1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains both code to deal with invoking "external" functions, but 11 // also contains code that implements "exported" external functions. 12 // 13 // There are currently two mechanisms for handling external functions in the 14 // Interpreter. The first is to implement lle_* wrapper functions that are 15 // specific to well-known library functions which manually translate the 16 // arguments from GenericValues and make the call. If such a wrapper does 17 // not exist, and libffi is available, then the Interpreter will attempt to 18 // invoke the function using libffi, after finding its address. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "Interpreter.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/Module.h" 25 #include "llvm/Config/config.h" // Detect libffi 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/Streams.h" 28 #include "llvm/System/DynamicLibrary.h" 29 #include "llvm/Target/TargetData.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/System/Mutex.h" 32 #include <csignal> 33 #include <cstdio> 34 #include <map> 35 #include <cmath> 36 #include <cstring> 37 38 #ifdef HAVE_FFI_CALL 39 #ifdef HAVE_FFI_H 40 #include <ffi.h> 41 #define USE_LIBFFI 42 #elif HAVE_FFI_FFI_H 43 #include <ffi/ffi.h> 44 #define USE_LIBFFI 45 #endif 46 #endif 47 48 using namespace llvm; 49 50 static ManagedStatic<sys::Mutex> FunctionsLock; 51 52 typedef GenericValue (*ExFunc)(const FunctionType *, 53 const std::vector<GenericValue> &); 54 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions; 55 static std::map<std::string, ExFunc> FuncNames; 56 57 #ifdef USE_LIBFFI 58 typedef void (*RawFunc)(void); 59 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions; 60 #endif 61 62 static Interpreter *TheInterpreter; 63 64 static char getTypeID(const Type *Ty) { 65 switch (Ty->getTypeID()) { 66 case Type::VoidTyID: return 'V'; 67 case Type::IntegerTyID: 68 switch (cast<IntegerType>(Ty)->getBitWidth()) { 69 case 1: return 'o'; 70 case 8: return 'B'; 71 case 16: return 'S'; 72 case 32: return 'I'; 73 case 64: return 'L'; 74 default: return 'N'; 75 } 76 case Type::FloatTyID: return 'F'; 77 case Type::DoubleTyID: return 'D'; 78 case Type::PointerTyID: return 'P'; 79 case Type::FunctionTyID:return 'M'; 80 case Type::StructTyID: return 'T'; 81 case Type::ArrayTyID: return 'A'; 82 case Type::OpaqueTyID: return 'O'; 83 default: return 'U'; 84 } 85 } 86 87 // Try to find address of external function given a Function object. 88 // Please note, that interpreter doesn't know how to assemble a 89 // real call in general case (this is JIT job), that's why it assumes, 90 // that all external functions has the same (and pretty "general") signature. 91 // The typical example of such functions are "lle_X_" ones. 92 static ExFunc lookupFunction(const Function *F) { 93 // Function not found, look it up... start by figuring out what the 94 // composite function name should be. 95 std::string ExtName = "lle_"; 96 const FunctionType *FT = F->getFunctionType(); 97 for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) 98 ExtName += getTypeID(FT->getContainedType(i)); 99 ExtName + "_" + F->getNameStr(); 100 101 sys::ScopedLock Writer(*FunctionsLock); 102 ExFunc FnPtr = FuncNames[ExtName]; 103 if (FnPtr == 0) 104 FnPtr = FuncNames["lle_X_" + F->getNameStr()]; 105 if (FnPtr == 0) // Try calling a generic function... if it exists... 106 FnPtr = (ExFunc)(intptr_t) 107 sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_"+F->getNameStr()); 108 if (FnPtr != 0) 109 ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later 110 return FnPtr; 111 } 112 113 #ifdef USE_LIBFFI 114 static ffi_type *ffiTypeFor(const Type *Ty) { 115 switch (Ty->getTypeID()) { 116 case Type::VoidTyID: return &ffi_type_void; 117 case Type::IntegerTyID: 118 switch (cast<IntegerType>(Ty)->getBitWidth()) { 119 case 8: return &ffi_type_sint8; 120 case 16: return &ffi_type_sint16; 121 case 32: return &ffi_type_sint32; 122 case 64: return &ffi_type_sint64; 123 } 124 case Type::FloatTyID: return &ffi_type_float; 125 case Type::DoubleTyID: return &ffi_type_double; 126 case Type::PointerTyID: return &ffi_type_pointer; 127 default: break; 128 } 129 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 130 llvm_report_error("Type could not be mapped for use with libffi."); 131 return NULL; 132 } 133 134 static void *ffiValueFor(const Type *Ty, const GenericValue &AV, 