1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RuntimeDyldELF.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "Targets/RuntimeDyldELFMips.h"
17 #include "llvm/ADT/IntervalMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/MC/MCStreamer.h"
22 #include "llvm/Object/ELFObjectFile.h"
23 #include "llvm/Object/ObjectFile.h"
24 #include "llvm/Support/ELF.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/Support/TargetRegistry.h"
28 
29 using namespace llvm;
30 using namespace llvm::object;
31 using namespace llvm::support::endian;
32 
33 #define DEBUG_TYPE "dyld"
34 
35 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
36 
37 static void or32AArch64Imm(void *L, uint64_t Imm) {
38   or32le(L, (Imm & 0xFFF) << 10);
39 }
40 
41 template <class T> static void write(bool isBE, void *P, T V) {
42   isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
43 }
44 
45 static void write32AArch64Addr(void *L, uint64_t Imm) {
46   uint32_t ImmLo = (Imm & 0x3) << 29;
47   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
48   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
49   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
50 }
51 
52 // Return the bits [Start, End] from Val shifted Start bits.
53 // For instance, getBits(0xF0, 4, 8) returns 0xF.
54 static uint64_t getBits(uint64_t Val, int Start, int End) {
55   uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
56   return (Val >> Start) & Mask;
57 }
58 
59 namespace {
60 
61 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
62   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
63 
64   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
65   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
66   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
67   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
68 
69   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
70 
71   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
72 
73 public:
74   DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
75 
76   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
77 
78   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
79 
80   // Methods for type inquiry through isa, cast and dyn_cast
81   static inline bool classof(const Binary *v) {
82     return (isa<ELFObjectFile<ELFT>>(v) &&
83             classof(cast<ELFObjectFile<ELFT>>(v)));
84   }
85   static inline bool classof(const ELFObjectFile<ELFT> *v) {
86     return v->isDyldType();
87   }
88 };
89 
90 
91 
92 // The MemoryBuffer passed into this constructor is just a wrapper around the
93 // actual memory.  Ultimately, the Binary parent class will take ownership of
94 // this MemoryBuffer object but not the underlying memory.
95 template <class ELFT>
96 DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
97     : ELFObjectFile<ELFT>(Wrapper, EC) {
98   this->isDyldELFObject = true;
99 }
100 
101 template <class ELFT>
102 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
103                                                uint64_t Addr) {
104   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
105   Elf_Shdr *shdr =
106       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
107 
108   // This assumes the address passed in matches the target address bitness
109   // The template-based type cast handles everything else.
110   shdr->sh_addr = static_cast<addr_type>(Addr);
111 }
112 
113 template <class ELFT>
114 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
115                                               uint64_t Addr) {
116 
117   Elf_Sym *sym = const_cast<Elf_Sym *>(
118       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
119 
120   // This assumes the address passed in matches the target address bitness
121   // The template-based type cast handles everything else.
122   sym->st_value = static_cast<addr_type>(Addr);
123 }
124 
125 class LoadedELFObjectInfo final
126     : public RuntimeDyld::LoadedObjectInfoHelper<LoadedELFObjectInfo> {
127 public:
128   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
129       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
130 
131   OwningBinary<ObjectFile>
132   getObjectForDebug(const ObjectFile &Obj) const override;
133 };
134 
135 template <typename ELFT>
136 std::unique_ptr<DyldELFObject<ELFT>>
137 createRTDyldELFObject(MemoryBufferRef Buffer,
138                       const ObjectFile &SourceObject,
139                       const LoadedELFObjectInfo &L,
140                       std::error_code &ec) {
141   typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
142   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
143 
144   std::unique_ptr<DyldELFObject<ELFT>> Obj =
145     llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
146 
147   // Iterate over all sections in the object.
148   auto SI = SourceObject.section_begin();
149   for (const auto &Sec : Obj->sections()) {
150     StringRef SectionName;
151     Sec.getName(SectionName);
152     if (SectionName != "") {
153       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
154       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
155           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
156 
157       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
158         // This assumes that the address passed in matches the target address
159         // bitness. The template-based type cast handles everything else.
160         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
161       }
162     }
163     ++SI;
164   }
165 
166   return Obj;
167 }
168 
169 OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
170                                               const LoadedELFObjectInfo &L) {
171   assert(Obj.isELF() && "Not an ELF object file.");
172 
173   std::unique_ptr<MemoryBuffer> Buffer =
174     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
175 
176   std::error_code ec;
177 
178   std::unique_ptr<ObjectFile> DebugObj;
179   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
180     typedef ELFType<support::little, false> ELF32LE;
181     DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L,
182                                               ec);
183   } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
184     typedef ELFType<support::big, false> ELF32BE;
185     DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L,
186                                               ec);
187   } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
188     typedef ELFType<support::big, true> ELF64BE;
189     DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L,
190                                               ec);
191   } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
192     typedef ELFType<support::little, true> ELF64LE;
193     DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L,
194                                               ec);
195   } else
196     llvm_unreachable("Unexpected ELF format");
197 
198   assert(!ec && "Could not construct copy ELF object file");
199 
200   return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
201 }
202 
203 OwningBinary<ObjectFile>
204 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
205   return createELFDebugObject(Obj, *this);
206 }
207 
208 } // anonymous namespace
209 
210 namespace llvm {
211 
212 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
213                                JITSymbolResolver &Resolver)
214     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
215 RuntimeDyldELF::~RuntimeDyldELF() {}
216 
217 void RuntimeDyldELF::registerEHFrames() {
218   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
219     SID EHFrameSID = UnregisteredEHFrameSections[i];
220     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
221     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
222     size_t EHFrameSize = Sections[EHFrameSID].getSize();
223     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
224     RegisteredEHFrameSections.push_back(EHFrameSID);
225   }
226   UnregisteredEHFrameSections.clear();
227 }
228 
229 void RuntimeDyldELF::deregisterEHFrames() {
230   for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
231     SID EHFrameSID = RegisteredEHFrameSections[i];
232     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
233     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
234     size_t EHFrameSize = Sections[EHFrameSID].getSize();
235     MemMgr.deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
236   }
237   RegisteredEHFrameSections.clear();
238 }
239 
240 std::unique_ptr<RuntimeDyldELF>
241 llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
242                              RuntimeDyld::MemoryManager &MemMgr,
243                              JITSymbolResolver &Resolver) {
244   switch (Arch) {
245   default:
246     return make_unique<RuntimeDyldELF>(MemMgr, Resolver);
247   case Triple::mips:
248   case Triple::mipsel:
249   case Triple::mips64:
250   case Triple::mips64el:
251     return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
252   }
253 }
254 
255 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
256 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
257   if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
258     return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
259   else {
260     HasError = true;
261     raw_string_ostream ErrStream(ErrorStr);
262     logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream, "");
263     return nullptr;
264   }
265 }
266 
