1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file contains the actual instruction interpreter.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "interpreter"
15 #include "Interpreter.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/IntrinsicLowering.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/GetElementPtrTypeIterator.h"
26 #include "llvm/Support/MathExtras.h"
27 #include <algorithm>
28 #include <cmath>
29 using namespace llvm;
30 
31 STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
32 
33 static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
34           cl::desc("make the interpreter print every volatile load and store"));
35 
36 //===----------------------------------------------------------------------===//
37 //                     Various Helper Functions
38 //===----------------------------------------------------------------------===//
39 
40 static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
41   SF.Values[V] = Val;
42 }
43 
44 //===----------------------------------------------------------------------===//
45 //                    Binary Instruction Implementations
46 //===----------------------------------------------------------------------===//
47 
48 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
49    case Type::TY##TyID: \
50      Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
51      break
52 
53 static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
54                             GenericValue Src2, Type *Ty) {
55   switch (Ty->getTypeID()) {
56     IMPLEMENT_BINARY_OPERATOR(+, Float);
57     IMPLEMENT_BINARY_OPERATOR(+, Double);
58   default:
59     dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
60     llvm_unreachable(0);
61   }
62 }
63 
64 static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
65                             GenericValue Src2, Type *Ty) {
66   switch (Ty->getTypeID()) {
67     IMPLEMENT_BINARY_OPERATOR(-, Float);
68     IMPLEMENT_BINARY_OPERATOR(-, Double);
69   default:
70     dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
71     llvm_unreachable(0);
72   }
73 }
74 
75 static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
76                             GenericValue Src2, Type *Ty) {
77   switch (Ty->getTypeID()) {
78     IMPLEMENT_BINARY_OPERATOR(*, Float);
79     IMPLEMENT_BINARY_OPERATOR(*, Double);
80   default:
81     dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
82     llvm_unreachable(0);
83   }
84 }
85 
86 static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
87                             GenericValue Src2, Type *Ty) {
88   switch (Ty->getTypeID()) {
89     IMPLEMENT_BINARY_OPERATOR(/, Float);
90     IMPLEMENT_BINARY_OPERATOR(/, Double);
91   default:
92     dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
93     llvm_unreachable(0);
94   }
95 }
96 
97 static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
98                             GenericValue Src2, Type *Ty) {
99   switch (Ty->getTypeID()) {
100   case Type::FloatTyID:
101     Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
102     break;
103   case Type::DoubleTyID:
104     Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
105     break;
106   default:
107     dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
108     llvm_unreachable(0);
109   }
110 }
111 
112 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
113    case Type::IntegerTyID:  \
114       Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
115       break;
116 
117 #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY)                        \
118   case Type::VectorTyID: {                                           \
119     assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());    \
120     Dest.AggregateVal.resize( Src1.AggregateVal.size() );            \
121     for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++)             \
122       Dest.AggregateVal[_i].IntVal = APInt(1,                        \
123       Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
124   } break;
125 
126 // Handle pointers specially because they must be compared with only as much
127 // width as the host has.  We _do not_ want to be comparing 64 bit values when
128 // running on a 32-bit target, otherwise the upper 32 bits might mess up
129 // comparisons if they contain garbage.
130 #define IMPLEMENT_POINTER_ICMP(OP) \
131    case Type::PointerTyID: \
132       Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
133                             (void*)(intptr_t)Src2.PointerVal); \
134       break;
135 
136 static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
137                                    Type *Ty) {
138   GenericValue Dest;
139   switch (Ty->getTypeID()) {
140     IMPLEMENT_INTEGER_ICMP(eq,Ty);
141     IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
142     IMPLEMENT_POINTER_ICMP(==);
143   default:
144     dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
145     llvm_unreachable(0);
146   }
147   return Dest;
148 }
149 
150 static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
151                                    Type *Ty) {
152   GenericValue Dest;
153   switch (Ty->getTypeID()) {
154     IMPLEMENT_INTEGER_ICMP(ne,Ty);
155     IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
156     IMPLEMENT_POINTER_ICMP(!=);
157   default:
158     dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
159     llvm_unreachable(0);
160   }
161   return Dest;
162 }
163 
164 static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
165                                     Type *Ty) {
166   GenericValue Dest;
167   switch (Ty->getTypeID()) {
168     IMPLEMENT_INTEGER_ICMP(ult,Ty);
169     IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
170     IMPLEMENT_POINTER_ICMP(<);
171   default:
172     dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
173     llvm_unreachable(0);
174   }
175   return Dest;
176 }
177 
178 static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
179                                     Type *Ty) {
180   GenericValue Dest;
181   switch (Ty->getTypeID()) {
182     IMPLEMENT_INTEGER_ICMP(slt,Ty);
183     IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
184     IMPLEMENT_POINTER_ICMP(<);
185   default:
186     dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
187     llvm_unreachable(0);
188   }
189   return Dest;
190 }
191 
192 static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
193                                     Type *Ty) {
194   GenericValue Dest;
195   switch (Ty->getTypeID()) {
196     IMPLEMENT_INTEGER_ICMP(ugt,Ty);
197     IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
198     IMPLEMENT_POINTER_ICMP(>);
199   default:
200     dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
201     llvm_unreachable(0);
202   }
203   return Dest;
204 }
205 
206 static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
207                                     Type *Ty) {
208   GenericValue Dest;
209   switch (Ty->getTypeID()) {
210     IMPLEMENT_INTEGER_ICMP(sgt,Ty);
211     IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
212     IMPLEMENT_POINTER_ICMP(>);
213   default:
214     dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
215     llvm_unreachable(0);
216   }
217   return Dest;
218 }
219 
220 static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
221                                     Type *Ty) {
222   GenericValue Dest;
223   switch (Ty->getTypeID()) {
224     IMPLEMENT_INTEGER_ICMP(ule,Ty);
225     IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
226     IMPLEMENT_POINTER_ICMP(<=);
227   default:
228     dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
229     llvm_unreachable(0);
230   }
231   return Dest;
232 }
233 
234 static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
235                                     Type *Ty) {
236   GenericValue Dest;
237   switch (Ty->getTypeID()) {
238     IMPLEMENT_INTEGER_ICMP(sle,Ty);
239     IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
240     IMPLEMENT_POINTER_ICMP(<=);
241   default:
242     dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
243     llvm_unreachable(0);
244   }
245   return Dest;
246 }
247 
248 static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
249                                     Type *Ty) {
250   GenericValue Dest;
251   switch (Ty->getTypeID()) {
252     IMPLEMENT_INTEGER_ICMP(uge,Ty);
253     IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
254     IMPLEMENT_POINTER_ICMP(>=);
255   default:
256     dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
257     llvm_unreachable(0);
258   }
259   return Dest;
260 }
261 
262 static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
263                                     Type *Ty) {
264   GenericValue Dest;
265   switch (Ty->getTypeID()) {
266     IMPLEMENT_INTEGER_ICMP(sge,Ty);
267     IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
268     IMPLEMENT_POINTER_ICMP(>=);
269   default:
270     dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
271     llvm_unreachable(0);
272   }
273   return Dest;
274 }
275 
276 void Interpreter::visitICmpInst(ICmpInst &I) {
277   ExecutionContext &SF = ECStack.back();
278   Type *Ty    = I.getOperand(0)->getType();
279   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
280   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
281   GenericValue R;   // Result
282 
283   switch (I.getPredicate()) {
284   case ICmpInst::ICMP_EQ:  R = executeICMP_EQ(Src1,  Src2, Ty); break;
