1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of ELF support for the MC-JIT runtime dynamic linker. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RuntimeDyldELF.h" 15 #include "RuntimeDyldCheckerImpl.h" 16 #include "Targets/RuntimeDyldELFMips.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/BinaryFormat/ELF.h" 21 #include "llvm/Object/ELFObjectFile.h" 22 #include "llvm/Object/ObjectFile.h" 23 #include "llvm/Support/Endian.h" 24 #include "llvm/Support/MemoryBuffer.h" 25 26 using namespace llvm; 27 using namespace llvm::object; 28 using namespace llvm::support::endian; 29 30 #define DEBUG_TYPE "dyld" 31 32 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); } 33 34 static void or32AArch64Imm(void *L, uint64_t Imm) { 35 or32le(L, (Imm & 0xFFF) << 10); 36 } 37 38 template <class T> static void write(bool isBE, void *P, T V) { 39 isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V); 40 } 41 42 static void write32AArch64Addr(void *L, uint64_t Imm) { 43 uint32_t ImmLo = (Imm & 0x3) << 29; 44 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; 45 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); 46 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi); 47 } 48 49 // Return the bits [Start, End] from Val shifted Start bits. 50 // For instance, getBits(0xF0, 4, 8) returns 0xF. 51 static uint64_t getBits(uint64_t Val, int Start, int End) { 52 uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1; 53 return (Val >> Start) & Mask; 54 } 55 56 namespace { 57 58 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> { 59 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 60 61 typedef Elf_Shdr_Impl<ELFT> Elf_Shdr; 62 typedef Elf_Sym_Impl<ELFT> Elf_Sym; 63 typedef Elf_Rel_Impl<ELFT, false> Elf_Rel; 64 typedef Elf_Rel_Impl<ELFT, true> Elf_Rela; 65 66 typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr; 67 68 typedef typename ELFT::uint addr_type; 69 70 DyldELFObject(ELFObjectFile<ELFT> &&Obj); 71 72 public: 73 static Expected<std::unique_ptr<DyldELFObject>> 74 create(MemoryBufferRef Wrapper); 75 76 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr); 77 78 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr); 79 80 // Methods for type inquiry through isa, cast and dyn_cast 81 static bool classof(const Binary *v) { 82 return (isa<ELFObjectFile<ELFT>>(v) && 83 classof(cast<ELFObjectFile<ELFT>>(v))); 84 } 85 static bool classof(const ELFObjectFile<ELFT> *v) { 86 return v->isDyldType(); 87 } 88 }; 89 90 91 92 // The MemoryBuffer passed into this constructor is just a wrapper around the 93 // actual memory. Ultimately, the Binary parent class will take ownership of 94 // this MemoryBuffer object but not the underlying memory. 95 template <class ELFT> 96 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj) 97 : ELFObjectFile<ELFT>(std::move(Obj)) { 98 this->isDyldELFObject = true; 99 } 100 101 template <class ELFT> 102 Expected<std::unique_ptr<DyldELFObject<ELFT>>> 103 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) { 104 auto Obj = ELFObjectFile<ELFT>::create(Wrapper); 105 if (auto E = Obj.takeError()) 106 return std::move(E); 107 std::unique_ptr<DyldELFObject<ELFT>> Ret( 108 new DyldELFObject<ELFT>(std::move(*Obj))); 109 return std::move(Ret); 110 } 111 112 template <class ELFT> 113 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec, 114 uint64_t Addr) { 115 DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); 116 Elf_Shdr *shdr = 117 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); 118 119 // This assumes the address passed in matches the target address bitness 120 // The template-based type cast handles everything else. 121 shdr->sh_addr = static_cast<addr_type>(Addr); 122 } 123 124 template <class ELFT> 125 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef, 126 uint64_t Addr) { 127 128 Elf_Sym *sym = const_cast<Elf_Sym *>( 129 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl())); 130 131 // This assumes the address passed in matches the target address bitness 132 // The template-based type cast handles everything else. 133 sym->st_value = static_cast<addr_type>(Addr); 134 } 135 136 class LoadedELFObjectInfo final 137 : public LoadedObjectInfoHelper<LoadedELFObjectInfo, 138 RuntimeDyld::LoadedObjectInfo> { 139 public: 140 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap) 141 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {} 142 143 OwningBinary<ObjectFile> 144 getObjectForDebug(const ObjectFile &Obj) const override; 145 }; 146 147 template <typename ELFT> 148 static Expected<std::unique_ptr<DyldELFObject<ELFT>>> 149 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject, 150 const LoadedELFObjectInfo &L) { 151 typedef typename ELFT::Shdr Elf_Shdr; 152 typedef typename ELFT::uint addr_type; 153 154 Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr = 155 DyldELFObject<ELFT>::create(Buffer); 156 if (Error E = ObjOrErr.takeError()) 157 return std::move(E); 158 159 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr); 160 161 // Iterate over all sections in the object. 162 auto SI = SourceObject.section_begin(); 163 for (const auto &Sec : Obj->sections()) { 164 StringRef SectionName; 165 Sec.getName(SectionName); 166 if (SectionName != "") { 167 DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); 168 Elf_Shdr *shdr = const_cast<Elf_Shdr *>( 169 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); 170 171 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) { 172 // This assumes that the address passed in matches the target address 173 // bitness. The template-based type cast handles everything else. 174 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr); 175 } 176 } 177 ++SI; 178 } 179 180 return std::move(Obj); 181 } 182 183 static OwningBinary<ObjectFile> 184 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) { 185 assert(Obj.isELF() && "Not an ELF object file."); 186 187 std::unique_ptr<MemoryBuffer> Buffer = 188 MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName()); 189 190 Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr); 191 handleAllErrors(DebugObj.takeError()); 192 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) 193 DebugObj = 194 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L); 195 else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) 196 DebugObj = 197 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L); 198 else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) 199 DebugObj = 200 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L); 201 else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) 202 DebugObj = 203 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L); 204 else 205 llvm_unreachable("Unexpected ELF format"); 206 207 handleAllErrors(DebugObj.takeError()); 208 return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer)); 209 } 210 211 OwningBinary<ObjectFile> 212 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const { 213 return createELFDebugObject(Obj, *this); 214 } 215 216 } // anonymous namespace 217 218 namespace llvm { 219 220 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr, 221 JITSymbolResolver &Resolver) 222 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {} 223 RuntimeDyldELF::~RuntimeDyldELF() {} 224 225 void RuntimeDyldELF::registerEHFrames() { 226 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) { 227 SID EHFrameSID = UnregisteredEHFrameSections[i]; 228 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress(); 229 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress(); 230 size_t EHFrameSize = Sections[EHFrameSID].getSize(); 231 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize); 232 } 233 UnregisteredEHFrameSections.clear(); 234 } 235 236 std::unique_ptr<RuntimeDyldELF> 237 llvm::RuntimeDyldELF::create(Triple::ArchType Arch, 238 RuntimeDyld::MemoryManager &MemMgr, 239 JITSymbolResolver &Resolver) { 240 switch (Arch) { 241 default: 242 return make_unique<RuntimeDyldELF>(MemMgr, Resolver); 243 case Triple::mips: 244 case Triple::mipsel: 245 case Triple::mips64: 246 case Triple::mips64el: 247 return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver); 248 } 249 } 250 251 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 252 RuntimeDyldELF::loadObject(const object::ObjectFile &O) { 253 if (auto ObjSectionToIDOrErr = loadObjectImpl(O)) 254 return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr); 255 else { 256 HasError = true; 257 raw_string_ostream ErrStream(ErrorStr); 258 logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream, ""); 259 return nullptr; 260 } 261 } 262 263 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, 264 uint64_t Offset, uint64_t Value, 265 uint32_t Type, int64_t Addend, 266 uint64_t