1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RuntimeDyldELF.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "Targets/RuntimeDyldELFMips.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/BinaryFormat/ELF.h"
21 #include "llvm/Object/ELFObjectFile.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/MemoryBuffer.h"
25 
26 using namespace llvm;
27 using namespace llvm::object;
28 using namespace llvm::support::endian;
29 
30 #define DEBUG_TYPE "dyld"
31 
32 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
33 
34 static void or32AArch64Imm(void *L, uint64_t Imm) {
35   or32le(L, (Imm & 0xFFF) << 10);
36 }
37 
38 template <class T> static void write(bool isBE, void *P, T V) {
39   isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
40 }
41 
42 static void write32AArch64Addr(void *L, uint64_t Imm) {
43   uint32_t ImmLo = (Imm & 0x3) << 29;
44   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
45   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
46   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
47 }
48 
49 // Return the bits [Start, End] from Val shifted Start bits.
50 // For instance, getBits(0xF0, 4, 8) returns 0xF.
51 static uint64_t getBits(uint64_t Val, int Start, int End) {
52   uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
53   return (Val >> Start) & Mask;
54 }
55 
56 namespace {
57 
58 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
59   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
60 
61   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
62   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
63   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
64   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
65 
66   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
67 
68   typedef typename ELFT::uint addr_type;
69 
70   DyldELFObject(ELFObjectFile<ELFT> &&Obj);
71 
72 public:
73   static Expected<std::unique_ptr<DyldELFObject>>
74   create(MemoryBufferRef Wrapper);
75 
76   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
77 
78   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
79 
80   // Methods for type inquiry through isa, cast and dyn_cast
81   static bool classof(const Binary *v) {
82     return (isa<ELFObjectFile<ELFT>>(v) &&
83             classof(cast<ELFObjectFile<ELFT>>(v)));
84   }
85   static bool classof(const ELFObjectFile<ELFT> *v) {
86     return v->isDyldType();
87   }
88 };
89 
90 
91 
92 // The MemoryBuffer passed into this constructor is just a wrapper around the
93 // actual memory.  Ultimately, the Binary parent class will take ownership of
94 // this MemoryBuffer object but not the underlying memory.
95 template <class ELFT>
96 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
97     : ELFObjectFile<ELFT>(std::move(Obj)) {
98   this->isDyldELFObject = true;
99 }
100 
101 template <class ELFT>
102 Expected<std::unique_ptr<DyldELFObject<ELFT>>>
103 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
104   auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
105   if (auto E = Obj.takeError())
106     return std::move(E);
107   std::unique_ptr<DyldELFObject<ELFT>> Ret(
108       new DyldELFObject<ELFT>(std::move(*Obj)));
109   return std::move(Ret);
110 }
111 
112 template <class ELFT>
113 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
114                                                uint64_t Addr) {
115   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
116   Elf_Shdr *shdr =
117       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
118 
119   // This assumes the address passed in matches the target address bitness
120   // The template-based type cast handles everything else.
121   shdr->sh_addr = static_cast<addr_type>(Addr);
122 }
123 
124 template <class ELFT>
125 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
126                                               uint64_t Addr) {
127 
128   Elf_Sym *sym = const_cast<Elf_Sym *>(
129       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
130 
131   // This assumes the address passed in matches the target address bitness
132   // The template-based type cast handles everything else.
133   sym->st_value = static_cast<addr_type>(Addr);
134 }
135 
136 class LoadedELFObjectInfo final
137     : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
138                                     RuntimeDyld::LoadedObjectInfo> {
139 public:
140   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
141       : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
142 
143   OwningBinary<ObjectFile>
144   getObjectForDebug(const ObjectFile &Obj) const override;
145 };
146 
147 template <typename ELFT>
148 static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
149 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
150                       const LoadedELFObjectInfo &L) {
151   typedef typename ELFT::Shdr Elf_Shdr;
152   typedef typename ELFT::uint addr_type;
153 
154   Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
155       DyldELFObject<ELFT>::create(Buffer);
156   if (Error E = ObjOrErr.takeError())
157     return std::move(E);
158 
159   std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
160 
161   // Iterate over all sections in the object.
162   auto SI = SourceObject.section_begin();
163   for (const auto &Sec : Obj->sections()) {
164     StringRef SectionName;
165     Sec.getName(SectionName);
166     if (SectionName != "") {
167       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
168       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
169           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
170 
171       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
172         // This assumes that the address passed in matches the target address
173         // bitness. The template-based type cast handles everything else.
174         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
175       }
176     }
177     ++SI;
178   }
179 
180   return std::move(Obj);
181 }
182 
183 static OwningBinary<ObjectFile>
184 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
185   assert(Obj.isELF() && "Not an ELF object file.");
186 
187   std::unique_ptr<MemoryBuffer> Buffer =
188     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
189 
190   Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
191   handleAllErrors(DebugObj.takeError());
192   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
193     DebugObj =
194         createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
195   else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
196     DebugObj =
197         createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
198   else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
199     DebugObj =
200         createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
201   else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
202     DebugObj =
203         createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
204   else
205     llvm_unreachable("Unexpected ELF format");
206 
207   handleAllErrors(DebugObj.takeError());
208   return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
209 }
210 
211 OwningBinary<ObjectFile>
212 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
213   return createELFDebugObject(Obj, *this);
214 }
215 
216 } // anonymous namespace
217 
218 namespace llvm {
219 
220 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
221                                JITSymbolResolver &Resolver)
222     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
223 RuntimeDyldELF::~RuntimeDyldELF() {}
224 
225 void RuntimeDyldELF::registerEHFrames() {
226   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
227     SID EHFrameSID = UnregisteredEHFrameSections[i];
228     uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
229     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
230     size_t EHFrameSize = Sections[EHFrameSID].getSize();
231     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
232   }
233   UnregisteredEHFrameSections.clear();
234 }
235 
236 std::unique_ptr<RuntimeDyldELF>
237 llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
238                              RuntimeDyld::MemoryManager &MemMgr,
239                              JITSymbolResolver &Resolver) {
240   switch (Arch) {
241   default:
242     return make_unique<RuntimeDyldELF>(MemMgr, Resolver);
243   case Triple::mips:
244   case Triple::mipsel:
245   case Triple::mips64:
246   case Triple::mips64el:
247     return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
248   }
249 }
250 
251 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
252 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
253   if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
254     return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
255   else {
256     HasError = true;
257     raw_string_ostream ErrStream(ErrorStr);
258     logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream, "");
259     return nullptr;
260   }
261 }
262 
263 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
264                                              uint64_t Offset, uint64_t Value,
265                                              uint32_t Type, int64_t Addend,
266                                              uint64_t SymOffset) {
267   switch (Type) {
268   default:
269     llvm_unreachable("Relocation type not implemented yet!");
270     break;
271   case ELF::R_X86_64_NONE:
272     break;
273   case ELF::R_X86_64_64: {
274     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
275         Value + Addend;
276     LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
277                       << format("%p\n", Section.getAddressWithOffset(Offset)));
278     break;
279   }
280   case ELF::R_X86_64_32:
281   case ELF::R_X86_64_32S: {
282     Value += Addend;
283     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
284            (Type == ELF::R_X86_64_32S &&
285             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
286     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
287     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
288         TruncatedAddr;
289     LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
290                       << format("%p\n", Section.getAddressWithOffset(Offset)));
291     break;
292   }
293   case ELF::R_X86_64_PC8: {
294     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
295     int64_t RealOffset = Value + Addend - FinalAddress;
296     assert(isInt<8>(RealOffset));
297     int8_t TruncOffset = (RealOffset & 0xFF);
298     Section.getAddress()[Offset] = TruncOffset;
299     break;
300   }
301   case ELF::R_X86_64_PC32: {
302     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
303     int64_t RealOffset = Value + Addend - FinalAddress;
304     assert(isInt<32>(RealOffset));
305     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
306     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
307         TruncOffset;
308     break;
309   }
310   case ELF::R_X86_64_PC64: {
311     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
312     int64_t RealOffset = Value + Addend - FinalAddress;
313     support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
314         RealOffset;
315     break;
316   }
317   }
318 }
319 
320 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
321                                           uint64_t Offset, uint32_t Value,
322                                           uint32_t Type, int32_t Addend) {
323   switch (Type) {
324   case ELF::R_386_32: {
325     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
326         Value + Addend;
327     break;
328   }
329   // Handle R_386_PLT32 like R_386_PC32 since it should be able to
330   // reach any 32 bit address.