285   case ICmpInst::ICMP_NE:  R = executeICMP_NE(Src1,  Src2, Ty); break;
286   case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
287   case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
288   case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
289   case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
290   case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
291   case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
292   case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
293   case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
294   default:
295     dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
296     llvm_unreachable(0);
297   }
298 
299   SetValue(&I, R, SF);
300 }
301 
302 #define IMPLEMENT_FCMP(OP, TY) \
303    case Type::TY##TyID: \
304      Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
305      break
306 
307 #define IMPLEMENT_VECTOR_FCMP_T(OP, TY)                             \
308   assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());     \
309   Dest.AggregateVal.resize( Src1.AggregateVal.size() );             \
310   for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++)              \
311     Dest.AggregateVal[_i].IntVal = APInt(1,                         \
312     Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
313   break;
314 
315 #define IMPLEMENT_VECTOR_FCMP(OP)                                   \
316   case Type::VectorTyID:                                            \
317     if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {   \
318       IMPLEMENT_VECTOR_FCMP_T(OP, Float);                           \
319     } else {                                                        \
320         IMPLEMENT_VECTOR_FCMP_T(OP, Double);                        \
321     }
322 
323 static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
324                                    Type *Ty) {
325   GenericValue Dest;
326   switch (Ty->getTypeID()) {
327     IMPLEMENT_FCMP(==, Float);
328     IMPLEMENT_FCMP(==, Double);
329     IMPLEMENT_VECTOR_FCMP(==);
330   default:
331     dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
332     llvm_unreachable(0);
333   }
334   return Dest;
335 }
336 
337 #define IMPLEMENT_SCALAR_NANS(TY, X,Y)                                      \
338   if (TY->isFloatTy()) {                                                    \
339     if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {             \
340       Dest.IntVal = APInt(1,false);                                         \
341       return Dest;                                                          \
342     }                                                                       \
343   } else {                                                                  \
344     if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) {         \
345       Dest.IntVal = APInt(1,false);                                         \
346       return Dest;                                                          \
347     }                                                                       \
348   }
349 
350 #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG)                                   \
351   assert(X.AggregateVal.size() == Y.AggregateVal.size());                   \
352   Dest.AggregateVal.resize( X.AggregateVal.size() );                        \
353   for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) {                       \
354     if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val ||         \
355         Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val)           \
356       Dest.AggregateVal[_i].IntVal = APInt(1,FLAG);                         \
357     else  {                                                                 \
358       Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG);                        \
359     }                                                                       \
360   }
361 
362 #define MASK_VECTOR_NANS(TY, X,Y, FLAG)                                     \
363   if (TY->isVectorTy()) {                                                   \
364     if (dyn_cast<VectorType>(TY)->getElementType()->isFloatTy()) {          \
365       MASK_VECTOR_NANS_T(X, Y, Float, FLAG)                                 \
366     } else {                                                                \
367       MASK_VECTOR_NANS_T(X, Y, Double, FLAG)                                \
368     }                                                                       \
369   }                                                                         \
370 
371 
372 
373 static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
374                                     Type *Ty)
375 {
376   GenericValue Dest;
377   // if input is scalar value and Src1 or Src2 is NaN return false
378   IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
379   // if vector input detect NaNs and fill mask
380   MASK_VECTOR_NANS(Ty, Src1, Src2, false)
381   GenericValue DestMask = Dest;
382   switch (Ty->getTypeID()) {
383     IMPLEMENT_FCMP(!=, Float);
384     IMPLEMENT_FCMP(!=, Double);
385     IMPLEMENT_VECTOR_FCMP(!=);
386     default:
387       dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
388       llvm_unreachable(0);
389   }
390   // in vector case mask out NaN elements
391   if (Ty->isVectorTy())
392     for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
393       if (DestMask.AggregateVal[_i].IntVal == false)
394         Dest.AggregateVal[_i].IntVal = APInt(1,false);
395 
396   return Dest;
397 }
398 
399 static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
400                                    Type *Ty) {
401   GenericValue Dest;
402   switch (Ty->getTypeID()) {
403     IMPLEMENT_FCMP(<=, Float);
404     IMPLEMENT_FCMP(<=, Double);
405     IMPLEMENT_VECTOR_FCMP(<=);
406   default:
407     dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
408     llvm_unreachable(0);
409   }
410   return Dest;
411 }
412 
413 static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
414                                    Type *Ty) {
415   GenericValue Dest;
416   switch (Ty->getTypeID()) {
417     IMPLEMENT_FCMP(>=, Float);
418     IMPLEMENT_FCMP(>=, Double);
419     IMPLEMENT_VECTOR_FCMP(>=);
420   default:
421     dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
422     llvm_unreachable(0);
423   }
424   return Dest;
425 }
426 
427 static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
428                                    Type *Ty) {
429   GenericValue Dest;
430   switch (Ty->getTypeID()) {
431     IMPLEMENT_FCMP(<, Float);
432     IMPLEMENT_FCMP(<, Double);
433     IMPLEMENT_VECTOR_FCMP(<);
434   default:
435     dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
436     llvm_unreachable(0);
437   }
438   return Dest;
439 }
440 
441 static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
442                                      Type *Ty) {
443   GenericValue Dest;
444   switch (Ty->getTypeID()) {
445     IMPLEMENT_FCMP(>, Float);
446     IMPLEMENT_FCMP(>, Double);
447     IMPLEMENT_VECTOR_FCMP(>);
448   default:
449     dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
450     llvm_unreachable(0);
451   }
452   return Dest;
453 }
454 
455 #define IMPLEMENT_UNORDERED(TY, X,Y)                                     \
456   if (TY->isFloatTy()) {                                                 \
457     if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {          \
458       Dest.IntVal = APInt(1,true);                                       \
459       return Dest;                                                       \
460     }                                                                    \
461   } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
462     Dest.IntVal = APInt(1,true);                                         \
463     return Dest;                                                         \
464   }
465 
466 #define IMPLEMENT_VECTOR_UNORDERED(TY, X,Y, _FUNC)                       \
467   if (TY->isVectorTy()) {                                                \
468     GenericValue DestMask = Dest;                                        \
469     Dest = _FUNC(Src1, Src2, Ty);                                        \
470       for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)               \
471         if (DestMask.AggregateVal[_i].IntVal == true)                    \
472           Dest.AggregateVal[_i].IntVal = APInt(1,true);                  \
473       return Dest;                                                       \
474   }
475 
476 static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
477                                    Type *Ty) {
478   GenericValue Dest;
479   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
480   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
481   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
482   return executeFCMP_OEQ(Src1, Src2, Ty);
483 
484 }
485 
486 static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
487                                    Type *Ty) {
488   GenericValue Dest;
489   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
490   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
491   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
492   return executeFCMP_ONE(Src1, Src2, Ty);
493 }
494 
495 static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
496                                    Type *Ty) {
497   GenericValue Dest;
