1 //===-- Execution.cpp - Implement code to simulate the program ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the actual instruction interpreter. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "interpreter" 15 #include "Interpreter.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/CodeGen/IntrinsicLowering.h" 20 #include "llvm/Support/GetElementPtrTypeIterator.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 #include <algorithm> 28 #include <cmath> 29 using namespace llvm; 30 31 STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); 32 33 static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden, 34 cl::desc("make the interpreter print every volatile load and store")); 35 36 //===----------------------------------------------------------------------===// 37 // Various Helper Functions 38 //===----------------------------------------------------------------------===// 39 40 static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { 41 SF.Values[V] = Val; 42 } 43 44 //===----------------------------------------------------------------------===// 45 // Binary Instruction Implementations 46 //===----------------------------------------------------------------------===// 47 48 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ 49 case Type::TY##TyID: \ 50 Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ 51 break 52 53 static void executeFAddInst(GenericValue &Dest, GenericValue Src1, 54 GenericValue Src2, Type *Ty) { 55 switch (Ty->getTypeID()) { 56 IMPLEMENT_BINARY_OPERATOR(+, Float); 57 IMPLEMENT_BINARY_OPERATOR(+, Double); 58 default: 59 dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n"; 60 llvm_unreachable(0); 61 } 62 } 63 64 static void executeFSubInst(GenericValue &Dest, GenericValue Src1, 65 GenericValue Src2, Type *Ty) { 66 switch (Ty->getTypeID()) { 67 IMPLEMENT_BINARY_OPERATOR(-, Float); 68 IMPLEMENT_BINARY_OPERATOR(-, Double); 69 default: 70 dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n"; 71 llvm_unreachable(0); 72 } 73 } 74 75 static void executeFMulInst(GenericValue &Dest, GenericValue Src1, 76 GenericValue Src2, Type *Ty) { 77 switch (Ty->getTypeID()) { 78 IMPLEMENT_BINARY_OPERATOR(*, Float); 79 IMPLEMENT_BINARY_OPERATOR(*, Double); 80 default: 81 dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n"; 82 llvm_unreachable(0); 83 } 84 } 85 86 static void executeFDivInst(GenericValue &Dest, GenericValue Src1, 87 GenericValue Src2, Type *Ty) { 88 switch (Ty->getTypeID()) { 89 IMPLEMENT_BINARY_OPERATOR(/, Float); 90 IMPLEMENT_BINARY_OPERATOR(/, Double); 91 default: 92 dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n"; 93 llvm_unreachable(0); 94 } 95 } 96 97 static void executeFRemInst(GenericValue &Dest, GenericValue Src1, 98 GenericValue Src2, Type *Ty) { 99 switch (Ty->getTypeID()) { 100 case Type::FloatTyID: 101 Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); 102 break; 103 case Type::DoubleTyID: 104 Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); 105 break; 106 default: 107 dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; 108 llvm_unreachable(0); 109 } 110 } 111 112 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \ 113 case Type::IntegerTyID: \ 114 Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ 115 break; 116 117 // Handle pointers specially because they must be compared with only as much 118 // width as the host has. We _do not_ want to be comparing 64 bit values when 119 // running on a 32-bit target, otherwise the upper 32 bits might mess up 120 // comparisons if they contain garbage. 121 #define IMPLEMENT_POINTER_ICMP(OP) \ 122 case Type::PointerTyID: \ 123 Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \ 124 (void*)(intptr_t)Src2.PointerVal); \ 125 break; 126 127 static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, 128 Type *Ty) { 129 GenericValue Dest; 130 switch (Ty->getTypeID()) { 131 IMPLEMENT_INTEGER_ICMP(eq,Ty); 132 IMPLEMENT_POINTER_ICMP(==); 133 default: 134 dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; 135 llvm_unreachable(0); 136 } 137 return Dest; 138 } 139 140 static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, 141 Type *Ty) { 142 GenericValue Dest; 143 switch (Ty->getTypeID()) { 144 IMPLEMENT_INTEGER_ICMP(ne,Ty); 145 IMPLEMENT_POINTER_ICMP(!=); 146 default: 147 dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; 148 llvm_unreachable(0); 149 } 150 return Dest; 151 } 152 153 static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, 154 Type *Ty) { 155 GenericValue Dest; 156 switch (Ty->getTypeID()) { 157 IMPLEMENT_INTEGER_ICMP(ult,Ty); 158 IMPLEMENT_POINTER_ICMP(<); 159 default: 160 dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; 161 llvm_unreachable(0); 162 } 163 return Dest; 164 } 165 166 static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, 167 Type *Ty) { 168 GenericValue Dest; 169 switch (Ty->getTypeID()) { 170 IMPLEMENT_INTEGER_ICMP(slt,Ty); 171 IMPLEMENT_POINTER_ICMP(<); 172 default: 173 dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; 174 llvm_unreachable(0); 175 } 176 return Dest; 177 } 178 179 static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, 180 Type *Ty) { 181 GenericValue Dest; 182 switch (Ty->getTypeID()) { 183 IMPLEMENT_INTEGER_ICMP(ugt,Ty); 184 IMPLEMENT_POINTER_ICMP(>); 185 default: 186 dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; 187 llvm_unreachable(0); 188 } 189 return Dest; 190 } 191 192 static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, 193 Type *Ty) { 194 GenericValue Dest; 195 switch (Ty->getTypeID()) { 196 IMPLEMENT_INTEGER_ICMP(sgt,Ty); 197 IMPLEMENT_POINTER_ICMP(>); 198 default: 199 dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; 200 llvm_unreachable(0); 201 } 202 return Dest; 203 } 204 205 static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, 206 Type *Ty) { 207 GenericValue Dest; 208 switch (Ty->getTypeID()) { 209 IMPLEMENT_INTEGER_ICMP(ule,Ty); 210 IMPLEMENT_POINTER_ICMP(<=); 