331   case ELF::R_386_PLT32:
332   case ELF::R_386_PC32: {
333     uint32_t FinalAddress =
334         Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
335     uint32_t RealOffset = Value + Addend - FinalAddress;
336     support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
337         RealOffset;
338     break;
339   }
340   default:
341     // There are other relocation types, but it appears these are the
342     // only ones currently used by the LLVM ELF object writer
343     llvm_unreachable("Relocation type not implemented yet!");
344     break;
345   }
346 }
347 
348 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
349                                               uint64_t Offset, uint64_t Value,
350                                               uint32_t Type, int64_t Addend) {
351   uint32_t *TargetPtr =
352       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
353   uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
354   // Data should use target endian. Code should always use little endian.
355   bool isBE = Arch == Triple::aarch64_be;
356 
357   LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
358                     << format("%llx", Section.getAddressWithOffset(Offset))
359                     << " FinalAddress: 0x" << format("%llx", FinalAddress)
360                     << " Value: 0x" << format("%llx", Value) << " Type: 0x"
361                     << format("%x", Type) << " Addend: 0x"
362                     << format("%llx", Addend) << "\n");
363 
364   switch (Type) {
365   default:
366     llvm_unreachable("Relocation type not implemented yet!");
367     break;
368   case ELF::R_AARCH64_ABS16: {
369     uint64_t Result = Value + Addend;
370     assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
371     write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
372     break;
373   }
374   case ELF::R_AARCH64_ABS32: {
375     uint64_t Result = Value + Addend;
376     assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
377     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
378     break;
379   }
380   case ELF::R_AARCH64_ABS64:
381     write(isBE, TargetPtr, Value + Addend);
382     break;
383   case ELF::R_AARCH64_PREL32: {
384     uint64_t Result = Value + Addend - FinalAddress;
385     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
386            static_cast<int64_t>(Result) <= UINT32_MAX);
387     write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
388     break;
389   }
390   case ELF::R_AARCH64_PREL64:
391     write(isBE, TargetPtr, Value + Addend - FinalAddress);
392     break;
393   case ELF::R_AARCH64_CALL26: // fallthrough
394   case ELF::R_AARCH64_JUMP26: {
395     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
396     // calculation.
397     uint64_t BranchImm = Value + Addend - FinalAddress;
398 
399     // "Check that -2^27 <= result < 2^27".
400     assert(isInt<28>(BranchImm));
401     or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
402     break;
403   }
404   case ELF::R_AARCH64_MOVW_UABS_G3:
405     or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
406     break;
407   case ELF::R_AARCH64_MOVW_UABS_G2_NC:
408     or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
409     break;
410   case ELF::R_AARCH64_MOVW_UABS_G1_NC:
411     or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
412     break;
413   case ELF::R_AARCH64_MOVW_UABS_G0_NC:
414     or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
415     break;
416   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
417     // Operation: Page(S+A) - Page(P)
418     uint64_t Result =
419         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
420 
421     // Check that -2^32 <= X < 2^32
422     assert(isInt<33>(Result) && "overflow check failed for relocation");
423 
424     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
425     // from bits 32:12 of X.
426     write32AArch64Addr(TargetPtr, Result >> 12);
427     break;
428   }
429   case ELF::R_AARCH64_ADD_ABS_LO12_NC:
430     // Operation: S + A
431     // Immediate goes in bits 21:10 of LD/ST instruction, taken
432     // from bits 11:0 of X
433     or32AArch64Imm(TargetPtr, Value + Addend);
434     break;
435   case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
436     // Operation: S + A
437     // Immediate goes in bits 21:10 of LD/ST instruction, taken
438     // from bits 11:0 of X
439     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
440     break;
441   case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
442     // Operation: S + A
443     // Immediate goes in bits 21:10 of LD/ST instruction, taken
444     // from bits 11:1 of X
445     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
446     break;
447   case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
448     // Operation: S + A
449     // Immediate goes in bits 21:10 of LD/ST instruction, taken
450     // from bits 11:2 of X
451     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
452     break;
453   case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
454     // Operation: S + A
455     // Immediate goes in bits 21:10 of LD/ST instruction, taken
456     // from bits 11:3 of X
457     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
458     break;
459   case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
460     // Operation: S + A
461     // Immediate goes in bits 21:10 of LD/ST instruction, taken
462     // from bits 11:4 of X
463     or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
464     break;
465   }
466 }
467 
468 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
469                                           uint64_t Offset, uint32_t Value,
470                                           uint32_t Type, int32_t Addend) {
471   // TODO: Add Thumb relocations.
472   uint32_t *TargetPtr =
473       reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
474   uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
475   Value += Addend;
476 
477   LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
478                     << Section.getAddressWithOffset(Offset)
479                     << " FinalAddress: " << format("%p", FinalAddress)
480                     << " Value: " << format("%x", Value)
481                     << " Type: " << format("%x", Type)
482                     << " Addend: " << format("%x", Addend) << "\n");
483 
484   switch (Type) {
485   default:
486     llvm_unreachable("Not implemented relocation type!");
487 
488   case ELF::R_ARM_NONE:
489     break;
490     // Write a 31bit signed offset
491   case ELF::R_ARM_PREL31:
492     support::ulittle32_t::ref{TargetPtr} =
493         (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
494         ((Value - FinalAddress) & ~0x80000000);
495     break;
496   case ELF::R_ARM_TARGET1:
497   case ELF::R_ARM_ABS32:
498     support::ulittle32_t::ref{TargetPtr} = Value;
499     break;
500     // Write first 16 bit of 32 bit value to the mov instruction.
501     // Last 4 bit should be shifted.
502   case ELF::R_ARM_MOVW_ABS_NC:
503   case ELF::R_ARM_MOVT_ABS:
504     if (Type == ELF::R_ARM_MOVW_ABS_NC)
505       Value = Value & 0xFFFF;
506     else if (Type == ELF::R_ARM_MOVT_ABS)
507       Value = (Value >> 16) & 0xFFFF;
508     support::ulittle32_t::ref{TargetPtr} =
509         (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
510         (((Value >> 12) & 0xF) << 16);
511     break;
512     // Write 24 bit relative value to the branch instruction.
513   case ELF::R_ARM_PC24: // Fall through.
514   case ELF::R_ARM_CALL: // Fall through.
515   case ELF::R_ARM_JUMP24:
516     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
517     RelValue = (RelValue & 0x03FFFFFC) >> 2;
518     assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
519     support::ulittle32_t::ref{TargetPtr} =
520         (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
521     break;
522   }
523 }
524 
525 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
526   if (Arch == Triple::UnknownArch ||
527       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
528     IsMipsO32ABI = false;
529     IsMipsN32ABI = false;
530     IsMipsN64ABI = false;
531     return;
532   }
533   if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
534     unsigned AbiVariant = E->getPlatformFlags();
535     IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
536     IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
537   }
538   IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
539 }
540 
541 // Return the .TOC. section and offset.
542 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
543                                           ObjSectionToIDMap &LocalSections,
544                                           RelocationValueRef &Rel) {
545   // Set a default SectionID in case we do not find a TOC section below.
546   // This may happen for references to TOC base base (sym@toc, .odp
547   // relocation) without a .toc directive.  In this case just use the
548   // first section (which is usually the .odp) since the code won't
549   // reference the .toc base directly.