SymOffset) { 267 switch (Type) { 268 default: 269 llvm_unreachable("Relocation type not implemented yet!"); 270 break; 271 case ELF::R_X86_64_NONE: 272 break; 273 case ELF::R_X86_64_64: { 274 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 275 Value + Addend; 276 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at " 277 << format("%p\n", Section.getAddressWithOffset(Offset))); 278 break; 279 } 280 case ELF::R_X86_64_32: 281 case ELF::R_X86_64_32S: { 282 Value += Addend; 283 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || 284 (Type == ELF::R_X86_64_32S && 285 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))); 286 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF); 287 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 288 TruncatedAddr; 289 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at " 290 << format("%p\n", Section.getAddressWithOffset(Offset))); 291 break; 292 } 293 case ELF::R_X86_64_PC8: { 294 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 295 int64_t RealOffset = Value + Addend - FinalAddress; 296 assert(isInt<8>(RealOffset)); 297 int8_t TruncOffset = (RealOffset & 0xFF); 298 Section.getAddress()[Offset] = TruncOffset; 299 break; 300 } 301 case ELF::R_X86_64_PC32: { 302 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 303 int64_t RealOffset = Value + Addend - FinalAddress; 304 assert(isInt<32>(RealOffset)); 305 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); 306 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 307 TruncOffset; 308 break; 309 } 310 case ELF::R_X86_64_PC64: { 311 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 312 int64_t RealOffset = Value + Addend - FinalAddress; 313 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 314 RealOffset; 315 break; 316 } 317 } 318 } 319 320 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section, 321 uint64_t Offset, uint32_t Value, 322 uint32_t Type, int32_t Addend) { 323 switch (Type) { 324 case ELF::R_386_32: { 325 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 326 Value + Addend; 327 break; 328 } 329 // Handle R_386_PLT32 like R_386_PC32 since it should be able to 330 // reach any 32 bit address. 331 case ELF::R_386_PLT32: 332 case ELF::R_386_PC32: { 333 uint32_t FinalAddress = 334 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF; 335 uint32_t RealOffset = Value + Addend - FinalAddress; 336 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 337 RealOffset; 338 break; 339 } 340 default: 341 // There are other relocation types, but it appears these are the 342 // only ones currently used by the LLVM ELF object writer 343 llvm_unreachable("Relocation type not implemented yet!"); 344 break; 345 } 346 } 347 348 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section, 349 uint64_t Offset, uint64_t Value, 350 uint32_t Type, int64_t Addend) { 351 uint32_t *TargetPtr = 352 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset)); 353 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 354 // Data should use target endian. Code should always use little endian. 355 bool isBE = Arch == Triple::aarch64_be; 356 357 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x" 358 << format("%llx", Section.getAddressWithOffset(Offset)) 359 << " FinalAddress: 0x" << format("%llx", FinalAddress) 360 << " Value: 0x" << format("%llx", Value) << " Type: 0x" 361 << format("%x", Type) << " Addend: 0x" 362 << format("%llx", Addend) << "\n"); 363 364 switch (Type) { 365 default: 366 llvm_unreachable("Relocation type not implemented yet!"); 367 break; 368 case ELF::R_AARCH64_ABS16: { 369 uint64_t Result = Value + Addend; 370 assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX); 371 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU)); 372 break; 373 } 374 case ELF::R_AARCH64_ABS32: { 375 uint64_t Result = Value + Addend; 376 assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX); 377 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU)); 378 break; 379 } 380 case ELF::R_AARCH64_ABS64: 381 write(isBE, TargetPtr, Value + Addend); 382 break; 383 case ELF::R_AARCH64_PREL32: { 384 uint64_t Result = Value + Addend - FinalAddress; 385 assert(static_cast<int64_t>(Result) >= INT32_MIN && 386 static_cast<int64_t>(Result) <= UINT32_MAX); 387 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU)); 388 break; 389 } 390 case ELF::R_AARCH64_PREL64: 391 write(isBE, TargetPtr, Value + Addend - FinalAddress); 392 break; 393 case ELF::R_AARCH64_CALL26: // fallthrough 394 case ELF::R_AARCH64_JUMP26: { 395 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the 396 // calculation. 397 uint64_t BranchImm = Value + Addend - FinalAddress; 398 399 // "Check that -2^27 <= result < 2^27". 400 assert(isInt<28>(BranchImm)); 401 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2); 402 break; 403 } 404 case ELF::R_AARCH64_MOVW_UABS_G3: 405 or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43); 406 break; 407 case ELF::R_AARCH64_MOVW_UABS_G2_NC: 408 or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27); 409 break; 410 case ELF::R_AARCH64_MOVW_UABS_G1_NC: 411 or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11); 412 break; 413 case ELF::R_AARCH64_MOVW_UABS_G0_NC: 414 or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5); 415 break; 416 case ELF::R_AARCH64_ADR_PREL_PG_HI21: { 417 // Operation: Page(S+A) - Page(P) 418 uint64_t Result = 419 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL); 420 421 // Check that -2^32 <= X < 2^32 422 assert(isInt<33>(Result) && "overflow check failed for relocation"); 423 424 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken 425 // from bits 32:12 of X. 426 write32AArch64Addr(TargetPtr, Result >> 12); 427 break; 428 } 429 case ELF::R_AARCH64_ADD_ABS_LO12_NC: 430 // Operation: S + A 431 // Immediate goes in bits 21:10 of LD/ST instruction, taken 432 // from bits 11:0 of X 433 or32AArch64Imm(TargetPtr, Value + Addend); 434 break; 435 case ELF::R_AARCH64_LDST8_ABS_LO12_NC: 436 // Operation: S + A 437 // Immediate goes in bits 21:10 of LD/ST instruction, taken 438 // from bits 11:0 of X 439 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11)); 440 break; 441 case ELF::R_AARCH64_LDST16_ABS_LO12_NC: 442 // Operation: S + A 443 // Immediate goes in bits 21:10 of LD/ST instruction, taken 444 // from bits 11:1 of X 445 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11)); 446 break; 447 case ELF::R_AARCH64_LDST32_ABS_LO12_NC: 448 // Operation: S + A 449 // Immediate goes in bits 21:10 of LD/ST instruction, taken 450 // from bits 11:2 of X 451 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11)); 452 break; 453 case ELF::R_AARCH64_LDST64_ABS_LO12_NC: 454 // Operation: S + A 455 // Immediate goes in bits 21:10 of LD/ST instruction, taken 456 // from bits 11:3 of X 457 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11)); 458 break; 459 case ELF::R_AARCH64_LDST128_ABS_LO12_NC: 460 // Operation: S + A 461 // Immediate goes in bits 21:10 of LD/ST instruction, taken 462 // from bits 11:4 of X 463 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11)); 464 break; 465 } 466 } 467 468 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section, 469 uint64_t Offset, uint32_t Value, 470 uint32_t Type, int32_t Addend) { 471 // TODO: Add Thumb relocations. 472 uint32_t *TargetPtr = 473 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset)); 474 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF; 475 Value += Addend; 476 477 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " 478 << Section.getAddressWithOffset(Offset) 479 << " FinalAddress: " << format("%p", FinalAddress) 480 << " Value: " << format("%x", Value) 481 << " Type: " << format("%x", Type) 482 << " Addend: " << format("%x", Addend) << "\n"); 483 484 switch (Type) { 485 default: 486 llvm_unreachable("Not implemented relocation type!"); 487 488 case ELF::R_ARM_NONE: 489 break; 490 // Write a 31bit signed offset 491 case ELF::R_ARM_PREL31: 492 support::ulittle32_t::ref{TargetPtr} = 493 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) | 494 ((Value - FinalAddress) & ~0x80000000); 495 break; 496 case ELF::R_ARM_TARGET1: 497 case ELF::R_ARM_ABS32: 498 support::ulittle32_t::ref{TargetPtr} = Value; 499 break; 500 // Write first 16 bit of 32 bit value to the mov instruction. 501 // Last 4 bit should be shifted. 502 case ELF::R_ARM_MOVW_ABS_NC: 503 case ELF::R_ARM_MOVT_ABS: 504 if (Type == ELF::R_ARM_MOVW_ABS_NC) 505 Value = Value & 0xFFFF; 506 else if (Type == ELF::R_ARM_MOVT_ABS) 507 Value = (Value >> 16) & 0xFFFF; 508 support::ulittle32_t::ref{TargetPtr} = 509 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) | 510 (((Value >> 12) & 0xF) << 16); 511 break; 512 // Write 24 bit relative value to the branch instruction. 