1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RuntimeDyldELF.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "llvm/ADT/IntervalMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/MC/MCStreamer.h"
21 #include "llvm/Object/ELFObjectFile.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/ELF.h"
24 #include "llvm/Support/Endian.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/Support/TargetRegistry.h"
27 
28 using namespace llvm;
29 using namespace llvm::object;
30 
31 #define DEBUG_TYPE "dyld"
32 
33 namespace {
34 
35 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
36   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
37 
38   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
39   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
40   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
41   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
42 
43   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
44 
45   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
46 
47 public:
48   DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
49 
50   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
51 
52   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
53 
54   // Methods for type inquiry through isa, cast and dyn_cast
55   static inline bool classof(const Binary *v) {
56     return (isa<ELFObjectFile<ELFT>>(v) &&
57             classof(cast<ELFObjectFile<ELFT>>(v)));
58   }
59   static inline bool classof(const ELFObjectFile<ELFT> *v) {
60     return v->isDyldType();
61   }
62 };
63 
64 
65 
66 // The MemoryBuffer passed into this constructor is just a wrapper around the
67 // actual memory.  Ultimately, the Binary parent class will take ownership of
68 // this MemoryBuffer object but not the underlying memory.
69 template <class ELFT>
70 DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
71     : ELFObjectFile<ELFT>(Wrapper, EC) {
72   this->isDyldELFObject = true;
73 }
74 
75 template <class ELFT>
76 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
77                                                uint64_t Addr) {
78   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
79   Elf_Shdr *shdr =
80       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
81 
82   // This assumes the address passed in matches the target address bitness
83   // The template-based type cast handles everything else.
84   shdr->sh_addr = static_cast<addr_type>(Addr);
85 }
86 
87 template <class ELFT>
88 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
89                                               uint64_t Addr) {
90 
91   Elf_Sym *sym = const_cast<Elf_Sym *>(
92       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
93 
94   // This assumes the address passed in matches the target address bitness
95   // The template-based type cast handles everything else.
96   sym->st_value = static_cast<addr_type>(Addr);
97 }
98 
99 class LoadedELFObjectInfo final
100     : public RuntimeDyld::LoadedObjectInfoHelper<LoadedELFObjectInfo> {
101 public:
102   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
103       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
104 
105   OwningBinary<ObjectFile>
106   getObjectForDebug(const ObjectFile &Obj) const override;
107 };
108 
109 template <typename ELFT>
110 std::unique_ptr<DyldELFObject<ELFT>>
111 createRTDyldELFObject(MemoryBufferRef Buffer,
112                       const ObjectFile &SourceObject,
113                       const LoadedELFObjectInfo &L,
114                       std::error_code &ec) {
115   typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
116   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
117 
118   std::unique_ptr<DyldELFObject<ELFT>> Obj =
119     llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
120 
121   // Iterate over all sections in the object.
122   auto SI = SourceObject.section_begin();
123   for (const auto &Sec : Obj->sections()) {
124     StringRef SectionName;
125     Sec.getName(SectionName);
126     if (SectionName != "") {
127       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
128       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
129           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
130 
131       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
132         // This assumes that the address passed in matches the target address
133         // bitness. The template-based type cast handles everything else.
134         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
135       }
136     }
137     ++SI;
138   }
139 
140   return Obj;
141 }
142 
143 OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
144                                               const LoadedELFObjectInfo &L) {
145   assert(Obj.isELF() && "Not an ELF object file.");
146 
147   std::unique_ptr<MemoryBuffer> Buffer =
148     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
149 
150   std::error_code ec;
151 
152   std::unique_ptr<ObjectFile> DebugObj;
153   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
154     typedef ELFType<support::little, false> ELF32LE;
155     DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L,
156                                               ec);
157   } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
158     typedef ELFType<support::big, false> ELF32BE;
159     DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L,
160                                               ec);
161   } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
162     typedef ELFType<support::big, true> ELF64BE;
163     DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L,
164                                               ec);
165   } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
166     typedef ELFType<support::little, true> ELF64LE;
167     DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L,
168                                               ec);
169   } else
170     llvm_unreachable("Unexpected ELF format");
171 
172   assert(!ec && "Could not construct copy ELF object file");
173 
174   return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
175 }
176 
177 OwningBinary<ObjectFile>
178 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
179   return createELFDebugObject(Obj, *this);
180 }
181 
182 } // anonymous namespace
183 
184 namespace llvm {
185 
186 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
187                                JITSymbolResolver &Resolver)
188     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
189 RuntimeDyldELF::~RuntimeDyldELF() {}
190 
191 void RuntimeDyldELF::registerEHFrames() {
192   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
193     SID EHFrameSID = UnregisteredEHFrameSections[i];
194     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
195     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
196     size_t EHFrameSize = Sections[EHFrameSID].getSize();
197     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
198     RegisteredEHFrameSections.push_back(EHFrameSID);
199   }
200   UnregisteredEHFrameSections.clear();
201 }
202 
203 void RuntimeDyldELF::deregisterEHFrames() {
204   for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
205     SID EHFrameSID = RegisteredEHFrameSections[i];
206     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
207     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
208     size_t EHFrameSize = Sections[EHFrameSID].getSize();
209     MemMgr.deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
210   }
211   RegisteredEHFrameSections.clear();
212 }
213 
214 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
215 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
216   if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
217     return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
218   else {
219     HasError = true;
220     raw_string_ostream ErrStream(ErrorStr);
221     logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream, "");
222     return nullptr;
223   }
224 }
225 
226 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
227                                              uint64_t Offset, uint64_t Value,
228                                              uint32_t Type, int64_t Addend,
229                                              uint64_t SymOffset) {
230   switch (Type) {
231   default:
232     llvm_unreachable("Relocation type not implemented yet!");
233     break;
234   case ELF::R_X86_64_64: {
235     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
236         Value + Addend;
237     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
238                  << format("%p\n", Section.getAddressWithOffset(Offset)));
239     break;
240   }
241   case ELF::R_X86_64_32:
242   case ELF::R_X86_64_32S: {
243     Value += Addend;
244     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
245            (Type == ELF::R_X86_64_32S &&
246             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
247     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
248     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
249         TruncatedAddr;
250     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
251                  << format("%p\n", Section.getAddressWithOffset(Offset)));
252     break;
253   }
254   case ELF::R_X86_64_PC8: {
255     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
256     int64_t RealOffset = Value + Addend - FinalAddress;
257     assert(isInt<8>(RealOffset));
258     int8_t TruncOffset = (RealOffset & 0xFF);
259     Section.getAddress()[Offset] = TruncOffset;
260     break;
261   }
262   case ELF::R_X86_64_PC32: {
263     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
264     int64_t RealOffset = Value + Addend - FinalAddress;
265     assert(isInt<32>(RealOffset));
266     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
267     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
268         TruncOffset;
269     break;
270   }
271   case ELF::R_X86_64_PC64: {
272     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
273     int64_t RealOffset = Value + Addend - FinalAddress;
274     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
275         RealOffset;
276     break;
277   }
278   }
279 }
280 
281 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
282                                           uint64_t Offset, uint32_t Value,
283                                           uint32_t Type, int32_t Addend) {
284   switch (Type) {
285   case ELF::R_386_32: {
286     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
287         Value + Addend;
288     break;
289   }
290   case ELF::R_386_PC32: {
291     uint32_t FinalAddress =
292         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
293     uint32_t RealOffset = Value + Addend - FinalAddress;
294     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
295         RealOffset;
296     break;
297   }
298   default:
299     // There are other relocation types, but it appears these are the
300     // only ones currently used by the LLVM ELF object writer
301     llvm_unreachable("Relocation type not implemented yet!");
302     break;
303   }
304 }
305 
306 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
307                                               uint64_t Offset, uint64_t Value,
308                                               uint32_t Type, int64_t Addend) {
309   uint32_t *TargetPtr =
310       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
311   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
312 
313   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
314                << format("%llx", Section.getAddressWithOffset(Offset))
315                << " FinalAddress: 0x" << format("%llx", FinalAddress)
316                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
317                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
318                << "\n");
319 
320   switch (Type) {
321   default:
322     llvm_unreachable("Relocation type not implemented yet!");
323     break;
324   case ELF::R_AARCH64_ABS64: {
325     uint64_t *TargetPtr =
326         reinterpret_cast<uint64_t *>(Section.getAddressWithOffset(Offset));
327     *TargetPtr = Value + Addend;
328     break;
329   }
330   case ELF::R_AARCH64_PREL32: {
331     uint64_t Result = Value + Addend - FinalAddress;
332     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
333            static_cast<int64_t>(Result) <= UINT32_MAX);
334     *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
335     break;
336   }
337   case ELF::R_AARCH64_CALL26: // fallthrough
338   case ELF::R_AARCH64_JUMP26: {
339     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
340     // calculation.
