1 //===-- ExecutionEngineBindings.cpp - C bindings for EEs ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the C bindings for the ExecutionEngine library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm-c/ExecutionEngine.h" 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ExecutionEngine/GenericValue.h" 17 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 18 #include "llvm/IR/DerivedTypes.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include <cstring> 22 23 using namespace llvm; 24 25 #define DEBUG_TYPE "jit" 26 27 // Wrapping the C bindings types. 28 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(GenericValue, LLVMGenericValueRef) 29 30 31 inline LLVMTargetMachineRef wrap(const TargetMachine *P) { 32 return 33 reinterpret_cast<LLVMTargetMachineRef>(const_cast<TargetMachine*>(P)); 34 } 35 36 /*===-- Operations on generic values --------------------------------------===*/ 37 38 LLVMGenericValueRef LLVMCreateGenericValueOfInt(LLVMTypeRef Ty, 39 unsigned long long N, 40 LLVMBool IsSigned) { 41 GenericValue *GenVal = new GenericValue(); 42 GenVal->IntVal = APInt(unwrap<IntegerType>(Ty)->getBitWidth(), N, IsSigned); 43 return wrap(GenVal); 44 } 45 46 LLVMGenericValueRef LLVMCreateGenericValueOfPointer(void *P) { 47 GenericValue *GenVal = new GenericValue(); 48 GenVal->PointerVal = P; 49 return wrap(GenVal); 50 } 51 52 LLVMGenericValueRef LLVMCreateGenericValueOfFloat(LLVMTypeRef TyRef, double N) { 53 GenericValue *GenVal = new GenericValue(); 54 switch (unwrap(TyRef)->getTypeID()) { 55 case Type::FloatTyID: 56 GenVal->FloatVal = N; 57 break; 58 case Type::DoubleTyID: 59 GenVal->DoubleVal = N; 60 break; 61 default: 62 llvm_unreachable("LLVMGenericValueToFloat supports only float and double."); 63 } 64 return wrap(GenVal); 65 } 66 67 unsigned LLVMGenericValueIntWidth(LLVMGenericValueRef GenValRef) { 68 return unwrap(GenValRef)->IntVal.getBitWidth(); 69 } 70 71 unsigned long long LLVMGenericValueToInt(LLVMGenericValueRef GenValRef, 72 LLVMBool IsSigned) { 73 GenericValue *GenVal = unwrap(GenValRef); 74 if (IsSigned) 75 return GenVal->IntVal.getSExtValue(); 76 else 77 return GenVal->IntVal.getZExtValue(); 78 } 79 80 void *LLVMGenericValueToPointer(LLVMGenericValueRef GenVal) { 81 return unwrap(GenVal)->PointerVal; 82 } 83 84 double LLVMGenericValueToFloat(LLVMTypeRef TyRef, LLVMGenericValueRef GenVal) { 85 switch (unwrap(TyRef)->getTypeID()) { 86 case Type::FloatTyID: 87 return unwrap(GenVal)->FloatVal; 88 case Type::DoubleTyID: 89 return unwrap(GenVal)->DoubleVal; 90 default: 91 llvm_unreachable("LLVMGenericValueToFloat supports only float and double."); 92 } 93 } 94 95 void LLVMDisposeGenericValue(LLVMGenericValueRef GenVal) { 96 delete unwrap(GenVal); 97 } 98 99 /*===-- Operations on execution engines -----------------------------------===*/ 100 101 LLVMBool LLVMCreateExecutionEngineForModule(LLVMExecutionEngineRef *OutEE, 102 LLVMModuleRef M, 103 char **OutError) { 104 std::string Error; 105 EngineBuilder builder(std::unique_ptr<Module>(unwrap(M))); 106 builder.setEngineKind(EngineKind::Either) 107 .setErrorStr(&Error); 108 if (ExecutionEngine *EE = builder.create()){ 109 *OutEE = wrap(EE); 110 return 0; 111 } 112 *OutError = strdup(Error.c_str()); 113 return 1; 114 } 115 116 LLVMBool LLVMCreateInterpreterForModule(LLVMExecutionEngineRef *OutInterp, 117 LLVMModuleRef M, 118 char **OutError) { 119 std::string Error; 120 EngineBuilder builder(std::unique_ptr<Module>(unwrap(M))); 121 builder.setEngineKind(EngineKind::Interpreter) 122 .setErrorStr(&Error); 123 if (ExecutionEngine *Interp = builder.create()) { 124 *OutInterp = wrap(Interp); 125 return 0; 126 } 127 *OutError = strdup(Error.c_str()); 128 return 1; 129 } 130 131 LLVMBool LLVMCreateJITCompilerForModule(LLVMExecutionEngineRef *OutJIT, 132 LLVMModuleRef M, 133 unsigned OptLevel, 134 char **OutError) { 135 std::string Error; 136 EngineBuilder builder(std::unique_ptr<Module>(unwrap(M))); 137 builder.setEngineKind(EngineKind::JIT) 138 .setErrorStr(&Error) 139 .setOptLevel((CodeGenOpt::Level)OptLevel); 140 if (ExecutionEngine *JIT = builder.create()) { 141 *OutJIT = wrap(JIT); 142 return 0; 143 } 144 *OutError = strdup(Error.c_str()); 145 return 1; 146 } 147 148 void LLVMInitializeMCJITCompilerOptions(LLVMMCJITCompilerOptions *PassedOptions, 149 size_t SizeOfPassedOptions) { 150 LLVMMCJITCompilerOptions options; 151 memset(&options, 0, sizeof(options)); // Most fields are zero by default. 152 options.CodeModel = LLVMCodeModelJITDefault; 153 154 memcpy(PassedOptions, &options, 155 std::min(sizeof(options), SizeOfPassedOptions)); 156 } 157 158 LLVMBool LLVMCreateMCJITCompilerForModule( 159 LLVMExecutionEngineRef *OutJIT, LLVMModuleRef M, 160 LLVMMCJITCompilerOptions *PassedOptions, size_t SizeOfPassedOptions, 161 char **OutError) { 162 LLVMMCJITCompilerOptions options; 163 // If the user passed a larger sized options struct, then they were compiled 164 // against a newer LLVM. Tell them that something is wrong. 165 if (SizeOfPassedOptions > sizeof(options)) { 166 *OutError = strdup( 167 "Refusing to use options struct that is larger than my own; assuming " 168 "LLVM library mismatch."); 169 return 1; 170 } 171 172 // Defend against the user having an old version of the API by ensuring that 173 // any fields they didn't see are cleared. We must defend against fields being 174 // set to the bitwise equivalent of zero, and assume that this means "do the 175 // default" as if that option hadn't been available. 176 LLVMInitializeMCJITCompilerOptions(&options, sizeof(options)); 177 memcpy(&options, PassedOptions, SizeOfPassedOptions); 178 179 TargetOptions targetOptions; 180 targetOptions.NoFramePointerElim = options.NoFramePointerElim; 181 targetOptions.EnableFastISel = options.EnableFastISel; 182 std::unique_ptr<Module> Mod(unwrap(M)); 183 184 if (Mod) 185 // Set function attribute "no-frame-pointer-elim" based on 186 // NoFramePointerElim. 187 setFunctionAttributes(/* CPU */ "", /* Features */ "", targetOptions, *Mod, 188 /* AlwaysRecordAttrs */ true); 189 190 std::string Error; 191 EngineBuilder builder(std::move(Mod)); 192 builder.setEngineKind(EngineKind::JIT) 193 .setErrorStr(&Error) 194 .setOptLevel((CodeGenOpt::Level)options.OptLevel) 195 .setCodeModel(unwrap(options.CodeModel)) 196 .setTargetOptions(targetOptions); 197 if (options.MCJMM) 198 builder.setMCJITMemoryManager( 199 std::unique_ptr<RTDyldMemoryManager>(unwrap(options.MCJMM))); 200 if (ExecutionEngine *JIT = builder.create()) { 201 *OutJIT = wrap(JIT); 202 return 0; 203 } 204 *OutError = strdup(Error.c_str()); 205 return 1; 206 } 207 208 LLVMBool LLVMCreateExecutionEngine(LLVMExecutionEngineRef *OutEE, 209 LLVMModuleProviderRef MP, 210 char **OutError) { 211 /* The module provider is now actually a module. */ 212 return LLVMCreateExecutionEngineForModule(OutEE, 213 reinterpret_cast<LLVMModuleRef>(MP), 214 OutError); 215 } 216 217 LLVMBool LLVMCreateInterpreter(LLVMExecutionEngineRef *OutInterp, 218 LLVMModuleProviderRef MP, 219 char **OutError) { 220 /* The module provider is now actually a module. */ 221 return LLVMCreateInterpreterForModule(OutInterp, 222 reinterpret_cast<LLVMModuleRef>(MP), 223 OutError); 224 } 225 226 LLVMBool LLVMCreateJITCompiler(LLVMExecutionEngineRef *OutJIT, 227 LLVMModuleProviderRef MP, 228 