValue; 1571 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue)) 1572 return std::move(Err); 1573 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID) 1574 llvm_unreachable("Unsupported TOC relocation."); 1575 Value.Addend -= TOCValue.Addend; 1576 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0); 1577 } else { 1578 // There are two ways to refer to the TOC address directly: either 1579 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are 1580 // ignored), or via any relocation that refers to the magic ".TOC." 1581 // symbols (in which case the addend is respected). 1582 if (RelType == ELF::R_PPC64_TOC) { 1583 RelType = ELF::R_PPC64_ADDR64; 1584 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value)) 1585 return std::move(Err); 1586 } else if (TargetName == ".TOC.") { 1587 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value)) 1588 return std::move(Err); 1589 Value.Addend += Addend; 1590 } 1591 1592 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1593 1594 if (Value.SymbolName) 1595 addRelocationForSymbol(RE, Value.SymbolName); 1596 else 1597 addRelocationForSection(RE, Value.SectionID); 1598 } 1599 } else if (Arch == Triple::systemz && 1600 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) { 1601 // Create function stubs for both PLT and GOT references, regardless of 1602 // whether the GOT reference is to data or code. The stub contains the 1603 // full address of the symbol, as needed by GOT references, and the 1604 // executable part only adds an overhead of 8 bytes. 1605 // 1606 // We could try to conserve space by allocating the code and data 1607 // parts of the stub separately. However, as things stand, we allocate 1608 // a stub for every relocation, so using a GOT in JIT code should be 1609 // no less space efficient than using an explicit constant pool. 1610 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation."); 1611 SectionEntry &Section = Sections[SectionID]; 1612 1613 // Look for an existing stub. 1614 StubMap::const_iterator i = Stubs.find(Value); 1615 uintptr_t StubAddress; 1616 if (i != Stubs.end()) { 1617 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second)); 1618 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1619 } else { 1620 // Create a new stub function. 1621 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1622 1623 uintptr_t BaseAddress = uintptr_t(Section.getAddress()); 1624 uintptr_t StubAlignment = getStubAlignment(); 1625 StubAddress = 1626 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) & 1627 -StubAlignment; 1628 unsigned StubOffset = StubAddress - BaseAddress; 1629 1630 Stubs[Value] = StubOffset; 1631 createStubFunction((uint8_t *)StubAddress); 1632 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64, 1633 Value.Offset); 1634 if (Value.SymbolName) 1635 addRelocationForSymbol(RE, Value.SymbolName); 1636 else 1637 addRelocationForSection(RE, Value.SectionID); 1638 Section.advanceStubOffset(getMaxStubSize()); 1639 } 1640 1641 if (RelType == ELF::R_390_GOTENT) 1642 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL, 1643 Addend); 1644 else 1645 resolveRelocation(Section, Offset, StubAddress, RelType, Addend); 1646 } else if (Arch == Triple::x86_64) { 1647 if (RelType == ELF::R_X86_64_PLT32) { 1648 // The way the PLT relocations normally work is that the linker allocates 1649 // the 1650 // PLT and this relocation makes a PC-relative call into the PLT. The PLT 1651 // entry will then jump to an address provided by the GOT. On first call, 1652 // the 1653 // GOT address will point back into PLT code that resolves the symbol. After 1654 // the first call, the GOT entry points to the actual function. 1655 // 1656 // For local functions we're ignoring all of that here and just replacing 1657 // the PLT32 relocation type with PC32, which will translate the relocation 1658 // into a PC-relative call directly to the function. For external symbols we 1659 // can't be sure the function will be within 2^32 bytes of the call site, so 1660 // we need to create a stub, which calls into the GOT. This case is 1661 // equivalent to the usual PLT implementation except that we use the stub 1662 // mechanism in RuntimeDyld (which puts stubs at the end of the section) 1663 // rather than allocating a PLT section. 1664 if (Value.SymbolName) { 1665 // This is a call to an external function. 1666 // Look for an existing stub. 1667 SectionEntry &Section = Sections[SectionID]; 1668 StubMap::const_iterator i = Stubs.find(Value); 1669 uintptr_t StubAddress; 1670 if (i != Stubs.end()) { 1671 StubAddress = uintptr_t(Section.getAddress()) + i->second; 1672 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1673 } else { 1674 // Create a new stub function (equivalent to a PLT entry). 