1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of ELF support for the MC-JIT runtime dynamic linker. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RuntimeDyldELF.h" 15 #include "RuntimeDyldCheckerImpl.h" 16 #include "Targets/RuntimeDyldELFMips.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/BinaryFormat/ELF.h" 21 #include "llvm/Object/ELFObjectFile.h" 22 #include "llvm/Object/ObjectFile.h" 23 #include "llvm/Support/Endian.h" 24 #include "llvm/Support/MemoryBuffer.h" 25 26 using namespace llvm; 27 using namespace llvm::object; 28 using namespace llvm::support::endian; 29 30 #define DEBUG_TYPE "dyld" 31 32 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); } 33 34 static void or32AArch64Imm(void *L, uint64_t Imm) { 35 or32le(L, (Imm & 0xFFF) << 10); 36 } 37 38 template <class T> static void write(bool isBE, void *P, T V) { 39 isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V); 40 } 41 42 static void write32AArch64Addr(void *L, uint64_t Imm) { 43 uint32_t ImmLo = (Imm & 0x3) << 29; 44 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; 45 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); 46 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi); 47 } 48 49 // Return the bits [Start, End] from Val shifted Start bits. 50 // For instance, getBits(0xF0, 4, 8) returns 0xF. 51 static uint64_t getBits(uint64_t Val, int Start, int End) { 52 uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1; 53 return (Val >> Start) & Mask; 54 } 55 56 namespace { 57 58 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> { 59 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 60 61 typedef Elf_Shdr_Impl<ELFT> Elf_Shdr; 62 typedef Elf_Sym_Impl<ELFT> Elf_Sym; 63 typedef Elf_Rel_Impl<ELFT, false> Elf_Rel; 64 typedef Elf_Rel_Impl<ELFT, true> Elf_Rela; 65 66 typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr; 67 68 typedef typename ELFT::uint addr_type; 69 70 DyldELFObject(ELFObjectFile<ELFT> &&Obj); 71 72 public: 73 static Expected<std::unique_ptr<DyldELFObject>> 74 create(MemoryBufferRef Wrapper); 75 76 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr); 77 78 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr); 79 80 // Methods for type inquiry through isa, cast and dyn_cast 81 static bool classof(const Binary *v) { 82 return (isa<ELFObjectFile<ELFT>>(v) && 83 classof(cast<ELFObjectFile<ELFT>>(v))); 84 } 85 static bool classof(const ELFObjectFile<ELFT> *v) { 86 return v->isDyldType(); 87 } 88 }; 89 90 91 92 // The MemoryBuffer passed into this constructor is just a wrapper around the 93 // actual memory. Ultimately, the Binary parent class will take ownership of 94 // this MemoryBuffer object but not the underlying memory. 95 template <class ELFT> 96 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj) 97 : ELFObjectFile<ELFT>(std::move(Obj)) { 98 this->isDyldELFObject = true; 99 } 100 101 template <class ELFT> 102 Expected<std::unique_ptr<DyldELFObject<ELFT>>> 103 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) { 104 auto Obj = ELFObjectFile<ELFT>::create(Wrapper); 105 if (auto E = Obj.takeError()) 106 return std::move(E); 107 std::unique_ptr<DyldELFObject<ELFT>> Ret( 108 new DyldELFObject<ELFT>(std::move(*Obj))); 109 return std::move(Ret); 110 } 111 112 template <class ELFT> 113 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec, 114 uint64_t Addr) { 115 DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); 116 Elf_Shdr *shdr = 117 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); 118 119 // This assumes the address passed in matches the target address bitness 120 // The template-based type cast handles everything else. 121 shdr->sh_addr = static_cast<addr_type>(Addr); 122 } 123 124 template <class ELFT> 125 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef, 126 uint64_t Addr) { 127 128 Elf_Sym *sym = const_cast<Elf_Sym *>( 129 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl())); 130 131 // This assumes the address passed in matches the target address bitness 132 // The template-based type cast handles everything else. 133 sym->st_value = static_cast<addr_type>(Addr); 134 } 135 136 class LoadedELFObjectInfo final 137 : public LoadedObjectInfoHelper<LoadedELFObjectInfo, 138 RuntimeDyld::LoadedObjectInfo> { 139 public: 140 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap) 141 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {} 142 143 OwningBinary<ObjectFile> 144 getObjectForDebug(const ObjectFile &Obj) const override; 145 }; 146 147 template <typename ELFT> 148 static Expected<std::unique_ptr<DyldELFObject<ELFT>>> 149 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject, 150 const LoadedELFObjectInfo &L) { 151 typedef typename ELFT::Shdr Elf_Shdr; 152 typedef typename ELFT::uint addr_type; 153 154 Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr = 155 DyldELFObject<ELFT>::create(Buffer); 156 if (Error E = ObjOrErr.takeError()) 157 return std::move(E); 158 159 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr); 160 161 // Iterate over all sections in the object. 162 auto SI = SourceObject.section_begin(); 163 for (const auto &Sec : Obj->sections()) { 164 StringRef SectionName; 165 Sec.getName(SectionName); 166 if (SectionName != "") { 167 DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); 168 Elf_Shdr *shdr = const_cast<Elf_Shdr *>( 169 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p)); 170 171 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) { 172 // This assumes that the address passed in matches the target address 173 // bitness. The template-based type cast handles everything else. 174 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr); 175 } 176 } 177 ++SI; 178 } 179 180 return std::move(Obj); 181 } 182 183 static OwningBinary<ObjectFile> 184 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) { 185 assert(Obj.isELF() && "Not an ELF object file."); 186 187 std::unique_ptr<MemoryBuffer> Buffer = 188 MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName()); 189 190 Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr); 191 handleAllErrors(DebugObj.takeError()); 192 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) 193 DebugObj = 194 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L); 195 else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) 196 DebugObj = 197 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L); 198 else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) 199 DebugObj = 200 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L); 201 else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) 202 DebugObj = 203 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L); 204 else 205 llvm_unreachable("Unexpected ELF format"); 206 207 handleAllErrors(DebugObj.takeError()); 208 return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer)); 209 } 210 211 OwningBinary<ObjectFile> 212 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const { 213 return createELFDebugObject(Obj, *this); 214 } 215 216 } // anonymous namespace 217 218 namespace llvm { 219 220 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr, 221 JITSymbolResolver &Resolver) 222 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {} 223 RuntimeDyldELF::~RuntimeDyldELF() {} 224 225 void RuntimeDyldELF::registerEHFrames() { 226 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) { 227 SID EHFrameSID = UnregisteredEHFrameSections[i]; 228 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress(); 229 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress(); 230 size_t EHFrameSize = Sections[EHFrameSID].getSize(); 231 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize); 232 } 233 UnregisteredEHFrameSections.clear(); 234 } 235 236 std::unique_ptr<RuntimeDyldELF> 237 llvm::RuntimeDyldELF::create(Triple::ArchType Arch, 238 RuntimeDyld::MemoryManager &MemMgr, 239 JITSymbolResolver &Resolver) { 240 switch (Arch) { 241 default: 242 return make_unique<RuntimeDyldELF>(MemMgr, Resolver); 243 case Triple::mips: 244 case Triple::mipsel: 245 case Triple::mips64: 246 case Triple::mips64el: 247 return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver); 248 } 249 } 250 251 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 252 RuntimeDyldELF::loadObject(const object::ObjectFile &O) { 253 if (auto ObjSectionToIDOrErr = loadObjectImpl(O)) 254 return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr); 255 else { 256 HasError = true; 257 raw_string_ostream ErrStream(ErrorStr); 258 logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream, ""); 259 return nullptr; 260 } 261 } 262 263 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, 264 uint64_t Offset, uint64_t Value, 265 uint32_t