498   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
499   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
500   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
501   return executeFCMP_OLE(Src1, Src2, Ty);
502 }
503 
504 static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
505                                    Type *Ty) {
506   GenericValue Dest;
507   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
508   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
509   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
510   return executeFCMP_OGE(Src1, Src2, Ty);
511 }
512 
513 static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
514                                    Type *Ty) {
515   GenericValue Dest;
516   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
517   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
518   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
519   return executeFCMP_OLT(Src1, Src2, Ty);
520 }
521 
522 static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
523                                      Type *Ty) {
524   GenericValue Dest;
525   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
526   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
527   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
528   return executeFCMP_OGT(Src1, Src2, Ty);
529 }
530 
531 static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
532                                      Type *Ty) {
533   GenericValue Dest;
534   if(Ty->isVectorTy()) {
535     assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
536     Dest.AggregateVal.resize( Src1.AggregateVal.size() );
537     if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
538       for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
539         Dest.AggregateVal[_i].IntVal = APInt(1,
540         ( (Src1.AggregateVal[_i].FloatVal ==
541         Src1.AggregateVal[_i].FloatVal) &&
542         (Src2.AggregateVal[_i].FloatVal ==
543         Src2.AggregateVal[_i].FloatVal)));
544     } else {
545       for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
546         Dest.AggregateVal[_i].IntVal = APInt(1,
547         ( (Src1.AggregateVal[_i].DoubleVal ==
548         Src1.AggregateVal[_i].DoubleVal) &&
549         (Src2.AggregateVal[_i].DoubleVal ==
550         Src2.AggregateVal[_i].DoubleVal)));
551     }
552   } else if (Ty->isFloatTy())
553     Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
554                            Src2.FloatVal == Src2.FloatVal));
555   else {
556     Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
557                            Src2.DoubleVal == Src2.DoubleVal));
558   }
559   return Dest;
560 }
561 
562 static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
563                                      Type *Ty) {
564   GenericValue Dest;
565   if(Ty->isVectorTy()) {
566     assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
567     Dest.AggregateVal.resize( Src1.AggregateVal.size() );
568     if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
569       for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
570         Dest.AggregateVal[_i].IntVal = APInt(1,
571         ( (Src1.AggregateVal[_i].FloatVal !=
572            Src1.AggregateVal[_i].FloatVal) ||
573           (Src2.AggregateVal[_i].FloatVal !=
574            Src2.AggregateVal[_i].FloatVal)));
575       } else {
576         for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
577           Dest.AggregateVal[_i].IntVal = APInt(1,
578           ( (Src1.AggregateVal[_i].DoubleVal !=
579              Src1.AggregateVal[_i].DoubleVal) ||
580             (Src2.AggregateVal[_i].DoubleVal !=
581              Src2.AggregateVal[_i].DoubleVal)));
582       }
583   } else if (Ty->isFloatTy())
584     Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
585                            Src2.FloatVal != Src2.FloatVal));
586   else {
587     Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
588                            Src2.DoubleVal != Src2.DoubleVal));
589   }
590   return Dest;
591 }
592 
593 static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
594                                     const Type *Ty, const bool val) {
595   GenericValue Dest;
596     if(Ty->isVectorTy()) {
597       assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
598       Dest.AggregateVal.resize( Src1.AggregateVal.size() );
599       for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
600         Dest.AggregateVal[_i].IntVal = APInt(1,val);
601     } else {
602       Dest.IntVal = APInt(1, val);
603     }
604 
605     return Dest;
606 }
607 
608 void Interpreter::visitFCmpInst(FCmpInst &I) {
609   ExecutionContext &SF = ECStack.back();
610   Type *Ty    = I.getOperand(0)->getType();
611   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
612   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
613   GenericValue R;   // Result
614 
615   switch (I.getPredicate()) {
616   default:
617     dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
618     llvm_unreachable(0);
619   break;
620   case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
621   break;
622   case FCmpInst::FCMP_TRUE:  R = executeFCMP_BOOL(Src1, Src2, Ty, true);
623   break;
624   case FCmpInst::FCMP_ORD:   R = executeFCMP_ORD(Src1, Src2, Ty); break;
625   case FCmpInst::FCMP_UNO:   R = executeFCMP_UNO(Src1, Src2, Ty); break;
626   case FCmpInst::FCMP_UEQ:   R = executeFCMP_UEQ(Src1, Src2, Ty); break;
627   case FCmpInst::FCMP_OEQ:   R = executeFCMP_OEQ(Src1, Src2, Ty); break;
628   case FCmpInst::FCMP_UNE:   R = executeFCMP_UNE(Src1, Src2, Ty); break;
629   case FCmpInst::FCMP_ONE:   R = executeFCMP_ONE(Src1, Src2, Ty); break;
630   case FCmpInst::FCMP_ULT:   R = executeFCMP_ULT(Src1, Src2, Ty); break;
631   case FCmpInst::FCMP_OLT:   R = executeFCMP_OLT(Src1, Src2, Ty); break;
632   case FCmpInst::FCMP_UGT:   R = executeFCMP_UGT(Src1, Src2, Ty); break;
633   case FCmpInst::FCMP_OGT:   R = executeFCMP_OGT(Src1, Src2, Ty); break;
634   case FCmpInst::FCMP_ULE:   R = executeFCMP_ULE(Src1, Src2, Ty); break;
635   case FCmpInst::FCMP_OLE:   R = executeFCMP_OLE(Src1, Src2, Ty); break;
636   case FCmpInst::FCMP_UGE:   R = executeFCMP_UGE(Src1, Src2, Ty); break;
637   case FCmpInst::FCMP_OGE:   R = executeFCMP_OGE(Src1, Src2, Ty); break;
638   }
639 
640   SetValue(&I, R, SF);
641 }
642 
643 static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
644                                    GenericValue Src2, Type *Ty) {
645   GenericValue Result;
646   switch (predicate) {
647   case ICmpInst::ICMP_EQ:    return executeICMP_EQ(Src1, Src2, Ty);
648   case ICmpInst::ICMP_NE:    return executeICMP_NE(Src1, Src2, Ty);
649   case ICmpInst::ICMP_UGT:   return executeICMP_UGT(Src1, Src2, Ty);
650   case ICmpInst::ICMP_SGT:   return executeICMP_SGT(Src1, Src2, Ty);
651   case ICmpInst::ICMP_ULT:   return executeICMP_ULT(Src1, Src2, Ty);
652   case ICmpInst::ICMP_SLT:   return executeICMP_SLT(Src1, Src2, Ty);
653   case ICmpInst::ICMP_UGE:   return executeICMP_UGE(Src1, Src2, Ty);
654   case ICmpInst::ICMP_SGE:   return executeICMP_SGE(Src1, Src2, Ty);
655   case ICmpInst::ICMP_ULE:   return executeICMP_ULE(Src1, Src2, Ty);
656   case ICmpInst::ICMP_SLE:   return executeICMP_SLE(Src1, Src2, Ty);
657   case FCmpInst::FCMP_ORD:   return executeFCMP_ORD(Src1, Src2, Ty);
658   case FCmpInst::FCMP_UNO:   return executeFCMP_UNO(Src1, Src2, Ty);
659   case FCmpInst::FCMP_OEQ:   return executeFCMP_OEQ(Src1, Src2, Ty);
660   case FCmpInst::FCMP_UEQ:   return executeFCMP_UEQ(Src1, Src2, Ty);
661   case FCmpInst::FCMP_ONE:   return executeFCMP_ONE(Src1, Src2, Ty);
662   case FCmpInst::FCMP_UNE:   return executeFCMP_UNE(Src1, Src2, Ty);
663   case FCmpInst::FCMP_OLT:   return executeFCMP_OLT(Src1, Src2, Ty);
664   case FCmpInst::FCMP_ULT:   return executeFCMP_ULT(Src1, Src2, Ty);
665   case FCmpInst::FCMP_OGT:   return executeFCMP_OGT(Src1, Src2, Ty);
666   case FCmpInst::FCMP_UGT:   return executeFCMP_UGT(Src1, Src2, Ty);
667   case FCmpInst::FCMP_OLE:   return executeFCMP_OLE(Src1, Src2, Ty);
668   case FCmpInst::FCMP_ULE:   return executeFCMP_ULE(Src1, Src2, Ty);
669   case FCmpInst::FCMP_OGE:   return executeFCMP_OGE(Src1, Src2, Ty);
670   case FCmpInst::FCMP_UGE:   return executeFCMP_UGE(Src1, Src2, Ty);
671   case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
672   case FCmpInst::FCMP_TRUE:  return executeFCMP_BOOL(Src1, Src2, Ty, true);
673   default:
674     dbgs() << "Unhandled Cmp predicate\n";
675     llvm_unreachable(0);
676   }
677 }
678 
679 void Interpreter::visitBinaryOperator(BinaryOperator &I) {
680   ExecutionContext &SF = ECStack.back();
681   Type *Ty    = I.getOperand(0)->getType();
682   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
683   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
684   GenericValue R;   // Result
685 
686   // First process vector operation
687   if (Ty->isVectorTy()) {
688     assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
689     R.AggregateVal.resize(Src1.AggregateVal.size());
690 
691     // Macros to execute binary operation 'OP' over integer vectors
692 #define INTEGER_VECTOR_OPERATION(OP)                               \
693     for (unsigned i = 0; i < R.AggregateVal.size(); ++i)           \
694       R.AggregateVal[i].IntVal =                                   \
695       Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
696 
697     // Additional macros to execute binary operations udiv/sdiv/urem/srem since
698     // they have different notation.