341     uint64_t BranchImm = Value + Addend - FinalAddress;
342 
343     // "Check that -2^27 <= result < 2^27".
344     assert(isInt<28>(BranchImm));
345 
346     // AArch64 code is emitted with .rela relocations. The data already in any
347     // bits affected by the relocation on entry is garbage.
348     *TargetPtr &= 0xfc000000U;
349     // Immediate goes in bits 25:0 of B and BL.
350     *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
351     break;
352   }
353   case ELF::R_AARCH64_MOVW_UABS_G3: {
354     uint64_t Result = Value + Addend;
355 
356     // AArch64 code is emitted with .rela relocations. The data already in any
357     // bits affected by the relocation on entry is garbage.
358     *TargetPtr &= 0xffe0001fU;
359     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
360     *TargetPtr |= Result >> (48 - 5);
361     // Shift must be "lsl #48", in bits 22:21
362     assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
363     break;
364   }
365   case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
366     uint64_t Result = Value + Addend;
367 
368     // AArch64 code is emitted with .rela relocations. The data already in any
369     // bits affected by the relocation on entry is garbage.
370     *TargetPtr &= 0xffe0001fU;
371     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
372     *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
373     // Shift must be "lsl #32", in bits 22:21
374     assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
375     break;
376   }
377   case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
378     uint64_t Result = Value + Addend;
379 
380     // AArch64 code is emitted with .rela relocations. The data already in any
381     // bits affected by the relocation on entry is garbage.
382     *TargetPtr &= 0xffe0001fU;
383     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
384     *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
385     // Shift must be "lsl #16", in bits 22:2
386     assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
387     break;
388   }
389   case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
390     uint64_t Result = Value + Addend;
391 
392     // AArch64 code is emitted with .rela relocations. The data already in any
393     // bits affected by the relocation on entry is garbage.
394     *TargetPtr &= 0xffe0001fU;
395     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
396     *TargetPtr |= ((Result & 0xffffU) << 5);
397     // Shift must be "lsl #0", in bits 22:21.
398     assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
399     break;
400   }
401   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
402     // Operation: Page(S+A) - Page(P)
403     uint64_t Result =
404         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
405 
406     // Check that -2^32 <= X < 2^32
407     assert(isInt<33>(Result) && "overflow check failed for relocation");
408 
409     // AArch64 code is emitted with .rela relocations. The data already in any
410     // bits affected by the relocation on entry is garbage.
411     *TargetPtr &= 0x9f00001fU;
412     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
413     // from bits 32:12 of X.
414     *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
415     *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
416     break;
417   }
418   case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
419     // Operation: S + A
420     uint64_t Result = Value + Addend;
421 
422     // AArch64 code is emitted with .rela relocations. The data already in any
423     // bits affected by the relocation on entry is garbage.
424     *TargetPtr &= 0xffc003ffU;
425     // Immediate goes in bits 21:10 of LD/ST instruction, taken
426     // from bits 11:2 of X
427     *TargetPtr |= ((Result & 0xffc) << (10 - 2));
428     break;
429   }
430   case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
431     // Operation: S + A
432     uint64_t Result = Value + Addend;
433 
434     // AArch64 code is emitted with .rela relocations. The data already in any
435     // bits affected by the relocation on entry is garbage.
436     *TargetPtr &= 0xffc003ffU;
437     // Immediate goes in bits 21:10 of LD/ST instruction, taken
438     // from bits 11:3 of X
439     *TargetPtr |= ((Result & 0xff8) << (10 - 3));
440     break;
441   }
442   }
443 }
444 
445 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
446                                           uint64_t Offset, uint32_t Value,
447                                           uint32_t Type, int32_t Addend) {
448   // TODO: Add Thumb relocations.
449   uint32_t *TargetPtr =
450       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
451   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
452   Value += Addend;
453 
454   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
455                << Section.getAddressWithOffset(Offset)
456                << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
457                << format("%x", Value) << " Type: " << format("%x", Type)
458                << " Addend: " << format("%x", Addend) << "\n");
459 
460   switch (Type) {
461   default:
462     llvm_unreachable("Not implemented relocation type!");
463 
464   case ELF::R_ARM_NONE:
465     break;
466   case ELF::R_ARM_PREL31:
467   case ELF::R_ARM_TARGET1:
468   case ELF::R_ARM_ABS32:
469     *TargetPtr = Value;
470     break;
471     // Write first 16 bit of 32 bit value to the mov instruction.
472     // Last 4 bit should be shifted.
473   case ELF::R_ARM_MOVW_ABS_NC:
474   case ELF::R_ARM_MOVT_ABS:
475     if (Type == ELF::R_ARM_MOVW_ABS_NC)
476       Value = Value & 0xFFFF;
477     else if (Type == ELF::R_ARM_MOVT_ABS)
478       Value = (Value >> 16) & 0xFFFF;
479     *TargetPtr &= ~0x000F0FFF;
480     *TargetPtr |= Value & 0xFFF;
481     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
482     break;
483     // Write 24 bit relative value to the branch instruction.
484   case ELF::R_ARM_PC24: // Fall through.
485   case ELF::R_ARM_CALL: // Fall through.
486   case ELF::R_ARM_JUMP24:
487     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
488     RelValue = (RelValue & 0x03FFFFFC) >> 2;
489     assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
490     *TargetPtr &= 0xFF000000;
491     *TargetPtr |= RelValue;
492     break;
493   }
494 }
495 
496 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
497                                            uint64_t Offset, uint32_t Value,
498                                            uint32_t Type, int32_t Addend) {
499   uint8_t *TargetPtr = Section.getAddressWithOffset(Offset);
500   Value += Addend;
501 
502   DEBUG(dbgs() << "resolveMIPSRelocation, LocalAddress: "
503                << Section.getAddressWithOffset(Offset) << " FinalAddress: "
504                << format("%p", Section.getLoadAddressWithOffset(Offset))
505                << " Value: " << format("%x", Value)
506                << " Type: " << format("%x", Type)
507                << " Addend: " << format("%x", Addend) << "\n");
508 
509   uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
510 
511   switch (Type) {
512   default:
513     llvm_unreachable("Not implemented relocation type!");
514     break;
515   case ELF::R_MIPS_32:
516     writeBytesUnaligned(Value, TargetPtr, 4);
517     break;
518   case ELF::R_MIPS_26:
519     Insn &= 0xfc000000;
520     Insn |= (Value & 0x0fffffff) >> 2;
521     writeBytesUnaligned(Insn, TargetPtr, 4);
522     break;
523   case ELF::R_MIPS_HI16:
524     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
525     Insn &= 0xffff0000;
526     Insn |= ((Value + 0x8000) >> 16) & 0xffff;
527     writeBytesUnaligned(Insn, TargetPtr, 4);
528     break;
529   case ELF::R_MIPS_LO16:
530     Insn &= 0xffff0000;
531     Insn |= Value & 0xffff;
532     writeBytesUnaligned(Insn, TargetPtr, 4);
533     break;
534   case ELF::R_MIPS_PC32: {
535     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
536     writeBytesUnaligned(Value - FinalAddress, (uint8_t *)TargetPtr, 4);
537     break;
538   }
539   case ELF::R_MIPS_PC16: {
540     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
541     Insn &= 0xffff0000;
542     Insn |= ((Value - FinalAddress) >> 2) & 0xffff;
543     writeBytesUnaligned(Insn, TargetPtr, 4);
544     break;
545   }
546   case ELF::R_MIPS_PC19_S2: {
547     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
548     Insn &= 0xfff80000;
549     Insn |= ((Value - (FinalAddress & ~0x3)) >> 2) & 0x7ffff;
550     writeBytesUnaligned(Insn, TargetPtr, 4);
551     break;
552   }
553   case ELF::R_MIPS_PC21_S2: {
554     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
555     Insn &= 0xffe00000;
556     Insn |= ((Value - FinalAddress) >> 2) & 0x1fffff;
557     writeBytesUnaligned(Insn, TargetPtr, 4);
558     break;
559   }
560   case ELF::R_MIPS_PC26_S2: {
561     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
562     Insn &= 0xfc000000;
563     Insn |= ((Value - FinalAddress) >> 2) & 0x3ffffff;
564     writeBytesUnaligned(Insn, TargetPtr, 4);
565     break;
566   }
567   case ELF::R_MIPS_PCHI16: {
568     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
569     Insn &= 0xffff0000;
570     Insn |= ((Value - FinalAddress + 0x8000) >> 16) & 0xffff;
571     writeBytesUnaligned(Insn, TargetPtr, 4);
572     break;
573   }
574   case ELF::R_MIPS_PCLO16: {
575     uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
576     Insn &= 0xffff0000;
577     Insn |= (Value - FinalAddress) & 0xffff;
578     writeBytesUnaligned(Insn, TargetPtr, 4);
579     break;
580   }
581   }
582 }
583 
584 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
585   if (Arch == Triple::UnknownArch ||
586       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
587     IsMipsO32ABI = false;
588     IsMipsN64ABI = false;
589     return;
590   }
591   unsigned AbiVariant;
592   Obj.getPlatformFlags(AbiVariant);
593   IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
594   IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
595   if (AbiVariant & ELF::EF_MIPS_ABI2)
596     llvm_unreachable("Mips N32 ABI is not supported yet");
597 }
598 
599 void RuntimeDyldELF::resolveMIPS64Relocation(const SectionEntry &Section,
600                                              uint64_t Offset, uint64_t Value,
601                                              uint32_t Type, int64_t Addend,
602                                              uint64_t SymOffset,
603                                              SID SectionID) {
604   uint32_t r_type = Type & 0xff;
605   uint32_t r_type2 = (Type >> 8) & 0xff;
606   uint32_t r_type3 = (Type >> 16) & 0xff;
607 
608   // RelType is used to keep information for which relocation type we are
609   // applying relocation.