513 case ELF::R_ARM_PC24: // Fall through. 514 case ELF::R_ARM_CALL: // Fall through. 515 case ELF::R_ARM_JUMP24: 516 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8); 517 RelValue = (RelValue & 0x03FFFFFC) >> 2; 518 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE); 519 support::ulittle32_t::ref{TargetPtr} = 520 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue; 521 break; 522 } 523 } 524 525 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) { 526 if (Arch == Triple::UnknownArch || 527 !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) { 528 IsMipsO32ABI = false; 529 IsMipsN32ABI = false; 530 IsMipsN64ABI = false; 531 return; 532 } 533 if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) { 534 unsigned AbiVariant = E->getPlatformFlags(); 535 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32; 536 IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2; 537 } 538 IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips"); 539 } 540 541 // Return the .TOC. section and offset. 542 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj, 543 ObjSectionToIDMap &LocalSections, 544 RelocationValueRef &Rel) { 545 // Set a default SectionID in case we do not find a TOC section below. 546 // This may happen for references to TOC base base (sym@toc, .odp 547 // relocation) without a .toc directive. In this case just use the 548 // first section (which is usually the .odp) since the code won't 549 // reference the .toc base directly. 550 Rel.SymbolName = nullptr; 551 Rel.SectionID = 0; 552 553 // The TOC consists of sections .got, .toc, .tocbss, .plt in that 554 // order. The TOC starts where the first of these sections starts. 555 for (auto &Section: Obj.sections()) { 556 StringRef SectionName; 557 if (auto EC = Section.getName(SectionName)) 558 return errorCodeToError(EC); 559 560 if (SectionName == ".got" 561 || SectionName == ".toc" 562 || SectionName == ".tocbss" 563 || SectionName == ".plt") { 564 if (auto SectionIDOrErr = 565 findOrEmitSection(Obj, Section, false, LocalSections)) 566 Rel.SectionID = *SectionIDOrErr; 567 else 568 return SectionIDOrErr.takeError(); 569 break; 570 } 571 } 572 573 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 574 // thus permitting a full 64 Kbytes segment. 575 Rel.Addend = 0x8000; 576 577 return Error::success(); 578 } 579 580 // Returns the sections and offset associated with the ODP entry referenced 581 // by Symbol. 582 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj, 583 ObjSectionToIDMap &LocalSections, 584 RelocationValueRef &Rel) { 585 // Get the ELF symbol value (st_value) to compare with Relocation offset in 586 // .opd entries 587 for (section_iterator si = Obj.section_begin(), se = Obj.section_end(); 588 si != se; ++si) { 589 section_iterator RelSecI = si->getRelocatedSection(); 590 if (RelSecI == Obj.section_end()) 591 continue; 592 593 StringRef RelSectionName; 594 if (auto EC = RelSecI->getName(RelSectionName)) 595 return errorCodeToError(EC); 596 597 if (RelSectionName != ".opd") 598 continue; 599 600 for (elf_relocation_iterator i = si->relocation_begin(), 601 e = si->relocation_end(); 602 i != e;) { 603 // The R_PPC64_ADDR64 relocation indicates the first field 604 // of a .opd entry 605 uint64_t TypeFunc = i->getType(); 606 if (TypeFunc != ELF::R_PPC64_ADDR64) { 607 ++i; 608 continue; 609 } 610 611 uint64_t TargetSymbolOffset = i->getOffset(); 612 symbol_iterator TargetSymbol = i->getSymbol(); 613 int64_t Addend; 614 if (auto AddendOrErr = i->getAddend()) 615 Addend = *AddendOrErr; 616 else 617 return AddendOrErr.takeError(); 618 619 ++i; 620 if (i == e) 621 break; 622 623 // Just check if following relocation is a R_PPC64_TOC 624 uint64_t TypeTOC = i->getType(); 625 if (TypeTOC != ELF::R_PPC64_TOC) 626 continue; 627 628 // Finally compares the Symbol value and the target symbol offset 629 // to check if this .opd entry refers to the symbol the relocation 630 // points to. 631 if (Rel.Addend != (int64_t)TargetSymbolOffset) 632 continue; 633 634 section_iterator TSI = Obj.section_end(); 635 if (auto TSIOrErr = TargetSymbol->getSection()) 636 TSI = *TSIOrErr; 637 else 638 return TSIOrErr.takeError(); 639 assert(TSI != Obj.section_end() && "TSI should refer to a valid section"); 640 641 bool IsCode = TSI->isText(); 642 if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode, 643 LocalSections)) 644 Rel.SectionID = *SectionIDOrErr; 645 else 646 return SectionIDOrErr.takeError(); 647 Rel.Addend = (intptr_t)Addend; 648 return Error::success(); 649 } 650 } 651 llvm_unreachable("Attempting to get address of ODP entry!"); 652 } 653 654 // Relocation masks following the #lo(value), #hi(value), #ha(value), 655 // #higher(value), #highera(value), #highest(value), and #highesta(value) 656 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 657 // document. 658 659 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; } 660 661 static inline uint16_t applyPPChi(uint64_t value) { 662 return (value >> 16) & 0xffff; 663 } 664 665 static inline uint16_t applyPPCha (uint64_t value) { 666 return ((value + 0x8000) >> 16) & 0xffff; 667 } 668 669 static inline uint16_t applyPPChigher(uint64_t value) { 670 return (value >> 32) & 0xffff; 671 } 672 673 static inline uint16_t applyPPChighera (uint64_t value) { 674 return ((value + 0x8000) >> 32) & 0xffff; 675 } 676 677 static inline uint16_t applyPPChighest(uint64_t value) { 678 return (value >> 48) & 0xffff; 679 } 680 681 static inline uint16_t applyPPChighesta (uint64_t value) { 682 return ((value + 0x8000) >> 48) & 0xffff; 683 } 684 685 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section, 686 uint64_t Offset, uint64_t Value, 687 uint32_t Type, int64_t Addend) { 688 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); 689 switch (Type) { 690 default: 691 llvm_unreachable("Relocation type not implemented yet!"); 692 break; 693 case ELF::R_PPC_ADDR16_LO: 694 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 695 break; 696 case ELF::R_PPC_ADDR16_HI: 697 writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); 698 break; 699 case ELF::R_PPC_ADDR16_HA: 700 writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); 701 break; 702 } 703 } 704 705 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, 706 uint64_t Offset, uint64_t Value, 707 uint32_t Type, int64_t Addend) { 708 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); 709 switch (Type) { 710 default: 711 llvm_unreachable("Relocation type not implemented yet!"); 712 break; 713 case ELF::R_PPC64_ADDR16: 714 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 715 break; 716 case ELF::R_PPC64_ADDR16_DS: 717 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); 718 break; 719 case ELF::R_PPC64_ADDR16_LO: 720 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 721 break; 722 case ELF::R_PPC64_ADDR16_LO_DS: 723 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); 724 break; 725 case ELF::R_PPC64_ADDR16_HI: 726 writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); 727 break; 728 case ELF::R_PPC64_ADDR16_HA: 729 writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); 730 break; 731 case ELF::R_PPC64_ADDR16_HIGHER: 732 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend)); 733 break; 734 case ELF::R_PPC64_ADDR16_HIGHERA: 735 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend)); 736 break; 737 case ELF::R_PPC64_ADDR16_HIGHEST: 738 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend)); 739 break; 740 case ELF::R_PPC64_ADDR16_HIGHESTA: 741 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend)); 742 break; 743 case ELF::R_PPC64_ADDR14: { 744 assert(((Value + Addend) & 3) == 0); 745 // Preserve the AA/LK bits in the branch instruction 746 uint8_t aalk = *(LocalAddress + 3); 747 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc)); 748 } break; 749 case ELF::R_PPC64_REL16_LO: { 750 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 751 uint64_t Delta = Value - FinalAddress + Addend; 752 writeInt16BE(LocalAddress, applyPPClo(Delta)); 753 } break; 754 case ELF::R_PPC64_REL16_HI: { 755 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 756 uint64_t Delta = Value - FinalAddress + Addend; 757 writeInt16BE(LocalAddress, applyPPChi(Delta)); 758 } break; 759 case ELF::R_PPC64_REL16_HA: { 760 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 761 uint64_t Delta = Value - FinalAddress + Addend; 762 writeInt16BE(LocalAddress, applyPPCha(Delta)); 763 } break; 764 case ELF::R_PPC64_ADDR32: { 765 int64_t Result = static_cast<int64_t>(Value + Addend); 766 if (SignExtend64<32>(Result) != Result) 767 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow"); 768 writeInt32BE(LocalAddress, Result); 769 } break; 770 case ELF::R_PPC64_REL24: { 771 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 772 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend); 773 if (SignExtend64<26>(delta) != delta) 774 llvm_unreachable("Relocation R_PPC64_REL24 overflow"); 775 // We preserve bits other than LI field, i.e. PO and AA/LK fields. 