211 default: 212 dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; 213 llvm_unreachable(0); 214 } 215 return Dest; 216 } 217 218 static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, 219 Type *Ty) { 220 GenericValue Dest; 221 switch (Ty->getTypeID()) { 222 IMPLEMENT_INTEGER_ICMP(sle,Ty); 223 IMPLEMENT_POINTER_ICMP(<=); 224 default: 225 dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; 226 llvm_unreachable(0); 227 } 228 return Dest; 229 } 230 231 static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, 232 Type *Ty) { 233 GenericValue Dest; 234 switch (Ty->getTypeID()) { 235 IMPLEMENT_INTEGER_ICMP(uge,Ty); 236 IMPLEMENT_POINTER_ICMP(>=); 237 default: 238 dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; 239 llvm_unreachable(0); 240 } 241 return Dest; 242 } 243 244 static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, 245 Type *Ty) { 246 GenericValue Dest; 247 switch (Ty->getTypeID()) { 248 IMPLEMENT_INTEGER_ICMP(sge,Ty); 249 IMPLEMENT_POINTER_ICMP(>=); 250 default: 251 dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; 252 llvm_unreachable(0); 253 } 254 return Dest; 255 } 256 257 void Interpreter::visitICmpInst(ICmpInst &I) { 258 ExecutionContext &SF = ECStack.back(); 259 Type *Ty = I.getOperand(0)->getType(); 260 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 261 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 262 GenericValue R; // Result 263 264 switch (I.getPredicate()) { 265 case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break; 266 case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break; 267 case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; 268 case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; 269 case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; 270 case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; 271 case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; 272 case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; 273 case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; 274 case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; 275 default: 276 dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I; 277 llvm_unreachable(0); 278 } 279 280 SetValue(&I, R, SF); 281 } 282 283 #define IMPLEMENT_FCMP(OP, TY) \ 284 case Type::TY##TyID: \ 285 Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ 286 break 287 288 static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, 289 Type *Ty) { 290 GenericValue Dest; 291 switch (Ty->getTypeID()) { 292 IMPLEMENT_FCMP(==, Float); 293 IMPLEMENT_FCMP(==, Double); 294 default: 295 dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; 296 llvm_unreachable(0); 297 } 298 return Dest; 299 } 300 301 static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, 302 Type *Ty) { 303 GenericValue Dest; 304 switch (Ty->getTypeID()) { 305 IMPLEMENT_FCMP(!=, Float); 306 IMPLEMENT_FCMP(!=, Double); 307 308 default: 309 dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; 310 llvm_unreachable(0); 311 } 312 return Dest; 313 } 314 315 static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, 316 Type *Ty) { 317 GenericValue Dest; 318 switch (Ty->getTypeID()) { 319 IMPLEMENT_FCMP(<=, Float); 320 IMPLEMENT_FCMP(<=, Double); 321 default: 322 dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; 323 llvm_unreachable(0); 324 } 325 return Dest; 326 } 327 328 static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, 329 Type *Ty) { 330 GenericValue Dest; 331 switch (Ty->getTypeID()) { 332 IMPLEMENT_FCMP(>=, Float); 333 IMPLEMENT_FCMP(>=, Double); 334 default: 335 dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; 336 llvm_unreachable(0); 337 } 338 return Dest; 339 } 340 341 static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, 342 Type *Ty) { 343 GenericValue Dest; 344 switch (Ty->getTypeID()) { 345 IMPLEMENT_FCMP(<, Float); 346 IMPLEMENT_FCMP(<, Double); 347 default: 348 dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; 349 llvm_unreachable(0); 350 } 351 return Dest; 352 } 353 354 static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, 355 Type *Ty) { 356 GenericValue Dest; 357 switch (Ty->getTypeID()) { 358 IMPLEMENT_FCMP(>, Float); 359 IMPLEMENT_FCMP(>, Double); 360 default: 361 dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; 362 llvm_unreachable(0); 363 } 364 return Dest; 365 } 366 367 #define IMPLEMENT_UNORDERED(TY, X,Y) \ 368 if (TY->isFloatTy()) { \ 369 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ 370 Dest.IntVal = APInt(1,true); \ 371 return Dest; \ 372 } \ 373 } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ 374 Dest.IntVal = APInt(1,true); \ 375 return Dest; \ 376 } 377 378 379 static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, 380 Type *Ty) { 381 GenericValue Dest; 382 IMPLEMENT_UNORDERED(Ty, Src1, Src2) 383 return executeFCMP_OEQ(Src1, Src2, Ty); 384 } 385 386 static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, 387 Type *Ty) { 388 GenericValue Dest; 389 IMPLEMENT_UNORDERED(Ty, Src1, Src2) 390 return executeFCMP_ONE(Src1, Src2, Ty); 391 } 392 393 static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, 394 Type *Ty) { 395 GenericValue Dest; 396 IMPLEMENT_UNORDERED(Ty, Src1, Src2) 397 return executeFCMP_OLE(Src1, Src2, Ty); 398 } 399 400 static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, 401 Type *Ty) { 402 GenericValue Dest; 403 IMPLEMENT_UNORDERED(Ty, Src1, Src2) 404 return executeFCMP_OGE(Src1, Src2, Ty); 405 } 406 407 static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, 408 Type *Ty) { 409 GenericValue Dest; 410 IMPLEMENT_UNORDERED(Ty, Src1, Src2) 411 return executeFCMP_OLT(Src1, Src2, Ty); 412 } 413 414 static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, 415 Type *Ty) { 416 GenericValue Dest; 417 IMPLEMENT_UNORDERED(Ty, Src1, Src2) 418 return executeFCMP_OGT(Src1, Src2, Ty); 419 } 420 421 static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, 422 