135 void *ArgDataPtr) { 136 switch (Ty->getTypeID()) { 137 case Type::IntegerTyID: 138 switch (cast<IntegerType>(Ty)->getBitWidth()) { 139 case 8: { 140 int8_t *I8Ptr = (int8_t *) ArgDataPtr; 141 *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); 142 return ArgDataPtr; 143 } 144 case 16: { 145 int16_t *I16Ptr = (int16_t *) ArgDataPtr; 146 *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); 147 return ArgDataPtr; 148 } 149 case 32: { 150 int32_t *I32Ptr = (int32_t *) ArgDataPtr; 151 *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); 152 return ArgDataPtr; 153 } 154 case 64: { 155 int64_t *I64Ptr = (int64_t *) ArgDataPtr; 156 *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); 157 return ArgDataPtr; 158 } 159 } 160 case Type::FloatTyID: { 161 float *FloatPtr = (float *) ArgDataPtr; 162 *FloatPtr = AV.DoubleVal; 163 return ArgDataPtr; 164 } 165 case Type::DoubleTyID: { 166 double *DoublePtr = (double *) ArgDataPtr; 167 *DoublePtr = AV.DoubleVal; 168 return ArgDataPtr; 169 } 170 case Type::PointerTyID: { 171 void **PtrPtr = (void **) ArgDataPtr; 172 *PtrPtr = GVTOP(AV); 173 return ArgDataPtr; 174 } 175 default: break; 176 } 177 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 178 llvm_report_error("Type value could not be mapped for use with libffi."); 179 return NULL; 180 } 181 182 static bool ffiInvoke(RawFunc Fn, Function *F, 183 const std::vector<GenericValue> &ArgVals, 184 const TargetData *TD, GenericValue &Result) { 185 ffi_cif cif; 186 const FunctionType *FTy = F->getFunctionType(); 187 const unsigned NumArgs = F->arg_size(); 188 189 // TODO: We don't have type information about the remaining arguments, because 190 // this information is never passed into ExecutionEngine::runFunction(). 191 if (ArgVals.size() > NumArgs && F->isVarArg()) { 192 llvm_report_error("Calling external var arg function '" + F->getName() 193 + "' is not supported by the Interpreter."); 194 } 195 196 unsigned ArgBytes = 0; 197 198 std::vector<ffi_type*> args(NumArgs); 199 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 200 A != E; ++A) { 201 const unsigned ArgNo = A->getArgNo(); 202 const Type *ArgTy = FTy->getParamType(ArgNo); 203 args[ArgNo] = ffiTypeFor(ArgTy); 204 ArgBytes += TD->getTypeStoreSize(ArgTy); 205 } 206 207 uint8_t *ArgData = (uint8_t*) alloca(ArgBytes); 208 uint8_t *ArgDataPtr = ArgData; 209 std::vector<void*> values(NumArgs); 210 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 211 A != E; ++A) { 212 const unsigned ArgNo = A->getArgNo(); 213 const Type *ArgTy = FTy->getParamType(ArgNo); 214 values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); 215 ArgDataPtr += TD->getTypeStoreSize(ArgTy); 216 } 217 218 const Type *RetTy = FTy->getReturnType(); 219 ffi_type *rtype = ffiTypeFor(RetTy); 220 221 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) { 222 void *ret = NULL; 223 if (RetTy->getTypeID() != Type::VoidTyID) 224 ret = alloca(TD->getTypeStoreSize(RetTy)); 225 ffi_call(&cif, Fn, ret, &values[0]); 226 switch (RetTy->getTypeID()) { 227 case Type::IntegerTyID: 228 switch (cast<IntegerType>(RetTy)->getBitWidth()) { 229 case 8: Result.IntVal = APInt(8 , *(int8_t *) ret); break; 230 case 16: Result.IntVal = APInt(16, *(int16_t*) ret); break; 231 case 32: Result.IntVal = APInt(32, *(int32_t*) ret); break; 232 case 64: Result.IntVal = APInt(64, *(int64_t*) ret); break; 233 } 234 break; 235 case Type::FloatTyID: Result.FloatVal = *(float *) ret; break; 236 case Type::DoubleTyID: Result.DoubleVal = *(double*) ret; break; 237 case Type::PointerTyID: Result.PointerVal = *(void **) ret; break; 238 default: break; 239 } 240 return true; 241 } 242 243 return false; 244 } 245 #endif // USE_LIBFFI 246 247 GenericValue Interpreter::callExternalFunction(Function *F, 248 const std::vector<GenericValue> &ArgVals) { 249 TheInterpreter = this; 250 251 FunctionsLock->acquire(); 252 253 // Do a lookup to see if the function is in our cache... this should just be a 254 // deferred annotation! 