Type, int64_t Addend, 266 uint64_t SymOffset) { 267 switch (Type) { 268 default: 269 llvm_unreachable("Relocation type not implemented yet!"); 270 break; 271 case ELF::R_X86_64_NONE: 272 break; 273 case ELF::R_X86_64_64: { 274 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 275 Value + Addend; 276 DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at " 277 << format("%p\n", Section.getAddressWithOffset(Offset))); 278 break; 279 } 280 case ELF::R_X86_64_32: 281 case ELF::R_X86_64_32S: { 282 Value += Addend; 283 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || 284 (Type == ELF::R_X86_64_32S && 285 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))); 286 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF); 287 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 288 TruncatedAddr; 289 DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at " 290 << format("%p\n", Section.getAddressWithOffset(Offset))); 291 break; 292 } 293 case ELF::R_X86_64_PC8: { 294 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 295 int64_t RealOffset = Value + Addend - FinalAddress; 296 assert(isInt<8>(RealOffset)); 297 int8_t TruncOffset = (RealOffset & 0xFF); 298 Section.getAddress()[Offset] = TruncOffset; 299 break; 300 } 301 case ELF::R_X86_64_PC32: { 302 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 303 int64_t RealOffset = Value + Addend - FinalAddress; 304 assert(isInt<32>(RealOffset)); 305 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); 306 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 307 TruncOffset; 308 break; 309 } 310 case ELF::R_X86_64_PC64: { 311 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 312 int64_t RealOffset = Value + Addend - FinalAddress; 313 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 314 RealOffset; 315 break; 316 } 317 } 318 } 319 320 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section, 321 uint64_t Offset, uint32_t Value, 322 uint32_t Type, int32_t Addend) { 323 switch (Type) { 324 case ELF::R_386_32: { 325 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 326 Value + Addend; 327 break; 328 } 329 // Handle R_386_PLT32 like R_386_PC32 since it should be able to 330 // reach any 32 bit address. 331 case ELF::R_386_PLT32: 332 case ELF::R_386_PC32: { 333 uint32_t FinalAddress = 334 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF; 335 uint32_t RealOffset = Value + Addend - FinalAddress; 336 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = 337 RealOffset; 338 break; 339 } 340 default: 341 // There are other relocation types, but it appears these are the 342 // only ones currently used by the LLVM ELF object writer 343 llvm_unreachable("Relocation type not implemented yet!"); 344 break; 345 } 346 } 347 348 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section, 349 uint64_t Offset, uint64_t Value, 350 uint32_t Type, int64_t Addend) { 351 uint32_t *TargetPtr = 352 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset)); 353 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 354 // Data should use target endian. Code should always use little endian. 355 bool isBE = Arch == Triple::aarch64_be; 356 357 DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x" 358 << format("%llx", Section.getAddressWithOffset(Offset)) 359 << " FinalAddress: 0x" << format("%llx", FinalAddress) 360 << " Value: 0x" << format("%llx", Value) << " Type: 0x" 361 << format("%x", Type) << " Addend: 0x" << format("%llx", Addend) 362 << "\n"); 363 364 switch (Type) { 365 default: 366 llvm_unreachable("Relocation type not implemented yet!"); 367 break; 368 case ELF::R_AARCH64_ABS16: { 369 uint64_t Result = Value + Addend; 370 assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX); 371 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU)); 372 break; 373 } 374 case ELF::R_AARCH64_ABS32: { 375 uint64_t Result = Value + Addend; 376 assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX); 377 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU)); 378 break; 379 } 380 case ELF::R_AARCH64_ABS64: 381 write(isBE, TargetPtr, Value + Addend); 382 break; 383 case ELF::R_AARCH64_PREL32: { 384 uint64_t Result = Value + Addend - FinalAddress; 385 assert(static_cast<int64_t>(Result) >= INT32_MIN && 386 static_cast<int64_t>(Result) <= UINT32_MAX); 387 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU)); 388 break; 389 } 390 case ELF::R_AARCH64_PREL64: 391 write(isBE, TargetPtr, Value + Addend - FinalAddress); 392 break; 393 case ELF::R_AARCH64_CALL26: // fallthrough 394 case ELF::R_AARCH64_JUMP26: { 395 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the 396 // calculation. 397 uint64_t BranchImm = Value + Addend - FinalAddress; 398 399 // "Check that -2^27 <= result < 2^27". 400 assert(isInt<28>(BranchImm)); 401 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2); 402 break; 403 } 404 case ELF::R_AARCH64_MOVW_UABS_G3: 405 or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43); 406 break; 407 case ELF::R_AARCH64_MOVW_UABS_G2_NC: 408 or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27); 409 break; 410 case ELF::R_AARCH64_MOVW_UABS_G1_NC: 411 or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11); 412 break; 413 case ELF::R_AARCH64_MOVW_UABS_G0_NC: 414 or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5); 415 break; 416 case ELF::R_AARCH64_ADR_PREL_PG_HI21: { 417 // Operation: Page(S+A) - Page(P) 418 uint64_t Result = 419 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL); 420 421 // Check that -2^32 <= X < 2^32 422 assert(isInt<33>(Result) && "overflow check failed for relocation"); 423 424 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken 425 // from bits 32:12 of X. 426 write32AArch64Addr(TargetPtr, Result >> 12); 427 break; 428 } 429 case ELF::R_AARCH64_ADD_ABS_LO12_NC: 430 // Operation: S + A 431 // Immediate goes in bits 21:10 of LD/ST instruction, taken 432 // from bits 11:0 of X 433 or32AArch64Imm(TargetPtr, Value + Addend); 434 break; 435 case ELF::R_AARCH64_LDST8_ABS_LO12_NC: 436 // Operation: S + A 437 // Immediate goes in bits 21:10 of LD/ST instruction, taken 438 // from bits 11:0 of X 439 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11)); 440 break; 441 case ELF::R_AARCH64_LDST16_ABS_LO12_NC: 442 // Operation: S + A 443 // Immediate goes in bits 21:10 of LD/ST instruction, taken 444 // from bits 11:1 of X 445 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11)); 446 break; 447 case ELF::R_AARCH64_LDST32_ABS_LO12_NC: 448 // Operation: S + A 449 // Immediate goes in bits 21:10 of LD/ST instruction, taken 450 // from bits 11:2 of X 451 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11)); 452 break; 453 case ELF::R_AARCH64_LDST64_ABS_LO12_NC: 454 // Operation: S + A 455 // Immediate goes in bits 21:10 of LD/ST instruction, taken 456 // from bits 11:3 of X 457 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11)); 458 break; 459 case ELF::R_AARCH64_LDST128_ABS_LO12_NC: 460 // Operation: S + A 461 // Immediate goes in bits 21:10 of LD/ST instruction, taken 462 // from bits 11:4 of X 463 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11)); 464 break; 465 } 466 } 467 468 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section, 469 uint64_t Offset, uint32_t Value, 470 uint32_t Type, int32_t Addend) { 471 // TODO: Add Thumb relocations. 472 uint32_t *TargetPtr = 473 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset)); 474 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF; 475 Value += Addend; 476 477 DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " 478 << Section.getAddressWithOffset(Offset) 479 << " FinalAddress: " << format("%p", FinalAddress) << " Value: " 480 << format("%x", Value) << " Type: " << format("%x", Type) 481 << " Addend: " << format("%x", Addend) << "\n"); 482 483 switch (Type) { 484 default: 485 llvm_unreachable("Not implemented relocation type!"); 486 487 case ELF::R_ARM_NONE: 488 break; 489 // Write a 31bit signed offset 490 case ELF::R_ARM_PREL31: 491 support::ulittle32_t::ref{TargetPtr} = 492 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) | 493 ((Value - FinalAddress) & ~0x80000000); 494 break; 495 case ELF::R_ARM_TARGET1: 496 case ELF::R_ARM_ABS32: 497 support::ulittle32_t::ref{TargetPtr} = Value; 498 break; 499 // Write first 16 bit of 32 bit value to the mov instruction. 500 // Last 4 bit should be shifted. 501 case ELF::R_ARM_MOVW_ABS_NC: 502 case ELF::R_ARM_MOVT_ABS: 503 if (Type == ELF::R_ARM_MOVW_ABS_NC) 504 Value = Value & 0xFFFF; 505 else if (Type == ELF::R_ARM_MOVT_ABS) 506 Value = (Value >> 16) & 0xFFFF; 507 support::ulittle32_t::ref{TargetPtr} = 508 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) | 509 (((Value >> 12) & 0xF) << 16); 510 break; 511 // Write 24 bit relative value to the branch instruction. 