550   Rel.SymbolName = nullptr;
551   Rel.SectionID = 0;
552 
553   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
554   // order. The TOC starts where the first of these sections starts.
555   for (auto &Section: Obj.sections()) {
556     StringRef SectionName;
557     if (auto EC = Section.getName(SectionName))
558       return errorCodeToError(EC);
559 
560     if (SectionName == ".got"
561         || SectionName == ".toc"
562         || SectionName == ".tocbss"
563         || SectionName == ".plt") {
564       if (auto SectionIDOrErr =
565             findOrEmitSection(Obj, Section, false, LocalSections))
566         Rel.SectionID = *SectionIDOrErr;
567       else
568         return SectionIDOrErr.takeError();
569       break;
570     }
571   }
572 
573   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
574   // thus permitting a full 64 Kbytes segment.
575   Rel.Addend = 0x8000;
576 
577   return Error::success();
578 }
579 
580 // Returns the sections and offset associated with the ODP entry referenced
581 // by Symbol.
582 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
583                                           ObjSectionToIDMap &LocalSections,
584                                           RelocationValueRef &Rel) {
585   // Get the ELF symbol value (st_value) to compare with Relocation offset in
586   // .opd entries
587   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
588        si != se; ++si) {
589     section_iterator RelSecI = si->getRelocatedSection();
590     if (RelSecI == Obj.section_end())
591       continue;
592 
593     StringRef RelSectionName;
594     if (auto EC = RelSecI->getName(RelSectionName))
595       return errorCodeToError(EC);
596 
597     if (RelSectionName != ".opd")
598       continue;
599 
600     for (elf_relocation_iterator i = si->relocation_begin(),
601                                  e = si->relocation_end();
602          i != e;) {
603       // The R_PPC64_ADDR64 relocation indicates the first field
604       // of a .opd entry
605       uint64_t TypeFunc = i->getType();
606       if (TypeFunc != ELF::R_PPC64_ADDR64) {
607         ++i;
608         continue;
609       }
610 
611       uint64_t TargetSymbolOffset = i->getOffset();
612       symbol_iterator TargetSymbol = i->getSymbol();
613       int64_t Addend;
614       if (auto AddendOrErr = i->getAddend())
615         Addend = *AddendOrErr;
616       else
617         return AddendOrErr.takeError();
618 
619       ++i;
620       if (i == e)
621         break;
622 
623       // Just check if following relocation is a R_PPC64_TOC
624       uint64_t TypeTOC = i->getType();
625       if (TypeTOC != ELF::R_PPC64_TOC)
626         continue;
627 
628       // Finally compares the Symbol value and the target symbol offset
629       // to check if this .opd entry refers to the symbol the relocation
630       // points to.
631       if (Rel.Addend != (int64_t)TargetSymbolOffset)
632         continue;
633 
634       section_iterator TSI = Obj.section_end();
635       if (auto TSIOrErr = TargetSymbol->getSection())
636         TSI = *TSIOrErr;
637       else
638         return TSIOrErr.takeError();
639       assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
640 
641       bool IsCode = TSI->isText();
642       if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
643                                                   LocalSections))
644         Rel.SectionID = *SectionIDOrErr;
645       else
646         return SectionIDOrErr.takeError();
647       Rel.Addend = (intptr_t)Addend;
648       return Error::success();
649     }
650   }
651   llvm_unreachable("Attempting to get address of ODP entry!");
652 }
653 
654 // Relocation masks following the #lo(value), #hi(value), #ha(value),
655 // #higher(value), #highera(value), #highest(value), and #highesta(value)
656 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
657 // document.
658 
659 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
660 
661 static inline uint16_t applyPPChi(uint64_t value) {
662   return (value >> 16) & 0xffff;
663 }
664 
665 static inline uint16_t applyPPCha (uint64_t value) {
666   return ((value + 0x8000) >> 16) & 0xffff;
667 }
668 
669 static inline uint16_t applyPPChigher(uint64_t value) {
670   return (value >> 32) & 0xffff;
671 }
672 
673 static inline uint16_t applyPPChighera (uint64_t value) {
674   return ((value + 0x8000) >> 32) & 0xffff;
675 }
676 
677 static inline uint16_t applyPPChighest(uint64_t value) {
678   return (value >> 48) & 0xffff;
679 }
680 
681 static inline uint16_t applyPPChighesta (uint64_t value) {
682   return ((value + 0x8000) >> 48) & 0xffff;
683 }
684 
685 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
686                                             uint64_t Offset, uint64_t Value,
687                                             uint32_t Type, int64_t Addend) {
688   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
689   switch (Type) {
690   default:
691     llvm_unreachable("Relocation type not implemented yet!");
692     break;
693   case ELF::R_PPC_ADDR16_LO:
694     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
695     break;
696   case ELF::R_PPC_ADDR16_HI:
697     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
698     break;
699   case ELF::R_PPC_ADDR16_HA:
700     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
701     break;
702   }
703 }
704 
705 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
706                                             uint64_t Offset, uint64_t Value,
707                                             uint32_t Type, int64_t Addend) {
708   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
709   switch (Type) {
710   default:
711     llvm_unreachable("Relocation type not implemented yet!");
712     break;
713   case ELF::R_PPC64_ADDR16:
714     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
715     break;
716   case ELF::R_PPC64_ADDR16_DS:
717     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
718     break;
719   case ELF::R_PPC64_ADDR16_LO:
720     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
721     break;
722   case ELF::R_PPC64_ADDR16_LO_DS:
723     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
724     break;
725   case ELF::R_PPC64_ADDR16_HI:
726     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
727     break;
728   case ELF::R_PPC64_ADDR16_HA:
729     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
730     break;
731   case ELF::R_PPC64_ADDR16_HIGHER:
732     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
733     break;
734   case ELF::R_PPC64_ADDR16_HIGHERA:
735     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
736     break;
737   case ELF::R_PPC64_ADDR16_HIGHEST:
738     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
739     break;
740   case ELF::R_PPC64_ADDR16_HIGHESTA:
741     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
742     break;
743   case ELF::R_PPC64_ADDR14: {
744     assert(((Value + Addend) & 3) == 0);
745     // Preserve the AA/LK bits in the branch instruction
746     uint8_t aalk = *(LocalAddress + 3);
747     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
748   } break;
749   case ELF::R_PPC64_REL16_LO: {
750     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
751     uint64_t Delta = Value - FinalAddress + Addend;
752     writeInt16BE(LocalAddress, applyPPClo(Delta));
753   } break;
754   case ELF::R_PPC64_REL16_HI: {
755     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
756     uint64_t Delta = Value - FinalAddress + Addend;
757     writeInt16BE(LocalAddress, applyPPChi(Delta));
758   } break;
759   case ELF::R_PPC64_REL16_HA: {
760     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
761     uint64_t Delta = Value - FinalAddress + Addend;
762     writeInt16BE(LocalAddress, applyPPCha(Delta));
763   } break;
764   case ELF::R_PPC64_ADDR32: {
765     int64_t Result = static_cast<int64_t>(Value + Addend);
766     if (SignExtend64<32>(Result) != Result)
767       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
768     writeInt32BE(LocalAddress, Result);
769   } break;
770   case ELF::R_PPC64_REL24: {
771     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
772     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
773     if (SignExtend64<26>(delta) != delta)
774       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
775     // We preserve bits other than LI field, i.e. PO and AA/LK fields.