unsigned OptLevel, 229 char **OutError) { 230 /* The module provider is now actually a module. */ 231 return LLVMCreateJITCompilerForModule(OutJIT, 232 reinterpret_cast<LLVMModuleRef>(MP), 233 OptLevel, OutError); 234 } 235 236 237 void LLVMDisposeExecutionEngine(LLVMExecutionEngineRef EE) { 238 delete unwrap(EE); 239 } 240 241 void LLVMRunStaticConstructors(LLVMExecutionEngineRef EE) { 242 unwrap(EE)->runStaticConstructorsDestructors(false); 243 } 244 245 void LLVMRunStaticDestructors(LLVMExecutionEngineRef EE) { 246 unwrap(EE)->runStaticConstructorsDestructors(true); 247 } 248 249 int LLVMRunFunctionAsMain(LLVMExecutionEngineRef EE, LLVMValueRef F, 250 unsigned ArgC, const char * const *ArgV, 251 const char * const *EnvP) { 252 unwrap(EE)->finalizeObject(); 253 254 std::vector<std::string> ArgVec; 255 for (unsigned I = 0; I != ArgC; ++I) 256 ArgVec.push_back(ArgV[I]); 257 258 return unwrap(EE)->runFunctionAsMain(unwrap<Function>(F), ArgVec, EnvP); 259 } 260 261 LLVMGenericValueRef LLVMRunFunction(LLVMExecutionEngineRef EE, LLVMValueRef F, 262 unsigned NumArgs, 263 LLVMGenericValueRef *Args) { 264 unwrap(EE)->finalizeObject(); 265 266 std::vector<GenericValue> ArgVec; 267 ArgVec.reserve(NumArgs); 268 for (unsigned I = 0; I != NumArgs; ++I) 269 ArgVec.push_back(*unwrap(Args[I])); 270 271 GenericValue *Result = new GenericValue(); 272 *Result = unwrap(EE)->runFunction(unwrap<Function>(F), ArgVec); 273 return wrap(Result); 274 } 275 276 void LLVMFreeMachineCodeForFunction(LLVMExecutionEngineRef EE, LLVMValueRef F) { 277 } 278 279 void LLVMAddModule(LLVMExecutionEngineRef EE, LLVMModuleRef M){ 280 unwrap(EE)->addModule(std::unique_ptr<Module>(unwrap(M))); 281 } 282 283 void LLVMAddModuleProvider(LLVMExecutionEngineRef EE, LLVMModuleProviderRef MP){ 284 /* The module provider is now actually a module. */ 285 LLVMAddModule(EE, reinterpret_cast<LLVMModuleRef>(MP)); 286 } 287 288 LLVMBool LLVMRemoveModule(LLVMExecutionEngineRef EE, LLVMModuleRef M, 289 LLVMModuleRef *OutMod, char **OutError) { 290 Module *Mod = unwrap(M); 291 unwrap(EE)->removeModule(Mod); 292 *OutMod = wrap(Mod); 293 return 0; 294 } 295 296 LLVMBool LLVMRemoveModuleProvider(LLVMExecutionEngineRef EE, 297 LLVMModuleProviderRef MP, 298 LLVMModuleRef *OutMod, char **OutError) { 299 /* The module provider is now actually a module. */ 300 return LLVMRemoveModule(EE, reinterpret_cast<LLVMModuleRef>(MP), OutMod, 301 OutError); 302 } 303 304 LLVMBool LLVMFindFunction(LLVMExecutionEngineRef EE, const char *Name, 305 LLVMValueRef *OutFn) { 306 if (Function *F = unwrap(EE)->FindFunctionNamed(Name)) { 307 *OutFn = wrap(F); 308 return 0; 309 } 310 return 1; 311 } 312 313 void *LLVMRecompileAndRelinkFunction(LLVMExecutionEngineRef EE, 314 LLVMValueRef Fn) { 315 return nullptr; 316 } 317 318 LLVMTargetDataRef LLVMGetExecutionEngineTargetData(LLVMExecutionEngineRef EE) { 319 return wrap(unwrap(EE)->getDataLayout()); 320 } 321 322 LLVMTargetMachineRef 323 LLVMGetExecutionEngineTargetMachine(LLVMExecutionEngineRef EE) { 324 return wrap(unwrap(EE)->getTargetMachine()); 325 } 326 327 void LLVMAddGlobalMapping(LLVMExecutionEngineRef EE, LLVMValueRef Global, 328 void* Addr) { 329 unwrap(EE)->addGlobalMapping(unwrap<GlobalValue>(Global), Addr); 330 } 331 332 void *LLVMGetPointerToGlobal(LLVMExecutionEngineRef EE, LLVMValueRef Global) { 333 unwrap(EE)->finalizeObject(); 334 335 return unwrap(EE)->getPointerToGlobal(unwrap<GlobalValue>(Global)); 336 } 337 338 uint64_t LLVMGetGlobalValueAddress(LLVMExecutionEngineRef EE, const char *Name) { 339 return unwrap(EE)->getGlobalValueAddress(Name); 340 } 341 342 uint64_t LLVMGetFunctionAddress(LLVMExecutionEngineRef