Type *Ty) { 423 GenericValue Dest; 424 if (Ty->isFloatTy()) 425 Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && 426 Src2.FloatVal == Src2.FloatVal)); 427 else 428 Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && 429 Src2.DoubleVal == Src2.DoubleVal)); 430 return Dest; 431 } 432 433 static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, 434 Type *Ty) { 435 GenericValue Dest; 436 if (Ty->isFloatTy()) 437 Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || 438 Src2.FloatVal != Src2.FloatVal)); 439 else 440 Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || 441 Src2.DoubleVal != Src2.DoubleVal)); 442 return Dest; 443 } 444 445 void Interpreter::visitFCmpInst(FCmpInst &I) { 446 ExecutionContext &SF = ECStack.back(); 447 Type *Ty = I.getOperand(0)->getType(); 448 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 449 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 450 GenericValue R; // Result 451 452 switch (I.getPredicate()) { 453 case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break; 454 case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break; 455 case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break; 456 case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break; 457 case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break; 458 case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break; 459 case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break; 460 case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break; 461 case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break; 462 case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break; 463 case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break; 464 case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break; 465 case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break; 466 case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break; 467 case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break; 468 case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break; 469 default: 470 dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I; 471 llvm_unreachable(0); 472 } 473 474 SetValue(&I, R, SF); 475 } 476 477 static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, 478 GenericValue Src2, Type *Ty) { 479 GenericValue Result; 480 switch (predicate) { 481 case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty); 482 case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty); 483 case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty); 484 case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty); 485 case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty); 486 case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty); 487 case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty); 488 case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty); 489 case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty); 490 case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty); 491 case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty); 492 case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty); 493 case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty); 494 case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty); 495 case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty); 496 case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty); 497 case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty); 498 case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty); 499 case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty); 500 case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty); 501 case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty); 502 case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty); 503 case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty); 504 case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty); 505 case FCmpInst::FCMP_FALSE: { 506 GenericValue Result; 507 Result.IntVal = APInt(1, false); 508 return Result; 509 } 510 case FCmpInst::FCMP_TRUE: { 511 GenericValue Result; 512 Result.IntVal = APInt(1, true); 513 return Result; 514 } 515 default: 516 dbgs() << "Unhandled Cmp predicate\n"; 517 llvm_unreachable(0); 518 } 519 } 520 521 void Interpreter::visitBinaryOperator(BinaryOperator &I) { 522 ExecutionContext &SF = ECStack.back(); 523 Type *Ty = I.getOperand(0)->getType(); 524 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 525 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 526 GenericValue R; // Result 527 528 switch (I.getOpcode()) { 529 case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break; 530 case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break; 531 case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break; 532 case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break; 533 case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break; 534 case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break; 535 case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break; 536 case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break; 537 case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; 538 case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; 539 case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; 540 case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; 541 case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break; 542 case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break; 543 case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break; 544 default: 545 dbgs() << "Don't know how to handle this binary operator!