776     uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
777     writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
778   } break;
779   case ELF::R_PPC64_REL32: {
780     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
781     int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
782     if (SignExtend64<32>(delta) != delta)
783       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
784     writeInt32BE(LocalAddress, delta);
785   } break;
786   case ELF::R_PPC64_REL64: {
787     uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
788     uint64_t Delta = Value - FinalAddress + Addend;
789     writeInt64BE(LocalAddress, Delta);
790   } break;
791   case ELF::R_PPC64_ADDR64:
792     writeInt64BE(LocalAddress, Value + Addend);
793     break;
794   }
795 }
796 
797 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
798                                               uint64_t Offset, uint64_t Value,
799                                               uint32_t Type, int64_t Addend) {
800   uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
801   switch (Type) {
802   default:
803     llvm_unreachable("Relocation type not implemented yet!");
804     break;
805   case ELF::R_390_PC16DBL:
806   case ELF::R_390_PLT16DBL: {
807     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
808     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
809     writeInt16BE(LocalAddress, Delta / 2);
810     break;
811   }
812   case ELF::R_390_PC32DBL:
813   case ELF::R_390_PLT32DBL: {
814     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
815     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
816     writeInt32BE(LocalAddress, Delta / 2);
817     break;
818   }
819   case ELF::R_390_PC16: {
820     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
821     assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
822     writeInt16BE(LocalAddress, Delta);
823     break;
824   }
825   case ELF::R_390_PC32: {
826     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
827     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
828     writeInt32BE(LocalAddress, Delta);
829     break;
830   }
831   case ELF::R_390_PC64: {
832     int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
833     writeInt64BE(LocalAddress, Delta);
834     break;
835   }
836   case ELF::R_390_8:
837     *LocalAddress = (uint8_t)(Value + Addend);
838     break;
839   case ELF::R_390_16:
840     writeInt16BE(LocalAddress, Value + Addend);
841     break;
842   case ELF::R_390_32:
843     writeInt32BE(LocalAddress, Value + Addend);
844     break;
845   case ELF::R_390_64:
846     writeInt64BE(LocalAddress, Value + Addend);
847     break;
848   }
849 }
850 
851 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
852                                           uint64_t Offset, uint64_t Value,
853                                           uint32_t Type, int64_t Addend) {
854   bool isBE = Arch == Triple::bpfeb;
855 
856   switch (Type) {
857   default:
858     llvm_unreachable("Relocation type not implemented yet!");
859     break;
860   case ELF::R_BPF_NONE:
861     break;
862   case ELF::R_BPF_64_64: {
863     write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
864     LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
865                       << format("%p\n", Section.getAddressWithOffset(Offset)));
866     break;
867   }
868   case ELF::R_BPF_64_32: {
869     Value += Addend;
870     assert(Value <= UINT32_MAX);
871     write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
872     LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
873                       << format("%p\n", Section.getAddressWithOffset(Offset)));
874     break;
875   }
876   }
877 }
878 
879 // The target location for the relocation is described by RE.SectionID and
880 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
881 // SectionEntry has three members describing its location.
882 // SectionEntry::Address is the address at which the section has been loaded
883 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
884 // address that the section will have in the target process.
885 // SectionEntry::ObjAddress is the address of the bits for this section in the
886 // original emitted object image (also in the current address space).
887 //
888 // Relocations will be applied as if the section were loaded at
889 // SectionEntry::LoadAddress, but they will be applied at an address based
890 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
891 // Target memory contents if they are required for value calculations.
892 //
893 // The Value parameter here is the load address of the symbol for the
894 // relocation to be applied.  For relocations which refer to symbols in the
895 // current object Value will be the LoadAddress of the section in which
896 // the symbol resides (RE.Addend provides additional information about the
897 // symbol location).  For external symbols, Value will be the address of the
898 // symbol in the target address space.
899 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
900                                        uint64_t Value) {
901   const SectionEntry &Section = Sections[RE.SectionID];
902   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
903                            RE.SymOffset, RE.SectionID);
904 }
905 
906 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
907                                        uint64_t Offset, uint64_t Value,
908                                        uint32_t Type, int64_t Addend,
909                                        uint64_t SymOffset, SID SectionID) {
910   switch (Arch) {
911   case Triple::x86_64:
912     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
913     break;
914   case Triple::x86:
915     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
916                          (uint32_t)(Addend & 0xffffffffL));
917     break;
918   case Triple::aarch64:
919   case Triple::aarch64_be:
920     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
921     break;
922   case Triple::arm: // Fall through.
923   case Triple::armeb:
924   case Triple::thumb:
925   case Triple::thumbeb:
926     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
927                          (uint32_t)(Addend & 0xffffffffL));
928     break;
929   case Triple::ppc:
930     resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
931     break;
932   case Triple::ppc64: // Fall through.
933   case Triple::ppc64le:
934     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
935     break;
936   case Triple::systemz:
937     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
938     break;
939   case Triple::bpfel:
940   case Triple::bpfeb:
941     resolveBPFRelocation(Section, Offset, Value, Type, Addend);
942     break;
943   default:
944     llvm_unreachable("Unsupported CPU type!");
945   }
946 }
947 
948 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
949   return (void *)(Sections[SectionID].getObjAddress() + Offset);
950 }
951 
952 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
953   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
954   if (Value.SymbolName)
955     addRelocationForSymbol(RE, Value.SymbolName);
956   else
957     addRelocationForSection(RE, Value.SectionID);
958 }
959 
960 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
961                                                  bool IsLocal) const {
962   switch (RelType) {
963   case ELF::R_MICROMIPS_GOT16:
964     if (IsLocal)
965       return ELF::R_MICROMIPS_LO16;
966     break;
967   case ELF::R_MICROMIPS_HI16:
968     return ELF::R_MICROMIPS_LO16;
969   case ELF::R_MIPS_GOT16:
970     if (IsLocal)
971       return ELF::R_MIPS_LO16;
972     break;
973   case ELF::R_MIPS_HI16:
974     return ELF::R_MIPS_LO16;
975   case ELF::R_MIPS_PCHI16:
976     return ELF::R_MIPS_PCLO16;
977   default:
978     break;
979   }
980   return ELF::R_MIPS_NONE;
981 }
982 
983 // Sometimes we don't need to create thunk for a branch.
984 // This typically happens when branch target is located
985 // in the same object file. In such case target is either
986 // a weak symbol or symbol in a different executable section.
987 // This function checks if branch target is located in the
988 // same object file and if distance between source and target
989 // fits R_AARCH64_CALL26 relocation. If both conditions are
990 // met, it emits direct jump to the target and returns true.
991 // Otherwise false is returned and thunk is created.
992 bool RuntimeDyldELF::resolveAArch64ShortBranch(
993     unsigned SectionID, relocation_iterator RelI,
994     const RelocationValueRef &Value) {
995   uint64_t Address;
996   if (Value.SymbolName) {
997     auto Loc = GlobalSymbolTable.find(Value.SymbolName);
998 
999     // Don't create direct branch for external symbols.
1000     if (Loc == GlobalSymbolTable.end())
1001       return false;
1002 
1003     const auto &SymInfo = Loc->second;
1004     Address =
1005         uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1006             SymInfo.getOffset()));
1007   } else {
1008     Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1009   }
1010   uint64_t Offset = RelI->getOffset();
1011   uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1012 
1013   // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1014   // If distance between source and target is out of range then we should
1015   // create thunk.
1016   if (!isInt<28>(Address + Value.Addend - SourceAddress))
1017     return false;
1018 
1019   resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1020                     Value.Addend);
1021 
1022   return true;
1023 }
1024 
1025 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1026                                           const RelocationValueRef &Value,
1027                                           relocation_iterator RelI,
1028                                           StubMap &Stubs) {
1029 
1030   LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1031   SectionEntry &Section = Sections[SectionID];
1032 
1033   uint64_t Offset = RelI->getOffset();
1034   unsigned RelType = RelI->getType();
1035   // Look for an existing stub.
1036   StubMap::const_iterator i = Stubs.find(Value);
1037   if (i != Stubs.end()) {
1038     resolveRelocation(Section, Offset,
1039                       (uint64_t)Section.getAddressWithOffset(i->second),
1040                       RelType, 0);
1041     LLVM_DEBUG(dbgs() << " Stub function found\n");
1042   } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1043     // Create a new stub function.