267 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
268                                              uint64_t Offset, uint64_t Value,
269                                              uint32_t Type, int64_t Addend,
270                                              uint64_t SymOffset) {
271   switch (Type) {
272   default:
273     llvm_unreachable("Relocation type not implemented yet!");
274     break;
275   case ELF::R_X86_64_64: {
276     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
277         Value + Addend;
278     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
279                  << format("%p\n", Section.getAddressWithOffset(Offset)));
280     break;
281   }
282   case ELF::R_X86_64_32:
283   case ELF::R_X86_64_32S: {
284     Value += Addend;
285     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
286            (Type == ELF::R_X86_64_32S &&
287             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
288     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
289     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
290         TruncatedAddr;
291     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
292                  << format("%p\n", Section.getAddressWithOffset(Offset)));
293     break;
294   }
295   case ELF::R_X86_64_PC8: {
296     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
297     int64_t RealOffset = Value + Addend - FinalAddress;
298     assert(isInt<8>(RealOffset));
299     int8_t TruncOffset = (RealOffset & 0xFF);
300     Section.getAddress()[Offset] = TruncOffset;
301     break;
302   }
303   case ELF::R_X86_64_PC32: {
304     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
305     int64_t RealOffset = Value + Addend - FinalAddress;
306     assert(isInt<32>(RealOffset));
307     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
308     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
309         TruncOffset;
310     break;
311   }
312   case ELF::R_X86_64_PC64: {
313     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
314     int64_t RealOffset = Value + Addend - FinalAddress;
315     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
316         RealOffset;
317     break;
318   }
319   }
320 }
321 
322 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
323                                           uint64_t Offset, uint32_t Value,
324                                           uint32_t Type, int32_t Addend) {
325   switch (Type) {
326   case ELF::R_386_32: {
327     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
328         Value + Addend;
329     break;
330   }
331   case ELF::R_386_PC32: {
332     uint32_t FinalAddress =
333         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
334     uint32_t RealOffset = Value + Addend - FinalAddress;
335     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
336         RealOffset;
337     break;
338   }
339   default:
340     // There are other relocation types, but it appears these are the
341     // only ones currently used by the LLVM ELF object writer
342     llvm_unreachable("Relocation type not implemented yet!");
343     break;
344   }
345 }
346 
347 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
348                                               uint64_t Offset, uint64_t Value,
349                                               uint32_t Type, int64_t Addend) {
350   uint32_t *TargetPtr =
351       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
352   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
353   // Data should use target endian. Code should always use little endian.
354   bool isBE = Arch == Triple::aarch64_be;
355 
356   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
357                << format("%llx", Section.getAddressWithOffset(Offset))
358                << " FinalAddress: 0x" << format("%llx", FinalAddress)
359                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
360                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
361                << "\n");
362 
363   switch (Type) {
364   default:
365     llvm_unreachable("Relocation type not implemented yet!");
366     break;
367   case ELF::R_AARCH64_ABS64:
368     write(isBE, TargetPtr, Value + Addend);
369     break;
370   case ELF::R_AARCH64_PREL32: {
371     uint64_t Result = Value + Addend - FinalAddress;
372     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
373            static_cast<int64_t>(Result) <= UINT32_MAX);
374     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
375     break;
376   }
377   case ELF::R_AARCH64_PREL64:
378     write(isBE, TargetPtr, Value + Addend - FinalAddress);
379     break;
380   case ELF::R_AARCH64_CALL26: // fallthrough
381   case ELF::R_AARCH64_JUMP26: {
382     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
383     // calculation.
384     uint64_t BranchImm = Value + Addend - FinalAddress;
385 
386     // "Check that -2^27 <= result < 2^27".
387     assert(isInt<28>(BranchImm));
388     or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
389     break;
390   }
391   case ELF::R_AARCH64_MOVW_UABS_G3:
392     or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
393     break;
394   case ELF::R_AARCH64_MOVW_UABS_G2_NC:
395     or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
396     break;
397   case ELF::R_AARCH64_MOVW_UABS_G1_NC:
398     or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
399     break;
400   case ELF::R_AARCH64_MOVW_UABS_G0_NC:
401     or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
402     break;
403   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
404     // Operation: Page(S+A) - Page(P)
405     uint64_t Result =
406         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
407 
408     // Check that -2^32 <= X < 2^32
409     assert(isInt<33>(Result) && "overflow check failed for relocation");
410 
411     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
412     // from bits 32:12 of X.
413     write32AArch64Addr(TargetPtr, Result >> 12);
414     break;
415   }
416   case ELF::R_AARCH64_ADD_ABS_LO12_NC:
417     // Operation: S + A
418     // Immediate goes in bits 21:10 of LD/ST instruction, taken
419     // from bits 11:0 of X
420     or32AArch64Imm(TargetPtr, Value + Addend);
421     break;
422   case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
423     // Operation: S + A
424     // Immediate goes in bits 21:10 of LD/ST instruction, taken
425     // from bits 11:0 of X
426     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
427     break;
428   case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
429     // Operation: S + A
430     // Immediate goes in bits 21:10 of LD/ST instruction, taken
431     // from bits 11:1 of X
432     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
433     break;
434   case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
435     // Operation: S + A
436     // Immediate goes in bits 21:10 of LD/ST instruction, taken
437     // from bits 11:2 of X
438     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
439     break;
440   case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
441     // Operation: S + A
442     // Immediate goes in bits 21:10 of LD/ST instruction, taken
443     // from bits 11:3 of X
444     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
445     break;
446   case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
447     // Operation: S + A
448     // Immediate goes in bits 21:10 of LD/ST instruction, taken
449     // from bits 11:4 of X
450     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
451     break;
452   }
453 }
454 
455 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
456                                           uint64_t Offset, uint32_t Value,
457                                           uint32_t Type, int32_t Addend) {
458   // TODO: Add Thumb relocations.
459   uint32_t *TargetPtr =
460       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
461   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
462   Value += Addend;
463 
464   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
465                << Section.getAddressWithOffset(Offset)
466                << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
467                << format("%x", Value) << " Type: " << format("%x", Type)
468                << " Addend: " << format("%x", Addend) << "\n");
469 
470   switch (Type) {
471   default:
472     llvm_unreachable("Not implemented relocation type!");
473 
474   case ELF::R_ARM_NONE:
475     break;
476     // Write a 31bit signed offset
477   case ELF::R_ARM_PREL31:
478     support::ulittle32_t::ref{TargetPtr} =
479         (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
480         ((Value - FinalAddress) & ~0x80000000);
481     break;
482   case ELF::R_ARM_TARGET1:
483   case ELF::R_ARM_ABS32:
484     support::ulittle32_t::ref{TargetPtr} = Value;
485     break;
486     // Write first 16 bit of 32 bit value to the mov instruction.
487     // Last 4 bit should be shifted.
488   case ELF::R_ARM_MOVW_ABS_NC:
489   case ELF::R_ARM_MOVT_ABS:
490     if (Type == ELF::R_ARM_MOVW_ABS_NC)
491       Value = Value & 0xFFFF;
492     else if (Type == ELF::R_ARM_MOVT_ABS)
493       Value = (Value >> 16) & 0xFFFF;
494     support::ulittle32_t::ref{TargetPtr} =
495         (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
496         (((Value >> 12) & 0xF) << 16);
497     break;
498     // Write 24 bit relative value to the branch instruction.