699 #define INTEGER_VECTOR_FUNCTION(OP)                                \
700     for (unsigned i = 0; i < R.AggregateVal.size(); ++i)           \
701       R.AggregateVal[i].IntVal =                                   \
702       Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
703 
704     // Macros to execute binary operation 'OP' over floating point type TY
705     // (float or double) vectors
706 #define FLOAT_VECTOR_FUNCTION(OP, TY)                               \
707       for (unsigned i = 0; i < R.AggregateVal.size(); ++i)          \
708         R.AggregateVal[i].TY =                                      \
709         Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
710 
711     // Macros to choose appropriate TY: float or double and run operation
712     // execution
713 #define FLOAT_VECTOR_OP(OP) {                                         \
714   if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy())        \
715     FLOAT_VECTOR_FUNCTION(OP, FloatVal)                               \
716   else {                                                              \
717     if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy())     \
718       FLOAT_VECTOR_FUNCTION(OP, DoubleVal)                            \
719     else {                                                            \
720       dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
721       llvm_unreachable(0);                                            \
722     }                                                                 \
723   }                                                                   \
724 }
725 
726     switch(I.getOpcode()){
727     default:
728       dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
729       llvm_unreachable(0);
730       break;
731     case Instruction::Add:   INTEGER_VECTOR_OPERATION(+) break;
732     case Instruction::Sub:   INTEGER_VECTOR_OPERATION(-) break;
733     case Instruction::Mul:   INTEGER_VECTOR_OPERATION(*) break;
734     case Instruction::UDiv:  INTEGER_VECTOR_FUNCTION(udiv) break;
735     case Instruction::SDiv:  INTEGER_VECTOR_FUNCTION(sdiv) break;
736     case Instruction::URem:  INTEGER_VECTOR_FUNCTION(urem) break;
737     case Instruction::SRem:  INTEGER_VECTOR_FUNCTION(srem) break;
738     case Instruction::And:   INTEGER_VECTOR_OPERATION(&) break;
739     case Instruction::Or:    INTEGER_VECTOR_OPERATION(|) break;
740     case Instruction::Xor:   INTEGER_VECTOR_OPERATION(^) break;
741     case Instruction::FAdd:  FLOAT_VECTOR_OP(+) break;
742     case Instruction::FSub:  FLOAT_VECTOR_OP(-) break;
743     case Instruction::FMul:  FLOAT_VECTOR_OP(*) break;
744     case Instruction::FDiv:  FLOAT_VECTOR_OP(/) break;
745     case Instruction::FRem:
746       if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy())
747         for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
748           R.AggregateVal[i].FloatVal =
749           fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
750       else {
751         if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy())
752           for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
753             R.AggregateVal[i].DoubleVal =
754             fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
755         else {
756           dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
757           llvm_unreachable(0);
758         }
759       }
760       break;
761     }
762   } else {
763     switch (I.getOpcode()) {
764     default:
765       dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
766       llvm_unreachable(0);
767       break;
768     case Instruction::Add:   R.IntVal = Src1.IntVal + Src2.IntVal; break;
769     case Instruction::Sub:   R.IntVal = Src1.IntVal - Src2.IntVal; break;
770     case Instruction::Mul:   R.IntVal = Src1.IntVal * Src2.IntVal; break;
771     case Instruction::FAdd:  executeFAddInst(R, Src1, Src2, Ty); break;
772     case Instruction::FSub:  executeFSubInst(R, Src1, Src2, Ty); break;
773     case Instruction::FMul:  executeFMulInst(R, Src1, Src2, Ty); break;
774     case Instruction::FDiv:  executeFDivInst(R, Src1, Src2, Ty); break;
775     case Instruction::FRem:  executeFRemInst(R, Src1, Src2, Ty); break;
776     case Instruction::UDiv:  R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
777     case Instruction::SDiv:  R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
778     case Instruction::URem:  R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
779     case Instruction::SRem:  R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
780     case Instruction::And:   R.IntVal = Src1.IntVal & Src2.IntVal; break;
781     case Instruction::Or:    R.IntVal = Src1.IntVal | Src2.IntVal; break;
782     case Instruction::Xor:   R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
783     }
784   }
785   SetValue(&I, R, SF);
786 }
787 
788 static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
789                                       GenericValue Src3) {
790   return Src1.IntVal == 0 ? Src3 : Src2;
791 }
792 
793 void Interpreter::visitSelectInst(SelectInst &I) {
794   ExecutionContext &SF = ECStack.back();
795   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
796   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
797   GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
798   GenericValue R = executeSelectInst(Src1, Src2, Src3);
799   SetValue(&I, R, SF);
800 }
801 
802 
803 //===----------------------------------------------------------------------===//
804 //                     Terminator Instruction Implementations
805 //===----------------------------------------------------------------------===//
806 
807 void Interpreter::exitCalled(GenericValue GV) {
808   // runAtExitHandlers() assumes there are no stack frames, but
809   // if exit() was called, then it had a stack frame. Blow away
810   // the stack before interpreting atexit handlers.
811   ECStack.clear();
812   runAtExitHandlers();
813   exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
814 }
815 
816 /// Pop the last stack frame off of ECStack and then copy the result
817 /// back into the result variable if we are not returning void. The
818 /// result variable may be the ExitValue, or the Value of the calling
819 /// CallInst if there was a previous stack frame. This method may
820 /// invalidate any ECStack iterators you have. This method also takes
821 /// care of switching to the normal destination BB, if we are returning
822 /// from an invoke.
823 ///
824 void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
825                                                  GenericValue Result) {
826   // Pop the current stack frame.
827   ECStack.pop_back();
828 
829   if (ECStack.empty()) {  // Finished main.  Put result into exit code...
830     if (RetTy && !RetTy->isVoidTy()) {          // Nonvoid return type?
831       ExitValue = Result;   // Capture the exit value of the program
832     } else {
833       memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
834     }
835   } else {
836     // If we have a previous stack frame, and we have a previous call,
837     // fill in the return value...
838     ExecutionContext &CallingSF = ECStack.back();
839     if (Instruction *I = CallingSF.Caller.getInstruction()) {
840       // Save result...
841       if (!CallingSF.Caller.getType()->isVoidTy())
842         SetValue(I, Result, CallingSF);
843       if (InvokeInst *II = dyn_cast<InvokeInst> (I))
844         SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
845       CallingSF.Caller = CallSite();          // We returned from the call...
846     }
847   }
848 }
849 
850 void Interpreter::visitReturnInst(ReturnInst &I) {
851   ExecutionContext &SF = ECStack.back();
852   Type *RetTy = Type::getVoidTy(I.getContext());
853   GenericValue Result;
854 
855   // Save away the return value... (if we are not 'ret void')
856   if (I.getNumOperands()) {
857     RetTy  = I.getReturnValue()->getType();
858     Result = getOperandValue(I.getReturnValue(), SF);
859   }
860 
861   popStackAndReturnValueToCaller(RetTy, Result);
862 }
863 
864 void Interpreter::visitUnreachableInst(UnreachableInst &I) {
865   report_fatal_error("Program executed an 'unreachable' instruction!");
866 }
867 
868 void Interpreter::visitBranchInst(BranchInst &I) {
869   ExecutionContext &SF = ECStack.back();
870   BasicBlock *Dest;
871 
872   Dest = I.getSuccessor(0);          // Uncond branches have a fixed dest...
873   if (!I.isUnconditional()) {
874     Value *Cond = I.getCondition();
875     if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
876       Dest = I.getSuccessor(1);
877   }
878   SwitchToNewBasicBlock(Dest, SF);
879 }
880 
881 void Interpreter::visitSwitchInst(SwitchInst &I) {
882   ExecutionContext &SF = ECStack.back();
883   Value* Cond = I.getCondition();
884   Type *ElTy = Cond->getType();
885   GenericValue CondVal = getOperandValue(Cond, SF);
886 
887   // Check to see if any of the cases match...
888   BasicBlock *Dest = 0;
889   for (SwitchInst::CaseIt i = I.case_begin(), e = I.case_end(); i != e; ++i) {
890     IntegersSubset& Case = i.getCaseValueEx();
891     if (Case.isSingleNumber()) {
892       // FIXME: Currently work with ConstantInt based numbers.
893       const ConstantInt *CI = Case.getSingleNumber(0).toConstantInt();
894       GenericValue Val = getOperandValue(const_cast<ConstantInt*>(CI), SF);
895       if (executeICMP_EQ(Val, CondVal, ElTy).IntVal != 0) {
896         Dest = cast<BasicBlock>(i.getCaseSuccessor());
897         break;
898       }
899     }
900     if (Case.isSingleNumbersOnly()) {
901       for (unsigned n = 0, en = Case.getNumItems(); n != en; ++n) {
902         // FIXME: Currently work with ConstantInt based numbers.
903         const ConstantInt *CI = Case.getSingleNumber(n).toConstantInt();
904         GenericValue Val = getOperandValue(const_cast<ConstantInt*>(CI), SF);
905         if (executeICMP_EQ(Val, CondVal, ElTy).IntVal != 0) {
906           Dest = cast<BasicBlock>(i.getCaseSuccessor());
907           break;
908         }
909       }
910     } else
911       for (unsigned n = 0, en = Case.getNumItems(); n != en; ++n) {
912         IntegersSubset::Range r = Case.getItem(n);
913         // FIXME: Currently work with ConstantInt based numbers.
914         const ConstantInt *LowCI = r.getLow().toConstantInt();
915         const ConstantInt *HighCI = r.getHigh().toConstantInt();
916         GenericValue Low = getOperandValue(const_cast<ConstantInt*>(LowCI), SF);
917         GenericValue High = getOperandValue(const_cast<ConstantInt*>(HighCI), SF);
918         if (executeICMP_ULE(Low, CondVal, ElTy).IntVal != 0 &&
919             executeICMP_ULE(CondVal, High, ElTy).IntVal != 0) {
920           Dest = cast<BasicBlock>(i.getCaseSuccessor());
921           break;
922         }
923       }
924   }
925   if (!Dest) Dest = I.getDefaultDest();   // No cases matched: use default
926   SwitchToNewBasicBlock(Dest, SF);
927 }
928 
929 void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
930   ExecutionContext &SF = ECStack.back();
931   void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
932   SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
933 }
934 
935 
936 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
937 // This function handles the actual updating of block and instruction iterators
938 // as well as execution of all of the PHI nodes in the destination block.
939 //
940 // This method does this because all of the PHI nodes must be executed
941 // atomically, reading their inputs before any of the results are updated.  Not
942 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
943 // their inputs.  If the input PHI node is updated before it is read, incorrect
944 // results can happen.  Thus we use a two phase approach.