776 uint32_t Inst = readBytesUnaligned(LocalAddress, 4); 777 writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC)); 778 } break; 779 case ELF::R_PPC64_REL32: { 780 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 781 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend); 782 if (SignExtend64<32>(delta) != delta) 783 llvm_unreachable("Relocation R_PPC64_REL32 overflow"); 784 writeInt32BE(LocalAddress, delta); 785 } break; 786 case ELF::R_PPC64_REL64: { 787 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 788 uint64_t Delta = Value - FinalAddress + Addend; 789 writeInt64BE(LocalAddress, Delta); 790 } break; 791 case ELF::R_PPC64_ADDR64: 792 writeInt64BE(LocalAddress, Value + Addend); 793 break; 794 } 795 } 796 797 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section, 798 uint64_t Offset, uint64_t Value, 799 uint32_t Type, int64_t Addend) { 800 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); 801 switch (Type) { 802 default: 803 llvm_unreachable("Relocation type not implemented yet!"); 804 break; 805 case ELF::R_390_PC16DBL: 806 case ELF::R_390_PLT16DBL: { 807 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 808 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow"); 809 writeInt16BE(LocalAddress, Delta / 2); 810 break; 811 } 812 case ELF::R_390_PC32DBL: 813 case ELF::R_390_PLT32DBL: { 814 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 815 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow"); 816 writeInt32BE(LocalAddress, Delta / 2); 817 break; 818 } 819 case ELF::R_390_PC16: { 820 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 821 assert(int16_t(Delta) == Delta && "R_390_PC16 overflow"); 822 writeInt16BE(LocalAddress, Delta); 823 break; 824 } 825 case ELF::R_390_PC32: { 826 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 827 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow"); 828 writeInt32BE(LocalAddress, Delta); 829 break; 830 } 831 case ELF::R_390_PC64: { 832 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 833 writeInt64BE(LocalAddress, Delta); 834 break; 835 } 836 case ELF::R_390_8: 837 *LocalAddress = (uint8_t)(Value + Addend); 838 break; 839 case ELF::R_390_16: 840 writeInt16BE(LocalAddress, Value + Addend); 841 break; 842 case ELF::R_390_32: 843 writeInt32BE(LocalAddress, Value + Addend); 844 break; 845 case ELF::R_390_64: 846 writeInt64BE(LocalAddress, Value + Addend); 847 break; 848 } 849 } 850 851 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section, 852 uint64_t Offset, uint64_t Value, 853 uint32_t Type, int64_t Addend) { 854 bool isBE = Arch == Triple::bpfeb; 855 856 switch (Type) { 857 default: 858 llvm_unreachable("Relocation type not implemented yet!"); 859 break; 860 case ELF::R_BPF_NONE: 861 break; 862 case ELF::R_BPF_64_64: { 863 write(isBE, Section.getAddressWithOffset(Offset), Value + Addend); 864 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at " 865 << format("%p\n", Section.getAddressWithOffset(Offset))); 866 break; 867 } 868 case ELF::R_BPF_64_32: { 869 Value += Addend; 870 assert(Value <= UINT32_MAX); 871 write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value)); 872 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at " 873 << format("%p\n", Section.getAddressWithOffset(Offset))); 874 break; 875 } 876 } 877 } 878 879 // The target location for the relocation is described by RE.SectionID and 880 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each 881 // SectionEntry has three members describing its location. 882 // SectionEntry::Address is the address at which the section has been loaded 883 // into memory in the current (host) process. SectionEntry::LoadAddress is the 884 // address that the section will have in the target process. 885 // SectionEntry::ObjAddress is the address of the bits for this section in the 886 // original emitted object image (also in the current address space). 887 // 888 // Relocations will be applied as if the section were loaded at 889 // SectionEntry::LoadAddress, but they will be applied at an address based 890 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to 891 // Target memory contents if they are required for value calculations. 892 // 893 // The Value parameter here is the load address of the symbol for the 894 // relocation to be applied. For relocations which refer to symbols in the 895 // current object Value will be the LoadAddress of the section in which 896 // the symbol resides (RE.Addend provides additional information about the 897 // symbol location). For external symbols, Value will be the address of the 898 // symbol in the target address space. 899 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE, 900 uint64_t Value) { 901 const SectionEntry &Section = Sections[RE.SectionID]; 902 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend, 903 RE.SymOffset, RE.SectionID); 904 } 905 906 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section, 907 uint64_t Offset, uint64_t Value, 908 uint32_t Type, int64_t Addend, 909 uint64_t SymOffset, SID SectionID) { 910 switch (Arch) { 911 case Triple::x86_64: 912 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset); 913 break; 914 case Triple::x86: 915 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, 916 (uint32_t)(Addend & 0xffffffffL)); 917 break; 918 case Triple::aarch64: 919 case Triple::aarch64_be: 920 resolveAArch64Relocation(Section, Offset, Value, Type, Addend); 921 break; 922 case Triple::arm: // Fall through. 923 case Triple::armeb: 924 case Triple::thumb: 925 case Triple::thumbeb: 926 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, 927 (uint32_t)(Addend & 0xffffffffL)); 928 break; 929 case Triple::ppc: 930 resolvePPC32Relocation(Section, Offset, Value, Type, Addend); 931 break; 932 case Triple::ppc64: // Fall through. 933 case Triple::ppc64le: 934 resolvePPC64Relocation(Section, Offset, Value, Type, Addend); 935 break; 936 case Triple::systemz: 937 resolveSystemZRelocation(Section, Offset, Value, Type, Addend); 938 break; 939 case Triple::bpfel: 940 case Triple::bpfeb: 941 resolveBPFRelocation(Section, Offset, Value, Type, Addend); 942 break; 943 default: 944 llvm_unreachable("Unsupported CPU type!"); 945 } 946 } 947 948 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const { 949 return (void *)(Sections[SectionID].getObjAddress() + Offset); 950 } 951 952 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) { 953 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset); 954 if (Value.SymbolName) 955 addRelocationForSymbol(RE, Value.SymbolName); 956 else 957 addRelocationForSection(RE, Value.SectionID); 958 } 959 960 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType, 961 bool IsLocal) const { 962 switch (RelType) { 963 case ELF::R_MICROMIPS_GOT16: 964 if (IsLocal) 965 return ELF::R_MICROMIPS_LO16; 966 break; 967 case ELF::R_MICROMIPS_HI16: 968 return ELF::R_MICROMIPS_LO16; 969 case ELF::R_MIPS_GOT16: 970 if (IsLocal) 971 return ELF::R_MIPS_LO16; 972 break; 973 case ELF::R_MIPS_HI16: 974 return ELF::R_MIPS_LO16; 975 case ELF::R_MIPS_PCHI16: 976 return ELF::R_MIPS_PCLO16; 977 default: 978 break; 979 } 980 return ELF::R_MIPS_NONE; 981 } 982 983 // Sometimes we don't need to create thunk for a branch. 984 // This typically happens when branch target is located 985 // in the same object file. In such case target is either 986 // a weak symbol or symbol in a different executable section. 987 // This function checks if branch target is located in the 988 // same object file and if distance between source and target 989 // fits R_AARCH64_CALL26 relocation. If both conditions are 990 // met, it emits direct jump to the target and returns true. 991 // Otherwise false is returned and thunk is created. 992 bool RuntimeDyldELF::resolveAArch64ShortBranch( 993 unsigned SectionID, relocation_iterator RelI, 994 const RelocationValueRef &Value) { 995 uint64_t Address; 996 if (Value.SymbolName) { 997 auto Loc = GlobalSymbolTable.find(Value.SymbolName); 998 999 // Don't create direct branch for external symbols. 1000 if (Loc == GlobalSymbolTable.end()) 1001 return false; 1002 1003 const auto &SymInfo = Loc->second; 1004 Address = 1005 uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset( 1006 SymInfo.getOffset())); 1007 } else { 1008 Address = uint64_t(Sections[Value.SectionID].getLoadAddress()); 1009 } 1010 uint64_t Offset = RelI->getOffset(); 1011 uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset); 1012 1013 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27 1014 // If distance between source and target is out of range then we should 1015 // create thunk. 