499   case ELF::R_ARM_PC24: // Fall through.
500   case ELF::R_ARM_CALL: // Fall through.
501   case ELF::R_ARM_JUMP24:
502     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
503     RelValue = (RelValue & 0x03FFFFFC) >> 2;
504     assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
505     support::ulittle32_t::ref{TargetPtr} =
506         (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
507     break;
508   }
509 }
510 
511 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
512   if (Arch == Triple::UnknownArch ||
513       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
514     IsMipsO32ABI = false;
515     IsMipsN32ABI = false;
516     IsMipsN64ABI = false;
517     return;
518   }
519   unsigned AbiVariant;
520   Obj.getPlatformFlags(AbiVariant);
521   IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
522   IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
523   IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
524 }
525 
526 // Return the .TOC. section and offset.
527 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
528                                           ObjSectionToIDMap &LocalSections,
529                                           RelocationValueRef &Rel) {
530   // Set a default SectionID in case we do not find a TOC section below.
531   // This may happen for references to TOC base base (sym@toc, .odp
532   // relocation) without a .toc directive.  In this case just use the
533   // first section (which is usually the .odp) since the code won't
534   // reference the .toc base directly.
535   Rel.SymbolName = nullptr;
536   Rel.SectionID = 0;
537 
538   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
539   // order. The TOC starts where the first of these sections starts.
540   for (auto &Section: Obj.sections()) {
541     StringRef SectionName;
542     if (auto EC = Section.getName(SectionName))
543       return errorCodeToError(EC);
544 
545     if (SectionName == ".got"
546         || SectionName == ".toc"
547         || SectionName == ".tocbss"
548         || SectionName == ".plt") {
549       if (auto SectionIDOrErr =
550             findOrEmitSection(Obj, Section, false, LocalSections))
551         Rel.SectionID = *SectionIDOrErr;
552       else
553         return SectionIDOrErr.takeError();
554       break;
555     }
556   }
557 
558   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
559   // thus permitting a full 64 Kbytes segment.
560   Rel.Addend = 0x8000;
561 
562   return Error::success();
563 }
564 
565 // Returns the sections and offset associated with the ODP entry referenced
566 // by Symbol.
567 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
568                                           ObjSectionToIDMap &LocalSections,
569                                           RelocationValueRef &Rel) {
570   // Get the ELF symbol value (st_value) to compare with Relocation offset in
571   // .opd entries
572   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
573        si != se; ++si) {
574     section_iterator RelSecI = si->getRelocatedSection();
575     if (RelSecI == Obj.section_end())
576       continue;
577 
578     StringRef RelSectionName;
579     if (auto EC = RelSecI->getName(RelSectionName))
580       return errorCodeToError(EC);
581 
582     if (RelSectionName != ".opd")
583       continue;
584 
585     for (elf_relocation_iterator i = si->relocation_begin(),
586                                  e = si->relocation_end();
587          i != e;) {
588       // The R_PPC64_ADDR64 relocation indicates the first field
589       // of a .opd entry
590       uint64_t TypeFunc = i->getType();
591       if (TypeFunc != ELF::R_PPC64_ADDR64) {
592         ++i;
593         continue;
594       }
595 
596       uint64_t TargetSymbolOffset = i->getOffset();
597       symbol_iterator TargetSymbol = i->getSymbol();
598       int64_t Addend;
599       if (auto AddendOrErr = i->getAddend())
600         Addend = *AddendOrErr;
601       else
602         return errorCodeToError(AddendOrErr.getError());
603 
604       ++i;
605       if (i == e)
606         break;
607 
608       // Just check if following relocation is a R_PPC64_TOC
609       uint64_t TypeTOC = i->getType();
610       if (TypeTOC != ELF::R_PPC64_TOC)
611         continue;
612 
613       // Finally compares the Symbol value and the target symbol offset
614       // to check if this .opd entry refers to the symbol the relocation
615       // points to.
616       if (Rel.Addend != (int64_t)TargetSymbolOffset)
617         continue;
618 
619       section_iterator TSI = Obj.section_end();
620       if (auto TSIOrErr = TargetSymbol->getSection())
621         TSI = *TSIOrErr;
622       else
623         return TSIOrErr.takeError();
624       assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
625 
626       bool IsCode = TSI->isText();
627       if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
628                                                   LocalSections))
629         Rel.SectionID = *SectionIDOrErr;
630       else
631         return SectionIDOrErr.takeError();
632       Rel.Addend = (intptr_t)Addend;
633       return Error::success();
634     }
635   }
636   llvm_unreachable("Attempting to get address of ODP entry!");
637 }
638 
639 // Relocation masks following the #lo(value), #hi(value), #ha(value),
640 // #higher(value), #highera(value), #highest(value), and #highesta(value)
641 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
642 // document.
643 
644 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
645 
646 static inline uint16_t applyPPChi(uint64_t value) {
647   return (value >> 16) & 0xffff;
648 }
649 
650 static inline uint16_t applyPPCha (uint64_t value) {
651   return ((value + 0x8000) >> 16) & 0xffff;
652 }
653 
654 static inline uint16_t applyPPChigher(uint64_t value) {
655   return (value >> 32) & 0xffff;
656 }
657 
658 static inline uint16_t applyPPChighera (uint64_t value) {
659   return ((value + 0x8000) >> 32) & 0xffff;
660 }
661 
662 static inline uint16_t applyPPChighest(uint64_t value) {
663   return (value >> 48) & 0xffff;
664 }
665 
666 static inline uint16_t applyPPChighesta (uint64_t value) {
667   return ((value + 0x8000) >> 48) & 0xffff;
668 }
669 
670 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
671                                             uint64_t Offset, uint64_t Value,
672                                             uint32_t Type, int64_t Addend) {
673   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
674   switch (Type) {
675   default:
676     llvm_unreachable("Relocation type not implemented yet!");
677     break;
678   case ELF::R_PPC_ADDR16_LO:
679     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
680     break;
681   case ELF::R_PPC_ADDR16_HI:
682     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
683     break;
684   case ELF::R_PPC_ADDR16_HA:
685     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
686     break;
687   }
688 }
689 
690 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
691                                             uint64_t Offset, uint64_t Value,
692                                             uint32_t Type, int64_t Addend) {
693   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
694   switch (Type) {
695   default:
696     llvm_unreachable("Relocation type not implemented yet!");
697     break;
698   case ELF::R_PPC64_ADDR16:
699     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
700     break;
701   case ELF::R_PPC64_ADDR16_DS:
702     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
703     break;
704   case ELF::R_PPC64_ADDR16_LO:
705     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
706     break;
707   case ELF::R_PPC64_ADDR16_LO_DS:
708     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
709     break;
710   case ELF::R_PPC64_ADDR16_HI:
711     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
712     break;
713   case ELF::R_PPC64_ADDR16_HA:
714     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
715     break;
716   case ELF::R_PPC64_ADDR16_HIGHER:
717     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
718     break;
719   case ELF::R_PPC64_ADDR16_HIGHERA:
720     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
721     break;
722   case ELF::R_PPC64_ADDR16_HIGHEST:
723     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
724     break;
725   case ELF::R_PPC64_ADDR16_HIGHESTA:
726     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
727     break;
728   case ELF::R_PPC64_ADDR14: {