945 //
946 void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
947   BasicBlock *PrevBB = SF.CurBB;      // Remember where we came from...
948   SF.CurBB   = Dest;                  // Update CurBB to branch destination
949   SF.CurInst = SF.CurBB->begin();     // Update new instruction ptr...
950 
951   if (!isa<PHINode>(SF.CurInst)) return;  // Nothing fancy to do
952 
953   // Loop over all of the PHI nodes in the current block, reading their inputs.
954   std::vector<GenericValue> ResultValues;
955 
956   for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
957     // Search for the value corresponding to this previous bb...
958     int i = PN->getBasicBlockIndex(PrevBB);
959     assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
960     Value *IncomingValue = PN->getIncomingValue(i);
961 
962     // Save the incoming value for this PHI node...
963     ResultValues.push_back(getOperandValue(IncomingValue, SF));
964   }
965 
966   // Now loop over all of the PHI nodes setting their values...
967   SF.CurInst = SF.CurBB->begin();
968   for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
969     PHINode *PN = cast<PHINode>(SF.CurInst);
970     SetValue(PN, ResultValues[i], SF);
971   }
972 }
973 
974 //===----------------------------------------------------------------------===//
975 //                     Memory Instruction Implementations
976 //===----------------------------------------------------------------------===//
977 
978 void Interpreter::visitAllocaInst(AllocaInst &I) {
979   ExecutionContext &SF = ECStack.back();
980 
981   Type *Ty = I.getType()->getElementType();  // Type to be allocated
982 
983   // Get the number of elements being allocated by the array...
984   unsigned NumElements =
985     getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
986 
987   unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty);
988 
989   // Avoid malloc-ing zero bytes, use max()...
990   unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
991 
992   // Allocate enough memory to hold the type...
993   void *Memory = malloc(MemToAlloc);
994 
995   DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
996                << NumElements << " (Total: " << MemToAlloc << ") at "
997                << uintptr_t(Memory) << '\n');
998 
999   GenericValue Result = PTOGV(Memory);
1000   assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
1001   SetValue(&I, Result, SF);
1002 
1003   if (I.getOpcode() == Instruction::Alloca)
1004     ECStack.back().Allocas.add(Memory);
1005 }
1006 
1007 // getElementOffset - The workhorse for getelementptr.
1008 //
1009 GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
1010                                               gep_type_iterator E,
1011                                               ExecutionContext &SF) {
1012   assert(Ptr->getType()->isPointerTy() &&
1013          "Cannot getElementOffset of a nonpointer type!");
1014 
1015   uint64_t Total = 0;
1016 
1017   for (; I != E; ++I) {
1018     if (StructType *STy = dyn_cast<StructType>(*I)) {
1019       const StructLayout *SLO = TD.getStructLayout(STy);
1020 
1021       const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
1022       unsigned Index = unsigned(CPU->getZExtValue());
1023 
1024       Total += SLO->getElementOffset(Index);
1025     } else {
1026       SequentialType *ST = cast<SequentialType>(*I);
1027       // Get the index number for the array... which must be long type...
1028       GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
1029 
1030       int64_t Idx;
1031       unsigned BitWidth =
1032         cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
1033       if (BitWidth == 32)
1034         Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
1035       else {
1036         assert(BitWidth == 64 && "Invalid index type for getelementptr");
1037         Idx = (int64_t)IdxGV.IntVal.getZExtValue();
1038       }
1039       Total += TD.getTypeAllocSize(ST->getElementType())*Idx;
1040     }
1041   }
1042 
1043   GenericValue Result;
1044   Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
1045   DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
1046   return Result;
1047 }
1048 
1049 void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
1050   ExecutionContext &SF = ECStack.back();
1051   SetValue(&I, executeGEPOperation(I.getPointerOperand(),
1052                                    gep_type_begin(I), gep_type_end(I), SF), SF);
1053 }
1054 
1055 void Interpreter::visitLoadInst(LoadInst &I) {
1056   ExecutionContext &SF = ECStack.back();
1057   GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1058   GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
1059   GenericValue Result;
1060   LoadValueFromMemory(Result, Ptr, I.getType());
1061   SetValue(&I, Result, SF);
1062   if (I.isVolatile() && PrintVolatile)
1063     dbgs() << "Volatile load " << I;
1064 }
1065 
1066 void Interpreter::visitStoreInst(StoreInst &I) {
1067   ExecutionContext &SF = ECStack.back();
1068   GenericValue Val = getOperandValue(I.getOperand(0), SF);
1069   GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1070   StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
1071                      I.getOperand(0)->getType());
1072   if (I.isVolatile() && PrintVolatile)
1073     dbgs() << "Volatile store: " << I;
1074 }
1075 
1076 //===----------------------------------------------------------------------===//
1077 //                 Miscellaneous Instruction Implementations
1078 //===----------------------------------------------------------------------===//
1079 
1080 void Interpreter::visitCallSite(CallSite CS) {
1081   ExecutionContext &SF = ECStack.back();
1082 
1083   // Check to see if this is an intrinsic function call...
1084   Function *F = CS.getCalledFunction();
1085   if (F && F->isDeclaration())
1086     switch (F->getIntrinsicID()) {
1087     case Intrinsic::not_intrinsic:
1088       break;
1089     case Intrinsic::vastart: { // va_start
1090       GenericValue ArgIndex;
1091       ArgIndex.UIntPairVal.first = ECStack.size() - 1;
1092       ArgIndex.UIntPairVal.second = 0;
1093       SetValue(CS.getInstruction(), ArgIndex, SF);
1094       return;
1095     }
1096     case Intrinsic::vaend:    // va_end is a noop for the interpreter
1097       return;
1098     case Intrinsic::vacopy:   // va_copy: dest = src
1099       SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
1100       return;
1101     default:
1102       // If it is an unknown intrinsic function, use the intrinsic lowering
1103       // class to transform it into hopefully tasty LLVM code.
1104       //
1105       BasicBlock::iterator me(CS.getInstruction());
1106       BasicBlock *Parent = CS.getInstruction()->getParent();
1107       bool atBegin(Parent->begin() == me);
1108       if (!atBegin)
1109         --me;
1110       IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
1111 
1112       // Restore the CurInst pointer to the first instruction newly inserted, if
1113       // any.
1114       if (atBegin) {
1115         SF.CurInst = Parent->begin();
1116       } else {
1117         SF.CurInst = me;
1118         ++SF.CurInst;
1119       }
1120       return;
1121     }
1122 
1123 
1124   SF.Caller = CS;
1125   std::vector<GenericValue> ArgVals;
1126   const unsigned NumArgs = SF.Caller.arg_size();
1127   ArgVals.reserve(NumArgs);
1128   uint16_t pNum = 1;
1129   for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
1130          e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
1131     Value *V = *i;
1132     ArgVals.push_back(getOperandValue(V, SF));
1133   }
1134 
1135   // To handle indirect calls, we must get the pointer value from the argument
1136   // and treat it as a function pointer.