EE, const char *Name) { 343 return unwrap(EE)->getFunctionAddress(Name); 344 } 345 346 /*===-- Operations on memory managers -------------------------------------===*/ 347 348 namespace { 349 350 struct SimpleBindingMMFunctions { 351 LLVMMemoryManagerAllocateCodeSectionCallback AllocateCodeSection; 352 LLVMMemoryManagerAllocateDataSectionCallback AllocateDataSection; 353 LLVMMemoryManagerFinalizeMemoryCallback FinalizeMemory; 354 LLVMMemoryManagerDestroyCallback Destroy; 355 }; 356 357 class SimpleBindingMemoryManager : public RTDyldMemoryManager { 358 public: 359 SimpleBindingMemoryManager(const SimpleBindingMMFunctions& Functions, 360 void *Opaque); 361 ~SimpleBindingMemoryManager() override; 362 363 uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, 364 unsigned SectionID, 365 StringRef SectionName) override; 366 367 uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, 368 unsigned SectionID, StringRef SectionName, 369 bool isReadOnly) override; 370 371 bool finalizeMemory(std::string *ErrMsg) override; 372 373 private: 374 SimpleBindingMMFunctions Functions; 375 void *Opaque; 376 }; 377 378 SimpleBindingMemoryManager::SimpleBindingMemoryManager( 379 const SimpleBindingMMFunctions& Functions, 380 void *Opaque) 381 : Functions(Functions), Opaque(Opaque) { 382 assert(Functions.AllocateCodeSection && 383 "No AllocateCodeSection function provided!"); 384 assert(Functions.AllocateDataSection && 385 "No AllocateDataSection function provided!"); 386 assert(Functions.FinalizeMemory && 387 "No FinalizeMemory function provided!"); 388 assert(Functions.Destroy && 389 "No Destroy function provided!"); 390 } 391 392 SimpleBindingMemoryManager::~SimpleBindingMemoryManager() { 393 Functions.Destroy(Opaque); 394 } 395 396 uint8_t *SimpleBindingMemoryManager::allocateCodeSection( 397 uintptr_t Size, unsigned Alignment, unsigned SectionID, 398 StringRef SectionName) { 399 return Functions.AllocateCodeSection(Opaque, Size, Alignment, SectionID, 400 SectionName.str().c_str()); 401 } 402 403 uint8_t *SimpleBindingMemoryManager::allocateDataSection( 404 uintptr_t Size, unsigned Alignment, unsigned SectionID, 405 StringRef SectionName, bool isReadOnly) { 406 return Functions.AllocateDataSection(Opaque, Size, Alignment, SectionID, 407 SectionName.str().c_str(), 408 isReadOnly); 409 } 410 411 bool SimpleBindingMemoryManager::finalizeMemory(std::string *ErrMsg) { 412 char *errMsgCString = nullptr; 413 bool result = Functions.FinalizeMemory(Opaque, &errMsgCString); 414 assert((result || !errMsgCString) && 415 "Did not expect an error message if FinalizeMemory succeeded"); 416 if (errMsgCString) { 417 if (ErrMsg) 418 *ErrMsg = errMsgCString; 419 free(errMsgCString); 420 } 421 return result; 422 } 423 424 } // anonymous namespace 425 426 LLVMMCJITMemoryManagerRef LLVMCreateSimpleMCJITMemoryManager( 427 void *Opaque, 428 LLVMMemoryManagerAllocateCodeSectionCallback AllocateCodeSection, 429 LLVMMemoryManagerAllocateDataSectionCallback AllocateDataSection, 430 LLVMMemoryManagerFinalizeMemoryCallback FinalizeMemory, 431 LLVMMemoryManagerDestroyCallback Destroy) { 432 433 if (!AllocateCodeSection || !AllocateDataSection || !FinalizeMemory || 434 !Destroy) 435 return nullptr; 436 437 SimpleBindingMMFunctions functions; 438 functions.AllocateCodeSection = AllocateCodeSection; 439 functions.AllocateDataSection = AllocateDataSection; 440 functions.FinalizeMemory = FinalizeMemory; 441 functions.Destroy = Destroy; 442 return wrap(new SimpleBindingMemoryManager(functions, Opaque)); 443 } 444 445 void LLVMDisposeMCJITMemoryManager(LLVMMCJITMemoryManagerRef MM) { 446 delete unwrap(MM); 447 } 448 449