\n-->" << I; 546 llvm_unreachable(0); 547 } 548 549 SetValue(&I, R, SF); 550 } 551 552 static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, 553 GenericValue Src3) { 554 return Src1.IntVal == 0 ? Src3 : Src2; 555 } 556 557 void Interpreter::visitSelectInst(SelectInst &I) { 558 ExecutionContext &SF = ECStack.back(); 559 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 560 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 561 GenericValue Src3 = getOperandValue(I.getOperand(2), SF); 562 GenericValue R = executeSelectInst(Src1, Src2, Src3); 563 SetValue(&I, R, SF); 564 } 565 566 567 //===----------------------------------------------------------------------===// 568 // Terminator Instruction Implementations 569 //===----------------------------------------------------------------------===// 570 571 void Interpreter::exitCalled(GenericValue GV) { 572 // runAtExitHandlers() assumes there are no stack frames, but 573 // if exit() was called, then it had a stack frame. Blow away 574 // the stack before interpreting atexit handlers. 575 ECStack.clear(); 576 runAtExitHandlers(); 577 exit(GV.IntVal.zextOrTrunc(32).getZExtValue()); 578 } 579 580 /// Pop the last stack frame off of ECStack and then copy the result 581 /// back into the result variable if we are not returning void. The 582 /// result variable may be the ExitValue, or the Value of the calling 583 /// CallInst if there was a previous stack frame. This method may 584 /// invalidate any ECStack iterators you have. This method also takes 585 /// care of switching to the normal destination BB, if we are returning 586 /// from an invoke. 587 /// 588 void Interpreter::popStackAndReturnValueToCaller(Type *RetTy, 589 GenericValue Result) { 590 // Pop the current stack frame. 591 ECStack.pop_back(); 592 593 if (ECStack.empty()) { // Finished main. Put result into exit code... 594 if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type? 595 ExitValue = Result; // Capture the exit value of the program 596 } else { 597 memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped)); 598 } 599 } else { 600 // If we have a previous stack frame, and we have a previous call, 601 // fill in the return value... 602 ExecutionContext &CallingSF = ECStack.back(); 603 if (Instruction *I = CallingSF.Caller.getInstruction()) { 604 // Save result... 605 if (!CallingSF.Caller.getType()->isVoidTy()) 606 SetValue(I, Result, CallingSF); 607 if (InvokeInst *II = dyn_cast<InvokeInst> (I)) 608 SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); 609 CallingSF.Caller = CallSite(); // We returned from the call... 610 } 611 } 612 } 613 614 void Interpreter::visitReturnInst(ReturnInst &I) { 615 ExecutionContext &SF = ECStack.back(); 616 Type *RetTy = Type::getVoidTy(I.getContext()); 617 GenericValue Result; 618 619 // Save away the return value... (if we are not 'ret void') 620 if (I.getNumOperands()) { 621 RetTy = I.getReturnValue()->getType(); 622 Result = getOperandValue(I.getReturnValue(), SF); 623 } 624 625 popStackAndReturnValueToCaller(RetTy, Result); 626 } 627 628 void Interpreter::visitUnwindInst(UnwindInst &I) { 629 // Unwind stack 630 Instruction *Inst; 631 do { 632 ECStack.pop_back(); 633 if (ECStack.empty()) 634 report_fatal_error("Empty stack during unwind!"); 635 Inst = ECStack.back().Caller.getInstruction(); 636 } while (!(Inst && isa<InvokeInst>(Inst))); 637 638 // Return from invoke 639 ExecutionContext &InvokingSF = ECStack.back(); 640 InvokingSF.Caller = CallSite(); 641 642 // Go to exceptional destination BB of invoke instruction 643 SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF); 644 } 645 646 void Interpreter::visitUnreachableInst(UnreachableInst &I) { 647 report_fatal_error("Program executed an 'unreachable' instruction!"); 648 } 649 650 void Interpreter::visitBranchInst(BranchInst &I) { 651 ExecutionContext &SF = ECStack.back(); 652 BasicBlock *Dest; 653 654 Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... 655 if (!I.isUnconditional()) { 656 Value *Cond = I.getCondition(); 657 if (getOperandValue(Cond, SF).IntVal == 0) // If false cond... 658 Dest = I.getSuccessor(1); 659 } 660 SwitchToNewBasicBlock(Dest, SF); 661 } 662 663 void Interpreter::visitSwitchInst(SwitchInst &I) { 664 ExecutionContext &SF = ECStack.back(); 665 GenericValue CondVal = getOperandValue(I.getOperand(0), SF); 666 Type *ElTy = I.getOperand(0)->getType(); 667 668 // Check to see if any of the cases match... 669 BasicBlock *Dest = 0; 670 for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) 671 if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy) 672 .IntVal != 0) { 673 Dest = cast<BasicBlock>(I.getOperand(i+1)); 674 break; 675 } 676 677 if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default 678 SwitchToNewBasicBlock(Dest, SF); 679 } 680 681 void Interpreter::visitIndirectBrInst(IndirectBrInst &I) { 682 ExecutionContext &SF = ECStack.back(); 683 void *Dest = GVTOP(getOperandValue(I.getAddress(), SF)); 684 SwitchToNewBasicBlock((BasicBlock*)Dest, SF); 685 } 686 687 688 // SwitchToNewBasicBlock - This method is used to jump to a new basic block. 689 // This function handles the actual updating of block and instruction iterators 690 // as well as execution of all of the PHI nodes in the destination block. 691 // 692 // This method does this because all of the PHI nodes must be executed 693 // atomically, reading their inputs before any of the results are updated. Not 694 // doing this can cause problems if the PHI nodes depend on other PHI nodes for 695 // their inputs. If the input PHI node is updated before it is read, incorrect 696 // results can happen. Thus we use a two phase approach. 697 // 698 void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ 699 BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... 700 SF.CurBB = Dest; // Update CurBB to branch destination 701 SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... 702 703 if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do 704 705 // Loop over all of the PHI nodes in the current block, reading their inputs. 