729     assert(((Value + Addend) & 3) == 0);
730     // Preserve the AA/LK bits in the branch instruction
731     uint8_t aalk = *(LocalAddress + 3);
732     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
733   } break;
734   case ELF::R_PPC64_REL16_LO: {
735     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
736     uint64_t Delta = Value - FinalAddress + Addend;
737     writeInt16BE(LocalAddress, applyPPClo(Delta));
738   } break;
739   case ELF::R_PPC64_REL16_HI: {
740     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
741     uint64_t Delta = Value - FinalAddress + Addend;
742     writeInt16BE(LocalAddress, applyPPChi(Delta));
743   } break;
744   case ELF::R_PPC64_REL16_HA: {
745     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
746     uint64_t Delta = Value - FinalAddress + Addend;
747     writeInt16BE(LocalAddress, applyPPCha(Delta));
748   } break;
749   case ELF::R_PPC64_ADDR32: {
750     int32_t Result = static_cast<int32_t>(Value + Addend);
751     if (SignExtend32<32>(Result) != Result)
752       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
753     writeInt32BE(LocalAddress, Result);
754   } break;
755   case ELF::R_PPC64_REL24: {
756     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
757     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
758     if (SignExtend32<26>(delta) != delta)
759       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
760     // Generates a 'bl <address>' instruction
761     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
762   } break;
763   case ELF::R_PPC64_REL32: {
764     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
765     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
766     if (SignExtend32<32>(delta) != delta)
767       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
768     writeInt32BE(LocalAddress, delta);
769   } break;
770   case ELF::R_PPC64_REL64: {
771     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
772     uint64_t Delta = Value - FinalAddress + Addend;
773     writeInt64BE(LocalAddress, Delta);
774   } break;
775   case ELF::R_PPC64_ADDR64:
776     writeInt64BE(LocalAddress, Value + Addend);
777     break;
778   }
779 }
780 
781 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
782                                               uint64_t Offset, uint64_t Value,
783                                               uint32_t Type, int64_t Addend) {
784   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
785   switch (Type) {
786   default:
787     llvm_unreachable("Relocation type not implemented yet!");
788     break;
789   case ELF::R_390_PC16DBL:
790   case ELF::R_390_PLT16DBL: {
791     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
792     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
793     writeInt16BE(LocalAddress, Delta / 2);
794     break;
795   }
796   case ELF::R_390_PC32DBL:
797   case ELF::R_390_PLT32DBL: {
798     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
799     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
800     writeInt32BE(LocalAddress, Delta / 2);
801     break;
802   }
803   case ELF::R_390_PC32: {
804     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
805     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
806     writeInt32BE(LocalAddress, Delta);
807     break;
808   }
809   case ELF::R_390_64:
810     writeInt64BE(LocalAddress, Value + Addend);
811     break;
812   case ELF::R_390_PC64: {
813     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
814     writeInt64BE(LocalAddress, Delta);
815     break;
816   }
817   }
818 }
819 
820 // The target location for the relocation is described by RE.SectionID and
821 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
822 // SectionEntry has three members describing its location.
823 // SectionEntry::Address is the address at which the section has been loaded
824 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
825 // address that the section will have in the target process.
826 // SectionEntry::ObjAddress is the address of the bits for this section in the
827 // original emitted object image (also in the current address space).
828 //
829 // Relocations will be applied as if the section were loaded at
830 // SectionEntry::LoadAddress, but they will be applied at an address based
831 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
832 // Target memory contents if they are required for value calculations.
833 //
834 // The Value parameter here is the load address of the symbol for the
835 // relocation to be applied.  For relocations which refer to symbols in the
836 // current object Value will be the LoadAddress of the section in which
837 // the symbol resides (RE.Addend provides additional information about the
838 // symbol location).  For external symbols, Value will be the address of the
839 // symbol in the target address space.
840 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
841                                        uint64_t Value) {
842   const SectionEntry &Section = Sections[RE.SectionID];
843   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
844                            RE.SymOffset, RE.SectionID);
845 }
846 
847 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
848                                        uint64_t Offset, uint64_t Value,
849                                        uint32_t Type, int64_t Addend,
850                                        uint64_t SymOffset, SID SectionID) {
851   switch (Arch) {
852   case Triple::x86_64:
853     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
854     break;
855   case Triple::x86:
856     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
857                          (uint32_t)(Addend & 0xffffffffL));
858     break;
859   case Triple::aarch64:
860   case Triple::aarch64_be:
861     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
862     break;
863   case Triple::arm: // Fall through.
864   case Triple::armeb:
865   case Triple::thumb:
866   case Triple::thumbeb:
867     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
868                          (uint32_t)(Addend & 0xffffffffL));
869     break;
870   case Triple::ppc:
871     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
872     break;
873   case Triple::ppc64: // Fall through.
874   case Triple::ppc64le:
875     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
876     break;
877   case Triple::systemz:
878     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
879     break;
880   default:
881     llvm_unreachable("Unsupported CPU type!");
882   }
883 }
884 
885 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
886   return (void *)(Sections[SectionID].getObjAddress() + Offset);
887 }
888 
889 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
890   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
891   if (Value.SymbolName)
892     addRelocationForSymbol(RE, Value.SymbolName);
893   else
894     addRelocationForSection(RE, Value.SectionID);
895 }
896 
897 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
898                                                  bool IsLocal) const {
899   switch (RelType) {
900   case ELF::R_MICROMIPS_GOT16:
901     if (IsLocal)
902       return ELF::R_MICROMIPS_LO16;
903     break;
904   case ELF::R_MICROMIPS_HI16:
905     return ELF::R_MICROMIPS_LO16;
906   case ELF::R_MIPS_GOT16:
907     if (IsLocal)
908       return ELF::R_MIPS_LO16;
909     break;
910   case ELF::R_MIPS_HI16:
911     return ELF::R_MIPS_LO16;
912   case ELF::R_MIPS_PCHI16:
913     return ELF::R_MIPS_PCLO16;
914   default:
915     break;
916   }
917   return ELF::R_MIPS_NONE;
918 }
919 
920 // Sometimes we don't need to create thunk for a branch.
921 // This typically happens when branch target is located
922 // in the same object file. In such case target is either
923 // a weak symbol or symbol in a different executable section.
924 // This function checks if branch target is located in the
925 // same object file and if distance between source and target
926 // fits R_AARCH64_CALL26 relocation. If both conditions are
927 // met, it emits direct jump to the target and returns true.
928 // Otherwise false is returned and thunk is created.
929 bool RuntimeDyldELF::resolveAArch64ShortBranch(
930     unsigned SectionID, relocation_iterator RelI,
931     const RelocationValueRef &Value) {
932   uint64_t Address;
933   if (Value.SymbolName) {
934     auto Loc = GlobalSymbolTable.find(Value.SymbolName);
935 
936     // Don't create direct branch for external symbols.