610   uint32_t RelType = r_type;
611   int64_t CalculatedValue = evaluateMIPS64Relocation(Section, Offset, Value,
612                                                      RelType, Addend,
613                                                      SymOffset, SectionID);
614   if (r_type2 != ELF::R_MIPS_NONE) {
615     RelType = r_type2;
616     CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
617                                                CalculatedValue, SymOffset,
618                                                SectionID);
619   }
620   if (r_type3 != ELF::R_MIPS_NONE) {
621     RelType = r_type3;
622     CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
623                                                CalculatedValue, SymOffset,
624                                                SectionID);
625   }
626   applyMIPS64Relocation(Section.getAddressWithOffset(Offset), CalculatedValue,
627                         RelType);
628 }
629 
630 int64_t
631 RuntimeDyldELF::evaluateMIPS64Relocation(const SectionEntry &Section,
632                                          uint64_t Offset, uint64_t Value,
633                                          uint32_t Type, int64_t Addend,
634                                          uint64_t SymOffset, SID SectionID) {
635 
636   DEBUG(dbgs() << "evaluateMIPS64Relocation, LocalAddress: 0x"
637                << format("%llx", Section.getAddressWithOffset(Offset))
638                << " FinalAddress: 0x"
639                << format("%llx", Section.getLoadAddressWithOffset(Offset))
640                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
641                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
642                << " SymOffset: " << format("%x", SymOffset) << "\n");
643 
644   switch (Type) {
645   default:
646     llvm_unreachable("Not implemented relocation type!");
647     break;
648   case ELF::R_MIPS_JALR:
649   case ELF::R_MIPS_NONE:
650     break;
651   case ELF::R_MIPS_32:
652   case ELF::R_MIPS_64:
653     return Value + Addend;
654   case ELF::R_MIPS_26:
655     return ((Value + Addend) >> 2) & 0x3ffffff;
656   case ELF::R_MIPS_GPREL16: {
657     uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
658     return Value + Addend - (GOTAddr + 0x7ff0);
659   }
660   case ELF::R_MIPS_SUB:
661     return Value - Addend;
662   case ELF::R_MIPS_HI16:
663     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
664     return ((Value + Addend + 0x8000) >> 16) & 0xffff;
665   case ELF::R_MIPS_LO16:
666     return (Value + Addend) & 0xffff;
667   case ELF::R_MIPS_CALL16:
668   case ELF::R_MIPS_GOT_DISP:
669   case ELF::R_MIPS_GOT_PAGE: {
670     uint8_t *LocalGOTAddr =
671         getSectionAddress(SectionToGOTMap[SectionID]) + SymOffset;
672     uint64_t GOTEntry = readBytesUnaligned(LocalGOTAddr, 8);
673 
674     Value += Addend;
675     if (Type == ELF::R_MIPS_GOT_PAGE)
676       Value = (Value + 0x8000) & ~0xffff;
677 
678     if (GOTEntry)
679       assert(GOTEntry == Value &&
680                    "GOT entry has two different addresses.");
681     else
682       writeBytesUnaligned(Value, LocalGOTAddr, 8);
683 
684     return (SymOffset - 0x7ff0) & 0xffff;
685   }
686   case ELF::R_MIPS_GOT_OFST: {
687     int64_t page = (Value + Addend + 0x8000) & ~0xffff;
688     return (Value + Addend - page) & 0xffff;
689   }
690   case ELF::R_MIPS_GPREL32: {
691     uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
692     return Value + Addend - (GOTAddr + 0x7ff0);
693   }
694   case ELF::R_MIPS_PC16: {
695     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
696     return ((Value + Addend - FinalAddress) >> 2) & 0xffff;
697   }
698   case ELF::R_MIPS_PC32: {
699     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
700     return Value + Addend - FinalAddress;
701   }
702   case ELF::R_MIPS_PC18_S3: {
703     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
704     return ((Value + Addend - (FinalAddress & ~0x7)) >> 3) & 0x3ffff;
705   }
706   case ELF::R_MIPS_PC19_S2: {
707     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
708     return ((Value + Addend - (FinalAddress & ~0x3)) >> 2) & 0x7ffff;
709   }
710   case ELF::R_MIPS_PC21_S2: {
711     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
712     return ((Value + Addend - FinalAddress) >> 2) & 0x1fffff;
713   }
714   case ELF::R_MIPS_PC26_S2: {
715     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
716     return ((Value + Addend - FinalAddress) >> 2) & 0x3ffffff;
717   }
718   case ELF::R_MIPS_PCHI16: {
719     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
720     return ((Value + Addend - FinalAddress + 0x8000) >> 16) & 0xffff;
721   }
722   case ELF::R_MIPS_PCLO16: {
723     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
724     return (Value + Addend - FinalAddress) & 0xffff;
725   }
726   }
727   return 0;
728 }
729 
730 void RuntimeDyldELF::applyMIPS64Relocation(uint8_t *TargetPtr,
731                                            int64_t CalculatedValue,
732                                            uint32_t Type) {
733   uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
734 
735   switch (Type) {
736     default:
737       break;
738     case ELF::R_MIPS_32:
739     case ELF::R_MIPS_GPREL32:
740     case ELF::R_MIPS_PC32:
741       writeBytesUnaligned(CalculatedValue & 0xffffffff, TargetPtr, 4);
742       break;
743     case ELF::R_MIPS_64:
744     case ELF::R_MIPS_SUB:
745       writeBytesUnaligned(CalculatedValue, TargetPtr, 8);
746       break;
747     case ELF::R_MIPS_26:
748     case ELF::R_MIPS_PC26_S2:
749       Insn = (Insn & 0xfc000000) | CalculatedValue;
750       writeBytesUnaligned(Insn, TargetPtr, 4);
751       break;
752     case ELF::R_MIPS_GPREL16:
753       Insn = (Insn & 0xffff0000) | (CalculatedValue & 0xffff);
754       writeBytesUnaligned(Insn, TargetPtr, 4);
755       break;
756     case ELF::R_MIPS_HI16:
757     case ELF::R_MIPS_LO16:
758     case ELF::R_MIPS_PCHI16:
759     case ELF::R_MIPS_PCLO16:
760     case ELF::R_MIPS_PC16:
761     case ELF::R_MIPS_CALL16:
762     case ELF::R_MIPS_GOT_DISP:
763     case ELF::R_MIPS_GOT_PAGE:
764     case ELF::R_MIPS_GOT_OFST:
765       Insn = (Insn & 0xffff0000) | CalculatedValue;
766       writeBytesUnaligned(Insn, TargetPtr, 4);
767       break;
768     case ELF::R_MIPS_PC18_S3:
769       Insn = (Insn & 0xfffc0000) | CalculatedValue;
770       writeBytesUnaligned(Insn, TargetPtr, 4);
771       break;
772     case ELF::R_MIPS_PC19_S2:
773       Insn = (Insn & 0xfff80000) | CalculatedValue;
774       writeBytesUnaligned(Insn, TargetPtr, 4);
775       break;
776     case ELF::R_MIPS_PC21_S2:
777       Insn = (Insn & 0xffe00000) | CalculatedValue;
778       writeBytesUnaligned(Insn, TargetPtr, 4);
779       break;
780     }
781 }
782 
783 // Return the .TOC. section and offset.