1137   GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
1138   callFunction((Function*)GVTOP(SRC), ArgVals);
1139 }
1140 
1141 // auxilary function for shift operations
1142 static unsigned getShiftAmount(uint64_t orgShiftAmount,
1143                                llvm::APInt valueToShift) {
1144   unsigned valueWidth = valueToShift.getBitWidth();
1145   if (orgShiftAmount < (uint64_t)valueWidth)
1146     return orgShiftAmount;
1147   // according to the llvm documentation, if orgShiftAmount > valueWidth,
1148   // the result is undfeined. but we do shift by this rule:
1149   return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
1150 }
1151 
1152 
1153 void Interpreter::visitShl(BinaryOperator &I) {
1154   ExecutionContext &SF = ECStack.back();
1155   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1156   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1157   GenericValue Dest;
1158   const Type *Ty = I.getType();
1159 
1160   if (Ty->isVectorTy()) {
1161     uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1162     assert(src1Size == Src2.AggregateVal.size());
1163     for (unsigned i = 0; i < src1Size; i++) {
1164       GenericValue Result;
1165       uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1166       llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1167       Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1168       Dest.AggregateVal.push_back(Result);
1169     }
1170   } else {
1171     // scalar
1172     uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1173     llvm::APInt valueToShift = Src1.IntVal;
1174     Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1175   }
1176 
1177   SetValue(&I, Dest, SF);
1178 }
1179 
1180 void Interpreter::visitLShr(BinaryOperator &I) {
1181   ExecutionContext &SF = ECStack.back();
1182   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1183   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1184   GenericValue Dest;
1185   const Type *Ty = I.getType();
1186 
1187   if (Ty->isVectorTy()) {
1188     uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1189     assert(src1Size == Src2.AggregateVal.size());
1190     for (unsigned i = 0; i < src1Size; i++) {
1191       GenericValue Result;
1192       uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1193       llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1194       Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1195       Dest.AggregateVal.push_back(Result);
1196     }
1197   } else {
1198     // scalar
1199     uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1200     llvm::APInt valueToShift = Src1.IntVal;
1201     Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1202   }
1203 
1204   SetValue(&I, Dest, SF);
1205 }
1206 
1207 void Interpreter::visitAShr(BinaryOperator &I) {
1208   ExecutionContext &SF = ECStack.back();
1209   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1210   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1211   GenericValue Dest;
1212   const Type *Ty = I.getType();
1213 
1214   if (Ty->isVectorTy()) {
1215     size_t src1Size = Src1.AggregateVal.size();
1216     assert(src1Size == Src2.AggregateVal.size());
1217     for (unsigned i = 0; i < src1Size; i++) {
1218       GenericValue Result;
1219       uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1220       llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1221       Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1222       Dest.AggregateVal.push_back(Result);
1223     }
1224   } else {
1225     // scalar
1226     uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1227     llvm::APInt valueToShift = Src1.IntVal;
1228     Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1229   }
1230 
1231   SetValue(&I, Dest, SF);
1232 }
1233 
1234 GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
1235                                            ExecutionContext &SF) {
1236   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1237   Type *SrcTy = SrcVal->getType();
1238   if (SrcTy->isVectorTy()) {
1239     Type *DstVecTy = DstTy->getScalarType();
1240     unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1241     unsigned NumElts = Src.AggregateVal.size();
1242     // the sizes of src and dst vectors must be equal
1243     Dest.AggregateVal.resize(NumElts);
1244     for (unsigned i = 0; i < NumElts; i++)
1245       Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
1246   } else {
1247     IntegerType *DITy = cast<IntegerType>(DstTy);
1248     unsigned DBitWidth = DITy->getBitWidth();
1249     Dest.IntVal = Src.IntVal.trunc(DBitWidth);
1250   }
1251   return Dest;
1252 }
1253 
1254 GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
1255                                           ExecutionContext &SF) {
1256   const Type *SrcTy = SrcVal->getType();
1257   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1258   if (SrcTy->isVectorTy()) {
1259     const Type *DstVecTy = DstTy->getScalarType();
1260     unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1261     unsigned size = Src.AggregateVal.size();
1262     // the sizes of src and dst vectors must be equal.
1263     Dest.AggregateVal.resize(size);
1264     for (unsigned i = 0; i < size; i++)
1265       Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
1266   } else {
1267     const IntegerType *DITy = cast<IntegerType>(DstTy);
1268     unsigned DBitWidth = DITy->getBitWidth();
1269     Dest.IntVal = Src.IntVal.sext(DBitWidth);
1270   }
1271   return Dest;
1272 }
1273 
1274 GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
1275                                           ExecutionContext &SF) {
1276   const Type *SrcTy = SrcVal->getType();
1277   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1278   if (SrcTy->isVectorTy()) {
1279     const Type *DstVecTy = DstTy->getScalarType();
1280     unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1281 
1282     unsigned size = Src.AggregateVal.size();
1283     // the sizes of src and dst vectors must be equal.
1284     Dest.AggregateVal.resize(size);
1285     for (unsigned i = 0; i < size; i++)
1286       Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
1287   } else {
1288     const IntegerType *DITy = cast<IntegerType>(DstTy);
1289     unsigned DBitWidth = DITy->getBitWidth();
1290     Dest.IntVal = Src.IntVal.zext(DBitWidth);
1291   }
1292   return Dest;
1293 }
1294 
1295 GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
1296                                              ExecutionContext &SF) {
1297   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1298 
1299   if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1300     assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
1301            DstTy->getScalarType()->isFloatTy() &&
1302            "Invalid FPTrunc instruction");
1303 
1304     unsigned size = Src.AggregateVal.size();
1305     // the sizes of src and dst vectors must be equal.
1306     Dest.AggregateVal.resize(size);
1307     for (unsigned i = 0; i < size; i++)
1308       Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
1309   } else {
1310     assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
1311            "Invalid FPTrunc instruction");
1312     Dest.FloatVal = (float)Src.DoubleVal;
1313   }
1314 
1315   return Dest;
1316 }
1317 
1318 GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
1319                                            ExecutionContext &SF) {
1320   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1321 
1322   if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1323     assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
1324            DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
1325 
1326     unsigned size = Src.AggregateVal.size();
1327     // the sizes of src and dst vectors must be equal.
1328     Dest.AggregateVal.resize(size);
1329     for (unsigned i = 0; i < size; i++)
1330       Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
1331   } else {
1332     assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
1333            "Invalid FPExt instruction");
1334     Dest.DoubleVal = (double)Src.FloatVal;
1335   }
1336 
1337   return Dest;
1338 }
1339 
1340 GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
1341                                             ExecutionContext &SF) {
1342   Type *SrcTy = SrcVal->getType();
1343   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1344 
1345   if (SrcTy->getTypeID() == Type::VectorTyID) {
1346     const Type *DstVecTy = DstTy->getScalarType();
1347     const Type *SrcVecTy = SrcTy->getScalarType();
1348     uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1349     unsigned size = Src.AggregateVal.size();
1350     // the sizes of src and dst vectors must be equal.
1351     Dest.AggregateVal.resize(size);
1352 
1353     if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1354       assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1355       for (unsigned i = 0; i < size; i++)
1356         Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1357             Src.AggregateVal[i].FloatVal, DBitWidth);
1358     } else {
1359       for (unsigned i = 0; i < size; i++)
1360         Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1361             Src.AggregateVal[i].DoubleVal, DBitWidth);
1362     }
1363   } else {
1364     // scalar
1365     uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1366     assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1367 
1368     if (SrcTy->getTypeID() == Type::FloatTyID)
1369       Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1370     else {
1371       Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1372     }
1373   }
1374 
1375   return Dest;
1376 }
1377 
1378 GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
1379                                             ExecutionContext &SF) {
1380   Type *SrcTy = SrcVal->getType();
1381   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1382 
1383   if (SrcTy->getTypeID() == Type::VectorTyID) {
1384     const Type *DstVecTy = DstTy->getScalarType();
1385     const Type *SrcVecTy = SrcTy->getScalarType();
1386     uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1387     unsigned size = Src.AggregateVal.size();
1388     // the sizes of src and dst vectors must be equal
1389     Dest.AggregateVal.resize(size);
1390 
1391     if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1392       assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1393       for (unsigned i = 0; i < size; i++)
1394         Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1395             Src.AggregateVal[i].FloatVal, DBitWidth);
1396     } else {
1397       for (unsigned i = 0; i < size; i++)
1398         Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1399             Src.AggregateVal[i].DoubleVal, DBitWidth);
1400     }
1401   } else {
1402     // scalar
1403     unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1404     assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1405 
1406     if (SrcTy->getTypeID() == Type::FloatTyID)
1407       Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1408     else {
1409       Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1410     }
1411   }
1412   return Dest;
1413 }
1414 
1415 GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
1416                                             ExecutionContext &SF) {
1417   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1418 
1419   if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1420     const Type *DstVecTy = DstTy->getScalarType();
1421     unsigned size = Src.AggregateVal.size();
1422     // the sizes of src and dst vectors must be equal
1423     Dest.AggregateVal.resize(size);
1424 
1425     if (DstVecTy->getTypeID() == Type::FloatTyID) {
1426       assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1427       for (unsigned i = 0; i < size; i++)
1428         Dest.AggregateVal[i].FloatVal =
1429             APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
1430     } else {
1431       for (unsigned i = 0; i < size; i++)
1432         Dest.AggregateVal[i].DoubleVal =
1433             APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
1434     }
1435   } else {
1436     // scalar
1437     assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1438     if (DstTy->getTypeID() == Type::FloatTyID)
1439       Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
1440     else {
1441       Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
1442     }
1443   }
1444   return Dest;
1445 }
1446 
1447 GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
1448                                             ExecutionContext &SF) {
1449   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1450 
1451   if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1452     const Type *DstVecTy = DstTy->getScalarType();
1453     unsigned size = Src.AggregateVal.size();
1454     // the sizes of src and dst vectors must be equal
1455     Dest.AggregateVal.resize(size);
1456 
1457     if (DstVecTy->getTypeID() == Type::FloatTyID) {
1458       assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1459       for (unsigned i = 0; i < size; i++)
1460         Dest.AggregateVal[i].FloatVal =
1461             APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
1462     } else {
1463       for (unsigned i = 0; i < size; i++)
1464         Dest.AggregateVal[i].DoubleVal =
1465             APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
1466     }
1467   } else {
1468     // scalar
1469     assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1470 
1471     if (DstTy->getTypeID() == Type::FloatTyID)
1472       Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
1473     else {
1474       Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
1475     }
1476   }
1477 
1478   return Dest;
1479 }
1480 
1481 GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
1482                                               ExecutionContext &SF) {
1483   uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1484   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1485   assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1486 
1487   Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1488   return Dest;
1489 }
1490 
1491 GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
1492                                               ExecutionContext &SF) {
1493   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1494   assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
1495 
1496   uint32_t PtrSize = TD.getPointerSizeInBits();
1497   if (PtrSize != Src.IntVal.getBitWidth())
1498     Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1499 
1500   Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
1501   return Dest;
1502 }
1503 
1504 GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
1505                                              ExecutionContext &SF) {
1506 
1507   // This instruction supports bitwise conversion of vectors to integers and
1508   // to vectors of other types (as long as they have the same size)
1509   Type *SrcTy = SrcVal->getType();
1510   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1511 
1512   if ((SrcTy->getTypeID() == Type::VectorTyID) ||
1513       (DstTy->getTypeID() == Type::VectorTyID)) {
1514     // vector src bitcast to vector dst or vector src bitcast to scalar dst or
1515     // scalar src bitcast to vector dst
1516     bool isLittleEndian = TD.isLittleEndian();
1517     GenericValue TempDst, TempSrc, SrcVec;
1518     const Type *SrcElemTy;
1519     const Type *DstElemTy;
1520     unsigned SrcBitSize;
1521     unsigned DstBitSize;
1522     unsigned SrcNum;
1523     unsigned DstNum;
1524 
1525     if (SrcTy->getTypeID() == Type::VectorTyID) {
1526       SrcElemTy = SrcTy->getScalarType();
1527       SrcBitSize = SrcTy->getScalarSizeInBits();
1528       SrcNum = Src.AggregateVal.size();
1529       SrcVec = Src;
1530     } else {
1531       // if src is scalar value, make it vector <1 x type>
1532       SrcElemTy = SrcTy;
1533       SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1534       SrcNum = 1;
1535       SrcVec.AggregateVal.push_back(Src);
1536     }
1537 
1538     if (DstTy->getTypeID() == Type::VectorTyID) {
1539       DstElemTy = DstTy->getScalarType();
1540       DstBitSize = DstTy->getScalarSizeInBits();
1541       DstNum = (SrcNum * SrcBitSize) / DstBitSize;
1542     } else {
1543       DstElemTy = DstTy;
1544       DstBitSize = DstTy->getPrimitiveSizeInBits();
1545       DstNum = 1;
1546     }
1547 
1548     if (SrcNum * SrcBitSize != DstNum * DstBitSize)
1549       llvm_unreachable("Invalid BitCast");
1550 
1551     // If src is floating point, cast to integer first.