937     if (Loc == GlobalSymbolTable.end())
938       return false;
939 
940     const auto &SymInfo = Loc->second;
941     Address =
942         uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
943             SymInfo.getOffset()));
944   } else {
945     Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
946   }
947   uint64_t Offset = RelI->getOffset();
948   uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
949 
950   // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
951   // If distance between source and target is out of range then we should
952   // create thunk.
953   if (!isInt<28>(Address + Value.Addend - SourceAddress))
954     return false;
955 
956   resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
957                     Value.Addend);
958 
959   return true;
960 }
961 
962 Expected<relocation_iterator>
963 RuntimeDyldELF::processRelocationRef(
964     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
965     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
966   const auto &Obj = cast<ELFObjectFileBase>(O);
967   uint64_t RelType = RelI->getType();
968   ErrorOr<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend();
969   int64_t Addend = AddendOrErr ? *AddendOrErr : 0;
970   elf_symbol_iterator Symbol = RelI->getSymbol();
971 
972   // Obtain the symbol name which is referenced in the relocation
973   StringRef TargetName;
974   if (Symbol != Obj.symbol_end()) {
975     if (auto TargetNameOrErr = Symbol->getName())
976       TargetName = *TargetNameOrErr;
977     else
978       return TargetNameOrErr.takeError();
979   }
980   DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
981                << " TargetName: " << TargetName << "\n");
982   RelocationValueRef Value;
983   // First search for the symbol in the local symbol table
984   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
985 
986   // Search for the symbol in the global symbol table
987   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
988   if (Symbol != Obj.symbol_end()) {
989     gsi = GlobalSymbolTable.find(TargetName.data());
990     Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
991     if (!SymTypeOrErr) {
992       std::string Buf;
993       raw_string_ostream OS(Buf);
994       logAllUnhandledErrors(SymTypeOrErr.takeError(), OS, "");
995       OS.flush();
996       report_fatal_error(Buf);
997     }
998     SymType = *SymTypeOrErr;
999   }
1000   if (gsi != GlobalSymbolTable.end()) {
1001     const auto &SymInfo = gsi->second;
1002     Value.SectionID = SymInfo.getSectionID();
1003     Value.Offset = SymInfo.getOffset();
1004     Value.Addend = SymInfo.getOffset() + Addend;
1005   } else {
1006     switch (SymType) {
1007     case SymbolRef::ST_Debug: {
1008       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1009       // and can be changed by another developers. Maybe best way is add
1010       // a new symbol type ST_Section to SymbolRef and use it.
1011       auto SectionOrErr = Symbol->getSection();
1012       if (!SectionOrErr) {
1013         std::string Buf;
1014         raw_string_ostream OS(Buf);
1015         logAllUnhandledErrors(SectionOrErr.takeError(), OS, "");
1016         OS.flush();
1017         report_fatal_error(Buf);
1018       }
1019       section_iterator si = *SectionOrErr;
1020       if (si == Obj.section_end())
1021         llvm_unreachable("Symbol section not found, bad object file format!");
1022       DEBUG(dbgs() << "\t\tThis is section symbol\n");
1023       bool isCode = si->isText();
1024       if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1025                                                   ObjSectionToID))
1026         Value.SectionID = *SectionIDOrErr;
1027       else
1028         return SectionIDOrErr.takeError();
1029       Value.Addend = Addend;
1030       break;
1031     }
1032     case SymbolRef::ST_Data:
1033     case SymbolRef::ST_Function:
1034     case SymbolRef::ST_Unknown: {
1035       Value.SymbolName = TargetName.data();
1036       Value.Addend = Addend;
1037 
1038       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1039       // will manifest here as a NULL symbol name.
1040       // We can set this as a valid (but empty) symbol name, and rely
1041       // on addRelocationForSymbol to handle this.
1042       if (!Value.SymbolName)
1043         Value.SymbolName = "";
1044       break;
1045     }
1046     default:
1047       llvm_unreachable("Unresolved symbol type!");
1048       break;
1049     }
1050   }
1051 
1052   uint64_t Offset = RelI->getOffset();
1053 
1054   DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1055                << "\n");
1056   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
1057       (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
1058     // This is an AArch64 branch relocation, need to use a stub function.
1059     DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1060     SectionEntry &Section = Sections[SectionID];
1061 
1062     // Look for an existing stub.
1063     StubMap::const_iterator i = Stubs.find(Value);
1064     if (i != Stubs.end()) {
1065       resolveRelocation(Section, Offset,
1066                         (uint64_t)Section.getAddressWithOffset(i->second),
1067                         RelType, 0);
1068       DEBUG(dbgs() << " Stub function found\n");
1069     } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1070       // Create a new stub function.
1071       DEBUG(dbgs() << " Create a new stub function\n");
1072       Stubs[Value] = Section.getStubOffset();
1073       uint8_t *StubTargetAddr = createStubFunction(
1074           Section.getAddressWithOffset(Section.getStubOffset()));
1075 
1076       RelocationEntry REmovz_g3(SectionID,
1077                                 StubTargetAddr - Section.getAddress(),
1078                                 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1079       RelocationEntry REmovk_g2(SectionID, StubTargetAddr -
1080                                                Section.getAddress() + 4,
1081                                 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1082       RelocationEntry REmovk_g1(SectionID, StubTargetAddr -
1083                                                Section.getAddress() + 8,
1084                                 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1085       RelocationEntry REmovk_g0(SectionID, StubTargetAddr -
1086                                                Section.getAddress() + 12,
1087                                 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1088 
1089       if (Value.SymbolName) {
1090         addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1091         addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1092         addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1093         addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1094       } else {
1095         addRelocationForSection(REmovz_g3, Value.SectionID);
1096         addRelocationForSection(REmovk_g2, Value.SectionID);
1097         addRelocationForSection(REmovk_g1, Value.SectionID);
1098         addRelocationForSection(REmovk_g0, Value.SectionID);
1099       }
1100       resolveRelocation(Section, Offset,
1101                         reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1102                             Section.getStubOffset())),
1103                         RelType, 0);
1104       Section.advanceStubOffset(getMaxStubSize());
1105     }
1106   } else if (Arch == Triple::arm) {
1107     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1108       RelType == ELF::R_ARM_JUMP24) {
1109       // This is an ARM branch relocation, need to use a stub function.
1110       DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1111       SectionEntry &Section = Sections[SectionID];
1112 
1113       // Look for an existing stub.
1114       StubMap::const_iterator i = Stubs.find(Value);
1115       if (i != Stubs.end()) {
1116         resolveRelocation(
1117             Section, Offset,
1118             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1119             RelType, 0);
1120         DEBUG(dbgs() << " Stub function found\n");
1121       } else {
1122         // Create a new stub function.