512 case ELF::R_ARM_PC24: // Fall through. 513 case ELF::R_ARM_CALL: // Fall through. 514 case ELF::R_ARM_JUMP24: 515 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8); 516 RelValue = (RelValue & 0x03FFFFFC) >> 2; 517 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE); 518 support::ulittle32_t::ref{TargetPtr} = 519 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue; 520 break; 521 } 522 } 523 524 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) { 525 if (Arch == Triple::UnknownArch || 526 !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) { 527 IsMipsO32ABI = false; 528 IsMipsN32ABI = false; 529 IsMipsN64ABI = false; 530 return; 531 } 532 if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) { 533 unsigned AbiVariant = E->getPlatformFlags(); 534 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32; 535 IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2; 536 } 537 IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips"); 538 } 539 540 // Return the .TOC. section and offset. 541 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj, 542 ObjSectionToIDMap &LocalSections, 543 RelocationValueRef &Rel) { 544 // Set a default SectionID in case we do not find a TOC section below. 545 // This may happen for references to TOC base base (sym@toc, .odp 546 // relocation) without a .toc directive. In this case just use the 547 // first section (which is usually the .odp) since the code won't 548 // reference the .toc base directly. 549 Rel.SymbolName = nullptr; 550 Rel.SectionID = 0; 551 552 // The TOC consists of sections .got, .toc, .tocbss, .plt in that 553 // order. The TOC starts where the first of these sections starts. 554 for (auto &Section: Obj.sections()) { 555 StringRef SectionName; 556 if (auto EC = Section.getName(SectionName)) 557 return errorCodeToError(EC); 558 559 if (SectionName == ".got" 560 || SectionName == ".toc" 561 || SectionName == ".tocbss" 562 || SectionName == ".plt") { 563 if (auto SectionIDOrErr = 564 findOrEmitSection(Obj, Section, false, LocalSections)) 565 Rel.SectionID = *SectionIDOrErr; 566 else 567 return SectionIDOrErr.takeError(); 568 break; 569 } 570 } 571 572 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 573 // thus permitting a full 64 Kbytes segment. 574 Rel.Addend = 0x8000; 575 576 return Error::success(); 577 } 578 579 // Returns the sections and offset associated with the ODP entry referenced 580 // by Symbol. 581 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj, 582 ObjSectionToIDMap &LocalSections, 583 RelocationValueRef &Rel) { 584 // Get the ELF symbol value (st_value) to compare with Relocation offset in 585 // .opd entries 586 for (section_iterator si = Obj.section_begin(), se = Obj.section_end(); 587 si != se; ++si) { 588 section_iterator RelSecI = si->getRelocatedSection(); 589 if (RelSecI == Obj.section_end()) 590 continue; 591 592 StringRef RelSectionName; 593 if (auto EC = RelSecI->getName(RelSectionName)) 594 return errorCodeToError(EC); 595 596 if (RelSectionName != ".opd") 597 continue; 598 599 for (elf_relocation_iterator i = si->relocation_begin(), 600 e = si->relocation_end(); 601 i != e;) { 602 // The R_PPC64_ADDR64 relocation indicates the first field 603 // of a .opd entry 604 uint64_t TypeFunc = i->getType(); 605 if (TypeFunc != ELF::R_PPC64_ADDR64) { 606 ++i; 607 continue; 608 } 609 610 uint64_t TargetSymbolOffset = i->getOffset(); 611 symbol_iterator TargetSymbol = i->getSymbol(); 612 int64_t Addend; 613 if (auto AddendOrErr = i->getAddend()) 614 Addend = *AddendOrErr; 615 else 616 return AddendOrErr.takeError(); 617 618 ++i; 619 if (i == e) 620 break; 621 622 // Just check if following relocation is a R_PPC64_TOC 623 uint64_t TypeTOC = i->getType(); 624 if (TypeTOC != ELF::R_PPC64_TOC) 625 continue; 626 627 // Finally compares the Symbol value and the target symbol offset 628 // to check if this .opd entry refers to the symbol the relocation 629 // points to. 630 if (Rel.Addend != (int64_t)TargetSymbolOffset) 631 continue; 632 633 section_iterator TSI = Obj.section_end(); 634 if (auto TSIOrErr = TargetSymbol->getSection()) 635 TSI = *TSIOrErr; 636 else 637 return TSIOrErr.takeError(); 638 assert(TSI != Obj.section_end() && "TSI should refer to a valid section"); 639 640 bool IsCode = TSI->isText(); 641 if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode, 642 LocalSections)) 643 Rel.SectionID = *SectionIDOrErr; 644 else 645 return SectionIDOrErr.takeError(); 646 Rel.Addend = (intptr_t)Addend; 647 return Error::success(); 648 } 649 } 650 llvm_unreachable("Attempting to get address of ODP entry!"); 651 } 652 653 // Relocation masks following the #lo(value), #hi(value), #ha(value), 654 // #higher(value), #highera(value), #highest(value), and #highesta(value) 655 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 656 // document. 657 658 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; } 659 660 static inline uint16_t applyPPChi(uint64_t value) { 661 return (value >> 16) & 0xffff; 662 } 663 664 static inline uint16_t applyPPCha (uint64_t value) { 665 return ((value + 0x8000) >> 16) & 0xffff; 666 } 667 668 static inline uint16_t applyPPChigher(uint64_t value) { 669 return (value >> 32) & 0xffff; 670 } 671 672 static inline uint16_t applyPPChighera (uint64_t value) { 673 return ((value + 0x8000) >> 32) & 0xffff; 674 } 675 676 static inline uint16_t applyPPChighest(uint64_t value) { 677 return (value >> 48) & 0xffff; 678 } 679 680 static inline uint16_t applyPPChighesta (uint64_t value) { 681 return ((value + 0x8000) >> 48) & 0xffff; 682 } 683 684 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section, 685 uint64_t Offset, uint64_t Value, 686 uint32_t Type, int64_t Addend) { 687 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); 688 switch (Type) { 689 default: 690 llvm_unreachable("Relocation type not implemented yet!"); 691 break; 692 case ELF::R_PPC_ADDR16_LO: 693 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 694 break; 695 case ELF::R_PPC_ADDR16_HI: 696 writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); 697 break; 698 case ELF::R_PPC_ADDR16_HA: 699 writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); 700 break; 701 } 702 } 703 704 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, 705 uint64_t Offset, uint64_t Value, 706 uint32_t Type, int64_t Addend) { 707 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); 708 switch (Type) { 709 default: 710 llvm_unreachable("Relocation type not implemented yet!"); 711 break; 712 case ELF::R_PPC64_ADDR16: 713 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 714 break; 715 case ELF::R_PPC64_ADDR16_DS: 716 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); 717 break; 718 case ELF::R_PPC64_ADDR16_LO: 719 writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); 720 break; 721 case ELF::R_PPC64_ADDR16_LO_DS: 722 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); 723 break; 724 case ELF::R_PPC64_ADDR16_HI: 725 writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); 726 break; 727 case ELF::R_PPC64_ADDR16_HA: 728 writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); 729 break; 730 case ELF::R_PPC64_ADDR16_HIGHER: 731 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend)); 732 break; 733 case ELF::R_PPC64_ADDR16_HIGHERA: 734 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend)); 735 break; 736 case ELF::R_PPC64_ADDR16_HIGHEST: 737 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend)); 738 break; 739 case ELF::R_PPC64_ADDR16_HIGHESTA: 740 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend)); 741 break; 742 case ELF::R_PPC64_ADDR14: { 743 assert(((Value + Addend) & 3) == 0); 744 // Preserve the AA/LK bits in the branch instruction 745 uint8_t aalk = *(LocalAddress + 3); 746 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc)); 747 } break; 748 case ELF::R_PPC64_REL16_LO: { 749 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 750 uint64_t Delta = Value - FinalAddress + Addend; 751 writeInt16BE(LocalAddress, applyPPClo(Delta)); 752 } break; 753 case ELF::R_PPC64_REL16_HI: { 754 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 755 uint64_t Delta = Value - FinalAddress + Addend; 756 writeInt16BE(LocalAddress, applyPPChi(Delta)); 757 } break; 758 case ELF::R_PPC64_REL16_HA: { 759 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 760 uint64_t Delta = Value - FinalAddress + Addend; 761 writeInt16BE(LocalAddress, applyPPCha(Delta)); 762 } break; 763 case ELF::R_PPC64_ADDR32: { 764 int64_t Result = static_cast<int64_t>(Value + Addend); 765 if (SignExtend64<32>(Result) != Result) 766 