1552     TempSrc.AggregateVal.resize(SrcNum);
1553     if (SrcElemTy->isFloatTy()) {
1554       for (unsigned i = 0; i < SrcNum; i++)
1555         TempSrc.AggregateVal[i].IntVal =
1556             APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
1557 
1558     } else if (SrcElemTy->isDoubleTy()) {
1559       for (unsigned i = 0; i < SrcNum; i++)
1560         TempSrc.AggregateVal[i].IntVal =
1561             APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
1562     } else if (SrcElemTy->isIntegerTy()) {
1563       for (unsigned i = 0; i < SrcNum; i++)
1564         TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
1565     } else {
1566       // Pointers are not allowed as the element type of vector.
1567       llvm_unreachable("Invalid Bitcast");
1568     }
1569 
1570     // now TempSrc is integer type vector
1571     if (DstNum < SrcNum) {
1572       // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
1573       unsigned Ratio = SrcNum / DstNum;
1574       unsigned SrcElt = 0;
1575       for (unsigned i = 0; i < DstNum; i++) {
1576         GenericValue Elt;
1577         Elt.IntVal = 0;
1578         Elt.IntVal = Elt.IntVal.zext(DstBitSize);
1579         unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
1580         for (unsigned j = 0; j < Ratio; j++) {
1581           APInt Tmp;
1582           Tmp = Tmp.zext(SrcBitSize);
1583           Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
1584           Tmp = Tmp.zext(DstBitSize);
1585           Tmp = Tmp.shl(ShiftAmt);
1586           ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
1587           Elt.IntVal |= Tmp;
1588         }
1589         TempDst.AggregateVal.push_back(Elt);
1590       }
1591     } else {
1592       // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
1593       unsigned Ratio = DstNum / SrcNum;
1594       for (unsigned i = 0; i < SrcNum; i++) {
1595         unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
1596         for (unsigned j = 0; j < Ratio; j++) {
1597           GenericValue Elt;
1598           Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
1599           Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
1600           Elt.IntVal = Elt.IntVal.lshr(ShiftAmt);
1601           // it could be DstBitSize == SrcBitSize, so check it
1602           if (DstBitSize < SrcBitSize)
1603             Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
1604           ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
1605           TempDst.AggregateVal.push_back(Elt);
1606         }
1607       }
1608     }
1609 
1610     // convert result from integer to specified type
1611     if (DstTy->getTypeID() == Type::VectorTyID) {
1612       if (DstElemTy->isDoubleTy()) {
1613         Dest.AggregateVal.resize(DstNum);
1614         for (unsigned i = 0; i < DstNum; i++)
1615           Dest.AggregateVal[i].DoubleVal =
1616               TempDst.AggregateVal[i].IntVal.bitsToDouble();
1617       } else if (DstElemTy->isFloatTy()) {
1618         Dest.AggregateVal.resize(DstNum);
1619         for (unsigned i = 0; i < DstNum; i++)
1620           Dest.AggregateVal[i].FloatVal =
1621               TempDst.AggregateVal[i].IntVal.bitsToFloat();
1622       } else {
1623         Dest = TempDst;
1624       }
1625     } else {
1626       if (DstElemTy->isDoubleTy())
1627         Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
1628       else if (DstElemTy->isFloatTy()) {
1629         Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
1630       } else {
1631         Dest.IntVal = TempDst.AggregateVal[0].IntVal;
1632       }
1633     }
1634   } else { //  if ((SrcTy->getTypeID() == Type::VectorTyID) ||
1635            //     (DstTy->getTypeID() == Type::VectorTyID))
1636 
1637     // scalar src bitcast to scalar dst
1638     if (DstTy->isPointerTy()) {
1639       assert(SrcTy->isPointerTy() && "Invalid BitCast");
1640       Dest.PointerVal = Src.PointerVal;
1641     } else if (DstTy->isIntegerTy()) {
1642       if (SrcTy->isFloatTy())
1643         Dest.IntVal = APInt::floatToBits(Src.FloatVal);
1644       else if (SrcTy->isDoubleTy()) {
1645         Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
1646       } else if (SrcTy->isIntegerTy()) {
1647         Dest.IntVal = Src.IntVal;
1648       } else {
1649         llvm_unreachable("Invalid BitCast");
1650       }
1651     } else if (DstTy->isFloatTy()) {
1652       if (SrcTy->isIntegerTy())
1653         Dest.FloatVal = Src.IntVal.bitsToFloat();
1654       else {
1655         Dest.FloatVal = Src.FloatVal;
1656       }
1657     } else if (DstTy->isDoubleTy()) {
1658       if (SrcTy->isIntegerTy())
1659         Dest.DoubleVal = Src.IntVal.bitsToDouble();
1660       else {
1661         Dest.DoubleVal = Src.DoubleVal;
1662       }
1663     } else {
1664       llvm_unreachable("Invalid Bitcast");
1665     }
1666   }
1667 
1668   return Dest;
1669 }
1670 
1671 void Interpreter::visitTruncInst(TruncInst &I) {
1672   ExecutionContext &SF = ECStack.back();
1673   SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1674 }
1675 
1676 void Interpreter::visitSExtInst(SExtInst &I) {
1677   ExecutionContext &SF = ECStack.back();
1678   SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1679 }
1680 
1681 void Interpreter::visitZExtInst(ZExtInst &I) {
1682   ExecutionContext &SF = ECStack.back();
1683   SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1684 }
1685 
1686 void Interpreter::visitFPTruncInst(FPTruncInst &I) {
1687   ExecutionContext &SF = ECStack.back();
1688   SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1689 }
1690 
1691 void Interpreter::visitFPExtInst(FPExtInst &I) {
1692   ExecutionContext &SF = ECStack.back();
1693   SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1694 }
1695 
1696 void Interpreter::visitUIToFPInst(UIToFPInst &I) {
1697   ExecutionContext &SF = ECStack.back();
1698   SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1699 }
1700 
1701 void Interpreter::visitSIToFPInst(SIToFPInst &I) {
1702   ExecutionContext &SF = ECStack.back();
1703   SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1704 }
1705 
1706 void Interpreter::visitFPToUIInst(FPToUIInst &I) {
1707   ExecutionContext &SF = ECStack.back();
1708   SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1709 }
1710 
1711 void Interpreter::visitFPToSIInst(FPToSIInst &I) {
1712   ExecutionContext &SF = ECStack.back();
1713   SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1714 }
1715 
1716 void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
1717   ExecutionContext &SF = ECStack.back();
1718   SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1719 }
1720 
1721 void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
1722   ExecutionContext &SF = ECStack.back();
1723   SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1724 }
1725 
1726 void Interpreter::visitBitCastInst(BitCastInst &I) {
1727   ExecutionContext &SF = ECStack.back();
1728   SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1729 }
1730 
1731 #define IMPLEMENT_VAARG(TY) \
1732    case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1733 
1734 void Interpreter::visitVAArgInst(VAArgInst &I) {
1735   ExecutionContext &SF = ECStack.back();
1736 
1737   // Get the incoming valist parameter.  LLI treats the valist as a
1738   // (ec-stack-depth var-arg-index) pair.