1675 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1676 1677 uintptr_t BaseAddress = uintptr_t(Section.getAddress()); 1678 uintptr_t StubAlignment = getStubAlignment(); 1679 StubAddress = 1680 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) & 1681 -StubAlignment; 1682 unsigned StubOffset = StubAddress - BaseAddress; 1683 Stubs[Value] = StubOffset; 1684 createStubFunction((uint8_t *)StubAddress); 1685 1686 // Bump our stub offset counter 1687 Section.advanceStubOffset(getMaxStubSize()); 1688 1689 // Allocate a GOT Entry 1690 uint64_t GOTOffset = allocateGOTEntries(1); 1691 1692 // The load of the GOT address has an addend of -4 1693 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4, 1694 ELF::R_X86_64_PC32); 1695 1696 // Fill in the value of the symbol we're targeting into the GOT 1697 addRelocationForSymbol( 1698 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64), 1699 Value.SymbolName); 1700 } 1701 1702 // Make the target call a call into the stub table. 1703 resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32, 1704 Addend); 1705 } else { 1706 RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend, 1707 Value.Offset); 1708 addRelocationForSection(RE, Value.SectionID); 1709 } 1710 } else if (RelType == ELF::R_X86_64_GOTPCREL || 1711 RelType == ELF::R_X86_64_GOTPCRELX || 1712 RelType == ELF::R_X86_64_REX_GOTPCRELX) { 1713 uint64_t GOTOffset = allocateGOTEntries(1); 1714 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, 1715 ELF::R_X86_64_PC32); 1716 1717 // Fill in the value of the symbol we're targeting into the GOT 1718 RelocationEntry RE = 1719 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64); 1720 if (Value.SymbolName) 1721 addRelocationForSymbol(RE, Value.SymbolName); 1722 else 1723 addRelocationForSection(RE, Value.SectionID); 1724 } else if (RelType == ELF::R_X86_64_GOT64) { 1725 // Fill in a 64-bit GOT offset. 1726 uint64_t GOTOffset = allocateGOTEntries(1); 1727 resolveRelocation(Sections[SectionID], Offset, GOTOffset, 1728 ELF::R_X86_64_64, 0); 1729 1730 // Fill in the value of the symbol we're targeting into the GOT 1731 RelocationEntry RE = 1732 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64); 1733 if (Value.SymbolName) 1734 addRelocationForSymbol(RE, Value.SymbolName); 1735 else 1736 addRelocationForSection(RE, Value.SectionID); 1737 } else if (RelType == ELF::R_X86_64_GOTPC64) { 1738 // Materialize the address of the base of the GOT relative to the PC. 1739 // This doesn't create a GOT entry, but it does mean we need a GOT 1740 // section. 1741 (void)allocateGOTEntries(0); 1742 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64); 1743 } else if (RelType == ELF::R_X86_64_GOTOFF64) { 1744 // GOTOFF relocations ultimately require a section difference relocation. 1745 (void)allocateGOTEntries(0); 1746 processSimpleRelocation(SectionID, Offset, RelType, Value); 1747 } else if (RelType == ELF::R_X86_64_PC32) { 1748 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset)); 1749 processSimpleRelocation(SectionID, Offset, RelType, Value); 1750 } else if (RelType == ELF::R_X86_64_PC64) { 1751 Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset)); 1752 processSimpleRelocation(SectionID, Offset, RelType, Value); 1753 } else { 1754 processSimpleRelocation(SectionID, Offset, RelType, Value); 1755 } 1756 } else { 1757 if (Arch == Triple::x86) { 1758 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset)); 1759 } 1760 processSimpleRelocation(SectionID, Offset, RelType, Value); 1761 } 1762 return ++RelI; 1763 } 1764 1765 size_t RuntimeDyldELF::getGOTEntrySize() { 1766 // We don't use the GOT in all of these cases, but it's essentially free 1767 // to put them all here. 1768 size_t Result = 0; 1769 switch (Arch) { 1770 case Triple::x86_64: 1771 case Triple::aarch64: 1772 case Triple::aarch64_be: 1773 case Triple::ppc64: 1774 case Triple::ppc64le: 1775 case Triple::systemz: 1776 Result = sizeof(uint64_t); 1777 break; 1778 case Triple::x86: 1779 case Triple::arm: 1780 case Triple::thumb: 1781 Result = sizeof(uint32_t); 1782 break; 1783 case Triple::mips: 1784 case Triple::mipsel: 1785 case Triple::mips64: 1786 case Triple::mips64el: 1787 if (IsMipsO32ABI || IsMipsN32ABI) 1788 Result = sizeof(uint32_t); 1789 else if (IsMipsN64ABI) 1790 Result = sizeof(uint64_t); 1791 else 1792 llvm_unreachable("Mips ABI not handled"); 1793 break; 1794 default: 1795 llvm_unreachable("Unsupported CPU type!"); 1796 } 1797 return Result; 1798 } 1799 1800 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) { 1801 if (GOTSectionID == 0) { 1802 GOTSectionID = Sections.size(); 1803 // Reserve a section id. We'll allocate the section later 1804 // once we know the total size 1805 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0)); 1806 } 1807 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize(); 1808 CurrentGOTIndex += no; 1809 return StartOffset; 1810 } 1811 1812 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value, 1813 unsigned GOTRelType) { 1814 auto E = GOTOffsetMap.insert({Value, 0}); 1815 if (E.second) { 1816 uint64_t GOTOffset = allocateGOTEntries(1); 1817 1818 // Create relocation for newly created GOT entry 1819 RelocationEntry RE = 1820 computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType); 1821 if (Value.SymbolName) 1822 addRelocationForSymbol(RE, Value.SymbolName); 1823 else 1824 addRelocationForSection(RE, Value.SectionID); 1825 1826 E.first->second = GOTOffset; 1827 } 1828 1829 return E.first->second; 1830 } 1831 1832 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, 1833 uint64_t Offset, 1834 uint64_t GOTOffset, 1835 uint32_t Type) { 1836 // Fill in the relative address of the GOT Entry into the stub 1837 RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset); 1838 addRelocationForSection(GOTRE, GOTSectionID); 1839 } 1840 1841 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset, 1842 uint64_t SymbolOffset, 1843 uint32_t Type) { 1844 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset); 1845 } 1846 1847 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj, 1848 ObjSectionToIDMap &SectionMap) { 1849 if (IsMipsO32ABI) 1850 if (!PendingRelocs.empty()) 1851 return make_error<RuntimeDyldError>("Can't find matching LO16 reloc"); 1852 1853 // If necessary, allocate the global offset table 1854 if (GOTSectionID != 0) { 1855 // Allocate memory for the section 1856 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize(); 1857 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(), 1858 GOTSectionID, ".got", false); 1859 if (!Addr) 1860 return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!"); 1861 1862 Sections[GOTSectionID] = 1863 SectionEntry(".got", Addr, TotalSize, TotalSize, 0); 1864 1865 // For now, initialize all GOT entries to zero. We'll fill them in as 1866 // needed when GOT-based relocations are applied. 1867 memset(Addr, 0, TotalSize); 1868 if (IsMipsN32ABI || IsMipsN64ABI) { 1869 // To correctly resolve Mips GOT relocations, we need a mapping from 1870 // object's sections to GOTs. 1871 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 1872 SI != SE; ++SI) { 1873 if (SI->relocation_begin() != SI->relocation_end()) { 1874 section_iterator RelocatedSection = SI->getRelocatedSection(); 1875 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection); 1876 assert (i != SectionMap.end()); 1877 SectionToGOTMap[i->second] = GOTSectionID; 1878 } 1879 } 1880 GOTSymbolOffsets.clear(); 1881 } 1882 } 1883 1884 // Look for and record the EH frame section. 1885 ObjSectionToIDMap::iterator i, e; 1886 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) { 1887 const SectionRef &Section = i->first; 1888 1889 StringRef Name; 1890 Expected<StringRef> NameOrErr = Section.getName(); 1891 if (NameOrErr) 1892 Name = *NameOrErr; 1893 else 1894 consumeError(NameOrErr.takeError()); 1895 1896 if (Name == ".eh_frame") { 1897 UnregisteredEHFrameSections.push_back(i->second); 1898 break; 1899 } 1900 } 1901 1902 GOTSectionID = 0; 1903 CurrentGOTIndex = 0; 1904 1905 return Error::success(); 1906 } 1907 1908 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const { 1909 return Obj.isELF(); 1910 } 1911 1912 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const { 1913 unsigned RelTy = R.getType(); 1914 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) 1915 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE || 1916 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC; 1917 1918 if (Arch == Triple::x86_64) 1919 return RelTy == ELF::R_X86_64_GOTPCREL || 1920 RelTy == ELF::R_X86_64_GOTPCRELX || 1921 RelTy == ELF::R_X86_64_GOT64 || 1922 RelTy == ELF::R_X86_64_REX_GOTPCRELX; 1923 return false; 1924 } 1925 1926 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const { 1927 if (Arch != Triple::x86_64) 1928 return true; // Conservative answer 1929 1930 switch (R.getType()) { 1931 default: 1932 return true; // Conservative answer 1933 1934 1935 case ELF::R_X86_64_GOTPCREL: 1936 case ELF::R_X86_64_GOTPCRELX: 1937 case ELF::R_X86_64_REX_GOTPCRELX: 1938 case ELF::R_X86_64_GOTPC64: 1939 case ELF::R_X86_64_GOT64: 1940 case ELF::R_X86_64_GOTOFF64: 1941 case ELF::R_X86_64_PC32: 1942 case ELF::R_X86_64_PC64: 1943 case ELF::R_X86_64_64: 1944 // We know that these reloation types won't need a stub function. This list 1945 // can be extended as needed. 1946 return false; 1947 } 1948 } 1949 1950 } // namespace llvm 1951