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow"); 767 writeInt32BE(LocalAddress, Result); 768 } break; 769 case ELF::R_PPC64_REL24: { 770 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 771 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend); 772 if (SignExtend64<26>(delta) != delta) 773 llvm_unreachable("Relocation R_PPC64_REL24 overflow"); 774 // Generates a 'bl <address>' instruction 775 writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC)); 776 } break; 777 case ELF::R_PPC64_REL32: { 778 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 779 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend); 780 if (SignExtend64<32>(delta) != delta) 781 llvm_unreachable("Relocation R_PPC64_REL32 overflow"); 782 writeInt32BE(LocalAddress, delta); 783 } break; 784 case ELF::R_PPC64_REL64: { 785 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); 786 uint64_t Delta = Value - FinalAddress + Addend; 787 writeInt64BE(LocalAddress, Delta); 788 } break; 789 case ELF::R_PPC64_ADDR64: 790 writeInt64BE(LocalAddress, Value + Addend); 791 break; 792 } 793 } 794 795 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section, 796 uint64_t Offset, uint64_t Value, 797 uint32_t Type, int64_t Addend) { 798 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); 799 switch (Type) { 800 default: 801 llvm_unreachable("Relocation type not implemented yet!"); 802 break; 803 case ELF::R_390_PC16DBL: 804 case ELF::R_390_PLT16DBL: { 805 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 806 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow"); 807 writeInt16BE(LocalAddress, Delta / 2); 808 break; 809 } 810 case ELF::R_390_PC32DBL: 811 case ELF::R_390_PLT32DBL: { 812 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 813 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow"); 814 writeInt32BE(LocalAddress, Delta / 2); 815 break; 816 } 817 case ELF::R_390_PC16: { 818 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 819 assert(int16_t(Delta) == Delta && "R_390_PC16 overflow"); 820 writeInt16BE(LocalAddress, Delta); 821 break; 822 } 823 case ELF::R_390_PC32: { 824 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 825 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow"); 826 writeInt32BE(LocalAddress, Delta); 827 break; 828 } 829 case ELF::R_390_PC64: { 830 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); 831 writeInt64BE(LocalAddress, Delta); 832 break; 833 } 834 case ELF::R_390_8: 835 *LocalAddress = (uint8_t)(Value + Addend); 836 break; 837 case ELF::R_390_16: 838 writeInt16BE(LocalAddress, Value + Addend); 839 break; 840 case ELF::R_390_32: 841 writeInt32BE(LocalAddress, Value + Addend); 842 break; 843 case ELF::R_390_64: 844 writeInt64BE(LocalAddress, Value + Addend); 845 break; 846 } 847 } 848 849 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section, 850 uint64_t Offset, uint64_t Value, 851 uint32_t Type, int64_t Addend) { 852 bool isBE = Arch == Triple::bpfeb; 853 854 switch (Type) { 855 default: 856 llvm_unreachable("Relocation type not implemented yet!"); 857 break; 858 case ELF::R_BPF_NONE: 859 break; 860 case ELF::R_BPF_64_64: { 861 write(isBE, Section.getAddressWithOffset(Offset), Value + Addend); 862 DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at " 863 << format("%p\n", Section.getAddressWithOffset(Offset))); 864 break; 865 } 866 case ELF::R_BPF_64_32: { 867 Value += Addend; 868 assert(Value <= UINT32_MAX); 869 write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value)); 870 DEBUG(dbgs() << "Writing " << format("%p", Value) << " at " 871 << format("%p\n", Section.getAddressWithOffset(Offset))); 872 break; 873 } 874 } 875 } 876 877 // The target location for the relocation is described by RE.SectionID and 878 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each 879 // SectionEntry has three members describing its location. 880 // SectionEntry::Address is the address at which the section has been loaded 881 // into memory in the current (host) process. SectionEntry::LoadAddress is the 882 // address that the section will have in the target process. 883 // SectionEntry::ObjAddress is the address of the bits for this section in the 884 // original emitted object image (also in the current address space). 885 // 886 // Relocations will be applied as if the section were loaded at 887 // SectionEntry::LoadAddress, but they will be applied at an address based 888 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to 889 // Target memory contents if they are required for value calculations. 890 // 891 // The Value parameter here is the load address of the symbol for the 892 // relocation to be applied. For relocations which refer to symbols in the 893 // current object Value will be the LoadAddress of the section in which 894 // the symbol resides (RE.Addend provides additional information about the 895 // symbol location). For external symbols, Value will be the address of the 896 // symbol in the target address space. 897 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE, 898 uint64_t Value) { 899 const SectionEntry &Section = Sections[RE.SectionID]; 900 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend, 901 RE.SymOffset, RE.SectionID); 902 } 903 904 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section, 905 uint64_t Offset, uint64_t Value, 906 uint32_t Type, int64_t Addend, 907 uint64_t SymOffset, SID SectionID) { 908 switch (Arch) { 909 case Triple::x86_64: 910 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset); 911 break; 912 case Triple::x86: 913 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, 914 (uint32_t)(Addend & 0xffffffffL)); 915 break; 916 case Triple::aarch64: 917 case Triple::aarch64_be: 918 resolveAArch64Relocation(Section, Offset, Value, Type, Addend); 919 break; 920 case Triple::arm: // Fall through. 921 case Triple::armeb: 922 case Triple::thumb: 923 case Triple::thumbeb: 924 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, 925 (uint32_t)(Addend & 0xffffffffL)); 926 break; 927 case Triple::ppc: 928 resolvePPC32Relocation(Section, Offset, Value, Type, Addend); 929 break; 930 case Triple::ppc64: // Fall through. 931 case Triple::ppc64le: 932 resolvePPC64Relocation(Section, Offset, Value, Type, Addend); 933 break; 934 case Triple::systemz: 935 resolveSystemZRelocation(Section, Offset, Value, Type, Addend); 936 break; 937 case Triple::bpfel: 938 case Triple::bpfeb: 939 resolveBPFRelocation(Section, Offset, Value, Type, Addend); 940 break; 941 default: 942 llvm_unreachable("Unsupported CPU type!"); 943 } 944 } 945 946 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const { 947 return (void *)(Sections[SectionID].getObjAddress() + Offset); 948 } 949 950 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) { 951 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset); 952 if (Value.SymbolName) 953 addRelocationForSymbol(RE, Value.SymbolName); 954 else 955 addRelocationForSection(RE, Value.SectionID); 956 } 957 958 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType, 959 bool IsLocal) const { 960 switch (RelType) { 961 case ELF::R_MICROMIPS_GOT16: 962 if (IsLocal) 963 return ELF::R_MICROMIPS_LO16; 964 break; 965 case ELF::R_MICROMIPS_HI16: 966 return ELF::R_MICROMIPS_LO16; 967 case ELF::R_MIPS_GOT16: 968 if (IsLocal) 969 return ELF::R_MIPS_LO16; 970 break; 971 case ELF::R_MIPS_HI16: 972 return ELF::R_MIPS_LO16; 973 case ELF::R_MIPS_PCHI16: 974 return ELF::R_MIPS_PCLO16; 975 default: 976 break; 977 } 978 return ELF::R_MIPS_NONE; 979 } 980 981 // Sometimes we don't need to create thunk for a branch. 982 // This typically happens when branch target is located 983 // in the same object file. In such case target is either 984 // a weak symbol or symbol in a different executable section. 985 // This function checks if branch target is located in the 986 // same object file and if distance between source and target 987 // fits R_AARCH64_CALL26 relocation. If both conditions are 988 // met, it emits direct jump to the target and returns true. 989 // Otherwise false is returned and thunk is created. 990 bool RuntimeDyldELF::resolveAArch64ShortBranch( 991 unsigned SectionID, relocation_iterator RelI, 992 const RelocationValueRef &Value) { 993 uint64_t Address; 994 if (Value.SymbolName) { 995 auto Loc = GlobalSymbolTable.find(Value.SymbolName); 996 997 // Don't create direct branch for external symbols. 998 if (Loc == GlobalSymbolTable.end()) 999 return false; 1000 1001 const auto &SymInfo = Loc->second; 1002 Address = 1003 uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset( 1004 SymInfo.getOffset())); 1005 } else { 1006 Address = uint64_t(Sections[Value.SectionID].getLoadAddress()); 1007 } 1008 uint64_t Offset = RelI->getOffset(); 1009 uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset); 1010 1011 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27 1012 // If distance between source and target is out of range then we should 1013 // create thunk. 