784 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
785                                           ObjSectionToIDMap &LocalSections,
786                                           RelocationValueRef &Rel) {
787   // Set a default SectionID in case we do not find a TOC section below.
788   // This may happen for references to TOC base base (sym@toc, .odp
789   // relocation) without a .toc directive.  In this case just use the
790   // first section (which is usually the .odp) since the code won't
791   // reference the .toc base directly.
792   Rel.SymbolName = nullptr;
793   Rel.SectionID = 0;
794 
795   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
796   // order. The TOC starts where the first of these sections starts.
797   for (auto &Section: Obj.sections()) {
798     StringRef SectionName;
799     if (auto EC = Section.getName(SectionName))
800       return errorCodeToError(EC);
801 
802     if (SectionName == ".got"
803         || SectionName == ".toc"
804         || SectionName == ".tocbss"
805         || SectionName == ".plt") {
806       if (auto SectionIDOrErr =
807             findOrEmitSection(Obj, Section, false, LocalSections))
808         Rel.SectionID = *SectionIDOrErr;
809       else
810         return SectionIDOrErr.takeError();
811       break;
812     }
813   }
814 
815   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
816   // thus permitting a full 64 Kbytes segment.
817   Rel.Addend = 0x8000;
818 
819   return Error::success();
820 }
821 
822 // Returns the sections and offset associated with the ODP entry referenced
823 // by Symbol.
824 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
825                                           ObjSectionToIDMap &LocalSections,
826                                           RelocationValueRef &Rel) {
827   // Get the ELF symbol value (st_value) to compare with Relocation offset in
828   // .opd entries
829   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
830        si != se; ++si) {
831     section_iterator RelSecI = si->getRelocatedSection();
832     if (RelSecI == Obj.section_end())
833       continue;
834 
835     StringRef RelSectionName;
836     if (auto EC = RelSecI->getName(RelSectionName))
837       return errorCodeToError(EC);
838 
839     if (RelSectionName != ".opd")
840       continue;
841 
842     for (elf_relocation_iterator i = si->relocation_begin(),
843                                  e = si->relocation_end();
844          i != e;) {
845       // The R_PPC64_ADDR64 relocation indicates the first field
846       // of a .opd entry
847       uint64_t TypeFunc = i->getType();
848       if (TypeFunc != ELF::R_PPC64_ADDR64) {
849         ++i;
850         continue;
851       }
852 
853       uint64_t TargetSymbolOffset = i->getOffset();
854       symbol_iterator TargetSymbol = i->getSymbol();
855       int64_t Addend;
856       if (auto AddendOrErr = i->getAddend())
857         Addend = *AddendOrErr;
858       else
859         return errorCodeToError(AddendOrErr.getError());
860 
861       ++i;
862       if (i == e)
863         break;
864 
865       // Just check if following relocation is a R_PPC64_TOC
866       uint64_t TypeTOC = i->getType();
867       if (TypeTOC != ELF::R_PPC64_TOC)
868         continue;
869 
870       // Finally compares the Symbol value and the target symbol offset
871       // to check if this .opd entry refers to the symbol the relocation
872       // points to.
873       if (Rel.Addend != (int64_t)TargetSymbolOffset)
874         continue;
875 
876       section_iterator TSI = Obj.section_end();
877       if (auto TSIOrErr = TargetSymbol->getSection())
878         TSI = *TSIOrErr;
879       else
880         return TSIOrErr.takeError();
881       assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
882 
883       bool IsCode = TSI->isText();
884       if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
885                                                   LocalSections))
886         Rel.SectionID = *SectionIDOrErr;
887       else
888         return SectionIDOrErr.takeError();
889       Rel.Addend = (intptr_t)Addend;
890       return Error::success();
891     }
892   }
893   llvm_unreachable("Attempting to get address of ODP entry!");
894 }
895 
896 // Relocation masks following the #lo(value), #hi(value), #ha(value),
897 // #higher(value), #highera(value), #highest(value), and #highesta(value)
898 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
899 // document.
900 
901 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
902 
903 static inline uint16_t applyPPChi(uint64_t value) {
904   return (value >> 16) & 0xffff;
905 }
906 
907 static inline uint16_t applyPPCha (uint64_t value) {
908   return ((value + 0x8000) >> 16) & 0xffff;
909 }
910 
911 static inline uint16_t applyPPChigher(uint64_t value) {
912   return (value >> 32) & 0xffff;
913 }
914 
915 static inline uint16_t applyPPChighera (uint64_t value) {
916   return ((value + 0x8000) >> 32) & 0xffff;
917 }
918 
919 static inline uint16_t applyPPChighest(uint64_t value) {
920   return (value >> 48) & 0xffff;
921 }
922 
923 static inline uint16_t applyPPChighesta (uint64_t value) {
924   return ((value + 0x8000) >> 48) & 0xffff;
925 }
926 
927 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
928                                             uint64_t Offset, uint64_t Value,
929                                             uint32_t Type, int64_t Addend) {
930   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
931   switch (Type) {
932   default:
933     llvm_unreachable("Relocation type not implemented yet!");
934     break;
935   case ELF::R_PPC_ADDR16_LO:
936     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
937     break;
938   case ELF::R_PPC_ADDR16_HI:
939     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
940     break;
941   case ELF::R_PPC_ADDR16_HA:
942     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
943     break;
944   }
945 }
946 
947 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
948                                             uint64_t Offset, uint64_t Value,
949                                             uint32_t Type, int64_t Addend) {
950   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
951   switch (Type) {
952   default:
953     llvm_unreachable("Relocation type not implemented yet!");
954     break;
955   case ELF::R_PPC64_ADDR16:
956     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
957     break;
958   case ELF::R_PPC64_ADDR16_DS:
959     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
960     break;
961   case ELF::R_PPC64_ADDR16_LO:
962     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
963     break;
964   case ELF::R_PPC64_ADDR16_LO_DS:
965     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
966     break;
967   case ELF::R_PPC64_ADDR16_HI:
968     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
969     break;
970   case ELF::R_PPC64_ADDR16_HA:
971     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
972     break;
973   case ELF::R_PPC64_ADDR16_HIGHER:
974     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
975     break;
976   case ELF::R_PPC64_ADDR16_HIGHERA:
977     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
978     break;
979   case ELF::R_PPC64_ADDR16_HIGHEST:
980     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
981     break;
982   case ELF::R_PPC64_ADDR16_HIGHESTA:
983     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
984     break;
985   case ELF::R_PPC64_ADDR14: {
986     assert(((Value + Addend) & 3) == 0);
987     // Preserve the AA/LK bits in the branch instruction
988     uint8_t aalk = *(LocalAddress + 3);
989     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
990   } break;
991   case ELF::R_PPC64_REL16_LO: {
992     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
993     uint64_t Delta = Value - FinalAddress + Addend;
994     writeInt16BE(LocalAddress, applyPPClo(Delta));
995   } break;
996   case ELF::R_PPC64_REL16_HI: {
997     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
998     uint64_t Delta = Value - FinalAddress + Addend;
999     writeInt16BE(LocalAddress, applyPPChi(Delta));
1000   } break;
1001   case ELF::R_PPC64_REL16_HA: {
1002     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1003     uint64_t Delta = Value - FinalAddress + Addend;
1004     writeInt16BE(LocalAddress, applyPPCha(Delta));
1005   } break;
1006   case ELF::R_PPC64_ADDR32: {
1007     int32_t Result = static_cast<int32_t>(Value + Addend);
1008     if (SignExtend32<32>(Result) != Result)
1009       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
1010     writeInt32BE(LocalAddress, Result);
1011   } break;
1012   case ELF::R_PPC64_REL24: {
1013     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1014     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
1015     if (SignExtend32<26>(delta) != delta)
1016       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
1017     // Generates a 'bl <address>' instruction
1018     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
1019   } break;
1020   case ELF::R_PPC64_REL32: {
1021     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1022     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
1023     if (SignExtend32<32>(delta) != delta)
1024       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
1025     writeInt32BE(LocalAddress, delta);
1026   } break;
1027   case ELF::R_PPC64_REL64: {
1028     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1029     uint64_t Delta = Value - FinalAddress + Addend;
1030     writeInt64BE(LocalAddress, Delta);
1031   } break;
1032   case ELF::R_PPC64_ADDR64:
1033     writeInt64BE(LocalAddress, Value + Addend);
1034     break;
1035   }
1036 }
1037 
1038 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
1039                                               uint64_t Offset, uint64_t Value,
1040                                               uint32_t Type, int64_t Addend) {
1041   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
1042   switch (Type) {
1043   default:
1044     llvm_unreachable("Relocation type not implemented yet!");
1045     break;
1046   case ELF::R_390_PC16DBL:
1047   case ELF::R_390_PLT16DBL: {
1048     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1049     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
1050     writeInt16BE(LocalAddress, Delta / 2);
1051     break;
1052   }
1053   case ELF::R_390_PC32DBL:
1054   case ELF::R_390_PLT32DBL: {
1055     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1056     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
1057     writeInt32BE(LocalAddress, Delta / 2);
1058     break;
1059   }
1060   case ELF::R_390_PC32: {
1061     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1062     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
1063     writeInt32BE(LocalAddress, Delta);
1064     break;
1065   }
1066   case ELF::R_390_64:
1067     writeInt64BE(LocalAddress, Value + Addend);
1068     break;
1069   case ELF::R_390_PC64: {
1070     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1071     writeInt64BE(LocalAddress, Delta);
1072     break;
1073   }
1074   }
1075 }
1076 
1077 // The target location for the relocation is described by RE.SectionID and
1078 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
1079 // SectionEntry has three members describing its location.