255 std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F); 256 if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F) 257 : FI->second) { 258 FunctionsLock->release(); 259 return Fn(F->getFunctionType(), ArgVals); 260 } 261 262 #ifdef USE_LIBFFI 263 std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F); 264 RawFunc RawFn; 265 if (RF == RawFunctions->end()) { 266 RawFn = (RawFunc)(intptr_t) 267 sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); 268 if (RawFn != 0) 269 RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later 270 } else { 271 RawFn = RF->second; 272 } 273 274 FunctionsLock->release(); 275 276 GenericValue Result; 277 if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getTargetData(), Result)) 278 return Result; 279 #endif // USE_LIBFFI 280 281 if (F->getName() == "__main") 282 cerr << "Tried to execute an unknown external function: " 283 << F->getType()->getDescription() << " __main\n"; 284 else 285 llvm_report_error("Tried to execute an unknown external function: " + 286 F->getType()->getDescription() + " " +F->getName()); 287 return GenericValue(); 288 } 289 290 291 //===----------------------------------------------------------------------===// 292 // Functions "exported" to the running application... 293 // 294 extern "C" { // Don't add C++ manglings to llvm mangling :) 295 296 // void atexit(Function*) 297 GenericValue lle_X_atexit(const FunctionType *FT, 298 const std::vector<GenericValue> &Args) { 299 assert(Args.size() == 1); 300 TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); 301 GenericValue GV; 302 GV.IntVal = 0; 303 return GV; 304 } 305 306 // void exit(int) 307 GenericValue lle_X_exit(const FunctionType *FT, 308 const std::vector<GenericValue> &Args) { 309 TheInterpreter->exitCalled(Args[0]); 310 return GenericValue(); 311 } 312 313 // void abort(void) 314 GenericValue lle_X_abort(const FunctionType *FT, 315 const std::vector<GenericValue> &Args) { 316 //FIXME: should we report or raise here? 317 //llvm_report_error("Interpreted program raised SIGABRT"); 318 raise (SIGABRT); 319 return GenericValue(); 320 } 321 322 // int sprintf(char *, const char *, ...) - a very rough implementation to make 323 // output useful. 324 GenericValue lle_X_sprintf(const FunctionType *FT, 325 const std::vector<GenericValue> &Args) { 326 char *OutputBuffer = (char *)GVTOP(Args[0]); 327 const char *FmtStr = (const char *)GVTOP(Args[1]); 328 unsigned ArgNo = 2; 329 330 // printf should return # chars printed. This is completely incorrect, but 331 // close enough for now. 332 GenericValue GV; 333 GV.IntVal = APInt(32, strlen(FmtStr)); 334 while (1) { 335 switch (*FmtStr) { 336 case 0: return GV; // Null terminator... 337 default: // Normal nonspecial character 338 sprintf(OutputBuffer++, "%c", *FmtStr++); 339 break; 340 case '\\': { // Handle escape codes 341 sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); 342 FmtStr += 2; OutputBuffer += 2; 343 break; 344 } 345 case '%': { // Handle format specifiers 346 char FmtBuf[100] = "", Buffer[1000] = ""; 347 char *FB = FmtBuf; 348 *FB++ = *FmtStr++; 349 char Last = *FB++ = *FmtStr++; 350 unsigned HowLong = 0; 351 while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && 352 Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && 353 Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && 354 Last != 'p' && Last != 's' && Last != '%') { 355 if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's 356 Last = *FB++ = *FmtStr++; 357 } 358 *FB = 0; 359 360 switch (Last) { 361 case '%': 362 strcpy(Buffer, "%"); break; 363 case 'c': 364 sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 365 break; 366 case 'd': case 'i': 367 case 'u': case 'o': 368 case 'x': case 'X': 369 if (HowLong >= 1) { 370 if (HowLong == 1 && 371 TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 && 372 sizeof(long) < sizeof(int64_t)) { 373 // Make sure we use %lld with a 64 bit argument because we might be 374 // compiling LLI on a 32 bit compiler. 375 unsigned Size = strlen(FmtBuf); 376 FmtBuf[Size] = FmtBuf[Size-1]; 377 FmtBuf[Size+1] = 0; 378 FmtBuf[Size-1] = 'l'; 379 } 380 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); 381 } else 382 sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 383 break; 384 case 'e': case 'E': case 'g': case 'G': case 'f': 385 sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; 386 case 'p': 387 sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; 388 case 's': 389 sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; 390 default: cerr << "<unknown printf code '" << *FmtStr << "'!>"; 391 ArgNo++; break; 392 } 393 strcpy(OutputBuffer, Buffer); 394 OutputBuffer += strlen(Buffer); 395 } 396 break; 397 } 398 } 399 return GV; 400 } 401 402 // int printf(const char *, ...) - a very rough implementation to make output 403 // useful. 