1014 if (!isInt<28>(Address + Value.Addend - SourceAddress)) 1015 return false; 1016 1017 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(), 1018 Value.Addend); 1019 1020 return true; 1021 } 1022 1023 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID, 1024 const RelocationValueRef &Value, 1025 relocation_iterator RelI, 1026 StubMap &Stubs) { 1027 1028 DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation."); 1029 SectionEntry &Section = Sections[SectionID]; 1030 1031 uint64_t Offset = RelI->getOffset(); 1032 unsigned RelType = RelI->getType(); 1033 // Look for an existing stub. 1034 StubMap::const_iterator i = Stubs.find(Value); 1035 if (i != Stubs.end()) { 1036 resolveRelocation(Section, Offset, 1037 (uint64_t)Section.getAddressWithOffset(i->second), 1038 RelType, 0); 1039 DEBUG(dbgs() << " Stub function found\n"); 1040 } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) { 1041 // Create a new stub function. 1042 DEBUG(dbgs() << " Create a new stub function\n"); 1043 Stubs[Value] = Section.getStubOffset(); 1044 uint8_t *StubTargetAddr = createStubFunction( 1045 Section.getAddressWithOffset(Section.getStubOffset())); 1046 1047 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(), 1048 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend); 1049 RelocationEntry REmovk_g2(SectionID, 1050 StubTargetAddr - Section.getAddress() + 4, 1051 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend); 1052 RelocationEntry REmovk_g1(SectionID, 1053 StubTargetAddr - Section.getAddress() + 8, 1054 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend); 1055 RelocationEntry REmovk_g0(SectionID, 1056 StubTargetAddr - Section.getAddress() + 12, 1057 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend); 1058 1059 if (Value.SymbolName) { 1060 addRelocationForSymbol(REmovz_g3, Value.SymbolName); 1061 addRelocationForSymbol(REmovk_g2, Value.SymbolName); 1062 addRelocationForSymbol(REmovk_g1, Value.SymbolName); 1063 addRelocationForSymbol(REmovk_g0, Value.SymbolName); 1064 } else { 1065 addRelocationForSection(REmovz_g3, Value.SectionID); 1066 addRelocationForSection(REmovk_g2, Value.SectionID); 1067 addRelocationForSection(REmovk_g1, Value.SectionID); 1068 addRelocationForSection(REmovk_g0, Value.SectionID); 1069 } 1070 resolveRelocation(Section, Offset, 1071 reinterpret_cast<uint64_t>(Section.getAddressWithOffset( 1072 Section.getStubOffset())), 1073 RelType, 0); 1074 Section.advanceStubOffset(getMaxStubSize()); 1075 } 1076 } 1077 1078 Expected<relocation_iterator> 1079 RuntimeDyldELF::processRelocationRef( 1080 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O, 1081 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) { 1082 const auto &Obj = cast<ELFObjectFileBase>(O); 1083 uint64_t RelType = RelI->getType(); 1084 int64_t Addend = 0; 1085 if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend()) 1086 Addend = *AddendOrErr; 1087 else 1088 consumeError(AddendOrErr.takeError()); 1089 elf_symbol_iterator Symbol = RelI->getSymbol(); 1090 1091 // Obtain the symbol name which is referenced in the relocation 1092 StringRef TargetName; 1093 if (Symbol != Obj.symbol_end()) { 1094 if (auto TargetNameOrErr = Symbol->getName()) 1095 TargetName = *TargetNameOrErr; 1096 else 1097 return TargetNameOrErr.takeError(); 1098 } 1099 DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend 1100 << " TargetName: " << TargetName << "\n"); 1101 RelocationValueRef Value; 1102 // First search for the symbol in the local symbol table 1103 SymbolRef::Type SymType = SymbolRef::ST_Unknown; 1104 1105 // Search for the symbol in the global symbol table 1106 RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end(); 1107 if (Symbol != Obj.symbol_end()) { 1108 gsi = GlobalSymbolTable.find(TargetName.data()); 1109 Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType(); 1110 if (!SymTypeOrErr) { 1111 std::string Buf; 1112 raw_string_ostream OS(Buf); 1113 logAllUnhandledErrors(SymTypeOrErr.takeError(), OS, ""); 1114 OS.flush(); 1115 report_fatal_error(Buf); 1116 } 1117 SymType = *SymTypeOrErr; 1118 } 1119 if (gsi != GlobalSymbolTable.end()) { 1120 const auto &SymInfo = gsi->second; 1121 Value.SectionID = SymInfo.getSectionID(); 1122 Value.Offset = SymInfo.getOffset(); 1123 Value.Addend = SymInfo.getOffset() + Addend; 1124 } else { 1125 switch (SymType) { 1126 case SymbolRef::ST_Debug: { 1127 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously 1128 // and can be changed by another developers. Maybe best way is add 1129 // a new symbol type ST_Section to SymbolRef and use it. 1130 auto SectionOrErr = Symbol->getSection(); 1131 if (!SectionOrErr) { 1132 std::string Buf; 1133 raw_string_ostream OS(Buf); 1134 logAllUnhandledErrors(SectionOrErr.takeError(), OS, ""); 1135 OS.flush(); 1136 report_fatal_error(Buf); 1137 } 1138 section_iterator si = *SectionOrErr; 1139 if (si == Obj.section_end()) 1140 llvm_unreachable("Symbol section not found, bad object file format!"); 1141 DEBUG(dbgs() << "\t\tThis is section symbol\n"); 1142 bool isCode = si->isText(); 1143 if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode, 1144 ObjSectionToID)) 1145 Value.SectionID = *SectionIDOrErr; 1146 else 1147 return SectionIDOrErr.takeError(); 1148 Value.Addend = Addend; 1149 break; 1150 } 1151 case SymbolRef::ST_Data: 1152 case SymbolRef::ST_Function: 1153 case SymbolRef::ST_Unknown: { 1154 Value.SymbolName = TargetName.data(); 1155 Value.Addend = Addend; 1156 1157 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which 1158 // will manifest here as a NULL symbol name. 1159 // We can set this as a valid (but empty) symbol name, and rely 1160 // on addRelocationForSymbol to handle this. 1161 if (!Value.SymbolName) 1162 Value.SymbolName = ""; 1163 break; 1164 } 1165 default: 1166 llvm_unreachable("Unresolved symbol type!"); 1167 break; 1168 } 1169 } 1170 1171 uint64_t Offset = RelI->getOffset(); 1172 1173 DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset 1174 << "\n"); 1175 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) { 1176 if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) { 1177 resolveAArch64Branch(SectionID, Value, RelI, Stubs); 1178 } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) { 1179 // Craete new GOT entry or find existing one. If GOT entry is 1180 // to be created, then we also emit ABS64 relocation for it. 1181 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64); 1182 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, 1183 ELF::R_AARCH64_ADR_PREL_PG_HI21); 1184 1185 } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) { 1186 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64); 1187 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, 1188 ELF::R_AARCH64_LDST64_ABS_LO12_NC); 1189 } else { 1190 processSimpleRelocation(SectionID, Offset, RelType, Value); 1191 } 1192 } else if (Arch == Triple::arm) { 1193 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL || 1194 RelType == ELF::R_ARM_JUMP24) { 1195 // This is an ARM branch relocation, need to use a stub function. 1196 DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n"); 1197 SectionEntry &Section = Sections[SectionID]; 1198 1199 // Look for an existing stub. 1200 StubMap::const_iterator i = Stubs.find(Value); 1201 if (i != Stubs.end()) { 1202 resolveRelocation( 1203 Section, Offset, 1204 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)), 1205 RelType, 0); 1206 DEBUG(dbgs() << " Stub function found\n"); 1207 } else { 1208 // Create a new stub function. 1209 DEBUG(dbgs() << " Create a new stub function\n"); 1210 Stubs[Value] = Section.getStubOffset(); 1211 uint8_t *StubTargetAddr = createStubFunction( 1212 Section.getAddressWithOffset(Section.getStubOffset())); 1213 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), 1214 ELF::R_ARM_ABS32, Value.Addend); 1215 if (Value.SymbolName) 1216 addRelocationForSymbol(RE, Value.SymbolName); 1217 else 1218 addRelocationForSection(RE, Value.SectionID); 1219 1220 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>( 1221 Section.getAddressWithOffset( 1222 Section.getStubOffset())), 1223 RelType, 0); 1224 Section.advanceStubOffset(getMaxStubSize()); 1225 } 1226 } else { 1227 uint32_t *Placeholder = 1228 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset)); 1229 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 || 1230 RelType == ELF::R_ARM_ABS32) { 1231 Value.Addend += *Placeholder; 1232 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) { 1233 // See ELF for ARM documentation 1234 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12)); 1235 } 1236 processSimpleRelocation(SectionID, Offset, RelType, Value); 1237 } 1238 } else if (IsMipsO32ABI) { 1239 uint8_t *Placeholder = reinterpret_cast<uint8_t *>( 1240 computePlaceholderAddress(SectionID, Offset)); 1241 uint32_t Opcode = readBytesUnaligned(Placeholder, 4); 1242 if (RelType == ELF::R_MIPS_26) { 1243 // This is an Mips branch relocation, need to use a stub function. 