706 std::vector<GenericValue> ResultValues; 707 708 for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) { 709 // Search for the value corresponding to this previous bb... 710 int i = PN->getBasicBlockIndex(PrevBB); 711 assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); 712 Value *IncomingValue = PN->getIncomingValue(i); 713 714 // Save the incoming value for this PHI node... 715 ResultValues.push_back(getOperandValue(IncomingValue, SF)); 716 } 717 718 // Now loop over all of the PHI nodes setting their values... 719 SF.CurInst = SF.CurBB->begin(); 720 for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) { 721 PHINode *PN = cast<PHINode>(SF.CurInst); 722 SetValue(PN, ResultValues[i], SF); 723 } 724 } 725 726 //===----------------------------------------------------------------------===// 727 // Memory Instruction Implementations 728 //===----------------------------------------------------------------------===// 729 730 void Interpreter::visitAllocaInst(AllocaInst &I) { 731 ExecutionContext &SF = ECStack.back(); 732 733 Type *Ty = I.getType()->getElementType(); // Type to be allocated 734 735 // Get the number of elements being allocated by the array... 736 unsigned NumElements = 737 getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue(); 738 739 unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty); 740 741 // Avoid malloc-ing zero bytes, use max()... 742 unsigned MemToAlloc = std::max(1U, NumElements * TypeSize); 743 744 // Allocate enough memory to hold the type... 745 void *Memory = malloc(MemToAlloc); 746 747 DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x " 748 << NumElements << " (Total: " << MemToAlloc << ") at " 749 << uintptr_t(Memory) << '\n'); 750 751 GenericValue Result = PTOGV(Memory); 752 assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); 753 SetValue(&I, Result, SF); 754 755 if (I.getOpcode() == Instruction::Alloca) 756 ECStack.back().Allocas.add(Memory); 757 } 758 759 // getElementOffset - The workhorse for getelementptr. 760 // 761 GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, 762 gep_type_iterator E, 763 ExecutionContext &SF) { 764 assert(Ptr->getType()->isPointerTy() && 765 "Cannot getElementOffset of a nonpointer type!"); 766 767 uint64_t Total = 0; 768 769 for (; I != E; ++I) { 770 if (StructType *STy = dyn_cast<StructType>(*I)) { 771 const StructLayout *SLO = TD.getStructLayout(STy); 772 773 const ConstantInt *CPU = cast<ConstantInt>(I.getOperand()); 774 unsigned Index = unsigned(CPU->getZExtValue()); 775 776 Total += SLO->getElementOffset(Index); 777 } else { 778 SequentialType *ST = cast<SequentialType>(*I); 779 // Get the index number for the array... which must be long type... 780 GenericValue IdxGV = getOperandValue(I.getOperand(), SF); 781 782 int64_t Idx; 783 unsigned BitWidth = 784 cast<IntegerType>(I.getOperand()->getType())->getBitWidth(); 785 if (BitWidth == 32) 786 Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); 787 else { 788 assert(BitWidth == 64 && "Invalid index type for getelementptr"); 789 Idx = (int64_t)IdxGV.IntVal.getZExtValue(); 790 } 791 Total += TD.getTypeAllocSize(ST->getElementType())*Idx; 792 } 793 } 794 795 GenericValue Result; 796 Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total; 797 DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n"); 798 return Result; 799 } 800 801 void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { 802 ExecutionContext &SF = ECStack.back(); 803 SetValue(&I, executeGEPOperation(I.getPointerOperand(), 804 gep_type_begin(I), gep_type_end(I), SF), SF); 805 } 806 807 void Interpreter::visitLoadInst(LoadInst &I) { 808 ExecutionContext &SF = ECStack.back(); 809 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); 810 GenericValue *Ptr = (GenericValue*)GVTOP(SRC); 811 GenericValue Result; 812 LoadValueFromMemory(Result, Ptr, I.getType()); 813 SetValue(&I, Result, SF); 814 if (I.isVolatile() && PrintVolatile) 815 dbgs() << "Volatile load " << I; 816 } 817 818 void Interpreter::visitStoreInst(StoreInst &I) { 819 ExecutionContext &SF = ECStack.back(); 820 GenericValue Val = getOperandValue(I.getOperand(0), SF); 821 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); 822 StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), 823 I.getOperand(0)->getType()); 824 if (I.isVolatile() && PrintVolatile) 825 dbgs() << "Volatile store: " << I; 826 } 827 828 //===----------------------------------------------------------------------===// 829 // Miscellaneous Instruction Implementations 830 //===----------------------------------------------------------------------===// 831 832 void Interpreter::visitCallSite(CallSite CS) { 833 ExecutionContext &SF = ECStack.back(); 834 835 // Check to see if this is an intrinsic function call... 836 Function *F = CS.getCalledFunction(); 837 if (F && F->isDeclaration()) 838 switch (F->getIntrinsicID()) { 839 case Intrinsic::not_intrinsic: 840 break; 841 case Intrinsic::vastart: { // va_start 842 GenericValue ArgIndex; 843 ArgIndex.UIntPairVal.first = ECStack.size() - 1; 844 ArgIndex.UIntPairVal.second = 0; 845 SetValue(CS.getInstruction(), ArgIndex, SF); 846 return; 847 } 848 case Intrinsic::vaend: // va_end is a noop for the interpreter 849 return; 850 case Intrinsic::vacopy: // va_copy: dest = src 851 SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF); 852 return; 853 default: 854 // If it is an unknown intrinsic function, use the intrinsic lowering 855 // class to transform it into hopefully tasty LLVM code. 856 // 857 BasicBlock::iterator me(CS.getInstruction()); 858 BasicBlock *Parent = CS.getInstruction()->getParent(); 859 bool atBegin(Parent->begin() == me); 860 if (!atBegin) 861 --me; 862 IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction())); 863 864 // Restore the CurInst pointer to the first instruction newly inserted, if 865 // any. 866 if (atBegin) { 867 SF.CurInst = Parent->begin(); 868 } else { 869 SF.CurInst = me; 870 ++SF.CurInst; 871 } 872 return; 873 } 874 875 876 SF.Caller = CS; 877 std::vector<GenericValue> ArgVals; 878 const unsigned NumArgs = SF.Caller.arg_size(); 879 ArgVals.reserve(NumArgs); 880 uint16_t pNum = 1; 881 for (CallSite::arg_iterator i = SF.Caller.arg_begin(), 882 e = SF.Caller.arg_end(); i != e; ++i, ++pNum) { 883 Value *V = *i; 884 ArgVals.push_back(getOperandValue(V, SF)); 885 } 886 887 // To handle indirect calls, we must get the pointer value from the argument 888 // and treat it as a function pointer. 