1044     LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1045     Stubs[Value] = Section.getStubOffset();
1046     uint8_t *StubTargetAddr = createStubFunction(
1047         Section.getAddressWithOffset(Section.getStubOffset()));
1048 
1049     RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1050                               ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1051     RelocationEntry REmovk_g2(SectionID,
1052                               StubTargetAddr - Section.getAddress() + 4,
1053                               ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1054     RelocationEntry REmovk_g1(SectionID,
1055                               StubTargetAddr - Section.getAddress() + 8,
1056                               ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1057     RelocationEntry REmovk_g0(SectionID,
1058                               StubTargetAddr - Section.getAddress() + 12,
1059                               ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1060 
1061     if (Value.SymbolName) {
1062       addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1063       addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1064       addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1065       addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1066     } else {
1067       addRelocationForSection(REmovz_g3, Value.SectionID);
1068       addRelocationForSection(REmovk_g2, Value.SectionID);
1069       addRelocationForSection(REmovk_g1, Value.SectionID);
1070       addRelocationForSection(REmovk_g0, Value.SectionID);
1071     }
1072     resolveRelocation(Section, Offset,
1073                       reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1074                           Section.getStubOffset())),
1075                       RelType, 0);
1076     Section.advanceStubOffset(getMaxStubSize());
1077   }
1078 }
1079 
1080 Expected<relocation_iterator>
1081 RuntimeDyldELF::processRelocationRef(
1082     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1083     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1084   const auto &Obj = cast<ELFObjectFileBase>(O);
1085   uint64_t RelType = RelI->getType();
1086   int64_t Addend = 0;
1087   if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1088     Addend = *AddendOrErr;
1089   else
1090     consumeError(AddendOrErr.takeError());
1091   elf_symbol_iterator Symbol = RelI->getSymbol();
1092 
1093   // Obtain the symbol name which is referenced in the relocation
1094   StringRef TargetName;
1095   if (Symbol != Obj.symbol_end()) {
1096     if (auto TargetNameOrErr = Symbol->getName())
1097       TargetName = *TargetNameOrErr;
1098     else
1099       return TargetNameOrErr.takeError();
1100   }
1101   LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1102                     << " TargetName: " << TargetName << "\n");
1103   RelocationValueRef Value;
1104   // First search for the symbol in the local symbol table
1105   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1106 
1107   // Search for the symbol in the global symbol table
1108   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1109   if (Symbol != Obj.symbol_end()) {
1110     gsi = GlobalSymbolTable.find(TargetName.data());
1111     Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1112     if (!SymTypeOrErr) {
1113       std::string Buf;
1114       raw_string_ostream OS(Buf);
1115       logAllUnhandledErrors(SymTypeOrErr.takeError(), OS, "");
1116       OS.flush();
1117       report_fatal_error(Buf);
1118     }
1119     SymType = *SymTypeOrErr;
1120   }
1121   if (gsi != GlobalSymbolTable.end()) {
1122     const auto &SymInfo = gsi->second;
1123     Value.SectionID = SymInfo.getSectionID();
1124     Value.Offset = SymInfo.getOffset();
1125     Value.Addend = SymInfo.getOffset() + Addend;
1126   } else {
1127     switch (SymType) {
1128     case SymbolRef::ST_Debug: {
1129       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1130       // and can be changed by another developers. Maybe best way is add
1131       // a new symbol type ST_Section to SymbolRef and use it.
1132       auto SectionOrErr = Symbol->getSection();
1133       if (!SectionOrErr) {
1134         std::string Buf;
1135         raw_string_ostream OS(Buf);
1136         logAllUnhandledErrors(SectionOrErr.takeError(), OS, "");
1137         OS.flush();
1138         report_fatal_error(Buf);
1139       }
1140       section_iterator si = *SectionOrErr;
1141       if (si == Obj.section_end())
1142         llvm_unreachable("Symbol section not found, bad object file format!");
1143       LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1144       bool isCode = si->isText();
1145       if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1146                                                   ObjSectionToID))
1147         Value.SectionID = *SectionIDOrErr;
1148       else
1149         return SectionIDOrErr.takeError();
1150       Value.Addend = Addend;
1151       break;
1152     }
1153     case SymbolRef::ST_Data:
1154     case SymbolRef::ST_Function:
1155     case SymbolRef::ST_Unknown: {
1156       Value.SymbolName = TargetName.data();
1157       Value.Addend = Addend;
1158 
1159       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1160       // will manifest here as a NULL symbol name.
1161       // We can set this as a valid (but empty) symbol name, and rely
1162       // on addRelocationForSymbol to handle this.
1163       if (!Value.SymbolName)
1164         Value.SymbolName = "";
1165       break;
1166     }
1167     default:
1168       llvm_unreachable("Unresolved symbol type!");
1169       break;
1170     }
1171   }
1172 
1173   uint64_t Offset = RelI->getOffset();
1174 
1175   LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1176                     << "\n");
1177   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1178     if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) {
1179       resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1180     } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1181       // Craete new GOT entry or find existing one. If GOT entry is
1182       // to be created, then we also emit ABS64 relocation for it.
1183       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1184       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1185                                  ELF::R_AARCH64_ADR_PREL_PG_HI21);
1186 
1187     } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1188       uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1189       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1190                                  ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1191     } else {
1192       processSimpleRelocation(SectionID, Offset, RelType, Value);
1193     }
1194   } else if (Arch == Triple::arm) {
1195     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1196       RelType == ELF::R_ARM_JUMP24) {
1197       // This is an ARM branch relocation, need to use a stub function.
1198       LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1199       SectionEntry &Section = Sections[SectionID];
1200 
1201       // Look for an existing stub.
1202       StubMap::const_iterator i = Stubs.find(Value);
1203       if (i != Stubs.end()) {
1204         resolveRelocation(
1205             Section, Offset,
1206             reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1207             RelType, 0);
1208         LLVM_DEBUG(dbgs() << " Stub function found\n");
1209       } else {
1210         // Create a new stub function.
1211         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1212         Stubs[Value] = Section.getStubOffset();
1213         uint8_t *StubTargetAddr = createStubFunction(
1214             Section.getAddressWithOffset(Section.getStubOffset()));
1215         RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1216                            ELF::R_ARM_ABS32, Value.Addend);
1217         if (Value.SymbolName)
1218           addRelocationForSymbol(RE, Value.SymbolName);
1219         else
1220           addRelocationForSection(RE, Value.SectionID);
1221 
1222         resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1223                                                Section.getAddressWithOffset(
1224                                                    Section.getStubOffset())),
1225                           RelType, 0);
1226         Section.advanceStubOffset(getMaxStubSize());
1227       }
1228     } else {
1229       uint32_t *Placeholder =
1230         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1231       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1232           RelType == ELF::R_ARM_ABS32) {
1233         Value.Addend += *Placeholder;
1234       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1235         // See ELF for ARM documentation
1236         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1237       }
1238       processSimpleRelocation(SectionID, Offset, RelType, Value);
1239     }
1240   } else if (IsMipsO32ABI) {
1241     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1242         computePlaceholderAddress(SectionID, Offset));
1243     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1244     if (RelType == ELF::R_MIPS_26) {
1245       // This is an Mips branch relocation, need to use a stub function.
1246       LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1247       SectionEntry &Section = Sections[SectionID];
1248 
1249       // Extract the addend from the instruction.
1250       // We shift up by two since the Value will be down shifted again
1251       // when applying the relocation.
1252       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1253 
1254       Value.Addend += Addend;
1255 
1256       //  Look up for existing stub.
1257       StubMap::const_iterator i = Stubs.find(Value);
1258       if (i != Stubs.end()) {
1259         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1260         addRelocationForSection(RE, SectionID);
1261         LLVM_DEBUG(dbgs() << " Stub function found\n");
1262       } else {
1263         // Create a new stub function.