1016 if (!isInt<28>(Address + Value.Addend - SourceAddress)) 1017 return false; 1018 1019 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(), 1020 Value.Addend); 1021 1022 return true; 1023 } 1024 1025 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID, 1026 const RelocationValueRef &Value, 1027 relocation_iterator RelI, 1028 StubMap &Stubs) { 1029 1030 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation."); 1031 SectionEntry &Section = Sections[SectionID]; 1032 1033 uint64_t Offset = RelI->getOffset(); 1034 unsigned RelType = RelI->getType(); 1035 // Look for an existing stub. 1036 StubMap::const_iterator i = Stubs.find(Value); 1037 if (i != Stubs.end()) { 1038 resolveRelocation(Section, Offset, 1039 (uint64_t)Section.getAddressWithOffset(i->second), 1040 RelType, 0); 1041 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1042 } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) { 1043 // Create a new stub function. 1044 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1045 Stubs[Value] = Section.getStubOffset(); 1046 uint8_t *StubTargetAddr = createStubFunction( 1047 Section.getAddressWithOffset(Section.getStubOffset())); 1048 1049 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(), 1050 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend); 1051 RelocationEntry REmovk_g2(SectionID, 1052 StubTargetAddr - Section.getAddress() + 4, 1053 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend); 1054 RelocationEntry REmovk_g1(SectionID, 1055 StubTargetAddr - Section.getAddress() + 8, 1056 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend); 1057 RelocationEntry REmovk_g0(SectionID, 1058 StubTargetAddr - Section.getAddress() + 12, 1059 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend); 1060 1061 if (Value.SymbolName) { 1062 addRelocationForSymbol(REmovz_g3, Value.SymbolName); 1063 addRelocationForSymbol(REmovk_g2, Value.SymbolName); 1064 addRelocationForSymbol(REmovk_g1, Value.SymbolName); 1065 addRelocationForSymbol(REmovk_g0, Value.SymbolName); 1066 } else { 1067 addRelocationForSection(REmovz_g3, Value.SectionID); 1068 addRelocationForSection(REmovk_g2, Value.SectionID); 1069 addRelocationForSection(REmovk_g1, Value.SectionID); 1070 addRelocationForSection(REmovk_g0, Value.SectionID); 1071 } 1072 resolveRelocation(Section, Offset, 1073 reinterpret_cast<uint64_t>(Section.getAddressWithOffset( 1074 Section.getStubOffset())), 1075 RelType, 0); 1076 Section.advanceStubOffset(getMaxStubSize()); 1077 } 1078 } 1079 1080 Expected<relocation_iterator> 1081 RuntimeDyldELF::processRelocationRef( 1082 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O, 1083 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) { 1084 const auto &Obj = cast<ELFObjectFileBase>(O); 1085 uint64_t RelType = RelI->getType(); 1086 int64_t Addend = 0; 1087 if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend()) 1088 Addend = *AddendOrErr; 1089 else 1090 consumeError(AddendOrErr.takeError()); 1091 elf_symbol_iterator Symbol = RelI->getSymbol(); 1092 1093 // Obtain the symbol name which is referenced in the relocation 1094 StringRef TargetName; 1095 if (Symbol != Obj.symbol_end()) { 1096 if (auto TargetNameOrErr = Symbol->getName()) 1097 TargetName = *TargetNameOrErr; 1098 else 1099 return TargetNameOrErr.takeError(); 1100 } 1101 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend 1102 << " TargetName: " << TargetName << "\n"); 1103 RelocationValueRef Value; 1104 // First search for the symbol in the local symbol table 1105 SymbolRef::Type SymType = SymbolRef::ST_Unknown; 1106 1107 // Search for the symbol in the global symbol table 1108 RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end(); 1109 if (Symbol != Obj.symbol_end()) { 1110 gsi = GlobalSymbolTable.find(TargetName.data()); 1111 Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType(); 1112 if (!SymTypeOrErr) { 1113 std::string Buf; 1114 raw_string_ostream OS(Buf); 1115 logAllUnhandledErrors(SymTypeOrErr.takeError(), OS, ""); 1116 OS.flush(); 1117 report_fatal_error(Buf); 1118 } 1119 SymType = *SymTypeOrErr; 1120 } 1121 if (gsi != GlobalSymbolTable.end()) { 1122 const auto &SymInfo = gsi->second; 1123 Value.SectionID = SymInfo.getSectionID(); 1124 Value.Offset = SymInfo.getOffset(); 1125 Value.Addend = SymInfo.getOffset() + Addend; 1126 } else { 1127 switch (SymType) { 1128 case SymbolRef::ST_Debug: { 1129 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously 1130 // and can be changed by another developers. Maybe best way is add 1131 // a new symbol type ST_Section to SymbolRef and use it. 1132 auto SectionOrErr = Symbol->getSection(); 1133 if (!SectionOrErr) { 1134 std::string Buf; 1135 raw_string_ostream OS(Buf); 1136 logAllUnhandledErrors(SectionOrErr.takeError(), OS, ""); 1137 OS.flush(); 1138 report_fatal_error(Buf); 1139 } 1140 section_iterator si = *SectionOrErr; 1141 if (si == Obj.section_end()) 1142 llvm_unreachable("Symbol section not found, bad object file format!"); 1143 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n"); 1144 bool isCode = si->isText(); 1145 if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode, 1146 ObjSectionToID)) 1147 Value.SectionID = *SectionIDOrErr; 1148 else 1149 return SectionIDOrErr.takeError(); 1150 Value.Addend = Addend; 1151 break; 1152 } 1153 case SymbolRef::ST_Data: 1154 case SymbolRef::ST_Function: 1155 case SymbolRef::ST_Unknown: { 1156 Value.SymbolName = TargetName.data(); 1157 Value.Addend = Addend; 1158 1159 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which 1160 // will manifest here as a NULL symbol name. 1161 // We can set this as a valid (but empty) symbol name, and rely 1162 // on addRelocationForSymbol to handle this. 1163 if (!Value.SymbolName) 1164 Value.SymbolName = ""; 1165 break; 1166 } 1167 default: 1168 llvm_unreachable("Unresolved symbol type!"); 1169 break; 1170 } 1171 } 1172 1173 uint64_t Offset = RelI->getOffset(); 1174 1175 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset 1176 << "\n"); 1177 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) { 1178 if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) { 1179 resolveAArch64Branch(SectionID, Value, RelI, Stubs); 1180 } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) { 1181 // Craete new GOT entry or find existing one. If GOT entry is 1182 // to be created, then we also emit ABS64 relocation for it. 1183 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64); 1184 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, 1185 ELF::R_AARCH64_ADR_PREL_PG_HI21); 1186 1187 } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) { 1188 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64); 1189 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, 1190 ELF::R_AARCH64_LDST64_ABS_LO12_NC); 1191 } else { 1192 processSimpleRelocation(SectionID, Offset, RelType, Value); 1193 } 1194 } else if (Arch == Triple::arm) { 1195 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL || 1196 RelType == ELF::R_ARM_JUMP24) { 1197 // This is an ARM branch relocation, need to use a stub function. 1198 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n"); 1199 SectionEntry &Section = Sections[SectionID]; 1200 1201 // Look for an existing stub. 1202 StubMap::const_iterator i = Stubs.find(Value); 1203 if (i != Stubs.end()) { 1204 resolveRelocation( 1205 Section, Offset, 1206 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)), 1207 RelType, 0); 1208 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1209 } else { 1210 // Create a new stub function. 1211 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1212 Stubs[Value] = Section.getStubOffset(); 1213 uint8_t *StubTargetAddr = createStubFunction( 1214 Section.getAddressWithOffset(Section.getStubOffset())); 1215 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), 1216 ELF::R_ARM_ABS32, Value.Addend); 1217 if (Value.SymbolName) 1218 addRelocationForSymbol(RE, Value.SymbolName); 1219 else 1220 addRelocationForSection(RE, Value.SectionID); 1221 1222 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>( 1223 Section.getAddressWithOffset( 1224 Section.getStubOffset())), 1225 RelType, 0); 1226 Section.advanceStubOffset(getMaxStubSize()); 1227 } 1228 } else { 1229 uint32_t *Placeholder = 1230 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset)); 1231 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 || 1232 RelType == ELF::R_ARM_ABS32) { 1233 Value.Addend += *Placeholder; 1234 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) { 1235 // See ELF for ARM documentation 1236 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12)); 1237 } 1238 processSimpleRelocation(SectionID, Offset, RelType, Value); 1239 } 1240 } else if (IsMipsO32ABI) { 1241 uint8_t *Placeholder = reinterpret_cast<uint8_t *>( 1242 computePlaceholderAddress(SectionID, Offset)); 1243 uint32_t Opcode = readBytesUnaligned(Placeholder, 4); 1244 if (RelType == ELF::R_MIPS_26) { 1245 // This is an Mips branch relocation, need to use a stub function. 