889 GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF); 890 callFunction((Function*)GVTOP(SRC), ArgVals); 891 } 892 893 void Interpreter::visitShl(BinaryOperator &I) { 894 ExecutionContext &SF = ECStack.back(); 895 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 896 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 897 GenericValue Dest; 898 if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth()) 899 Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue()); 900 else 901 Dest.IntVal = Src1.IntVal; 902 903 SetValue(&I, Dest, SF); 904 } 905 906 void Interpreter::visitLShr(BinaryOperator &I) { 907 ExecutionContext &SF = ECStack.back(); 908 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 909 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 910 GenericValue Dest; 911 if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth()) 912 Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue()); 913 else 914 Dest.IntVal = Src1.IntVal; 915 916 SetValue(&I, Dest, SF); 917 } 918 919 void Interpreter::visitAShr(BinaryOperator &I) { 920 ExecutionContext &SF = ECStack.back(); 921 GenericValue Src1 = getOperandValue(I.getOperand(0), SF); 922 GenericValue Src2 = getOperandValue(I.getOperand(1), SF); 923 GenericValue Dest; 924 if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth()) 925 Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue()); 926 else 927 Dest.IntVal = Src1.IntVal; 928 929 SetValue(&I, Dest, SF); 930 } 931 932 GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy, 933 ExecutionContext &SF) { 934 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 935 IntegerType *DITy = cast<IntegerType>(DstTy); 936 unsigned DBitWidth = DITy->getBitWidth(); 937 Dest.IntVal = Src.IntVal.trunc(DBitWidth); 938 return Dest; 939 } 940 941 GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy, 942 ExecutionContext &SF) { 943 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 944 IntegerType *DITy = cast<IntegerType>(DstTy); 945 unsigned DBitWidth = DITy->getBitWidth(); 946 Dest.IntVal = Src.IntVal.sext(DBitWidth); 947 return Dest; 948 } 949 950 GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy, 951 ExecutionContext &SF) { 952 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 953 IntegerType *DITy = cast<IntegerType>(DstTy); 954 unsigned DBitWidth = DITy->getBitWidth(); 955 Dest.IntVal = Src.IntVal.zext(DBitWidth); 956 return Dest; 957 } 958 959 GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy, 960 ExecutionContext &SF) { 961 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 962 assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() && 963 "Invalid FPTrunc instruction"); 964 Dest.FloatVal = (float) Src.DoubleVal; 965 return Dest; 966 } 967 968 GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy, 969 ExecutionContext &SF) { 970 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 971 assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() && 972 "Invalid FPTrunc instruction"); 973 Dest.DoubleVal = (double) Src.FloatVal; 974 return Dest; 975 } 976 977 GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy, 978 ExecutionContext &SF) { 979 Type *SrcTy = SrcVal->getType(); 980 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); 981 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 982 assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction"); 983 984 if (SrcTy->getTypeID() == Type::FloatTyID) 985 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); 986 else 987 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); 988 return Dest; 989 } 990 991 GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy, 992 ExecutionContext &SF) { 993 Type *SrcTy = SrcVal->getType(); 994 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); 995 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 996 assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction"); 997 998 if (SrcTy->getTypeID() == Type::FloatTyID) 999 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); 1000 else 1001 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); 1002 return Dest; 1003 } 1004 1005 GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy, 1006 ExecutionContext &SF) { 1007 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1008 assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction"); 1009 1010 if (DstTy->getTypeID() == Type::FloatTyID) 1011 Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); 1012 else 1013 Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); 1014 return Dest; 1015 } 1016 1017 GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy, 1018 ExecutionContext &SF) { 1019 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1020 assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction"); 1021 1022 if (DstTy->getTypeID() == Type::FloatTyID) 1023 Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); 1024 else 1025 Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); 1026 return Dest; 1027 1028 } 1029 1030 GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy, 1031 ExecutionContext &SF) { 1032 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); 1033 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1034 assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction"); 1035 1036 Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); 1037 return Dest; 1038 } 1039 1040 GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy, 1041 ExecutionContext &SF) { 1042 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1043 assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction"); 