1080 // SectionEntry::Address is the address at which the section has been loaded
1081 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
1082 // address that the section will have in the target process.
1083 // SectionEntry::ObjAddress is the address of the bits for this section in the
1084 // original emitted object image (also in the current address space).
1085 //
1086 // Relocations will be applied as if the section were loaded at
1087 // SectionEntry::LoadAddress, but they will be applied at an address based
1088 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
1089 // Target memory contents if they are required for value calculations.
1090 //
1091 // The Value parameter here is the load address of the symbol for the
1092 // relocation to be applied.  For relocations which refer to symbols in the
1093 // current object Value will be the LoadAddress of the section in which
1094 // the symbol resides (RE.Addend provides additional information about the
1095 // symbol location).  For external symbols, Value will be the address of the
1096 // symbol in the target address space.
1097 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1098                                        uint64_t Value) {
1099   const SectionEntry &Section = Sections[RE.SectionID];
1100   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1101                            RE.SymOffset, RE.SectionID);
1102 }
1103 
1104 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1105                                        uint64_t Offset, uint64_t Value,
1106                                        uint32_t Type, int64_t Addend,
1107                                        uint64_t SymOffset, SID SectionID) {
1108   switch (Arch) {
1109   case Triple::x86_64:
1110     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1111     break;
1112   case Triple::x86:
1113     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1114                          (uint32_t)(Addend & 0xffffffffL));
1115     break;
1116   case Triple::aarch64:
1117   case Triple::aarch64_be:
1118     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1119     break;
1120   case Triple::arm: // Fall through.
1121   case Triple::armeb:
1122   case Triple::thumb:
1123   case Triple::thumbeb:
1124     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1125                          (uint32_t)(Addend & 0xffffffffL));
1126     break;
1127   case Triple::mips: // Fall through.
1128   case Triple::mipsel:
1129   case Triple::mips64:
1130   case Triple::mips64el:
1131     if (IsMipsO32ABI)
1132       resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
1133                             Type, (uint32_t)(Addend & 0xffffffffL));
1134     else if (IsMipsN64ABI)
1135       resolveMIPS64Relocation(Section, Offset, Value, Type, Addend, SymOffset,
1136                               SectionID);
1137     else
1138       llvm_unreachable("Mips ABI not handled");
1139     break;
1140   case Triple::ppc:
1141     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1142     break;
1143   case Triple::ppc64: // Fall through.
1144   case Triple::ppc64le:
1145     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1146     break;
1147   case Triple::systemz:
1148     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1149     break;
1150   default:
1151     llvm_unreachable("Unsupported CPU type!");
1152   }
1153 }
1154 
1155 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
1156   return (void *)(Sections[SectionID].getObjAddress() + Offset);
1157 }
1158 
1159 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1160   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1161   if (Value.SymbolName)
1162     addRelocationForSymbol(RE, Value.SymbolName);
1163   else
1164     addRelocationForSection(RE, Value.SectionID);
1165 }
1166 
1167 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1168                                                  bool IsLocal) const {
1169   switch (RelType) {
1170   case ELF::R_MICROMIPS_GOT16:
1171     if (IsLocal)
1172       return ELF::R_MICROMIPS_LO16;
1173     break;
1174   case ELF::R_MICROMIPS_HI16:
1175     return ELF::R_MICROMIPS_LO16;
1176   case ELF::R_MIPS_GOT16:
1177     if (IsLocal)
1178       return ELF::R_MIPS_LO16;
1179     break;
1180   case ELF::R_MIPS_HI16:
1181     return ELF::R_MIPS_LO16;
1182   case ELF::R_MIPS_PCHI16:
1183     return ELF::R_MIPS_PCLO16;
1184   default:
1185     break;
1186   }
1187   return ELF::R_MIPS_NONE;
1188 }
1189 
1190 Expected<relocation_iterator>
1191 RuntimeDyldELF::processRelocationRef(
1192     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1193     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1194   const auto &Obj = cast<ELFObjectFileBase>(O);
1195   uint64_t RelType = RelI->getType();
1196   ErrorOr<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend();
1197   int64_t Addend = AddendOrErr ? *AddendOrErr : 0;
1198   elf_symbol_iterator Symbol = RelI->getSymbol();
1199 
1200   // Obtain the symbol name which is referenced in the relocation
1201   StringRef TargetName;
1202   if (Symbol != Obj.symbol_end()) {
1203     if (auto TargetNameOrErr = Symbol->getName())
1204       TargetName = *TargetNameOrErr;
1205     else
1206       return TargetNameOrErr.takeError();
1207   }
1208   DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1209                << " TargetName: " << TargetName << "\n");
1210   RelocationValueRef Value;
1211   // First search for the symbol in the local symbol table
1212   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1213 
1214   // Search for the symbol in the global symbol table
1215   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1216   if (Symbol != Obj.symbol_end()) {
1217     gsi = GlobalSymbolTable.find(TargetName.data());
1218     Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1219     if (!SymTypeOrErr) {
1220       std::string Buf;
1221       raw_string_ostream OS(Buf);
1222       logAllUnhandledErrors(SymTypeOrErr.takeError(), OS, "");
1223       OS.flush();
1224       report_fatal_error(Buf);
1225     }
1226     SymType = *SymTypeOrErr;
1227   }
1228   if (gsi != GlobalSymbolTable.end()) {
1229     const auto &SymInfo = gsi->second;
1230     Value.SectionID = SymInfo.getSectionID();
1231     Value.Offset = SymInfo.getOffset();
1232     Value.Addend = SymInfo.getOffset() + Addend;
1233   } else {
1234     switch (SymType) {
1235     case SymbolRef::ST_Debug: {
1236       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1237       // and can be changed by another developers. Maybe best way is add
1238       // a new symbol type ST_Section to SymbolRef and use it.
1239       auto SectionOrErr = Symbol->getSection();
1240       if (!SectionOrErr) {
1241         std::string Buf;
1242         raw_string_ostream OS(Buf);
1243         logAllUnhandledErrors(SectionOrErr.takeError(), OS, "");
1244         OS.flush();
1245         report_fatal_error(Buf);
1246       }
1247       section_iterator si = *SectionOrErr;
1248       if (si == Obj.section_end())
1249         llvm_unreachable("Symbol section not found, bad object file format!");
1250       DEBUG(dbgs() << "\t\tThis is section symbol\n");
1251       bool isCode = si->isText();
1252       if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1253                                                   ObjSectionToID))
1254         Value.SectionID = *SectionIDOrErr;
1255       else
1256         return SectionIDOrErr.takeError();
1257       Value.Addend = Addend;
1258       break;
1259     }
1260     case SymbolRef::ST_Data:
1261     case SymbolRef::ST_Function:
1262     case SymbolRef::ST_Unknown: {
1263       Value.SymbolName = TargetName.data();
1264       Value.Addend = Addend;
1265 
1266       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1267       // will manifest here as a NULL symbol name.