1244 DEBUG(dbgs() << "\t\tThis is a Mips branch relocation."); 1245 SectionEntry &Section = Sections[SectionID]; 1246 1247 // Extract the addend from the instruction. 1248 // We shift up by two since the Value will be down shifted again 1249 // when applying the relocation. 1250 uint32_t Addend = (Opcode & 0x03ffffff) << 2; 1251 1252 Value.Addend += Addend; 1253 1254 // Look up for existing stub. 1255 StubMap::const_iterator i = Stubs.find(Value); 1256 if (i != Stubs.end()) { 1257 RelocationEntry RE(SectionID, Offset, RelType, i->second); 1258 addRelocationForSection(RE, SectionID); 1259 DEBUG(dbgs() << " Stub function found\n"); 1260 } else { 1261 // Create a new stub function. 1262 DEBUG(dbgs() << " Create a new stub function\n"); 1263 Stubs[Value] = Section.getStubOffset(); 1264 1265 unsigned AbiVariant = Obj.getPlatformFlags(); 1266 1267 uint8_t *StubTargetAddr = createStubFunction( 1268 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant); 1269 1270 // Creating Hi and Lo relocations for the filled stub instructions. 1271 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(), 1272 ELF::R_MIPS_HI16, Value.Addend); 1273 RelocationEntry RELo(SectionID, 1274 StubTargetAddr - Section.getAddress() + 4, 1275 ELF::R_MIPS_LO16, Value.Addend); 1276 1277 if (Value.SymbolName) { 1278 addRelocationForSymbol(REHi, Value.SymbolName); 1279 addRelocationForSymbol(RELo, Value.SymbolName); 1280 } else { 1281 addRelocationForSection(REHi, Value.SectionID); 1282 addRelocationForSection(RELo, Value.SectionID); 1283 } 1284 1285 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset()); 1286 addRelocationForSection(RE, SectionID); 1287 Section.advanceStubOffset(getMaxStubSize()); 1288 } 1289 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) { 1290 int64_t Addend = (Opcode & 0x0000ffff) << 16; 1291 RelocationEntry RE(SectionID, Offset, RelType, Addend); 1292 PendingRelocs.push_back(std::make_pair(Value, RE)); 1293 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) { 1294 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff); 1295 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) { 1296 const RelocationValueRef &MatchingValue = I->first; 1297 RelocationEntry &Reloc = I->second; 1298 if (MatchingValue == Value && 1299 RelType == getMatchingLoRelocation(Reloc.RelType) && 1300 SectionID == Reloc.SectionID) { 1301 Reloc.Addend += Addend; 1302 if (Value.SymbolName) 1303 addRelocationForSymbol(Reloc, Value.SymbolName); 1304 else 1305 addRelocationForSection(Reloc, Value.SectionID); 1306 I = PendingRelocs.erase(I); 1307 } else 1308 ++I; 1309 } 1310 RelocationEntry RE(SectionID, Offset, RelType, Addend); 1311 if (Value.SymbolName) 1312 addRelocationForSymbol(RE, Value.SymbolName); 1313 else 1314 addRelocationForSection(RE, Value.SectionID); 1315 } else { 1316 if (RelType == ELF::R_MIPS_32) 1317 Value.Addend += Opcode; 1318 else if (RelType == ELF::R_MIPS_PC16) 1319 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2); 1320 else if (RelType == ELF::R_MIPS_PC19_S2) 1321 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2); 1322 else if (RelType == ELF::R_MIPS_PC21_S2) 1323 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2); 1324 else if (RelType == ELF::R_MIPS_PC26_S2) 1325 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2); 1326 processSimpleRelocation(SectionID, Offset, RelType, Value); 1327 } 1328 } else if (IsMipsN32ABI || IsMipsN64ABI) { 1329 uint32_t r_type = RelType & 0xff; 1330 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1331 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE 1332 || r_type == ELF::R_MIPS_GOT_DISP) { 1333 StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName); 1334 if (i != GOTSymbolOffsets.end()) 1335 RE.SymOffset = i->second; 1336 else { 1337 RE.SymOffset = allocateGOTEntries(1); 1338 GOTSymbolOffsets[TargetName] = RE.SymOffset; 1339 } 1340 if (Value.SymbolName) 1341 addRelocationForSymbol(RE, Value.SymbolName); 1342 else 1343 addRelocationForSection(RE, Value.SectionID); 1344 } else if (RelType == ELF::R_MIPS_26) { 1345 // This is an Mips branch relocation, need to use a stub function. 1346 DEBUG(dbgs() << "\t\tThis is a Mips branch relocation."); 1347 SectionEntry &Section = Sections[SectionID]; 1348 1349 // Look up for existing stub. 1350 StubMap::const_iterator i = Stubs.find(Value); 1351 if (i != Stubs.end()) { 1352 RelocationEntry RE(SectionID, Offset, RelType, i->second); 1353 addRelocationForSection(RE, SectionID); 1354 DEBUG(dbgs() << " Stub function found\n"); 1355 } else { 1356 // Create a new stub function. 1357 DEBUG(dbgs() << " Create a new stub function\n"); 1358 Stubs[Value] = Section.getStubOffset(); 1359 1360 unsigned AbiVariant = Obj.getPlatformFlags(); 1361 1362 uint8_t *StubTargetAddr = createStubFunction( 1363 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant); 1364 1365 if (IsMipsN32ABI) { 1366 // Creating Hi and Lo relocations for the filled stub instructions. 1367 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(), 1368 ELF::R_MIPS_HI16, Value.Addend); 1369 RelocationEntry RELo(SectionID, 1370 StubTargetAddr - Section.getAddress() + 4, 1371 ELF::R_MIPS_LO16, Value.Addend); 1372 if (Value.SymbolName) { 1373 addRelocationForSymbol(REHi, Value.SymbolName); 1374 addRelocationForSymbol(RELo, Value.SymbolName); 1375 } else { 1376 addRelocationForSection(REHi, Value.SectionID); 1377 addRelocationForSection(RELo, Value.SectionID); 1378 } 1379 } else { 1380 // Creating Highest, Higher, Hi and Lo relocations for the filled stub 1381 // instructions. 1382 RelocationEntry REHighest(SectionID, 1383 StubTargetAddr - Section.getAddress(), 1384 ELF::R_MIPS_HIGHEST, Value.Addend); 1385 RelocationEntry REHigher(SectionID, 1386 StubTargetAddr - Section.getAddress() + 4, 1387 ELF::R_MIPS_HIGHER, Value.Addend); 1388 RelocationEntry REHi(SectionID, 1389 StubTargetAddr - Section.getAddress() + 12, 1390 ELF::R_MIPS_HI16, Value.Addend); 1391 RelocationEntry RELo(SectionID, 1392 StubTargetAddr - Section.getAddress() + 20, 1393 ELF::R_MIPS_LO16, Value.Addend); 1394 if (Value.SymbolName) { 1395 addRelocationForSymbol(REHighest, Value.SymbolName); 1396 addRelocationForSymbol(REHigher, Value.SymbolName); 1397 addRelocationForSymbol(REHi, Value.SymbolName); 1398 addRelocationForSymbol(RELo, Value.SymbolName); 1399 } else { 1400 addRelocationForSection(REHighest, Value.SectionID); 1401 addRelocationForSection(REHigher, Value.SectionID); 1402 addRelocationForSection(REHi, Value.SectionID); 1403 addRelocationForSection(RELo, Value.SectionID); 1404 } 1405 } 1406 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset()); 1407 addRelocationForSection(RE, SectionID); 1408 Section.advanceStubOffset(getMaxStubSize()); 1409 } 1410 } else { 1411 processSimpleRelocation(SectionID, Offset, RelType, Value); 1412 } 1413 1414 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 1415 if (RelType == ELF::R_PPC64_REL24) { 1416 // Determine ABI variant in use for this object. 1417 unsigned AbiVariant = Obj.getPlatformFlags(); 1418 AbiVariant &= ELF::EF_PPC64_ABI; 1419 // A PPC branch relocation will need a stub function if the target is 1420 // an external symbol (either Value.SymbolName is set, or SymType is 1421 // Symbol::ST_Unknown) or if the target address is not within the 1422 // signed 24-bits branch address. 1423 SectionEntry &Section = Sections[SectionID]; 1424 uint8_t *Target = Section.getAddressWithOffset(Offset); 1425 bool RangeOverflow = false; 1426 if (!Value.SymbolName && SymType != SymbolRef::ST_Unknown) { 1427 if (AbiVariant != 2) { 1428 // In the ELFv1 ABI, a function call may point to the .opd entry, 1429 // so the final symbol value is calculated based on the relocation 1430 // values in the .opd section. 1431 if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value)) 1432 return std::move(Err); 1433 } else { 1434 // In the ELFv2 ABI, a function symbol may provide a local entry 1435 // point, which must be used for direct calls. 