404 GenericValue lle_X_printf(const FunctionType *FT, 405 const std::vector<GenericValue> &Args) { 406 char Buffer[10000]; 407 std::vector<GenericValue> NewArgs; 408 NewArgs.push_back(PTOGV((void*)&Buffer[0])); 409 NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); 410 GenericValue GV = lle_X_sprintf(FT, NewArgs); 411 cout << Buffer; 412 return GV; 413 } 414 415 static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1, 416 void *Arg2, void *Arg3, void *Arg4, void *Arg5, 417 void *Arg6, void *Arg7, void *Arg8) { 418 void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 }; 419 420 // Loop over the format string, munging read values as appropriate (performs 421 // byteswaps as necessary). 422 unsigned ArgNo = 0; 423 while (*Fmt) { 424 if (*Fmt++ == '%') { 425 // Read any flag characters that may be present... 426 bool Suppress = false; 427 bool Half = false; 428 bool Long = false; 429 bool LongLong = false; // long long or long double 430 431 while (1) { 432 switch (*Fmt++) { 433 case '*': Suppress = true; break; 434 case 'a': /*Allocate = true;*/ break; // We don't need to track this 435 case 'h': Half = true; break; 436 case 'l': Long = true; break; 437 case 'q': 438 case 'L': LongLong = true; break; 439 default: 440 if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs 441 goto Out; 442 } 443 } 444 Out: 445 446 // Read the conversion character 447 if (!Suppress && Fmt[-1] != '%') { // Nothing to do? 448 unsigned Size = 0; 449 const Type *Ty = 0; 450 451 switch (Fmt[-1]) { 452 case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p': 453 case 'd': 454 if (Long || LongLong) { 455 Size = 8; Ty = Type::Int64Ty; 456 } else if (Half) { 457 Size = 4; Ty = Type::Int16Ty; 458 } else { 459 Size = 4; Ty = Type::Int32Ty; 460 } 461 break; 462 463 case 'e': case 'g': case 'E': 464 case 'f': 465 if (Long || LongLong) { 466 Size = 8; Ty = Type::DoubleTy; 467 } else { 468 Size = 4; Ty = Type::FloatTy; 469 } 470 break; 471 472 case 's': case 'c': case '[': // No byteswap needed 473 Size = 1; 474 Ty = Type::Int8Ty; 475 break; 476 477 default: break; 478 } 479 480 if (Size) { 481 GenericValue GV; 482 void *Arg = Args[ArgNo++]; 483 memcpy(&GV, Arg, Size); 484 TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty); 485 } 486 } 487 } 488 } 489 } 490 491 // int sscanf(const char *format, ...); 492 GenericValue lle_X_sscanf(const FunctionType *FT, 493 const std::vector<GenericValue> &args) { 494 assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); 495 496 char *Args[10]; 497 for (unsigned i = 0; i < args.size(); ++i) 498 Args[i] = (char*)GVTOP(args[i]); 499 500 GenericValue GV; 501 GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], 502 Args[5], Args[6], Args[7], Args[8], Args[9])); 503 ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4], 504 Args[5], Args[6], Args[7], Args[8], Args[9], 0); 505 return GV; 506 } 507 508 // int scanf(const char *format, ...); 509 GenericValue lle_X_scanf(const FunctionType *FT, 510 const std::vector<GenericValue> &args) { 511 assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); 512 513 char *Args[10]; 514 for (unsigned i = 0; i < args.size(); ++i) 515 Args[i] = (char*)GVTOP(args[i]); 516 517 GenericValue GV; 518 GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], 519 Args[5], Args[6], Args[7], Args[8], Args[9])); 520 ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4], 521 Args[5], Args[6], Args[7], Args[8], Args[9]); 522 return GV; 523 } 524 525 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make 526 // output useful. 527 GenericValue lle_X_fprintf(const FunctionType *FT, 528 const std::vector<GenericValue> &Args) { 529 assert(Args.size() >= 2); 530 char Buffer[10000]; 531 std::vector<GenericValue> NewArgs; 532 NewArgs.push_back(PTOGV(Buffer)); 533 NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); 534 GenericValue GV = lle_X_sprintf(FT, NewArgs); 535 536 fputs(Buffer, (FILE *) GVTOP(Args[0])); 537 return GV; 538 } 539 540 } // End extern "C" 541 542 543 void Interpreter::initializeExternalFunctions() { 544 sys::ScopedLock Writer(*FunctionsLock); 545 FuncNames["lle_X_atexit"] = lle_X_atexit; 546 FuncNames["lle_X_exit"] = lle_X_exit; 547 FuncNames["lle_X_abort"] = lle_X_abort; 548 549 FuncNames["lle_X_printf"] = lle_X_printf; 550 FuncNames["lle_X_sprintf"] = lle_X_sprintf; 551 FuncNames["lle_X_sscanf"] = lle_X_sscanf; 552 FuncNames["lle_X_scanf"] = lle_X_scanf; 553 FuncNames["lle_X_fprintf"] = lle_X_fprintf; 554 } 555 556