1268       // We can set this as a valid (but empty) symbol name, and rely
1269       // on addRelocationForSymbol to handle this.
1270       if (!Value.SymbolName)
1271         Value.SymbolName = "";
1272       break;
1273     }
1274     default:
1275       llvm_unreachable("Unresolved symbol type!");
1276       break;
1277     }
1278   }
1279 
1280   uint64_t Offset = RelI->getOffset();
1281 
1282   DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1283                << "\n");
1284   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
1285       (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
1286     // This is an AArch64 branch relocation, need to use a stub function.
1287     DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1288     SectionEntry &Section = Sections[SectionID];
1289 
1290     // Look for an existing stub.
1291     StubMap::const_iterator i = Stubs.find(Value);
1292     if (i != Stubs.end()) {
1293       resolveRelocation(Section, Offset,
1294                         (uint64_t)Section.getAddressWithOffset(i->second),
1295                         RelType, 0);
1296       DEBUG(dbgs() << " Stub function found\n");
1297     } else {
1298       // Create a new stub function.
1299       DEBUG(dbgs() << " Create a new stub function\n");
1300       Stubs[Value] = Section.getStubOffset();
1301       uint8_t *StubTargetAddr = createStubFunction(
1302           Section.getAddressWithOffset(Section.getStubOffset()));
1303 
1304       RelocationEntry REmovz_g3(SectionID,
1305                                 StubTargetAddr - Section.getAddress(),
1306                                 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1307       RelocationEntry REmovk_g2(SectionID, StubTargetAddr -
1308                                                Section.getAddress() + 4,
1309                                 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1310       RelocationEntry REmovk_g1(SectionID, StubTargetAddr -
1311                                                Section.getAddress() + 8,
1312                                 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1313       RelocationEntry REmovk_g0(SectionID, StubTargetAddr -
1314                                                Section.getAddress() + 12,
1315                                 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1316 
1317       if (Value.SymbolName) {
1318         addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1319         addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1320         addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1321         addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1322       } else {
1323         addRelocationForSection(REmovz_g3, Value.SectionID);
1324         addRelocationForSection(REmovk_g2, Value.SectionID);
1325         addRelocationForSection(REmovk_g1, Value.SectionID);
1326         addRelocationForSection(REmovk_g0, Value.SectionID);
1327       }
1328       resolveRelocation(Section, Offset,
1329                         reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1330                             Section.getStubOffset())),
1331                         RelType, 0);
1332       Section.advanceStubOffset(getMaxStubSize());
1333     }
1334   } else if (Arch == Triple::arm) {
1335     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1336       RelType == ELF::R_ARM_JUMP24) {
1337       // This is an ARM branch relocation, need to use a stub function.
1338       DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1339       SectionEntry &Section = Sections[SectionID];
1340 
1341       // Look for an existing stub.
1342       StubMap::const_iterator i = Stubs.find(Value);
1343       if (i != Stubs.end()) {
1344         resolveRelocation(
1345             Section, Offset,
1346             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1347             RelType, 0);
1348         DEBUG(dbgs() << " Stub function found\n");
1349       } else {
1350         // Create a new stub function.
1351         DEBUG(dbgs() << " Create a new stub function\n");
1352         Stubs[Value] = Section.getStubOffset();
1353         uint8_t *StubTargetAddr = createStubFunction(
1354             Section.getAddressWithOffset(Section.getStubOffset()));
1355         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1356                            ELF::R_ARM_ABS32, Value.Addend);
1357         if (Value.SymbolName)
1358           addRelocationForSymbol(RE, Value.SymbolName);
1359         else
1360           addRelocationForSection(RE, Value.SectionID);
1361 
1362         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1363                                                Section.getAddressWithOffset(
1364                                                    Section.getStubOffset())),
1365                           RelType, 0);
1366         Section.advanceStubOffset(getMaxStubSize());
1367       }
1368     } else {
1369       uint32_t *Placeholder =
1370         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1371       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1372           RelType == ELF::R_ARM_ABS32) {
1373         Value.Addend += *Placeholder;
1374       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1375         // See ELF for ARM documentation
1376         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1377       }
1378       processSimpleRelocation(SectionID, Offset, RelType, Value);
1379     }
1380   } else if (IsMipsO32ABI) {
1381     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1382         computePlaceholderAddress(SectionID, Offset));
1383     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1384     if (RelType == ELF::R_MIPS_26) {
1385       // This is an Mips branch relocation, need to use a stub function.
1386       DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1387       SectionEntry &Section = Sections[SectionID];
1388 
1389       // Extract the addend from the instruction.
1390       // We shift up by two since the Value will be down shifted again
1391       // when applying the relocation.
1392       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1393 
1394       Value.Addend += Addend;
1395 
1396       //  Look up for existing stub.
1397       StubMap::const_iterator i = Stubs.find(Value);
1398       if (i != Stubs.end()) {
1399         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1400         addRelocationForSection(RE, SectionID);
1401         DEBUG(dbgs() << " Stub function found\n");
1402       } else {
1403         // Create a new stub function.
1404         DEBUG(dbgs() << " Create a new stub function\n");
1405         Stubs[Value] = Section.getStubOffset();
1406 
1407         unsigned AbiVariant;
1408         O.getPlatformFlags(AbiVariant);
1409 
1410         uint8_t *StubTargetAddr = createStubFunction(
1411             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1412 
1413         // Creating Hi and Lo relocations for the filled stub instructions.
1414         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1415                              ELF::R_MIPS_HI16, Value.Addend);
1416         RelocationEntry RELo(SectionID,
1417                              StubTargetAddr - Section.getAddress() + 4,
1418                              ELF::R_MIPS_LO16, Value.Addend);
1419 
1420         if (Value.SymbolName) {
1421           addRelocationForSymbol(REHi, Value.SymbolName);
1422           addRelocationForSymbol(RELo, Value.SymbolName);
1423         }
1424         else {
1425           addRelocationForSection(REHi, Value.SectionID);
1426           addRelocationForSection(RELo, Value.SectionID);
1427         }
1428 
1429         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1430         addRelocationForSection(RE, SectionID);
1431         Section.advanceStubOffset(getMaxStubSize());
1432       }
1433     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1434       int64_t Addend = (Opcode & 0x0000ffff) << 16;
1435       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1436       PendingRelocs.push_back(std::make_pair(Value, RE));
1437     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1438       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1439       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1440         const RelocationValueRef &MatchingValue = I->first;
1441         RelocationEntry &Reloc = I->second;
1442         if (MatchingValue == Value &&
1443             RelType == getMatchingLoRelocation(Reloc.RelType) &&
1444             SectionID == Reloc.SectionID) {
1445           Reloc.Addend += Addend;
1446           if (Value.SymbolName)
1447             addRelocationForSymbol(Reloc, Value.SymbolName);
1448           else
1449             addRelocationForSection(Reloc, Value.SectionID);
1450           I = PendingRelocs.erase(I);
1451         } else
1452           ++I;
1453       }
1454       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1455       if (Value.SymbolName)
1456         addRelocationForSymbol(RE, Value.SymbolName);
1457       else
1458         addRelocationForSection(RE, Value.SectionID);
1459     } else {
1460       if (RelType == ELF::R_MIPS_32)
1461         Value.Addend += Opcode;
1462       else if (RelType == ELF::R_MIPS_PC16)
1463         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1464       else if (RelType == ELF::R_MIPS_PC19_S2)
1465         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1466       else if (RelType == ELF::R_MIPS_PC21_S2)
1467         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1468       else if (RelType == ELF::R_MIPS_PC26_S2)
1469         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1470       processSimpleRelocation(SectionID, Offset, RelType, Value);
1471     }
1472   } else if (IsMipsN64ABI) {
1473     uint32_t r_type = RelType & 0xff;
1474     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1475     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1476         || r_type == ELF::R_MIPS_GOT_DISP) {
1477       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1478       if (i != GOTSymbolOffsets.end())
1479         RE.SymOffset = i->second;
1480       else {
1481         RE.SymOffset = allocateGOTEntries(SectionID, 1);
1482         GOTSymbolOffsets[TargetName] = RE.SymOffset;
1483       }
1484     }
1485     if (Value.SymbolName)
1486       addRelocationForSymbol(RE, Value.SymbolName);
1487     else
1488       addRelocationForSection(RE, Value.SectionID);
1489   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1490     if (RelType == ELF::R_PPC64_REL24) {
1491       // Determine ABI variant in use for this object.