1246 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation."); 1247 SectionEntry &Section = Sections[SectionID]; 1248 1249 // Extract the addend from the instruction. 1250 // We shift up by two since the Value will be down shifted again 1251 // when applying the relocation. 1252 uint32_t Addend = (Opcode & 0x03ffffff) << 2; 1253 1254 Value.Addend += Addend; 1255 1256 // Look up for existing stub. 1257 StubMap::const_iterator i = Stubs.find(Value); 1258 if (i != Stubs.end()) { 1259 RelocationEntry RE(SectionID, Offset, RelType, i->second); 1260 addRelocationForSection(RE, SectionID); 1261 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1262 } else { 1263 // Create a new stub function. 1264 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1265 Stubs[Value] = Section.getStubOffset(); 1266 1267 unsigned AbiVariant = Obj.getPlatformFlags(); 1268 1269 uint8_t *StubTargetAddr = createStubFunction( 1270 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant); 1271 1272 // Creating Hi and Lo relocations for the filled stub instructions. 1273 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(), 1274 ELF::R_MIPS_HI16, Value.Addend); 1275 RelocationEntry RELo(SectionID, 1276 StubTargetAddr - Section.getAddress() + 4, 1277 ELF::R_MIPS_LO16, Value.Addend); 1278 1279 if (Value.SymbolName) { 1280 addRelocationForSymbol(REHi, Value.SymbolName); 1281 addRelocationForSymbol(RELo, Value.SymbolName); 1282 } else { 1283 addRelocationForSection(REHi, Value.SectionID); 1284 addRelocationForSection(RELo, Value.SectionID); 1285 } 1286 1287 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset()); 1288 addRelocationForSection(RE, SectionID); 1289 Section.advanceStubOffset(getMaxStubSize()); 1290 } 1291 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) { 1292 int64_t Addend = (Opcode & 0x0000ffff) << 16; 1293 RelocationEntry RE(SectionID, Offset, RelType, Addend); 1294 PendingRelocs.push_back(std::make_pair(Value, RE)); 1295 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) { 1296 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff); 1297 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) { 1298 const RelocationValueRef &MatchingValue = I->first; 1299 RelocationEntry &Reloc = I->second; 1300 if (MatchingValue == Value && 1301 RelType == getMatchingLoRelocation(Reloc.RelType) && 1302 SectionID == Reloc.SectionID) { 1303 Reloc.Addend += Addend; 1304 if (Value.SymbolName) 1305 addRelocationForSymbol(Reloc, Value.SymbolName); 1306 else 1307 addRelocationForSection(Reloc, Value.SectionID); 1308 I = PendingRelocs.erase(I); 1309 } else 1310 ++I; 1311 } 1312 RelocationEntry RE(SectionID, Offset, RelType, Addend); 1313 if (Value.SymbolName) 1314 addRelocationForSymbol(RE, Value.SymbolName); 1315 else 1316 addRelocationForSection(RE, Value.SectionID); 1317 } else { 1318 if (RelType == ELF::R_MIPS_32) 1319 Value.Addend += Opcode; 1320 else if (RelType == ELF::R_MIPS_PC16) 1321 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2); 1322 else if (RelType == ELF::R_MIPS_PC19_S2) 1323 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2); 1324 else if (RelType == ELF::R_MIPS_PC21_S2) 1325 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2); 1326 else if (RelType == ELF::R_MIPS_PC26_S2) 1327 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2); 1328 processSimpleRelocation(SectionID, Offset, RelType, Value); 1329 } 1330 } else if (IsMipsN32ABI || IsMipsN64ABI) { 1331 uint32_t r_type = RelType & 0xff; 1332 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1333 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE 1334 || r_type == ELF::R_MIPS_GOT_DISP) { 1335 StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName); 1336 if (i != GOTSymbolOffsets.end()) 1337 RE.SymOffset = i->second; 1338 else { 1339 RE.SymOffset = allocateGOTEntries(1); 1340 GOTSymbolOffsets[TargetName] = RE.SymOffset; 1341 } 1342 if (Value.SymbolName) 1343 addRelocationForSymbol(RE, Value.SymbolName); 1344 else 1345 addRelocationForSection(RE, Value.SectionID); 1346 } else if (RelType == ELF::R_MIPS_26) { 1347 // This is an Mips branch relocation, need to use a stub function. 1348 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation."); 1349 SectionEntry &Section = Sections[SectionID]; 1350 1351 // Look up for existing stub. 1352 StubMap::const_iterator i = Stubs.find(Value); 1353 if (i != Stubs.end()) { 1354 RelocationEntry RE(SectionID, Offset, RelType, i->second); 1355 addRelocationForSection(RE, SectionID); 1356 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1357 } else { 1358 // Create a new stub function. 1359 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1360 Stubs[Value] = Section.getStubOffset(); 1361 1362 unsigned AbiVariant = Obj.getPlatformFlags(); 1363 1364 uint8_t *StubTargetAddr = createStubFunction( 1365 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant); 1366 1367 if (IsMipsN32ABI) { 1368 // Creating Hi and Lo relocations for the filled stub instructions. 1369 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(), 1370 ELF::R_MIPS_HI16, Value.Addend); 1371 RelocationEntry RELo(SectionID, 1372 StubTargetAddr - Section.getAddress() + 4, 1373 ELF::R_MIPS_LO16, Value.Addend); 1374 if (Value.SymbolName) { 1375 addRelocationForSymbol(REHi, Value.SymbolName); 1376 addRelocationForSymbol(RELo, Value.SymbolName); 1377 } else { 1378 addRelocationForSection(REHi, Value.SectionID); 1379 addRelocationForSection(RELo, Value.SectionID); 1380 } 1381 } else { 1382 // Creating Highest, Higher, Hi and Lo relocations for the filled stub 1383 // instructions. 1384 RelocationEntry REHighest(SectionID, 1385 StubTargetAddr - Section.getAddress(), 1386 ELF::R_MIPS_HIGHEST, Value.Addend); 1387 RelocationEntry REHigher(SectionID, 1388 StubTargetAddr - Section.getAddress() + 4, 1389 ELF::R_MIPS_HIGHER, Value.Addend); 1390 RelocationEntry REHi(SectionID, 1391 StubTargetAddr - Section.getAddress() + 12, 1392 ELF::R_MIPS_HI16, Value.Addend); 1393 RelocationEntry RELo(SectionID, 1394 StubTargetAddr - Section.getAddress() + 20, 1395 ELF::R_MIPS_LO16, Value.Addend); 1396 if (Value.SymbolName) { 1397 addRelocationForSymbol(REHighest, Value.SymbolName); 1398 addRelocationForSymbol(REHigher, Value.SymbolName); 1399 addRelocationForSymbol(REHi, Value.SymbolName); 1400 addRelocationForSymbol(RELo, Value.SymbolName); 1401 } else { 1402 addRelocationForSection(REHighest, Value.SectionID); 1403 addRelocationForSection(REHigher, Value.SectionID); 1404 addRelocationForSection(REHi, Value.SectionID); 1405 addRelocationForSection(RELo, Value.SectionID); 1406 } 1407 } 1408 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset()); 1409 addRelocationForSection(RE, SectionID); 1410 Section.advanceStubOffset(getMaxStubSize()); 1411 } 1412 } else { 1413 processSimpleRelocation(SectionID, Offset, RelType, Value); 1414 } 1415 1416 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 1417 if (RelType == ELF::R_PPC64_REL24) { 1418 // Determine ABI variant in use for this object. 1419 unsigned AbiVariant = Obj.getPlatformFlags(); 1420 AbiVariant &= ELF::EF_PPC64_ABI; 1421 // A PPC branch relocation will need a stub function if the target is 1422 // an external symbol (either Value.SymbolName is set, or SymType is 1423 // Symbol::ST_Unknown) or if the target address is not within the 1424 // signed 24-bits branch address. 1425 SectionEntry &Section = Sections[SectionID]; 1426 uint8_t *Target = Section.getAddressWithOffset(Offset); 1427 bool RangeOverflow = false; 1428 bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown; 1429 if (!IsExtern) { 1430 if (AbiVariant != 2) { 1431 // In the ELFv1 ABI, a function call may point to the .opd entry, 1432 // so the final symbol value is calculated based on the relocation 1433 // values in the .opd section. 1434 if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value)) 1435 return std::move(Err); 1436 } else { 1437 // In the ELFv2 ABI, a function symbol may provide a local entry 1438 // point, which must be used for direct calls. 