1123         DEBUG(dbgs() << " Create a new stub function\n");
1124         Stubs[Value] = Section.getStubOffset();
1125         uint8_t *StubTargetAddr = createStubFunction(
1126             Section.getAddressWithOffset(Section.getStubOffset()));
1127         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1128                            ELF::R_ARM_ABS32, Value.Addend);
1129         if (Value.SymbolName)
1130           addRelocationForSymbol(RE, Value.SymbolName);
1131         else
1132           addRelocationForSection(RE, Value.SectionID);
1133 
1134         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1135                                                Section.getAddressWithOffset(
1136                                                    Section.getStubOffset())),
1137                           RelType, 0);
1138         Section.advanceStubOffset(getMaxStubSize());
1139       }
1140     } else {
1141       uint32_t *Placeholder =
1142         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1143       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1144           RelType == ELF::R_ARM_ABS32) {
1145         Value.Addend += *Placeholder;
1146       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1147         // See ELF for ARM documentation
1148         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1149       }
1150       processSimpleRelocation(SectionID, Offset, RelType, Value);
1151     }
1152   } else if (IsMipsO32ABI) {
1153     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1154         computePlaceholderAddress(SectionID, Offset));
1155     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1156     if (RelType == ELF::R_MIPS_26) {
1157       // This is an Mips branch relocation, need to use a stub function.
1158       DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1159       SectionEntry &Section = Sections[SectionID];
1160 
1161       // Extract the addend from the instruction.
1162       // We shift up by two since the Value will be down shifted again
1163       // when applying the relocation.
1164       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1165 
1166       Value.Addend += Addend;
1167 
1168       //  Look up for existing stub.
1169       StubMap::const_iterator i = Stubs.find(Value);
1170       if (i != Stubs.end()) {
1171         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1172         addRelocationForSection(RE, SectionID);
1173         DEBUG(dbgs() << " Stub function found\n");
1174       } else {
1175         // Create a new stub function.
1176         DEBUG(dbgs() << " Create a new stub function\n");
1177         Stubs[Value] = Section.getStubOffset();
1178 
1179         unsigned AbiVariant;
1180         O.getPlatformFlags(AbiVariant);
1181 
1182         uint8_t *StubTargetAddr = createStubFunction(
1183             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1184 
1185         // Creating Hi and Lo relocations for the filled stub instructions.
1186         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1187                              ELF::R_MIPS_HI16, Value.Addend);
1188         RelocationEntry RELo(SectionID,
1189                              StubTargetAddr - Section.getAddress() + 4,
1190                              ELF::R_MIPS_LO16, Value.Addend);
1191 
1192         if (Value.SymbolName) {
1193           addRelocationForSymbol(REHi, Value.SymbolName);
1194           addRelocationForSymbol(RELo, Value.SymbolName);
1195         }
1196         else {
1197           addRelocationForSection(REHi, Value.SectionID);
1198           addRelocationForSection(RELo, Value.SectionID);
1199         }
1200 
1201         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1202         addRelocationForSection(RE, SectionID);
1203         Section.advanceStubOffset(getMaxStubSize());
1204       }
1205     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1206       int64_t Addend = (Opcode & 0x0000ffff) << 16;
1207       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1208       PendingRelocs.push_back(std::make_pair(Value, RE));
1209     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1210       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1211       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1212         const RelocationValueRef &MatchingValue = I->first;
1213         RelocationEntry &Reloc = I->second;
1214         if (MatchingValue == Value &&
1215             RelType == getMatchingLoRelocation(Reloc.RelType) &&
1216             SectionID == Reloc.SectionID) {
1217           Reloc.Addend += Addend;
1218           if (Value.SymbolName)
1219             addRelocationForSymbol(Reloc, Value.SymbolName);
1220           else
1221             addRelocationForSection(Reloc, Value.SectionID);
1222           I = PendingRelocs.erase(I);
1223         } else
1224           ++I;
1225       }
1226       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1227       if (Value.SymbolName)
1228         addRelocationForSymbol(RE, Value.SymbolName);
1229       else
1230         addRelocationForSection(RE, Value.SectionID);
1231     } else {
1232       if (RelType == ELF::R_MIPS_32)
1233         Value.Addend += Opcode;
1234       else if (RelType == ELF::R_MIPS_PC16)
1235         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1236       else if (RelType == ELF::R_MIPS_PC19_S2)
1237         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1238       else if (RelType == ELF::R_MIPS_PC21_S2)
1239         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1240       else if (RelType == ELF::R_MIPS_PC26_S2)
1241         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1242       processSimpleRelocation(SectionID, Offset, RelType, Value);
1243     }
1244   } else if (IsMipsN32ABI || IsMipsN64ABI) {
1245     uint32_t r_type = RelType & 0xff;
1246     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1247     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1248         || r_type == ELF::R_MIPS_GOT_DISP) {
1249       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1250       if (i != GOTSymbolOffsets.end())
1251         RE.SymOffset = i->second;
1252       else {
1253         RE.SymOffset = allocateGOTEntries(SectionID, 1);
1254         GOTSymbolOffsets[TargetName] = RE.SymOffset;
1255       }
1256     }
1257     if (Value.SymbolName)
1258       addRelocationForSymbol(RE, Value.SymbolName);
1259     else
1260       addRelocationForSection(RE, Value.SectionID);
1261   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1262     if (RelType == ELF::R_PPC64_REL24) {
1263       // Determine ABI variant in use for this object.
1264       unsigned AbiVariant;
1265       Obj.getPlatformFlags(AbiVariant);
1266       AbiVariant &= ELF::EF_PPC64_ABI;
1267       // A PPC branch relocation will need a stub function if the target is
1268       // an external symbol (Symbol::ST_Unknown) or if the target address
1269       // is not within the signed 24-bits branch address.
1270       SectionEntry &Section = Sections[SectionID];
1271       uint8_t *Target = Section.getAddressWithOffset(Offset);
1272       bool RangeOverflow = false;
1273       if (SymType != SymbolRef::ST_Unknown) {
1274         if (AbiVariant != 2) {
1275           // In the ELFv1 ABI, a function call may point to the .opd entry,
1276           // so the final symbol value is calculated based on the relocation
1277           // values in the .opd section.
1278           if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1279             return std::move(Err);
1280         } else {
1281           // In the ELFv2 ABI, a function symbol may provide a local entry
1282           // point, which must be used for direct calls.
1283           uint8_t SymOther = Symbol->getOther();
1284           Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1285         }
1286         uint8_t *RelocTarget =
1287             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1288         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
1289         // If it is within 26-bits branch range, just set the branch target
1290         if (SignExtend32<26>(delta) == delta) {
1291           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1292           if (Value.SymbolName)
1293             addRelocationForSymbol(RE, Value.SymbolName);
1294           else
1295             addRelocationForSection(RE, Value.SectionID);
1296         } else {
1297           RangeOverflow = true;
1298         }
1299       }
1300       if (SymType == SymbolRef::ST_Unknown || RangeOverflow) {
1301         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
1302         // larger than 24-bits.
1303         StubMap::const_iterator i = Stubs.find(Value);
1304         if (i != Stubs.end()) {
1305           // Symbol function stub already created, just relocate to it
1306           resolveRelocation(Section, Offset,
1307                             reinterpret_cast<uint64_t>(
1308                                 Section.getAddressWithOffset(i->second)),
1309                             RelType, 0);
1310           DEBUG(dbgs() << " Stub function found\n");
1311         } else {
1312           // Create a new stub function.