1492       unsigned AbiVariant;
1493       Obj.getPlatformFlags(AbiVariant);
1494       AbiVariant &= ELF::EF_PPC64_ABI;
1495       // A PPC branch relocation will need a stub function if the target is
1496       // an external symbol (Symbol::ST_Unknown) or if the target address
1497       // is not within the signed 24-bits branch address.
1498       SectionEntry &Section = Sections[SectionID];
1499       uint8_t *Target = Section.getAddressWithOffset(Offset);
1500       bool RangeOverflow = false;
1501       if (SymType != SymbolRef::ST_Unknown) {
1502         if (AbiVariant != 2) {
1503           // In the ELFv1 ABI, a function call may point to the .opd entry,
1504           // so the final symbol value is calculated based on the relocation
1505           // values in the .opd section.
1506           if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1507             return std::move(Err);
1508         } else {
1509           // In the ELFv2 ABI, a function symbol may provide a local entry
1510           // point, which must be used for direct calls.
1511           uint8_t SymOther = Symbol->getOther();
1512           Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1513         }
1514         uint8_t *RelocTarget =
1515             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1516         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
1517         // If it is within 26-bits branch range, just set the branch target
1518         if (SignExtend32<26>(delta) == delta) {
1519           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1520           if (Value.SymbolName)
1521             addRelocationForSymbol(RE, Value.SymbolName);
1522           else
1523             addRelocationForSection(RE, Value.SectionID);
1524         } else {
1525           RangeOverflow = true;
1526         }
1527       }
1528       if (SymType == SymbolRef::ST_Unknown || RangeOverflow) {
1529         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
1530         // larger than 24-bits.
1531         StubMap::const_iterator i = Stubs.find(Value);
1532         if (i != Stubs.end()) {
1533           // Symbol function stub already created, just relocate to it
1534           resolveRelocation(Section, Offset,
1535                             reinterpret_cast<uint64_t>(
1536                                 Section.getAddressWithOffset(i->second)),
1537                             RelType, 0);
1538           DEBUG(dbgs() << " Stub function found\n");
1539         } else {
1540           // Create a new stub function.
1541           DEBUG(dbgs() << " Create a new stub function\n");
1542           Stubs[Value] = Section.getStubOffset();
1543           uint8_t *StubTargetAddr = createStubFunction(
1544               Section.getAddressWithOffset(Section.getStubOffset()),
1545               AbiVariant);
1546           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1547                              ELF::R_PPC64_ADDR64, Value.Addend);
1548 
1549           // Generates the 64-bits address loads as exemplified in section
1550           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1551           // apply to the low part of the instructions, so we have to update
1552           // the offset according to the target endianness.
1553           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1554           if (!IsTargetLittleEndian)
1555             StubRelocOffset += 2;
1556 
1557           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1558                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1559           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1560                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1561           RelocationEntry REh(SectionID, StubRelocOffset + 12,
1562                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
1563           RelocationEntry REl(SectionID, StubRelocOffset + 16,
1564                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
1565 
1566           if (Value.SymbolName) {
1567             addRelocationForSymbol(REhst, Value.SymbolName);
1568             addRelocationForSymbol(REhr, Value.SymbolName);
1569             addRelocationForSymbol(REh, Value.SymbolName);
1570             addRelocationForSymbol(REl, Value.SymbolName);
1571           } else {
1572             addRelocationForSection(REhst, Value.SectionID);
1573             addRelocationForSection(REhr, Value.SectionID);
1574             addRelocationForSection(REh, Value.SectionID);
1575             addRelocationForSection(REl, Value.SectionID);
1576           }
1577 
1578           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1579                                                  Section.getAddressWithOffset(
1580                                                      Section.getStubOffset())),
1581                             RelType, 0);
1582           Section.advanceStubOffset(getMaxStubSize());
1583         }
1584         if (SymType == SymbolRef::ST_Unknown) {
1585           // Restore the TOC for external calls
1586           if (AbiVariant == 2)
1587             writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
1588           else
1589             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1590         }
1591       }
1592     } else if (RelType == ELF::R_PPC64_TOC16 ||
1593                RelType == ELF::R_PPC64_TOC16_DS ||
1594                RelType == ELF::R_PPC64_TOC16_LO ||
1595                RelType == ELF::R_PPC64_TOC16_LO_DS ||
1596                RelType == ELF::R_PPC64_TOC16_HI ||
1597                RelType == ELF::R_PPC64_TOC16_HA) {
1598       // These relocations are supposed to subtract the TOC address from
1599       // the final value.  This does not fit cleanly into the RuntimeDyld
1600       // scheme, since there may be *two* sections involved in determining
1601       // the relocation value (the section of the symbol referred to by the
1602       // relocation, and the TOC section associated with the current module).
1603       //
1604       // Fortunately, these relocations are currently only ever generated
1605       // referring to symbols that themselves reside in the TOC, which means
1606       // that the two sections are actually the same.  Thus they cancel out
1607       // and we can immediately resolve the relocation right now.
1608       switch (RelType) {
1609       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1610       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1611       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1612       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1613       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1614       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1615       default: llvm_unreachable("Wrong relocation type.");
1616       }
1617 
1618       RelocationValueRef TOCValue;
1619       if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1620         return std::move(Err);
1621       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1622         llvm_unreachable("Unsupported TOC relocation.");
1623       Value.Addend -= TOCValue.Addend;
1624       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1625     } else {
1626       // There are two ways to refer to the TOC address directly: either
1627       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1628       // ignored), or via any relocation that refers to the magic ".TOC."
1629       // symbols (in which case the addend is respected).
1630       if (RelType == ELF::R_PPC64_TOC) {
1631         RelType = ELF::R_PPC64_ADDR64;
1632         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1633           return std::move(Err);
1634       } else if (TargetName == ".TOC.") {
1635         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1636           return std::move(Err);
1637         Value.Addend += Addend;
1638       }
1639 
1640       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1641 
1642       if (Value.SymbolName)
1643         addRelocationForSymbol(RE, Value.SymbolName);
1644       else
1645         addRelocationForSection(RE, Value.SectionID);
1646     }
1647   } else if (Arch == Triple::systemz &&
1648              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1649     // Create function stubs for both PLT and GOT references, regardless of
1650     // whether the GOT reference is to data or code.  The stub contains the
1651     // full address of the symbol, as needed by GOT references, and the
1652     // executable part only adds an overhead of 8 bytes.
1653     //
1654     // We could try to conserve space by allocating the code and data
1655     // parts of the stub separately.  However, as things stand, we allocate
1656     // a stub for every relocation, so using a GOT in JIT code should be
1657     // no less space efficient than using an explicit constant pool.
1658     DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1659     SectionEntry &Section = Sections[SectionID];
1660 
1661     // Look for an existing stub.
1662     StubMap::const_iterator i = Stubs.find(Value);
1663     uintptr_t StubAddress;
1664     if (i != Stubs.end()) {
1665       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1666       DEBUG(dbgs() << " Stub function found\n");
1667     } else {
1668       // Create a new stub function.
1669       DEBUG(dbgs() << " Create a new stub function\n");
1670 
1671       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1672       uintptr_t StubAlignment = getStubAlignment();
1673       StubAddress =
1674           (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1675           -StubAlignment;
1676       unsigned StubOffset = StubAddress - BaseAddress;
1677 
1678       Stubs[Value] = StubOffset;
1679       createStubFunction((uint8_t *)StubAddress);
1680       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1681                          Value.Offset);
1682       if (Value.SymbolName)
1683         addRelocationForSymbol(RE, Value.SymbolName);
1684       else
1685         addRelocationForSection(RE, Value.SectionID);
1686       Section.advanceStubOffset(getMaxStubSize());
1687     }
1688 
1689     if (RelType == ELF::R_390_GOTENT)
1690       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1691                         Addend);
1692     else
1693       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1694   } else if (Arch == Triple::x86_64) {
1695     if (RelType == ELF::R_X86_64_PLT32) {
1696       // The way the PLT relocations normally work is that the linker allocates
1697       // the
1698       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1699       // entry will then jump to an address provided by the GOT.  On first call,
1700       // the
1701       // GOT address will point back into PLT code that resolves the symbol. After
1702       // the first call, the GOT entry points to the actual function.