1439 if (Value.SectionID == SectionID){ 1440 uint8_t SymOther = Symbol->getOther(); 1441 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther); 1442 } 1443 } 1444 uint8_t *RelocTarget = 1445 Sections[Value.SectionID].getAddressWithOffset(Value.Addend); 1446 int64_t delta = static_cast<int64_t>(Target - RelocTarget); 1447 // If it is within 26-bits branch range, just set the branch target 1448 if (SignExtend64<26>(delta) != delta) { 1449 RangeOverflow = true; 1450 } else if ((AbiVariant != 2) || 1451 (AbiVariant == 2 && Value.SectionID == SectionID)) { 1452 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1453 addRelocationForSection(RE, Value.SectionID); 1454 } 1455 } 1456 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) || 1457 RangeOverflow) { 1458 // It is an external symbol (either Value.SymbolName is set, or 1459 // SymType is SymbolRef::ST_Unknown) or out of range. 1460 StubMap::const_iterator i = Stubs.find(Value); 1461 if (i != Stubs.end()) { 1462 // Symbol function stub already created, just relocate to it 1463 resolveRelocation(Section, Offset, 1464 reinterpret_cast<uint64_t>( 1465 Section.getAddressWithOffset(i->second)), 1466 RelType, 0); 1467 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1468 } else { 1469 // Create a new stub function. 1470 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1471 Stubs[Value] = Section.getStubOffset(); 1472 uint8_t *StubTargetAddr = createStubFunction( 1473 Section.getAddressWithOffset(Section.getStubOffset()), 1474 AbiVariant); 1475 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), 1476 ELF::R_PPC64_ADDR64, Value.Addend); 1477 1478 // Generates the 64-bits address loads as exemplified in section 1479 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to 1480 // apply to the low part of the instructions, so we have to update 1481 // the offset according to the target endianness. 1482 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress(); 1483 if (!IsTargetLittleEndian) 1484 StubRelocOffset += 2; 1485 1486 RelocationEntry REhst(SectionID, StubRelocOffset + 0, 1487 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend); 1488 RelocationEntry REhr(SectionID, StubRelocOffset + 4, 1489 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend); 1490 RelocationEntry REh(SectionID, StubRelocOffset + 12, 1491 ELF::R_PPC64_ADDR16_HI, Value.Addend); 1492 RelocationEntry REl(SectionID, StubRelocOffset + 16, 1493 ELF::R_PPC64_ADDR16_LO, Value.Addend); 1494 1495 if (Value.SymbolName) { 1496 addRelocationForSymbol(REhst, Value.SymbolName); 1497 addRelocationForSymbol(REhr, Value.SymbolName); 1498 addRelocationForSymbol(REh, Value.SymbolName); 1499 addRelocationForSymbol(REl, Value.SymbolName); 1500 } else { 1501 addRelocationForSection(REhst, Value.SectionID); 1502 addRelocationForSection(REhr, Value.SectionID); 1503 addRelocationForSection(REh, Value.SectionID); 1504 addRelocationForSection(REl, Value.SectionID); 1505 } 1506 1507 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>( 1508 Section.getAddressWithOffset( 1509 Section.getStubOffset())), 1510 RelType, 0); 1511 Section.advanceStubOffset(getMaxStubSize()); 1512 } 1513 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) { 1514 // Restore the TOC for external calls 1515 if (AbiVariant == 2) 1516 writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1) 1517 else 1518 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1) 1519 } 1520 } 1521 } else if (RelType == ELF::R_PPC64_TOC16 || 1522 RelType == ELF::R_PPC64_TOC16_DS || 1523 RelType == ELF::R_PPC64_TOC16_LO || 1524 RelType == ELF::R_PPC64_TOC16_LO_DS || 1525 RelType == ELF::R_PPC64_TOC16_HI || 1526 RelType == ELF::R_PPC64_TOC16_HA) { 1527 // These relocations are supposed to subtract the TOC address from 1528 // the final value. This does not fit cleanly into the RuntimeDyld 1529 // scheme, since there may be *two* sections involved in determining 1530 // the relocation value (the section of the symbol referred to by the 1531 // relocation, and the TOC section associated with the current module). 1532 // 1533 // Fortunately, these relocations are currently only ever generated 1534 // referring to symbols that themselves reside in the TOC, which means 1535 // that the two sections are actually the same. Thus they cancel out 1536 // and we can immediately resolve the relocation right now. 1537 switch (RelType) { 1538 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break; 1539 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break; 1540 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break; 1541 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break; 1542 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break; 1543 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break; 1544 default: llvm_unreachable("Wrong relocation type."); 1545 } 1546 1547 RelocationValueRef TOCValue; 1548 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue)) 1549 return std::move(Err); 1550 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID) 1551 llvm_unreachable("Unsupported TOC relocation."); 1552 Value.Addend -= TOCValue.Addend; 1553 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0); 1554 } else { 1555 // There are two ways to refer to the TOC address directly: either 1556 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are 1557 // ignored), or via any relocation that refers to the magic ".TOC." 1558 // symbols (in which case the addend is respected). 1559 if (RelType == ELF::R_PPC64_TOC) { 1560 RelType = ELF::R_PPC64_ADDR64; 1561 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value)) 1562 return std::move(Err); 1563 } else if (TargetName == ".TOC.") { 1564 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value)) 1565 return std::move(Err); 1566 Value.Addend += Addend; 1567 } 1568 1569 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1570 1571 if (Value.SymbolName) 1572 addRelocationForSymbol(RE, Value.SymbolName); 1573 else 1574 addRelocationForSection(RE, Value.SectionID); 1575 } 1576 } else if (Arch == Triple::systemz && 1577 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) { 1578 // Create function stubs for both PLT and GOT references, regardless of 1579 // whether the GOT reference is to data or code. The stub contains the 1580 // full address of the symbol, as needed by GOT references, and the 1581 // executable part only adds an overhead of 8 bytes. 1582 // 1583 // We could try to conserve space by allocating the code and data 1584 // parts of the stub separately. However, as things stand, we allocate 1585 // a stub for every relocation, so using a GOT in JIT code should be 1586 // no less space efficient than using an explicit constant pool. 1587 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation."); 1588 SectionEntry &Section = Sections[SectionID]; 1589 1590 // Look for an existing stub. 1591 StubMap::const_iterator i = Stubs.find(Value); 1592 uintptr_t StubAddress; 1593 if (i != Stubs.end()) { 1594 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second)); 1595 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1596 } else { 1597 // Create a new stub function. 1598 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1599 1600 uintptr_t BaseAddress = uintptr_t(Section.getAddress()); 1601 uintptr_t StubAlignment = getStubAlignment(); 1602 StubAddress = 1603 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) & 1604 -StubAlignment; 1605 unsigned StubOffset = StubAddress - BaseAddress; 1606 1607 Stubs[Value] = StubOffset; 1608 createStubFunction((uint8_t *)StubAddress); 1609 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64, 1610 Value.Offset); 1611 if (Value.SymbolName) 1612 addRelocationForSymbol(RE, Value.SymbolName); 1613 else 1614 addRelocationForSection(RE, Value.SectionID); 1615 Section.advanceStubOffset(getMaxStubSize()); 1616 } 1617 1618 if (RelType == ELF::R_390_GOTENT) 1619 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL, 1620 Addend); 1621 else 1622 resolveRelocation(Section, Offset, StubAddress, RelType, Addend); 1623 } else if (Arch == Triple::x86_64) { 1624 if (RelType == ELF::R_X86_64_PLT32) { 1625 // The way the PLT relocations normally work is that the linker allocates 1626 // the 1627 // PLT and this relocation makes a PC-relative call into the PLT. The PLT 1628 // entry will then jump to an address provided by the GOT. On first call, 1629 // the 1630 // GOT address will point back into PLT code that resolves the symbol. After 1631 // the first call, the GOT entry points to the actual function. 1632 // 1633 // For local functions we're ignoring all of that here and just replacing 1634 // the PLT32 relocation type with PC32, which will translate the relocation 1635 // into a PC-relative call directly to the function. For external symbols we 1636 // can't be sure the function will be within 2^32 bytes of the call site, so 1637 // we need to create a stub, which calls into the GOT. This case is 1638 // equivalent to the usual PLT implementation except that we use the stub 1639 // mechanism in RuntimeDyld (which puts stubs at the end of the section) 1640 // rather than allocating a PLT section. 