1739   GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1740   GenericValue Dest;
1741   GenericValue Src = ECStack[VAList.UIntPairVal.first]
1742                       .VarArgs[VAList.UIntPairVal.second];
1743   Type *Ty = I.getType();
1744   switch (Ty->getTypeID()) {
1745   case Type::IntegerTyID:
1746     Dest.IntVal = Src.IntVal;
1747     break;
1748   IMPLEMENT_VAARG(Pointer);
1749   IMPLEMENT_VAARG(Float);
1750   IMPLEMENT_VAARG(Double);
1751   default:
1752     dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1753     llvm_unreachable(0);
1754   }
1755 
1756   // Set the Value of this Instruction.
1757   SetValue(&I, Dest, SF);
1758 
1759   // Move the pointer to the next vararg.
1760   ++VAList.UIntPairVal.second;
1761 }
1762 
1763 void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
1764   ExecutionContext &SF = ECStack.back();
1765   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1766   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1767   GenericValue Dest;
1768 
1769   Type *Ty = I.getType();
1770   const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
1771 
1772   if(Src1.AggregateVal.size() > indx) {
1773     switch (Ty->getTypeID()) {
1774     default:
1775       dbgs() << "Unhandled destination type for extractelement instruction: "
1776       << *Ty << "\n";
1777       llvm_unreachable(0);
1778       break;
1779     case Type::IntegerTyID:
1780       Dest.IntVal = Src1.AggregateVal[indx].IntVal;
1781       break;
1782     case Type::FloatTyID:
1783       Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
1784       break;
1785     case Type::DoubleTyID:
1786       Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
1787       break;
1788     }
1789   } else {
1790     dbgs() << "Invalid index in extractelement instruction\n";
1791   }
1792 
1793   SetValue(&I, Dest, SF);
1794 }
1795 
1796 GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
1797                                                 ExecutionContext &SF) {
1798   switch (CE->getOpcode()) {
1799   case Instruction::Trunc:
1800       return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
1801   case Instruction::ZExt:
1802       return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
1803   case Instruction::SExt:
1804       return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
1805   case Instruction::FPTrunc:
1806       return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
1807   case Instruction::FPExt:
1808       return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
1809   case Instruction::UIToFP:
1810       return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
1811   case Instruction::SIToFP:
1812       return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
1813   case Instruction::FPToUI:
1814       return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
1815   case Instruction::FPToSI:
1816       return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
1817   case Instruction::PtrToInt:
1818       return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
1819   case Instruction::IntToPtr:
1820       return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
1821   case Instruction::BitCast:
1822       return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
1823   case Instruction::GetElementPtr:
1824     return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
1825                                gep_type_end(CE), SF);
1826   case Instruction::FCmp:
1827   case Instruction::ICmp:
1828     return executeCmpInst(CE->getPredicate(),
1829                           getOperandValue(CE->getOperand(0), SF),
1830                           getOperandValue(CE->getOperand(1), SF),
1831                           CE->getOperand(0)->getType());
1832   case Instruction::Select:
1833     return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
1834                              getOperandValue(CE->getOperand(1), SF),
1835                              getOperandValue(CE->getOperand(2), SF));
1836   default :
1837     break;
1838   }
1839 
1840   // The cases below here require a GenericValue parameter for the result
1841   // so we initialize one, compute it and then return it.
1842   GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
1843   GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
1844   GenericValue Dest;
1845   Type * Ty = CE->getOperand(0)->getType();
1846   switch (CE->getOpcode()) {
1847   case Instruction::Add:  Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
1848   case Instruction::Sub:  Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
1849   case Instruction::Mul:  Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
1850   case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
1851   case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
1852   case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
1853   case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
1854   case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
1855   case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
1856   case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
1857   case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
1858   case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
1859   case Instruction::And:  Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
1860   case Instruction::Or:   Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
1861   case Instruction::Xor:  Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
1862   case Instruction::Shl:
1863     Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
1864     break;
1865   case Instruction::LShr:
1866     Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
1867     break;
1868   case Instruction::AShr:
1869     Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
1870     break;
1871   default:
1872     dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
1873     llvm_unreachable("Unhandled ConstantExpr");
1874   }
1875   return Dest;
1876 }
1877 
1878 GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
1879   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1880     return getConstantExprValue(CE, SF);
1881   } else if (Constant *CPV = dyn_cast<Constant>(V)) {
1882     return getConstantValue(CPV);
1883   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1884     return PTOGV(getPointerToGlobal(GV));
1885   } else {
1886     return SF.Values[V];
1887   }
1888 }
1889 
1890 //===----------------------------------------------------------------------===//
1891 //                        Dispatch and Execution Code
1892 //===----------------------------------------------------------------------===//
1893 
1894 //===----------------------------------------------------------------------===//
1895 // callFunction - Execute the specified function...
1896 //
1897 void Interpreter::callFunction(Function *F,
1898                                const std::vector<GenericValue> &ArgVals) {
1899   assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
1900           ECStack.back().Caller.arg_size() == ArgVals.size()) &&
1901          "Incorrect number of arguments passed into function call!");
1902   // Make a new stack frame... and fill it in.
1903   ECStack.push_back(ExecutionContext());
1904   ExecutionContext &StackFrame = ECStack.back();
1905   StackFrame.CurFunction = F;
1906 
1907   // Special handling for external functions.
1908   if (F->isDeclaration()) {
1909     GenericValue Result = callExternalFunction (F, ArgVals);
1910     // Simulate a 'ret' instruction of the appropriate type.
1911     popStackAndReturnValueToCaller (F->getReturnType (), Result);
1912     return;
1913   }
1914 
1915   // Get pointers to first LLVM BB & Instruction in function.
1916   StackFrame.CurBB     = F->begin();
1917   StackFrame.CurInst   = StackFrame.CurBB->begin();
1918 
1919   // Run through the function arguments and initialize their values...
1920   assert((ArgVals.size() == F->arg_size() ||
1921          (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
1922          "Invalid number of values passed to function invocation!");
1923 
1924   // Handle non-varargs arguments...
1925   unsigned i = 0;
1926   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1927        AI != E; ++AI, ++i)
1928     SetValue(AI, ArgVals[i], StackFrame);
1929 
1930   // Handle varargs arguments...
1931   StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
1932 }
1933 
1934 
1935 void Interpreter::run() {
1936   while (!ECStack.empty()) {
1937     // Interpret a single instruction & increment the "PC".
1938     ExecutionContext &SF = ECStack.back();  // Current stack frame
1939     Instruction &I = *SF.CurInst++;         // Increment before execute
1940 
1941     // Track the number of dynamic instructions executed.
1942     ++NumDynamicInsts;
1943 
1944     DEBUG(dbgs() << "About to interpret: " << I);
1945     visit(I);   // Dispatch to one of the visit* methods...
1946 #if 0
1947     // This is not safe, as visiting the instruction could lower it and free I.
1948 DEBUG(
1949     if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
1950         I.getType() != Type::VoidTy) {
1951       dbgs() << "  --> ";
1952       const GenericValue &Val = SF.Values[&I];
1953       switch (I.getType()->getTypeID()) {
1954       default: llvm_unreachable("Invalid GenericValue Type");
1955       case Type::VoidTyID:    dbgs() << "void"; break;
1956       case Type::FloatTyID:   dbgs() << "float " << Val.FloatVal; break;
1957       case Type::DoubleTyID:  dbgs() << "double " << Val.DoubleVal; break;
1958       case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal);
1959         break;
1960       case Type::IntegerTyID:
1961         dbgs() << "i" << Val.IntVal.getBitWidth() << " "
1962                << Val.IntVal.toStringUnsigned(10)
1963                << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
1964         break;
1965       }
1966     });
1967 #endif
1968   }
1969 }
1970