1264         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1265         Stubs[Value] = Section.getStubOffset();
1266 
1267         unsigned AbiVariant = Obj.getPlatformFlags();
1268 
1269         uint8_t *StubTargetAddr = createStubFunction(
1270             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1271 
1272         // Creating Hi and Lo relocations for the filled stub instructions.
1273         RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1274                              ELF::R_MIPS_HI16, Value.Addend);
1275         RelocationEntry RELo(SectionID,
1276                              StubTargetAddr - Section.getAddress() + 4,
1277                              ELF::R_MIPS_LO16, Value.Addend);
1278 
1279         if (Value.SymbolName) {
1280           addRelocationForSymbol(REHi, Value.SymbolName);
1281           addRelocationForSymbol(RELo, Value.SymbolName);
1282         } else {
1283           addRelocationForSection(REHi, Value.SectionID);
1284           addRelocationForSection(RELo, Value.SectionID);
1285         }
1286 
1287         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1288         addRelocationForSection(RE, SectionID);
1289         Section.advanceStubOffset(getMaxStubSize());
1290       }
1291     } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1292       int64_t Addend = (Opcode & 0x0000ffff) << 16;
1293       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1294       PendingRelocs.push_back(std::make_pair(Value, RE));
1295     } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1296       int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1297       for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1298         const RelocationValueRef &MatchingValue = I->first;
1299         RelocationEntry &Reloc = I->second;
1300         if (MatchingValue == Value &&
1301             RelType == getMatchingLoRelocation(Reloc.RelType) &&
1302             SectionID == Reloc.SectionID) {
1303           Reloc.Addend += Addend;
1304           if (Value.SymbolName)
1305             addRelocationForSymbol(Reloc, Value.SymbolName);
1306           else
1307             addRelocationForSection(Reloc, Value.SectionID);
1308           I = PendingRelocs.erase(I);
1309         } else
1310           ++I;
1311       }
1312       RelocationEntry RE(SectionID, Offset, RelType, Addend);
1313       if (Value.SymbolName)
1314         addRelocationForSymbol(RE, Value.SymbolName);
1315       else
1316         addRelocationForSection(RE, Value.SectionID);
1317     } else {
1318       if (RelType == ELF::R_MIPS_32)
1319         Value.Addend += Opcode;
1320       else if (RelType == ELF::R_MIPS_PC16)
1321         Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1322       else if (RelType == ELF::R_MIPS_PC19_S2)
1323         Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1324       else if (RelType == ELF::R_MIPS_PC21_S2)
1325         Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1326       else if (RelType == ELF::R_MIPS_PC26_S2)
1327         Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1328       processSimpleRelocation(SectionID, Offset, RelType, Value);
1329     }
1330   } else if (IsMipsN32ABI || IsMipsN64ABI) {
1331     uint32_t r_type = RelType & 0xff;
1332     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1333     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1334         || r_type == ELF::R_MIPS_GOT_DISP) {
1335       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1336       if (i != GOTSymbolOffsets.end())
1337         RE.SymOffset = i->second;
1338       else {
1339         RE.SymOffset = allocateGOTEntries(1);
1340         GOTSymbolOffsets[TargetName] = RE.SymOffset;
1341       }
1342       if (Value.SymbolName)
1343         addRelocationForSymbol(RE, Value.SymbolName);
1344       else
1345         addRelocationForSection(RE, Value.SectionID);
1346     } else if (RelType == ELF::R_MIPS_26) {
1347       // This is an Mips branch relocation, need to use a stub function.
1348       LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1349       SectionEntry &Section = Sections[SectionID];
1350 
1351       //  Look up for existing stub.
1352       StubMap::const_iterator i = Stubs.find(Value);
1353       if (i != Stubs.end()) {
1354         RelocationEntry RE(SectionID, Offset, RelType, i->second);
1355         addRelocationForSection(RE, SectionID);
1356         LLVM_DEBUG(dbgs() << " Stub function found\n");
1357       } else {
1358         // Create a new stub function.
1359         LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1360         Stubs[Value] = Section.getStubOffset();
1361 
1362         unsigned AbiVariant = Obj.getPlatformFlags();
1363 
1364         uint8_t *StubTargetAddr = createStubFunction(
1365             Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1366 
1367         if (IsMipsN32ABI) {
1368           // Creating Hi and Lo relocations for the filled stub instructions.
1369           RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1370                                ELF::R_MIPS_HI16, Value.Addend);
1371           RelocationEntry RELo(SectionID,
1372                                StubTargetAddr - Section.getAddress() + 4,
1373                                ELF::R_MIPS_LO16, Value.Addend);
1374           if (Value.SymbolName) {
1375             addRelocationForSymbol(REHi, Value.SymbolName);
1376             addRelocationForSymbol(RELo, Value.SymbolName);
1377           } else {
1378             addRelocationForSection(REHi, Value.SectionID);
1379             addRelocationForSection(RELo, Value.SectionID);
1380           }
1381         } else {
1382           // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1383           // instructions.
1384           RelocationEntry REHighest(SectionID,
1385                                     StubTargetAddr - Section.getAddress(),
1386                                     ELF::R_MIPS_HIGHEST, Value.Addend);
1387           RelocationEntry REHigher(SectionID,
1388                                    StubTargetAddr - Section.getAddress() + 4,
1389                                    ELF::R_MIPS_HIGHER, Value.Addend);
1390           RelocationEntry REHi(SectionID,
1391                                StubTargetAddr - Section.getAddress() + 12,
1392                                ELF::R_MIPS_HI16, Value.Addend);
1393           RelocationEntry RELo(SectionID,
1394                                StubTargetAddr - Section.getAddress() + 20,
1395                                ELF::R_MIPS_LO16, Value.Addend);
1396           if (Value.SymbolName) {
1397             addRelocationForSymbol(REHighest, Value.SymbolName);
1398             addRelocationForSymbol(REHigher, Value.SymbolName);
1399             addRelocationForSymbol(REHi, Value.SymbolName);
1400             addRelocationForSymbol(RELo, Value.SymbolName);
1401           } else {
1402             addRelocationForSection(REHighest, Value.SectionID);
1403             addRelocationForSection(REHigher, Value.SectionID);
1404             addRelocationForSection(REHi, Value.SectionID);
1405             addRelocationForSection(RELo, Value.SectionID);
1406           }
1407         }
1408         RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1409         addRelocationForSection(RE, SectionID);
1410         Section.advanceStubOffset(getMaxStubSize());
1411       }
1412     } else {
1413       processSimpleRelocation(SectionID, Offset, RelType, Value);
1414     }
1415 
1416   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1417     if (RelType == ELF::R_PPC64_REL24) {
1418       // Determine ABI variant in use for this object.
1419       unsigned AbiVariant = Obj.getPlatformFlags();
1420       AbiVariant &= ELF::EF_PPC64_ABI;
1421       // A PPC branch relocation will need a stub function if the target is
1422       // an external symbol (either Value.SymbolName is set, or SymType is
1423       // Symbol::ST_Unknown) or if the target address is not within the
1424       // signed 24-bits branch address.
1425       SectionEntry &Section = Sections[SectionID];
1426       uint8_t *Target = Section.getAddressWithOffset(Offset);
1427       bool RangeOverflow = false;
1428       bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1429       if (!IsExtern) {
1430         if (AbiVariant != 2) {
1431           // In the ELFv1 ABI, a function call may point to the .opd entry,
1432           // so the final symbol value is calculated based on the relocation
1433           // values in the .opd section.
1434           if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1435             return std::move(Err);
1436         } else {
1437           // In the ELFv2 ABI, a function symbol may provide a local entry
1438           // point, which must be used for direct calls.
1439           if (Value.SectionID == SectionID){
1440             uint8_t SymOther = Symbol->getOther();
1441             Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1442           }
1443         }
1444         uint8_t *RelocTarget =
1445             Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1446         int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1447         // If it is within 26-bits branch range, just set the branch target
1448         if (SignExtend64<26>(delta) != delta) {
1449           RangeOverflow = true;
1450         } else if ((AbiVariant != 2) ||
1451                    (AbiVariant == 2  && Value.SectionID == SectionID)) {
1452           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1453           addRelocationForSection(RE, Value.SectionID);
1454         }
1455       }
1456       if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1457           RangeOverflow) {
1458         // It is an external symbol (either Value.SymbolName is set, or
1459         // SymType is SymbolRef::ST_Unknown) or out of range.