1044 1045 uint32_t PtrSize = TD.getPointerSizeInBits(); 1046 if (PtrSize != Src.IntVal.getBitWidth()) 1047 Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize); 1048 1049 Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue())); 1050 return Dest; 1051 } 1052 1053 GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy, 1054 ExecutionContext &SF) { 1055 1056 Type *SrcTy = SrcVal->getType(); 1057 GenericValue Dest, Src = getOperandValue(SrcVal, SF); 1058 if (DstTy->isPointerTy()) { 1059 assert(SrcTy->isPointerTy() && "Invalid BitCast"); 1060 Dest.PointerVal = Src.PointerVal; 1061 } else if (DstTy->isIntegerTy()) { 1062 if (SrcTy->isFloatTy()) { 1063 Dest.IntVal = APInt::floatToBits(Src.FloatVal); 1064 } else if (SrcTy->isDoubleTy()) { 1065 Dest.IntVal = APInt::doubleToBits(Src.DoubleVal); 1066 } else if (SrcTy->isIntegerTy()) { 1067 Dest.IntVal = Src.IntVal; 1068 } else 1069 llvm_unreachable("Invalid BitCast"); 1070 } else if (DstTy->isFloatTy()) { 1071 if (SrcTy->isIntegerTy()) 1072 Dest.FloatVal = Src.IntVal.bitsToFloat(); 1073 else 1074 Dest.FloatVal = Src.FloatVal; 1075 } else if (DstTy->isDoubleTy()) { 1076 if (SrcTy->isIntegerTy()) 1077 Dest.DoubleVal = Src.IntVal.bitsToDouble(); 1078 else 1079 Dest.DoubleVal = Src.DoubleVal; 1080 } else 1081 llvm_unreachable("Invalid Bitcast"); 1082 1083 return Dest; 1084 } 1085 1086 void Interpreter::visitTruncInst(TruncInst &I) { 1087 ExecutionContext &SF = ECStack.back(); 1088 SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF); 1089 } 1090 1091 void Interpreter::visitSExtInst(SExtInst &I) { 1092 ExecutionContext &SF = ECStack.back(); 1093 SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF); 1094 } 1095 1096 void Interpreter::visitZExtInst(ZExtInst &I) { 1097 ExecutionContext &SF = ECStack.back(); 1098 SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF); 1099 } 1100 1101 void Interpreter::visitFPTruncInst(FPTruncInst &I) { 1102 ExecutionContext &SF = ECStack.back(); 1103 SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF); 1104 } 1105 1106 void Interpreter::visitFPExtInst(FPExtInst &I) { 1107 ExecutionContext &SF = ECStack.back(); 1108 SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF); 1109 } 1110 1111 void Interpreter::visitUIToFPInst(UIToFPInst &I) { 1112 ExecutionContext &SF = ECStack.back(); 1113 SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF); 1114 } 1115 1116 void Interpreter::visitSIToFPInst(SIToFPInst &I) { 1117 ExecutionContext &SF = ECStack.back(); 1118 SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF); 1119 } 1120 1121 void Interpreter::visitFPToUIInst(FPToUIInst &I) { 1122 ExecutionContext &SF = ECStack.back(); 1123 SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF); 1124 } 1125 1126 void Interpreter::visitFPToSIInst(FPToSIInst &I) { 1127 ExecutionContext &SF = ECStack.back(); 1128 SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF); 1129 } 1130 1131 void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { 1132 ExecutionContext &SF = ECStack.back(); 1133 SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF); 1134 } 1135 1136 void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { 1137 ExecutionContext &SF = ECStack.back(); 1138 SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF); 1139 } 1140 1141 void Interpreter::visitBitCastInst(BitCastInst &I) { 1142 ExecutionContext &SF = ECStack.back(); 1143 SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF); 1144 } 1145 1146 #define IMPLEMENT_VAARG(TY) \ 1147 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break 1148 1149 void Interpreter::visitVAArgInst(VAArgInst &I) { 1150 ExecutionContext &SF = ECStack.back(); 1151 1152 // Get the incoming valist parameter. LLI treats the valist as a 1153 // (ec-stack-depth var-arg-index) pair. 1154 GenericValue VAList = getOperandValue(I.getOperand(0), SF); 1155 GenericValue Dest; 1156 GenericValue Src = ECStack[VAList.UIntPairVal.first] 1157 .VarArgs[VAList.UIntPairVal.second]; 1158 Type *Ty = I.getType(); 1159 switch (Ty->getTypeID()) { 1160 case Type::IntegerTyID: Dest.IntVal = Src.IntVal; 1161 IMPLEMENT_VAARG(Pointer); 1162 IMPLEMENT_VAARG(Float); 1163 IMPLEMENT_VAARG(Double); 1164 default: 1165 dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; 1166 llvm_unreachable(0); 1167 } 1168 1169 // Set the Value of this Instruction. 1170 SetValue(&I, Dest, SF); 1171 1172 // Move the pointer to the next vararg. 1173 ++VAList.UIntPairVal.second; 1174 } 1175 1176 GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, 1177 ExecutionContext &SF) { 1178 switch (CE->getOpcode()) { 1179 case Instruction::Trunc: 1180 return executeTruncInst(CE->getOperand(0), CE->getType(), SF); 1181 case Instruction::ZExt: 1182 return executeZExtInst(CE->getOperand(0), CE->getType(), SF); 1183 case Instruction::SExt: 1184 return executeSExtInst(CE->getOperand(0), CE->getType(), SF); 1185 case Instruction::FPTrunc: 1186 return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF); 1187 case Instruction::FPExt: 1188 return executeFPExtInst(CE->getOperand(0), CE->getType(), SF); 1189 case Instruction::UIToFP: 1190 return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF); 1191 case Instruction::SIToFP: 1192 return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF); 1193 case Instruction::FPToUI: 1194 return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF); 1195 case Instruction::FPToSI: 1196 return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF); 1197 case Instruction::PtrToInt: 1198 return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF); 1199 case Instruction::IntToPtr: 1200 return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF); 1201 case Instruction::BitCast: 1202 return executeBitCastInst(CE->getOperand(0), CE->getType(), SF); 1203 case Instruction::GetElementPtr: 1204 return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), 1205 gep_type_end(CE), SF); 1206 case