1436 uint8_t SymOther = Symbol->getOther(); 1437 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther); 1438 } 1439 uint8_t *RelocTarget = 1440 Sections[Value.SectionID].getAddressWithOffset(Value.Addend); 1441 int64_t delta = static_cast<int64_t>(Target - RelocTarget); 1442 // If it is within 26-bits branch range, just set the branch target 1443 if (SignExtend64<26>(delta) == delta) { 1444 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1445 addRelocationForSection(RE, Value.SectionID); 1446 } else { 1447 RangeOverflow = true; 1448 } 1449 } 1450 if (Value.SymbolName || SymType == SymbolRef::ST_Unknown || 1451 RangeOverflow) { 1452 // It is an external symbol (either Value.SymbolName is set, or 1453 // SymType is SymbolRef::ST_Unknown) or out of range. 1454 StubMap::const_iterator i = Stubs.find(Value); 1455 if (i != Stubs.end()) { 1456 // Symbol function stub already created, just relocate to it 1457 resolveRelocation(Section, Offset, 1458 reinterpret_cast<uint64_t>( 1459 Section.getAddressWithOffset(i->second)), 1460 RelType, 0); 1461 DEBUG(dbgs() << " Stub function found\n"); 1462 } else { 1463 // Create a new stub function. 1464 DEBUG(dbgs() << " Create a new stub function\n"); 1465 Stubs[Value] = Section.getStubOffset(); 1466 uint8_t *StubTargetAddr = createStubFunction( 1467 Section.getAddressWithOffset(Section.getStubOffset()), 1468 AbiVariant); 1469 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), 1470 ELF::R_PPC64_ADDR64, Value.Addend); 1471 1472 // Generates the 64-bits address loads as exemplified in section 1473 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to 1474 // apply to the low part of the instructions, so we have to update 1475 // the offset according to the target endianness. 1476 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress(); 1477 if (!IsTargetLittleEndian) 1478 StubRelocOffset += 2; 1479 1480 RelocationEntry REhst(SectionID, StubRelocOffset + 0, 1481 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend); 1482 RelocationEntry REhr(SectionID, StubRelocOffset + 4, 1483 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend); 1484 RelocationEntry REh(SectionID, StubRelocOffset + 12, 1485 ELF::R_PPC64_ADDR16_HI, Value.Addend); 1486 RelocationEntry REl(SectionID, StubRelocOffset + 16, 1487 ELF::R_PPC64_ADDR16_LO, Value.Addend); 1488 1489 if (Value.SymbolName) { 1490 addRelocationForSymbol(REhst, Value.SymbolName); 1491 addRelocationForSymbol(REhr, Value.SymbolName); 1492 addRelocationForSymbol(REh, Value.SymbolName); 1493 addRelocationForSymbol(REl, Value.SymbolName); 1494 } else { 1495 addRelocationForSection(REhst, Value.SectionID); 1496 addRelocationForSection(REhr, Value.SectionID); 1497 addRelocationForSection(REh, Value.SectionID); 1498 addRelocationForSection(REl, Value.SectionID); 1499 } 1500 1501 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>( 1502 Section.getAddressWithOffset( 1503 Section.getStubOffset())), 1504 RelType, 0); 1505 Section.advanceStubOffset(getMaxStubSize()); 1506 } 1507 if (Value.SymbolName || SymType == SymbolRef::ST_Unknown) { 1508 // Restore the TOC for external calls 1509 if (AbiVariant == 2) 1510 writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1) 1511 else 1512 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1) 1513 } 1514 } 1515 } else if (RelType == ELF::R_PPC64_TOC16 || 1516 RelType == ELF::R_PPC64_TOC16_DS || 1517 RelType == ELF::R_PPC64_TOC16_LO || 1518 RelType == ELF::R_PPC64_TOC16_LO_DS || 1519 RelType == ELF::R_PPC64_TOC16_HI || 1520 RelType == ELF::R_PPC64_TOC16_HA) { 1521 // These relocations are supposed to subtract the TOC address from 1522 // the final value. This does not fit cleanly into the RuntimeDyld 1523 // scheme, since there may be *two* sections involved in determining 1524 // the relocation value (the section of the symbol referred to by the 1525 // relocation, and the TOC section associated with the current module). 1526 // 1527 // Fortunately, these relocations are currently only ever generated 1528 // referring to symbols that themselves reside in the TOC, which means 1529 // that the two sections are actually the same. Thus they cancel out 1530 // and we can immediately resolve the relocation right now. 1531 switch (RelType) { 1532 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break; 1533 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break; 1534 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break; 1535 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break; 1536 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break; 1537 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break; 1538 default: llvm_unreachable("Wrong relocation type."); 1539 } 1540 1541 RelocationValueRef TOCValue; 1542 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue)) 1543 return std::move(Err); 1544 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID) 1545 llvm_unreachable("Unsupported TOC relocation."); 1546 Value.Addend -= TOCValue.Addend; 1547 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0); 1548 } else { 1549 // There are two ways to refer to the TOC address directly: either 1550 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are 1551 // ignored), or via any relocation that refers to the magic ".TOC." 1552 // symbols (in which case the addend is respected). 1553 if (RelType == ELF::R_PPC64_TOC) { 1554 RelType = ELF::R_PPC64_ADDR64; 1555 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value)) 1556 return std::move(Err); 1557 } else if (TargetName == ".TOC.") { 1558 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value)) 1559 return std::move(Err); 1560 Value.Addend += Addend; 1561 } 1562 1563 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); 1564 1565 if (Value.SymbolName) 1566 addRelocationForSymbol(RE, Value.SymbolName); 1567 else 1568 addRelocationForSection(RE, Value.SectionID); 1569 } 1570 } else if (Arch == Triple::systemz && 1571 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) { 1572 // Create function stubs for both PLT and GOT references, regardless of 1573 // whether the GOT reference is to data or code. The stub contains the 1574 // full address of the symbol, as needed by GOT references, and the 1575 // executable part only adds an overhead of 8 bytes. 1576 // 1577 // We could try to conserve space by allocating the code and data 1578 // parts of the stub separately. However, as things stand, we allocate 1579 // a stub for every relocation, so using a GOT in JIT code should be 1580 // no less space efficient than using an explicit constant pool. 1581 DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation."); 1582 SectionEntry &Section = Sections[SectionID]; 1583 1584 // Look for an existing stub. 1585 StubMap::const_iterator i = Stubs.find(Value); 1586 uintptr_t StubAddress; 1587 if (i != Stubs.end()) { 1588 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second)); 1589 DEBUG(dbgs() << " Stub function found\n"); 1590 } else { 1591 // Create a new stub function. 1592 DEBUG(dbgs() << " Create a new stub function\n"); 1593 1594 uintptr_t BaseAddress = uintptr_t(Section.getAddress()); 1595 uintptr_t StubAlignment = getStubAlignment(); 1596 StubAddress = 1597 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) & 1598 -StubAlignment; 1599 unsigned StubOffset = StubAddress - BaseAddress; 1600 1601 Stubs[Value] = StubOffset; 1602 createStubFunction((uint8_t *)StubAddress); 1603 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64, 1604 Value.Offset); 1605 if (Value.SymbolName) 1606 addRelocationForSymbol(RE, Value.SymbolName); 1607 else 1608 addRelocationForSection(RE, Value.SectionID); 1609 Section.advanceStubOffset(getMaxStubSize()); 1610 } 1611 1612 if (RelType == ELF::R_390_GOTENT) 1613 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL, 1614 Addend); 1615 else 1616 resolveRelocation(Section, Offset, StubAddress, RelType, Addend); 1617 } else if (Arch == Triple::x86_64) { 1618 if (RelType == ELF::R_X86_64_PLT32) { 1619 // The way the PLT relocations normally work is that the linker allocates 1620 // the 1621 // PLT and this relocation makes a PC-relative call into the PLT. The PLT 1622 // entry will then jump to an address provided by the GOT. On first call, 1623 // the 1624 // GOT address will point back into PLT code that resolves the symbol. After 1625 // the first call, the GOT entry points to the actual function. 1626 // 1627 // For local functions we're ignoring all of that here and just replacing 1628 // the PLT32 relocation type with PC32, which will translate the relocation 1629 // into a PC-relative call directly to the function. For external symbols we 1630 // can't be sure the function will be within 2^32 bytes of the call site, so 1631 // we need to create a stub, which calls into the GOT. This case is 1632 // equivalent to the usual PLT implementation except that we use the stub 1633 // mechanism in RuntimeDyld (which puts stubs at the end of the section) 1634 // rather than allocating a PLT section. 