1703       //
1704       // For local functions we're ignoring all of that here and just replacing
1705       // the PLT32 relocation type with PC32, which will translate the relocation
1706       // into a PC-relative call directly to the function. For external symbols we
1707       // can't be sure the function will be within 2^32 bytes of the call site, so
1708       // we need to create a stub, which calls into the GOT.  This case is
1709       // equivalent to the usual PLT implementation except that we use the stub
1710       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1711       // rather than allocating a PLT section.
1712       if (Value.SymbolName) {
1713         // This is a call to an external function.
1714         // Look for an existing stub.
1715         SectionEntry &Section = Sections[SectionID];
1716         StubMap::const_iterator i = Stubs.find(Value);
1717         uintptr_t StubAddress;
1718         if (i != Stubs.end()) {
1719           StubAddress = uintptr_t(Section.getAddress()) + i->second;
1720           DEBUG(dbgs() << " Stub function found\n");
1721         } else {
1722           // Create a new stub function (equivalent to a PLT entry).
1723           DEBUG(dbgs() << " Create a new stub function\n");
1724 
1725           uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1726           uintptr_t StubAlignment = getStubAlignment();
1727           StubAddress =
1728               (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1729               -StubAlignment;
1730           unsigned StubOffset = StubAddress - BaseAddress;
1731           Stubs[Value] = StubOffset;
1732           createStubFunction((uint8_t *)StubAddress);
1733 
1734           // Bump our stub offset counter
1735           Section.advanceStubOffset(getMaxStubSize());
1736 
1737           // Allocate a GOT Entry
1738           uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1739 
1740           // The load of the GOT address has an addend of -4
1741           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4);
1742 
1743           // Fill in the value of the symbol we're targeting into the GOT
1744           addRelocationForSymbol(
1745               computeGOTOffsetRE(SectionID, GOTOffset, 0, ELF::R_X86_64_64),
1746               Value.SymbolName);
1747         }
1748 
1749         // Make the target call a call into the stub table.
1750         resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1751                           Addend);
1752       } else {
1753         RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1754                   Value.Offset);
1755         addRelocationForSection(RE, Value.SectionID);
1756       }
1757     } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1758                RelType == ELF::R_X86_64_GOTPCRELX ||
1759                RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1760       uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1761       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend);
1762 
1763       // Fill in the value of the symbol we're targeting into the GOT
1764       RelocationEntry RE = computeGOTOffsetRE(SectionID, GOTOffset, Value.Offset, ELF::R_X86_64_64);
1765       if (Value.SymbolName)
1766         addRelocationForSymbol(RE, Value.SymbolName);
1767       else
1768         addRelocationForSection(RE, Value.SectionID);
1769     } else if (RelType == ELF::R_X86_64_PC32) {
1770       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1771       processSimpleRelocation(SectionID, Offset, RelType, Value);
1772     } else if (RelType == ELF::R_X86_64_PC64) {
1773       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1774       processSimpleRelocation(SectionID, Offset, RelType, Value);
1775     } else {
1776       processSimpleRelocation(SectionID, Offset, RelType, Value);
1777     }
1778   } else {
1779     if (Arch == Triple::x86) {
1780       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1781     }
1782     processSimpleRelocation(SectionID, Offset, RelType, Value);
1783   }
1784   return ++RelI;
1785 }
1786 
1787 size_t RuntimeDyldELF::getGOTEntrySize() {
1788   // We don't use the GOT in all of these cases, but it's essentially free
1789   // to put them all here.
1790   size_t Result = 0;
1791   switch (Arch) {
1792   case Triple::x86_64:
1793   case Triple::aarch64:
1794   case Triple::aarch64_be:
1795   case Triple::ppc64:
1796   case Triple::ppc64le:
1797   case Triple::systemz:
1798     Result = sizeof(uint64_t);
1799     break;
1800   case Triple::x86:
1801   case Triple::arm:
1802   case Triple::thumb:
1803     Result = sizeof(uint32_t);
1804     break;
1805   case Triple::mips:
1806   case Triple::mipsel:
1807   case Triple::mips64:
1808   case Triple::mips64el:
1809     if (IsMipsO32ABI)
1810       Result = sizeof(uint32_t);
1811     else if (IsMipsN64ABI)
1812       Result = sizeof(uint64_t);
1813     else
1814       llvm_unreachable("Mips ABI not handled");
1815     break;
1816   default:
1817     llvm_unreachable("Unsupported CPU type!");
1818   }
1819   return Result;
1820 }
1821 
1822 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned SectionID, unsigned no)
1823 {
1824   (void)SectionID; // The GOT Section is the same for all section in the object file
1825   if (GOTSectionID == 0) {
1826     GOTSectionID = Sections.size();
1827     // Reserve a section id. We'll allocate the section later
1828     // once we know the total size
1829     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1830   }
1831   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1832   CurrentGOTIndex += no;
1833   return StartOffset;
1834 }
1835 
1836 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset)
1837 {
1838   // Fill in the relative address of the GOT Entry into the stub
1839   RelocationEntry GOTRE(SectionID, Offset, ELF::R_X86_64_PC32, GOTOffset);
1840   addRelocationForSection(GOTRE, GOTSectionID);
1841 }
1842 
1843 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(unsigned SectionID, uint64_t GOTOffset, uint64_t SymbolOffset,
1844                                                    uint32_t Type)
1845 {
1846   (void)SectionID; // The GOT Section is the same for all section in the object file
1847   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1848 }
1849 
1850 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1851                                   ObjSectionToIDMap &SectionMap) {
1852   if (IsMipsO32ABI)
1853     if (!PendingRelocs.empty())
1854       return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
1855 
1856   // If necessary, allocate the global offset table
1857   if (GOTSectionID != 0) {
1858     // Allocate memory for the section
1859     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1860     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1861                                                 GOTSectionID, ".got", false);
1862     if (!Addr)
1863       return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
1864 
1865     Sections[GOTSectionID] =
1866         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1867 
1868     if (Checker)
1869       Checker->registerSection(Obj.getFileName(), GOTSectionID);
1870 
1871     // For now, initialize all GOT entries to zero.  We'll fill them in as
1872     // needed when GOT-based relocations are applied.
1873     memset(Addr, 0, TotalSize);
1874     if (IsMipsN64ABI) {
1875       // To correctly resolve Mips GOT relocations, we need a mapping from
1876       // object's sections to GOTs.
1877       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1878            SI != SE; ++SI) {
1879         if (SI->relocation_begin() != SI->relocation_end()) {
1880           section_iterator RelocatedSection = SI->getRelocatedSection();
1881           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1882           assert (i != SectionMap.end());
1883           SectionToGOTMap[i->second] = GOTSectionID;
1884         }
1885       }
1886       GOTSymbolOffsets.clear();
1887     }
1888   }
1889 
1890   // Look for and record the EH frame section.
1891   ObjSectionToIDMap::iterator i, e;
1892   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1893     const SectionRef &Section = i->first;
1894     StringRef Name;
1895     Section.getName(Name);
1896     if (Name == ".eh_frame") {
1897       UnregisteredEHFrameSections.push_back(i->second);
1898       break;
1899     }
1900   }
1901 
1902   GOTSectionID = 0;
1903   CurrentGOTIndex = 0;
1904 
1905   return Error::success();
1906 }
1907 
1908 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1909   return Obj.isELF();
1910 }
1911 
1912 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1913   if (Arch != Triple::x86_64)
1914     return true;  // Conservative answer
1915 
1916   switch (R.getType()) {
1917   default:
1918     return true;  // Conservative answer
1919 
1920 
1921   case ELF::R_X86_64_GOTPCREL:
1922   case ELF::R_X86_64_GOTPCRELX:
1923   case ELF::R_X86_64_REX_GOTPCRELX:
1924   case ELF::R_X86_64_PC32:
1925   case ELF::R_X86_64_PC64:
1926   case ELF::R_X86_64_64:
1927     // We know that these reloation types won't need a stub function.  This list
1928     // can be extended as needed.
1929     return false;
1930   }
1931 }
1932 
1933 } // namespace llvm
1934