Instruction::FCmp: 1207 case Instruction::ICmp: 1208 return executeCmpInst(CE->getPredicate(), 1209 getOperandValue(CE->getOperand(0), SF), 1210 getOperandValue(CE->getOperand(1), SF), 1211 CE->getOperand(0)->getType()); 1212 case Instruction::Select: 1213 return executeSelectInst(getOperandValue(CE->getOperand(0), SF), 1214 getOperandValue(CE->getOperand(1), SF), 1215 getOperandValue(CE->getOperand(2), SF)); 1216 default : 1217 break; 1218 } 1219 1220 // The cases below here require a GenericValue parameter for the result 1221 // so we initialize one, compute it and then return it. 1222 GenericValue Op0 = getOperandValue(CE->getOperand(0), SF); 1223 GenericValue Op1 = getOperandValue(CE->getOperand(1), SF); 1224 GenericValue Dest; 1225 Type * Ty = CE->getOperand(0)->getType(); 1226 switch (CE->getOpcode()) { 1227 case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break; 1228 case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break; 1229 case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break; 1230 case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break; 1231 case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break; 1232 case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break; 1233 case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break; 1234 case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break; 1235 case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break; 1236 case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break; 1237 case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break; 1238 case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break; 1239 case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break; 1240 case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break; 1241 case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break; 1242 case Instruction::Shl: 1243 Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue()); 1244 break; 1245 case Instruction::LShr: 1246 Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue()); 1247 break; 1248 case Instruction::AShr: 1249 Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue()); 1250 break; 1251 default: 1252 dbgs() << "Unhandled ConstantExpr: " << *CE << "\n"; 1253 llvm_unreachable(0); 1254 return GenericValue(); 1255 } 1256 return Dest; 1257 } 1258 1259 GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { 1260 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 1261 return getConstantExprValue(CE, SF); 1262 } else if (Constant *CPV = dyn_cast<Constant>(V)) { 1263 return getConstantValue(CPV); 1264 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1265 return PTOGV(getPointerToGlobal(GV)); 1266 } else { 1267 return SF.Values[V]; 1268 } 1269 } 1270 1271 //===----------------------------------------------------------------------===// 1272 // Dispatch and Execution Code 1273 //===----------------------------------------------------------------------===// 1274 1275 //===----------------------------------------------------------------------===// 1276 // callFunction - Execute the specified function... 1277 // 1278 void Interpreter::callFunction(Function *F, 1279 const std::vector<GenericValue> &ArgVals) { 1280 assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 || 1281 ECStack.back().Caller.arg_size() == ArgVals.size()) && 1282 "Incorrect number of arguments passed into function call!"); 1283 // Make a new stack frame... and fill it in. 1284 ECStack.push_back(ExecutionContext()); 1285 ExecutionContext &StackFrame = ECStack.back(); 1286 StackFrame.CurFunction = F; 1287 1288 // Special handling for external functions. 1289 if (F->isDeclaration()) { 1290 GenericValue Result = callExternalFunction (F, ArgVals); 1291 // Simulate a 'ret' instruction of the appropriate type. 1292 popStackAndReturnValueToCaller (F->getReturnType (), Result); 1293 return; 1294 } 1295 1296 // Get pointers to first LLVM BB & Instruction in function. 1297 StackFrame.CurBB = F->begin(); 1298 StackFrame.CurInst = StackFrame.CurBB->begin(); 1299 1300 // Run through the function arguments and initialize their values... 1301 assert((ArgVals.size() == F->arg_size() || 1302 (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& 1303 "Invalid number of values passed to function invocation!"); 1304 1305 // Handle non-varargs arguments... 1306 unsigned i = 0; 1307 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1308 AI != E; ++AI, ++i) 1309 SetValue(AI, ArgVals[i], StackFrame); 1310 1311 // Handle varargs arguments... 1312 StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); 1313 } 1314 1315 1316 void Interpreter::run() { 1317 while (!ECStack.empty()) { 1318 // Interpret a single instruction & increment the "PC". 1319 ExecutionContext &SF = ECStack.back(); // Current stack frame 1320 Instruction &I = *SF.CurInst++; // Increment before execute 1321 1322 // Track the number of dynamic instructions executed. 1323 ++NumDynamicInsts; 1324 1325 DEBUG(dbgs() << "About to interpret: " << I); 1326 visit(I); // Dispatch to one of the visit* methods... 1327 #if 0 1328 // This is not safe, as visiting the instruction could lower it and free I. 1329 DEBUG( 1330 if (!isa<CallInst>(I) && !isa<InvokeInst>(I) && 1331 I.getType() != Type::VoidTy) { 1332 dbgs() << " --> "; 1333 const GenericValue &Val = SF.Values[&I]; 1334 switch (I.getType()->getTypeID()) { 1335 default: llvm_unreachable("Invalid GenericValue Type"); 1336 case Type::VoidTyID: dbgs() << "void"; break; 1337 case Type::FloatTyID: dbgs() << "float " << Val.FloatVal; break; 1338 case Type::DoubleTyID: dbgs() << "double " << Val.DoubleVal; break; 1339 case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal); 1340 break; 1341 case Type::IntegerTyID: 1342 dbgs() << "i" << Val.IntVal.getBitWidth() << " " 1343 << Val.IntVal.toStringUnsigned(10) 1344 << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n"; 1345 break; 1346 } 1347 }); 1348 #endif 1349 } 1350 } 1351