1460         StubMap::const_iterator i = Stubs.find(Value);
1461         if (i != Stubs.end()) {
1462           // Symbol function stub already created, just relocate to it
1463           resolveRelocation(Section, Offset,
1464                             reinterpret_cast<uint64_t>(
1465                                 Section.getAddressWithOffset(i->second)),
1466                             RelType, 0);
1467           LLVM_DEBUG(dbgs() << " Stub function found\n");
1468         } else {
1469           // Create a new stub function.
1470           LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1471           Stubs[Value] = Section.getStubOffset();
1472           uint8_t *StubTargetAddr = createStubFunction(
1473               Section.getAddressWithOffset(Section.getStubOffset()),
1474               AbiVariant);
1475           RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1476                              ELF::R_PPC64_ADDR64, Value.Addend);
1477 
1478           // Generates the 64-bits address loads as exemplified in section
1479           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1480           // apply to the low part of the instructions, so we have to update
1481           // the offset according to the target endianness.
1482           uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1483           if (!IsTargetLittleEndian)
1484             StubRelocOffset += 2;
1485 
1486           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1487                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1488           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1489                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1490           RelocationEntry REh(SectionID, StubRelocOffset + 12,
1491                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
1492           RelocationEntry REl(SectionID, StubRelocOffset + 16,
1493                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
1494 
1495           if (Value.SymbolName) {
1496             addRelocationForSymbol(REhst, Value.SymbolName);
1497             addRelocationForSymbol(REhr, Value.SymbolName);
1498             addRelocationForSymbol(REh, Value.SymbolName);
1499             addRelocationForSymbol(REl, Value.SymbolName);
1500           } else {
1501             addRelocationForSection(REhst, Value.SectionID);
1502             addRelocationForSection(REhr, Value.SectionID);
1503             addRelocationForSection(REh, Value.SectionID);
1504             addRelocationForSection(REl, Value.SectionID);
1505           }
1506 
1507           resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1508                                                  Section.getAddressWithOffset(
1509                                                      Section.getStubOffset())),
1510                             RelType, 0);
1511           Section.advanceStubOffset(getMaxStubSize());
1512         }
1513         if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1514           // Restore the TOC for external calls
1515           if (AbiVariant == 2)
1516             writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1517           else
1518             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1519         }
1520       }
1521     } else if (RelType == ELF::R_PPC64_TOC16 ||
1522                RelType == ELF::R_PPC64_TOC16_DS ||
1523                RelType == ELF::R_PPC64_TOC16_LO ||
1524                RelType == ELF::R_PPC64_TOC16_LO_DS ||
1525                RelType == ELF::R_PPC64_TOC16_HI ||
1526                RelType == ELF::R_PPC64_TOC16_HA) {
1527       // These relocations are supposed to subtract the TOC address from
1528       // the final value.  This does not fit cleanly into the RuntimeDyld
1529       // scheme, since there may be *two* sections involved in determining
1530       // the relocation value (the section of the symbol referred to by the
1531       // relocation, and the TOC section associated with the current module).
1532       //
1533       // Fortunately, these relocations are currently only ever generated
1534       // referring to symbols that themselves reside in the TOC, which means
1535       // that the two sections are actually the same.  Thus they cancel out
1536       // and we can immediately resolve the relocation right now.
1537       switch (RelType) {
1538       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1539       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1540       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1541       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1542       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1543       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1544       default: llvm_unreachable("Wrong relocation type.");
1545       }
1546 
1547       RelocationValueRef TOCValue;
1548       if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1549         return std::move(Err);
1550       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1551         llvm_unreachable("Unsupported TOC relocation.");
1552       Value.Addend -= TOCValue.Addend;
1553       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1554     } else {
1555       // There are two ways to refer to the TOC address directly: either
1556       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1557       // ignored), or via any relocation that refers to the magic ".TOC."
1558       // symbols (in which case the addend is respected).
1559       if (RelType == ELF::R_PPC64_TOC) {
1560         RelType = ELF::R_PPC64_ADDR64;
1561         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1562           return std::move(Err);
1563       } else if (TargetName == ".TOC.") {
1564         if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1565           return std::move(Err);
1566         Value.Addend += Addend;
1567       }
1568 
1569       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1570 
1571       if (Value.SymbolName)
1572         addRelocationForSymbol(RE, Value.SymbolName);
1573       else
1574         addRelocationForSection(RE, Value.SectionID);
1575     }
1576   } else if (Arch == Triple::systemz &&
1577              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1578     // Create function stubs for both PLT and GOT references, regardless of
1579     // whether the GOT reference is to data or code.  The stub contains the
1580     // full address of the symbol, as needed by GOT references, and the
1581     // executable part only adds an overhead of 8 bytes.
1582     //
1583     // We could try to conserve space by allocating the code and data
1584     // parts of the stub separately.  However, as things stand, we allocate
1585     // a stub for every relocation, so using a GOT in JIT code should be
1586     // no less space efficient than using an explicit constant pool.
1587     LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1588     SectionEntry &Section = Sections[SectionID];
1589 
1590     // Look for an existing stub.
1591     StubMap::const_iterator i = Stubs.find(Value);
1592     uintptr_t StubAddress;
1593     if (i != Stubs.end()) {
1594       StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1595       LLVM_DEBUG(dbgs() << " Stub function found\n");
1596     } else {
1597       // Create a new stub function.
1598       LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1599 
1600       uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1601       uintptr_t StubAlignment = getStubAlignment();
1602       StubAddress =
1603           (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1604           -StubAlignment;
1605       unsigned StubOffset = StubAddress - BaseAddress;
1606 
1607       Stubs[Value] = StubOffset;
1608       createStubFunction((uint8_t *)StubAddress);
1609       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1610                          Value.Offset);
1611       if (Value.SymbolName)
1612         addRelocationForSymbol(RE, Value.SymbolName);
1613       else
1614         addRelocationForSection(RE, Value.SectionID);
1615       Section.advanceStubOffset(getMaxStubSize());
1616     }
1617 
1618     if (RelType == ELF::R_390_GOTENT)
1619       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1620                         Addend);
1621     else
1622       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1623   } else if (Arch == Triple::x86_64) {
1624     if (RelType == ELF::R_X86_64_PLT32) {
1625       // The way the PLT relocations normally work is that the linker allocates
1626       // the
1627       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1628       // entry will then jump to an address provided by the GOT.  On first call,
1629       // the
1630       // GOT address will point back into PLT code that resolves the symbol. After
1631       // the first call, the GOT entry points to the actual function.
1632       //
1633       // For local functions we're ignoring all of that here and just replacing
1634       // the PLT32 relocation type with PC32, which will translate the relocation
1635       // into a PC-relative call directly to the function. For external symbols we
1636       // can't be sure the function will be within 2^32 bytes of the call site, so
1637       // we need to create a stub, which calls into the GOT.  This case is
1638       // equivalent to the usual PLT implementation except that we use the stub
1639       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1640       // rather than allocating a PLT section.
1641       if (Value.SymbolName) {
1642         // This is a call to an external function.
1643         // Look for an existing stub.
1644         SectionEntry &Section = Sections[SectionID];
1645         StubMap::const_iterator i = Stubs.find(Value);
1646         uintptr_t StubAddress;
1647         if (i != Stubs.end()) {
1648           StubAddress = uintptr_t(Section.getAddress()) + i->second;
1649           LLVM_DEBUG(dbgs() << " Stub function found\n");
1650         } else {
1651           // Create a new stub function (equivalent to a PLT entry).