1313           DEBUG(dbgs() << " Create a new stub function\n");
1314           Stubs[Value] = Section.getStubOffset();
1315           uint8_t *StubTargetAddr = createStubFunction(
1316               Section.getAddressWithOffset(Section.getStubOffset()),
1317               AbiVariant);
1318           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1319                              ELF::R_PPC64_ADDR64, Value.Addend);
1320 
1321           // Generates the 64-bits address loads as exemplified in section
1322           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1323           // apply to the low part of the instructions, so we have to update
1324           // the offset according to the target endianness.
1325           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1326           if (!IsTargetLittleEndian)
1327             StubRelocOffset += 2;
1328 
1329           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1330                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1331           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1332                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1333           RelocationEntry REh(SectionID, StubRelocOffset + 12,
1334                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
1335           RelocationEntry REl(SectionID, StubRelocOffset + 16,
1336                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
1337 
1338           if (Value.SymbolName) {
1339             addRelocationForSymbol(REhst, Value.SymbolName);
1340             addRelocationForSymbol(REhr, Value.SymbolName);
1341             addRelocationForSymbol(REh, Value.SymbolName);
1342             addRelocationForSymbol(REl, Value.SymbolName);
1343           } else {
1344             addRelocationForSection(REhst, Value.SectionID);
1345             addRelocationForSection(REhr, Value.SectionID);
1346             addRelocationForSection(REh, Value.SectionID);
1347             addRelocationForSection(REl, Value.SectionID);
1348           }
1349 
1350           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1351                                                  Section.getAddressWithOffset(
1352                                                      Section.getStubOffset())),
1353                             RelType, 0);
1354           Section.advanceStubOffset(getMaxStubSize());
1355         }
1356         if (SymType == SymbolRef::ST_Unknown) {
1357           // Restore the TOC for external calls
1358           if (AbiVariant == 2)
1359             writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
1360           else
1361             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1362         }
1363       }
1364     } else if (RelType == ELF::R_PPC64_TOC16 ||
1365                RelType == ELF::R_PPC64_TOC16_DS ||
1366                RelType == ELF::R_PPC64_TOC16_LO ||
1367                RelType == ELF::R_PPC64_TOC16_LO_DS ||
1368                RelType == ELF::R_PPC64_TOC16_HI ||
1369                RelType == ELF::R_PPC64_TOC16_HA) {
1370       // These relocations are supposed to subtract the TOC address from
1371       // the final value.  This does not fit cleanly into the RuntimeDyld
1372       // scheme, since there may be *two* sections involved in determining
1373       // the relocation value (the section of the symbol referred to by the
1374       // relocation, and the TOC section associated with the current module).
1375       //
1376       // Fortunately, these relocations are currently only ever generated
1377       // referring to symbols that themselves reside in the TOC, which means
1378       // that the two sections are actually the same.  Thus they cancel out
1379       // and we can immediately resolve the relocation right now.
1380       switch (RelType) {
1381       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1382       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1383       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1384       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1385       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1386       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1387       default: llvm_unreachable("Wrong relocation type.");
1388       }
1389 
1390       RelocationValueRef TOCValue;
1391       if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1392         return std::move(Err);
1393       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1394         llvm_unreachable("Unsupported TOC relocation.");
1395       Value.Addend -= TOCValue.Addend;
1396       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1397     } else {
1398       // There are two ways to refer to the TOC address directly: either
1399       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1400       // ignored), or via any relocation that refers to the magic ".TOC."
1401       // symbols (in which case the addend is respected).
1402       if (RelType == ELF::R_PPC64_TOC) {
1403         RelType = ELF::R_PPC64_ADDR64;
1404         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1405           return std::move(Err);
1406       } else if (TargetName == ".TOC.") {
1407         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1408           return std::move(Err);
1409         Value.Addend += Addend;
1410       }
1411 
1412       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1413 
1414       if (Value.SymbolName)
1415         addRelocationForSymbol(RE, Value.SymbolName);
1416       else
1417         addRelocationForSection(RE, Value.SectionID);
1418     }
1419   } else if (Arch == Triple::systemz &&
1420              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1421     // Create function stubs for both PLT and GOT references, regardless of
1422     // whether the GOT reference is to data or code.  The stub contains the
1423     // full address of the symbol, as needed by GOT references, and the
1424     // executable part only adds an overhead of 8 bytes.
1425     //
1426     // We could try to conserve space by allocating the code and data
1427     // parts of the stub separately.  However, as things stand, we allocate
1428     // a stub for every relocation, so using a GOT in JIT code should be
1429     // no less space efficient than using an explicit constant pool.
1430     DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1431     SectionEntry &Section = Sections[SectionID];
1432 
1433     // Look for an existing stub.
1434     StubMap::const_iterator i = Stubs.find(Value);
1435     uintptr_t StubAddress;
1436     if (i != Stubs.end()) {
1437       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1438       DEBUG(dbgs() << " Stub function found\n");
1439     } else {
1440       // Create a new stub function.
1441       DEBUG(dbgs() << " Create a new stub function\n");
1442 
1443       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1444       uintptr_t StubAlignment = getStubAlignment();
1445       StubAddress =
1446           (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1447           -StubAlignment;
1448       unsigned StubOffset = StubAddress - BaseAddress;
1449 
1450       Stubs[Value] = StubOffset;
1451       createStubFunction((uint8_t *)StubAddress);
1452       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1453                          Value.Offset);
1454       if (Value.SymbolName)
1455         addRelocationForSymbol(RE, Value.SymbolName);
1456       else
1457         addRelocationForSection(RE, Value.SectionID);
1458       Section.advanceStubOffset(getMaxStubSize());
1459     }
1460 
1461     if (RelType == ELF::R_390_GOTENT)
1462       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1463                         Addend);
1464     else
1465       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1466   } else if (Arch == Triple::x86_64) {
1467     if (RelType == ELF::R_X86_64_PLT32) {
1468       // The way the PLT relocations normally work is that the linker allocates
1469       // the
1470       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1471       // entry will then jump to an address provided by the GOT.  On first call,
1472       // the
1473       // GOT address will point back into PLT code that resolves the symbol. After
1474       // the first call, the GOT entry points to the actual function.
1475       //
1476       // For local functions we're ignoring all of that here and just replacing
1477       // the PLT32 relocation type with PC32, which will translate the relocation
1478       // into a PC-relative call directly to the function. For external symbols we
1479       // can't be sure the function will be within 2^32 bytes of the call site, so
1480       // we need to create a stub, which calls into the GOT.  This case is
1481       // equivalent to the usual PLT implementation except that we use the stub
1482       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1483       // rather than allocating a PLT section.
1484       if (Value.SymbolName) {
1485         // This is a call to an external function.
1486         // Look for an existing stub.
1487         SectionEntry &Section = Sections[SectionID];
1488         StubMap::const_iterator i = Stubs.find(Value);
1489         uintptr_t StubAddress;
1490         if (i != Stubs.end()) {
1491           StubAddress = uintptr_t(Section.getAddress()) + i->second;
1492           DEBUG(dbgs() << " Stub function found\n");
1493         } else {
1494           // Create a new stub function (equivalent to a PLT entry).