1635 if (Value.SymbolName) { 1636 // This is a call to an external function. 1637 // Look for an existing stub. 1638 SectionEntry &Section = Sections[SectionID]; 1639 StubMap::const_iterator i = Stubs.find(Value); 1640 uintptr_t StubAddress; 1641 if (i != Stubs.end()) { 1642 StubAddress = uintptr_t(Section.getAddress()) + i->second; 1643 DEBUG(dbgs() << " Stub function found\n"); 1644 } else { 1645 // Create a new stub function (equivalent to a PLT entry). 1646 DEBUG(dbgs() << " Create a new stub function\n"); 1647 1648 uintptr_t BaseAddress = uintptr_t(Section.getAddress()); 1649 uintptr_t StubAlignment = getStubAlignment(); 1650 StubAddress = 1651 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) & 1652 -StubAlignment; 1653 unsigned StubOffset = StubAddress - BaseAddress; 1654 Stubs[Value] = StubOffset; 1655 createStubFunction((uint8_t *)StubAddress); 1656 1657 // Bump our stub offset counter 1658 Section.advanceStubOffset(getMaxStubSize()); 1659 1660 // Allocate a GOT Entry 1661 uint64_t GOTOffset = allocateGOTEntries(1); 1662 1663 // The load of the GOT address has an addend of -4 1664 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4, 1665 ELF::R_X86_64_PC32); 1666 1667 // Fill in the value of the symbol we're targeting into the GOT 1668 addRelocationForSymbol( 1669 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64), 1670 Value.SymbolName); 1671 } 1672 1673 // Make the target call a call into the stub table. 1674 resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32, 1675 Addend); 1676 } else { 1677 RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend, 1678 Value.Offset); 1679 addRelocationForSection(RE, Value.SectionID); 1680 } 1681 } else if (RelType == ELF::R_X86_64_GOTPCREL || 1682 RelType == ELF::R_X86_64_GOTPCRELX || 1683 RelType == ELF::R_X86_64_REX_GOTPCRELX) { 1684 uint64_t GOTOffset = allocateGOTEntries(1); 1685 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, 1686 ELF::R_X86_64_PC32); 1687 1688 // Fill in the value of the symbol we're targeting into the GOT 1689 RelocationEntry RE = 1690 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64); 1691 if (Value.SymbolName) 1692 addRelocationForSymbol(RE, Value.SymbolName); 1693 else 1694 addRelocationForSection(RE, Value.SectionID); 1695 } else if (RelType == ELF::R_X86_64_PC32) { 1696 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset)); 1697 processSimpleRelocation(SectionID, Offset, RelType, Value); 1698 } else if (RelType == ELF::R_X86_64_PC64) { 1699 Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset)); 1700 processSimpleRelocation(SectionID, Offset, RelType, Value); 1701 } else { 1702 processSimpleRelocation(SectionID, Offset, RelType, Value); 1703 } 1704 } else { 1705 if (Arch == Triple::x86) { 1706 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset)); 1707 } 1708 processSimpleRelocation(SectionID, Offset, RelType, Value); 1709 } 1710 return ++RelI; 1711 } 1712 1713 size_t RuntimeDyldELF::getGOTEntrySize() { 1714 // We don't use the GOT in all of these cases, but it's essentially free 1715 // to put them all here. 1716 size_t Result = 0; 1717 switch (Arch) { 1718 case Triple::x86_64: 1719 case Triple::aarch64: 1720 case Triple::aarch64_be: 1721 case Triple::ppc64: 1722 case Triple::ppc64le: 1723 case Triple::systemz: 1724 Result = sizeof(uint64_t); 1725 break; 1726 case Triple::x86: 1727 case Triple::arm: 1728 case Triple::thumb: 1729 Result = sizeof(uint32_t); 1730 break; 1731 case Triple::mips: 1732 case Triple::mipsel: 1733 case Triple::mips64: 1734 case Triple::mips64el: 1735 if (IsMipsO32ABI || IsMipsN32ABI) 1736 Result = sizeof(uint32_t); 1737 else if (IsMipsN64ABI) 1738 Result = sizeof(uint64_t); 1739 else 1740 llvm_unreachable("Mips ABI not handled"); 1741 break; 1742 default: 1743 llvm_unreachable("Unsupported CPU type!"); 1744 } 1745 return Result; 1746 } 1747 1748 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) { 1749 if (GOTSectionID == 0) { 1750 GOTSectionID = Sections.size(); 1751 // Reserve a section id. We'll allocate the section later 1752 // once we know the total size 1753 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0)); 1754 } 1755 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize(); 1756 CurrentGOTIndex += no; 1757 return StartOffset; 1758 } 1759 1760 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value, 1761 unsigned GOTRelType) { 1762 auto E = GOTOffsetMap.insert({Value, 0}); 1763 if (E.second) { 1764 uint64_t GOTOffset = allocateGOTEntries(1); 1765 1766 // Create relocation for newly created GOT entry 1767 RelocationEntry RE = 1768 computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType); 1769 if (Value.SymbolName) 1770 addRelocationForSymbol(RE, Value.SymbolName); 1771 else 1772 addRelocationForSection(RE, Value.SectionID); 1773 1774 E.first->second = GOTOffset; 1775 } 1776 1777 return E.first->second; 1778 } 1779 1780 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, 1781 uint64_t Offset, 1782 uint64_t GOTOffset, 1783 uint32_t Type) { 1784 // Fill in the relative address of the GOT Entry into the stub 1785 RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset); 1786 addRelocationForSection(GOTRE, GOTSectionID); 1787 } 1788 1789 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset, 1790 uint64_t SymbolOffset, 1791 uint32_t Type) { 1792 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset); 1793 } 1794 1795 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj, 1796 ObjSectionToIDMap &SectionMap) { 1797 if (IsMipsO32ABI) 1798 if (!PendingRelocs.empty()) 1799 return make_error<RuntimeDyldError>("Can't find matching LO16 reloc"); 1800 1801 // If necessary, allocate the global offset table 1802 if (GOTSectionID != 0) { 1803 // Allocate memory for the section 1804 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize(); 1805 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(), 1806 GOTSectionID, ".got", false); 1807 if (!Addr) 1808 return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!"); 1809 1810 Sections[GOTSectionID] = 1811 SectionEntry(".got", Addr, TotalSize, TotalSize, 0); 1812 1813 if (Checker) 1814 Checker->registerSection(Obj.getFileName(), GOTSectionID); 1815 1816 // For now, initialize all GOT entries to zero. We'll fill them in as 1817 // needed when GOT-based relocations are applied. 1818 memset(Addr, 0, TotalSize); 1819 if (IsMipsN32ABI || IsMipsN64ABI) { 1820 // To correctly resolve Mips GOT relocations, we need a mapping from 1821 // object's sections to GOTs. 1822 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 1823 SI != SE; ++SI) { 1824 if (SI->relocation_begin() != SI->relocation_end()) { 1825 section_iterator RelocatedSection = SI->getRelocatedSection(); 1826 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection); 1827 assert (i != SectionMap.end()); 1828 SectionToGOTMap[i->second] = GOTSectionID; 1829 } 1830 } 1831 GOTSymbolOffsets.clear(); 1832 } 1833 } 1834 1835 // Look for and record the EH frame section. 1836 ObjSectionToIDMap::iterator i, e; 1837 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) { 1838 const SectionRef &Section = i->first; 1839 StringRef Name; 1840 Section.getName(Name); 1841 if (Name == ".eh_frame") { 1842 UnregisteredEHFrameSections.push_back(i->second); 1843 break; 1844 } 1845 } 1846 1847 GOTSectionID = 0; 1848 CurrentGOTIndex = 0; 1849 1850 return Error::success(); 1851 } 1852 1853 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const { 1854 return Obj.isELF(); 1855 } 1856 1857 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const { 1858 unsigned RelTy = R.getType(); 1859 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) 1860 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE || 1861 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC; 1862 1863 if (Arch == Triple::x86_64) 1864 return RelTy == ELF::R_X86_64_GOTPCREL || 1865 RelTy == ELF::R_X86_64_GOTPCRELX || 1866 RelTy == ELF::R_X86_64_REX_GOTPCRELX; 1867 return false; 1868 } 1869 1870 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const { 1871 if (Arch != Triple::x86_64) 1872 return true; // Conservative answer 1873 1874 switch (R.getType()) { 1875 default: 1876 return true; // Conservative answer 1877 1878 1879 case ELF::R_X86_64_GOTPCREL: 1880 case ELF::R_X86_64_GOTPCRELX: 1881 case ELF::R_X86_64_REX_GOTPCRELX: 1882 case ELF::R_X86_64_PC32: 1883 case ELF::R_X86_64_PC64: 1884 case ELF::R_X86_64_64: 1885 // We know that these reloation types won't need a stub function. This list 1886 // can be extended as needed. 1887 return false; 1888 } 1889 } 1890 1891 } // namespace llvm 1892