1652           LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1653 
1654           uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1655           uintptr_t StubAlignment = getStubAlignment();
1656           StubAddress =
1657               (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1658               -StubAlignment;
1659           unsigned StubOffset = StubAddress - BaseAddress;
1660           Stubs[Value] = StubOffset;
1661           createStubFunction((uint8_t *)StubAddress);
1662 
1663           // Bump our stub offset counter
1664           Section.advanceStubOffset(getMaxStubSize());
1665 
1666           // Allocate a GOT Entry
1667           uint64_t GOTOffset = allocateGOTEntries(1);
1668 
1669           // The load of the GOT address has an addend of -4
1670           resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1671                                      ELF::R_X86_64_PC32);
1672 
1673           // Fill in the value of the symbol we're targeting into the GOT
1674           addRelocationForSymbol(
1675               computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1676               Value.SymbolName);
1677         }
1678 
1679         // Make the target call a call into the stub table.
1680         resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1681                           Addend);
1682       } else {
1683         RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1684                   Value.Offset);
1685         addRelocationForSection(RE, Value.SectionID);
1686       }
1687     } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1688                RelType == ELF::R_X86_64_GOTPCRELX ||
1689                RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1690       uint64_t GOTOffset = allocateGOTEntries(1);
1691       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1692                                  ELF::R_X86_64_PC32);
1693 
1694       // Fill in the value of the symbol we're targeting into the GOT
1695       RelocationEntry RE =
1696           computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1697       if (Value.SymbolName)
1698         addRelocationForSymbol(RE, Value.SymbolName);
1699       else
1700         addRelocationForSection(RE, Value.SectionID);
1701     } else if (RelType == ELF::R_X86_64_PC32) {
1702       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1703       processSimpleRelocation(SectionID, Offset, RelType, Value);
1704     } else if (RelType == ELF::R_X86_64_PC64) {
1705       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1706       processSimpleRelocation(SectionID, Offset, RelType, Value);
1707     } else {
1708       processSimpleRelocation(SectionID, Offset, RelType, Value);
1709     }
1710   } else {
1711     if (Arch == Triple::x86) {
1712       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1713     }
1714     processSimpleRelocation(SectionID, Offset, RelType, Value);
1715   }
1716   return ++RelI;
1717 }
1718 
1719 size_t RuntimeDyldELF::getGOTEntrySize() {
1720   // We don't use the GOT in all of these cases, but it's essentially free
1721   // to put them all here.
1722   size_t Result = 0;
1723   switch (Arch) {
1724   case Triple::x86_64:
1725   case Triple::aarch64:
1726   case Triple::aarch64_be:
1727   case Triple::ppc64:
1728   case Triple::ppc64le:
1729   case Triple::systemz:
1730     Result = sizeof(uint64_t);
1731     break;
1732   case Triple::x86:
1733   case Triple::arm:
1734   case Triple::thumb:
1735     Result = sizeof(uint32_t);
1736     break;
1737   case Triple::mips:
1738   case Triple::mipsel:
1739   case Triple::mips64:
1740   case Triple::mips64el:
1741     if (IsMipsO32ABI || IsMipsN32ABI)
1742       Result = sizeof(uint32_t);
1743     else if (IsMipsN64ABI)
1744       Result = sizeof(uint64_t);
1745     else
1746       llvm_unreachable("Mips ABI not handled");
1747     break;
1748   default:
1749     llvm_unreachable("Unsupported CPU type!");
1750   }
1751   return Result;
1752 }
1753 
1754 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
1755   if (GOTSectionID == 0) {
1756     GOTSectionID = Sections.size();
1757     // Reserve a section id. We'll allocate the section later
1758     // once we know the total size
1759     Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1760   }
1761   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1762   CurrentGOTIndex += no;
1763   return StartOffset;
1764 }
1765 
1766 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
1767                                              unsigned GOTRelType) {
1768   auto E = GOTOffsetMap.insert({Value, 0});
1769   if (E.second) {
1770     uint64_t GOTOffset = allocateGOTEntries(1);
1771 
1772     // Create relocation for newly created GOT entry
1773     RelocationEntry RE =
1774         computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
1775     if (Value.SymbolName)
1776       addRelocationForSymbol(RE, Value.SymbolName);
1777     else
1778       addRelocationForSection(RE, Value.SectionID);
1779 
1780     E.first->second = GOTOffset;
1781   }
1782 
1783   return E.first->second;
1784 }
1785 
1786 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
1787                                                 uint64_t Offset,
1788                                                 uint64_t GOTOffset,
1789                                                 uint32_t Type) {
1790   // Fill in the relative address of the GOT Entry into the stub
1791   RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
1792   addRelocationForSection(GOTRE, GOTSectionID);
1793 }
1794 
1795 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
1796                                                    uint64_t SymbolOffset,
1797                                                    uint32_t Type) {
1798   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1799 }
1800 
1801 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1802                                   ObjSectionToIDMap &SectionMap) {
1803   if (IsMipsO32ABI)
1804     if (!PendingRelocs.empty())
1805       return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
1806 
1807   // If necessary, allocate the global offset table
1808   if (GOTSectionID != 0) {
1809     // Allocate memory for the section
1810     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1811     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1812                                                 GOTSectionID, ".got", false);
1813     if (!Addr)
1814       return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
1815 
1816     Sections[GOTSectionID] =
1817         SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1818 
1819     if (Checker)
1820       Checker->registerSection(Obj.getFileName(), GOTSectionID);
1821 
1822     // For now, initialize all GOT entries to zero.  We'll fill them in as
1823     // needed when GOT-based relocations are applied.
1824     memset(Addr, 0, TotalSize);
1825     if (IsMipsN32ABI || IsMipsN64ABI) {
1826       // To correctly resolve Mips GOT relocations, we need a mapping from
1827       // object's sections to GOTs.
1828       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1829            SI != SE; ++SI) {
1830         if (SI->relocation_begin() != SI->relocation_end()) {
1831           section_iterator RelocatedSection = SI->getRelocatedSection();
1832           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1833           assert (i != SectionMap.end());
1834           SectionToGOTMap[i->second] = GOTSectionID;
1835         }
1836       }
1837       GOTSymbolOffsets.clear();
1838     }
1839   }
1840 
1841   // Look for and record the EH frame section.
1842   ObjSectionToIDMap::iterator i, e;
1843   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1844     const SectionRef &Section = i->first;
1845     StringRef Name;
1846     Section.getName(Name);
1847     if (Name == ".eh_frame") {
1848       UnregisteredEHFrameSections.push_back(i->second);
1849       break;
1850     }
1851   }
1852 
1853   GOTSectionID = 0;
1854   CurrentGOTIndex = 0;
1855 
1856   return Error::success();
1857 }
1858 
1859 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1860   return Obj.isELF();
1861 }
1862 
1863 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
1864   unsigned RelTy = R.getType();
1865   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
1866     return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
1867            RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
1868 
1869   if (Arch == Triple::x86_64)
1870     return RelTy == ELF::R_X86_64_GOTPCREL ||
1871            RelTy == ELF::R_X86_64_GOTPCRELX ||
1872            RelTy == ELF::R_X86_64_REX_GOTPCRELX;
1873   return false;
1874 }
1875 
1876 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1877   if (Arch != Triple::x86_64)
1878     return true;  // Conservative answer
1879 
1880   switch (R.getType()) {
1881   default:
1882     return true;  // Conservative answer
1883 
1884 
1885   case ELF::R_X86_64_GOTPCREL:
1886   case ELF::R_X86_64_GOTPCRELX:
1887   case ELF::R_X86_64_REX_GOTPCRELX:
1888   case ELF::R_X86_64_PC32:
1889   case ELF::R_X86_64_PC64:
1890   case ELF::R_X86_64_64:
1891     // We know that these reloation types won't need a stub function.  This list
1892     // can be extended as needed.
1893     return false;
1894   }
1895 }
1896 
1897 } // namespace llvm
1898