1495           DEBUG(dbgs() << " Create a new stub function\n");
1496 
1497           uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1498           uintptr_t StubAlignment = getStubAlignment();
1499           StubAddress =
1500               (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1501               -StubAlignment;
1502           unsigned StubOffset = StubAddress - BaseAddress;
1503           Stubs[Value] = StubOffset;
1504           createStubFunction((uint8_t *)StubAddress);
1505 
1506           // Bump our stub offset counter
1507           Section.advanceStubOffset(getMaxStubSize());
1508 
1509           // Allocate a GOT Entry
1510           uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1511 
1512           // The load of the GOT address has an addend of -4
1513           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4);
1514 
1515           // Fill in the value of the symbol we're targeting into the GOT
1516           addRelocationForSymbol(
1517               computeGOTOffsetRE(SectionID, GOTOffset, 0, ELF::R_X86_64_64),
1518               Value.SymbolName);
1519         }
1520 
1521         // Make the target call a call into the stub table.
1522         resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1523                           Addend);
1524       } else {
1525         RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1526                   Value.Offset);
1527         addRelocationForSection(RE, Value.SectionID);
1528       }
1529     } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1530                RelType == ELF::R_X86_64_GOTPCRELX ||
1531                RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1532       uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1533       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend);
1534 
1535       // Fill in the value of the symbol we're targeting into the GOT
1536       RelocationEntry RE = computeGOTOffsetRE(SectionID, GOTOffset, Value.Offset, ELF::R_X86_64_64);
1537       if (Value.SymbolName)
1538         addRelocationForSymbol(RE, Value.SymbolName);
1539       else
1540         addRelocationForSection(RE, Value.SectionID);
1541     } else if (RelType == ELF::R_X86_64_PC32) {
1542       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1543       processSimpleRelocation(SectionID, Offset, RelType, Value);
1544     } else if (RelType == ELF::R_X86_64_PC64) {
1545       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1546       processSimpleRelocation(SectionID, Offset, RelType, Value);
1547     } else {
1548       processSimpleRelocation(SectionID, Offset, RelType, Value);
1549     }
1550   } else {
1551     if (Arch == Triple::x86) {
1552       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1553     }
1554     processSimpleRelocation(SectionID, Offset, RelType, Value);
1555   }
1556   return ++RelI;
1557 }
1558 
1559 size_t RuntimeDyldELF::getGOTEntrySize() {
1560   // We don't use the GOT in all of these cases, but it's essentially free
1561   // to put them all here.
1562   size_t Result = 0;
1563   switch (Arch) {
1564   case Triple::x86_64:
1565   case Triple::aarch64:
1566   case Triple::aarch64_be:
1567   case Triple::ppc64:
1568   case Triple::ppc64le:
1569   case Triple::systemz:
1570     Result = sizeof(uint64_t);
1571     break;
1572   case Triple::x86:
1573   case Triple::arm:
1574   case Triple::thumb:
1575     Result = sizeof(uint32_t);
1576     break;
1577   case Triple::mips:
1578   case Triple::mipsel:
1579   case Triple::mips64:
1580   case Triple::mips64el:
1581     if (IsMipsO32ABI || IsMipsN32ABI)
1582       Result = sizeof(uint32_t);
1583     else if (IsMipsN64ABI)
1584       Result = sizeof(uint64_t);
1585     else
1586       llvm_unreachable("Mips ABI not handled");
1587     break;
1588   default:
1589     llvm_unreachable("Unsupported CPU type!");
1590   }
1591   return Result;
1592 }
1593 
1594 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned SectionID, unsigned no)
1595 {
1596   (void)SectionID; // The GOT Section is the same for all section in the object file
1597   if (GOTSectionID == 0) {
1598     GOTSectionID = Sections.size();
1599     // Reserve a section id. We'll allocate the section later
1600     // once we know the total size
1601     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1602   }
1603   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1604   CurrentGOTIndex += no;
1605   return StartOffset;
1606 }
1607 
1608 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset)
1609 {
1610   // Fill in the relative address of the GOT Entry into the stub
1611   RelocationEntry GOTRE(SectionID, Offset, ELF::R_X86_64_PC32, GOTOffset);
1612   addRelocationForSection(GOTRE, GOTSectionID);
1613 }
1614 
1615 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(unsigned SectionID, uint64_t GOTOffset, uint64_t SymbolOffset,
1616                                                    uint32_t Type)
1617 {
1618   (void)SectionID; // The GOT Section is the same for all section in the object file
1619   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1620 }
1621 
1622 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1623                                   ObjSectionToIDMap &SectionMap) {
1624   if (IsMipsO32ABI)
1625     if (!PendingRelocs.empty())
1626       return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
1627 
1628   // If necessary, allocate the global offset table
1629   if (GOTSectionID != 0) {
1630     // Allocate memory for the section
1631     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1632     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1633                                                 GOTSectionID, ".got", false);
1634     if (!Addr)
1635       return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
1636 
1637     Sections[GOTSectionID] =
1638         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1639 
1640     if (Checker)
1641       Checker->registerSection(Obj.getFileName(), GOTSectionID);
1642 
1643     // For now, initialize all GOT entries to zero.  We'll fill them in as
1644     // needed when GOT-based relocations are applied.
1645     memset(Addr, 0, TotalSize);
1646     if (IsMipsN32ABI || IsMipsN64ABI) {
1647       // To correctly resolve Mips GOT relocations, we need a mapping from
1648       // object's sections to GOTs.
1649       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1650            SI != SE; ++SI) {
1651         if (SI->relocation_begin() != SI->relocation_end()) {
1652           section_iterator RelocatedSection = SI->getRelocatedSection();
1653           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1654           assert (i != SectionMap.end());
1655           SectionToGOTMap[i->second] = GOTSectionID;
1656         }
1657       }
1658       GOTSymbolOffsets.clear();
1659     }
1660   }
1661 
1662   // Look for and record the EH frame section.
1663   ObjSectionToIDMap::iterator i, e;
1664   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1665     const SectionRef &Section = i->first;
1666     StringRef Name;
1667     Section.getName(Name);
1668     if (Name == ".eh_frame") {
1669       UnregisteredEHFrameSections.push_back(i->second);
1670       break;
1671     }
1672   }
1673 
1674   GOTSectionID = 0;
1675   CurrentGOTIndex = 0;
1676 
1677   return Error::success();
1678 }
1679 
1680 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1681   return Obj.isELF();
1682 }
1683 
1684 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1685   if (Arch != Triple::x86_64)
1686     return true;  // Conservative answer
1687 
1688   switch (R.getType()) {
1689   default:
1690     return true;  // Conservative answer
1691 
1692 
1693   case ELF::R_X86_64_GOTPCREL:
1694   case ELF::R_X86_64_GOTPCRELX:
1695   case ELF::R_X86_64_REX_GOTPCRELX:
1696   case ELF::R_X86_64_PC32:
1697   case ELF::R_X86_64_PC64:
1698   case ELF::R_X86_64_64:
1699     // We know that these reloation types won't need a stub function.  This list
1700     // can be extended as needed.
1701     return false;
1702   }
1703 }
1704 
1705 } // namespace llvm
1706