1641 if (Value.SymbolName) { 1642 // This is a call to an external function. 1643 // Look for an existing stub. 1644 SectionEntry &Section = Sections[SectionID]; 1645 StubMap::const_iterator i = Stubs.find(Value); 1646 uintptr_t StubAddress; 1647 if (i != Stubs.end()) { 1648 StubAddress = uintptr_t(Section.getAddress()) + i->second; 1649 LLVM_DEBUG(dbgs() << " Stub function found\n"); 1650 } else { 1651 // Create a new stub function (equivalent to a PLT entry). 1652 LLVM_DEBUG(dbgs() << " Create a new stub function\n"); 1653 1654 uintptr_t BaseAddress = uintptr_t(Section.getAddress()); 1655 uintptr_t StubAlignment = getStubAlignment(); 1656 StubAddress = 1657 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) & 1658 -StubAlignment; 1659 unsigned StubOffset = StubAddress - BaseAddress; 1660 Stubs[Value] = StubOffset; 1661 createStubFunction((uint8_t *)StubAddress); 1662 1663 // Bump our stub offset counter 1664 Section.advanceStubOffset(getMaxStubSize()); 1665 1666 // Allocate a GOT Entry 1667 uint64_t GOTOffset = allocateGOTEntries(1); 1668 1669 // The load of the GOT address has an addend of -4 1670 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4, 1671 ELF::R_X86_64_PC32); 1672 1673 // Fill in the value of the symbol we're targeting into the GOT 1674 addRelocationForSymbol( 1675 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64), 1676 Value.SymbolName); 1677 } 1678 1679 // Make the target call a call into the stub table. 1680 resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32, 1681 Addend); 1682 } else { 1683 RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend, 1684 Value.Offset); 1685 addRelocationForSection(RE, Value.SectionID); 1686 } 1687 } else if (RelType == ELF::R_X86_64_GOTPCREL || 1688 RelType == ELF::R_X86_64_GOTPCRELX || 1689 RelType == ELF::R_X86_64_REX_GOTPCRELX) { 1690 uint64_t GOTOffset = allocateGOTEntries(1); 1691 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, 1692 ELF::R_X86_64_PC32); 1693 1694 // Fill in the value of the symbol we're targeting into the GOT 1695 RelocationEntry RE = 1696 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64); 1697 if (Value.SymbolName) 1698 addRelocationForSymbol(RE, Value.SymbolName); 1699 else 1700 addRelocationForSection(RE, Value.SectionID); 1701 } else if (RelType == ELF::R_X86_64_PC32) { 1702 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset)); 1703 processSimpleRelocation(SectionID, Offset, RelType, Value); 1704 } else if (RelType == ELF::R_X86_64_PC64) { 1705 Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset)); 1706 processSimpleRelocation(SectionID, Offset, RelType, Value); 1707 } else { 1708 processSimpleRelocation(SectionID, Offset, RelType, Value); 1709 } 1710 } else { 1711 if (Arch == Triple::x86) { 1712 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset)); 1713 } 1714 processSimpleRelocation(SectionID, Offset, RelType, Value); 1715 } 1716 return ++RelI; 1717 } 1718 1719 size_t RuntimeDyldELF::getGOTEntrySize() { 1720 // We don't use the GOT in all of these cases, but it's essentially free 1721 // to put them all here. 1722 size_t Result = 0; 1723 switch (Arch) { 1724 case Triple::x86_64: 1725 case Triple::aarch64: 1726 case Triple::aarch64_be: 1727 case Triple::ppc64: 1728 case Triple::ppc64le: 1729 case Triple::systemz: 1730 Result = sizeof(uint64_t); 1731 break; 1732 case Triple::x86: 1733 case Triple::arm: 1734 case Triple::thumb: 1735 Result = sizeof(uint32_t); 1736 break; 1737 case Triple::mips: 1738 case Triple::mipsel: 1739 case Triple::mips64: 1740 case Triple::mips64el: 1741 if (IsMipsO32ABI || IsMipsN32ABI) 1742 Result = sizeof(uint32_t); 1743 else if (IsMipsN64ABI) 1744 Result = sizeof(uint64_t); 1745 else 1746 llvm_unreachable("Mips ABI not handled"); 1747 break; 1748 default: 1749 llvm_unreachable("Unsupported CPU type!"); 1750 } 1751 return Result; 1752 } 1753 1754 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) { 1755 if (GOTSectionID == 0) { 1756 GOTSectionID = Sections.size(); 1757 // Reserve a section id. We'll allocate the section later 1758 // once we know the total size 1759 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0)); 1760 } 1761 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize(); 1762 CurrentGOTIndex += no; 1763 return StartOffset; 1764 } 1765 1766 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value, 1767 unsigned GOTRelType) { 1768 auto E = GOTOffsetMap.insert({Value, 0}); 1769 if (E.second) { 1770 uint64_t GOTOffset = allocateGOTEntries(1); 1771 1772 // Create relocation for newly created GOT entry 1773 RelocationEntry RE = 1774 computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType); 1775 if (Value.SymbolName) 1776 addRelocationForSymbol(RE, Value.SymbolName); 1777 else 1778 addRelocationForSection(RE, Value.SectionID); 1779 1780 E.first->second = GOTOffset; 1781 } 1782 1783 return E.first->second; 1784 } 1785 1786 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, 1787 uint64_t Offset, 1788 uint64_t GOTOffset, 1789 uint32_t Type) { 1790 // Fill in the relative address of the GOT Entry into the stub 1791 RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset); 1792 addRelocationForSection(GOTRE, GOTSectionID); 1793 } 1794 1795 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset, 1796 uint64_t SymbolOffset, 1797 uint32_t Type) { 1798 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset); 1799 } 1800 1801 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj, 1802 ObjSectionToIDMap &SectionMap) { 1803 if (IsMipsO32ABI) 1804 if (!PendingRelocs.empty()) 1805 return make_error<RuntimeDyldError>("Can't find matching LO16 reloc"); 1806 1807 // If necessary, allocate the global offset table 1808 if (GOTSectionID != 0) { 1809 // Allocate memory for the section 1810 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize(); 1811 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(), 1812 GOTSectionID, ".got", false); 1813 if (!Addr) 1814 return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!"); 1815 1816 Sections[GOTSectionID] = 1817 SectionEntry(".got", Addr, TotalSize, TotalSize, 0); 1818 1819 if (Checker) 1820 Checker->registerSection(Obj.getFileName(), GOTSectionID); 1821 1822 // For now, initialize all GOT entries to zero. We'll fill them in as 1823 // needed when GOT-based relocations are applied. 1824 memset(Addr, 0, TotalSize); 1825 if (IsMipsN32ABI || IsMipsN64ABI) { 1826 // To correctly resolve Mips GOT relocations, we need a mapping from 1827 // object's sections to GOTs. 1828 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 1829 SI != SE; ++SI) { 1830 if (SI->relocation_begin() != SI->relocation_end()) { 1831 section_iterator RelocatedSection = SI->getRelocatedSection(); 1832 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection); 1833 assert (i != SectionMap.end()); 1834 SectionToGOTMap[i->second] = GOTSectionID; 1835 } 1836 } 1837 GOTSymbolOffsets.clear(); 1838 } 1839 } 1840 1841 // Look for and record the EH frame section. 1842 ObjSectionToIDMap::iterator i, e; 1843 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) { 1844 const SectionRef &Section = i->first; 1845 StringRef Name; 1846 Section.getName(Name); 1847 if (Name == ".eh_frame") { 1848 UnregisteredEHFrameSections.push_back(i->second); 1849 break; 1850 } 1851 } 1852 1853 GOTSectionID = 0; 1854 CurrentGOTIndex = 0; 1855 1856 return Error::success(); 1857 } 1858 1859 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const { 1860 return Obj.isELF(); 1861 } 1862 1863 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const { 1864 unsigned RelTy = R.getType(); 1865 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) 1866 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE || 1867 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC; 1868 1869 if (Arch == Triple::x86_64) 1870 return RelTy == ELF::R_X86_64_GOTPCREL || 1871 RelTy == ELF::R_X86_64_GOTPCRELX || 1872 RelTy == ELF::R_X86_64_REX_GOTPCRELX; 1873 return false; 1874 } 1875 1876 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const { 1877 if (Arch != Triple::x86_64) 1878 return true; // Conservative answer 1879 1880 switch (R.getType()) { 1881 default: 1882 return true; // Conservative answer 1883 1884 1885 case ELF::R_X86_64_GOTPCREL: 1886 case ELF::R_X86_64_GOTPCRELX: 1887 case ELF::R_X86_64_REX_GOTPCRELX: 1888 case ELF::R_X86_64_PC32: 1889 case ELF::R_X86_64_PC64: 1890 case ELF::R_X86_64_64: 1891 // We know that these reloation types won't need a stub function. This list 1892 // can be extended as needed. 1893 return false; 1894 } 1895 } 1896 1897 } // namespace llvm 1898