1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ExecutionEngine/GenericValue.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MutexGuard.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Support/DynamicLibrary.h" 30 #include "llvm/Support/Host.h" 31 #include "llvm/Support/TargetRegistry.h" 32 #include "llvm/Target/TargetData.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cmath> 35 #include <cstring> 36 using namespace llvm; 37 38 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 39 STATISTIC(NumGlobals , "Number of global vars initialized"); 40 41 ExecutionEngine *(*ExecutionEngine::JITCtor)( 42 Module *M, 43 std::string *ErrorStr, 44 JITMemoryManager *JMM, 45 bool GVsWithCode, 46 TargetMachine *TM) = 0; 47 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 48 Module *M, 49 std::string *ErrorStr, 50 JITMemoryManager *JMM, 51 bool GVsWithCode, 52 TargetMachine *TM) = 0; 53 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 54 std::string *ErrorStr) = 0; 55 56 ExecutionEngine::ExecutionEngine(Module *M) 57 : EEState(*this), 58 LazyFunctionCreator(0), 59 ExceptionTableRegister(0), 60 ExceptionTableDeregister(0) { 61 CompilingLazily = false; 62 GVCompilationDisabled = false; 63 SymbolSearchingDisabled = false; 64 Modules.push_back(M); 65 assert(M && "Module is null?"); 66 } 67 68 ExecutionEngine::~ExecutionEngine() { 69 clearAllGlobalMappings(); 70 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 71 delete Modules[i]; 72 } 73 74 void ExecutionEngine::DeregisterAllTables() { 75 if (ExceptionTableDeregister) { 76 DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin(); 77 DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end(); 78 for (; it != ite; ++it) 79 ExceptionTableDeregister(it->second); 80 AllExceptionTables.clear(); 81 } 82 } 83 84 namespace { 85 /// \brief Helper class which uses a value handler to automatically deletes the 86 /// memory block when the GlobalVariable is destroyed. 87 class GVMemoryBlock : public CallbackVH { 88 GVMemoryBlock(const GlobalVariable *GV) 89 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 90 91 public: 92 /// \brief Returns the address the GlobalVariable should be written into. The 93 /// GVMemoryBlock object prefixes that. 94 static char *Create(const GlobalVariable *GV, const TargetData& TD) { 95 Type *ElTy = GV->getType()->getElementType(); 96 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 97 void *RawMemory = ::operator new( 98 TargetData::RoundUpAlignment(sizeof(GVMemoryBlock), 99 TD.getPreferredAlignment(GV)) 100 + GVSize); 101 new(RawMemory) GVMemoryBlock(GV); 102 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 103 } 104 105 virtual void deleted() { 106 // We allocated with operator new and with some extra memory hanging off the 107 // end, so don't just delete this. I'm not sure if this is actually 108 // required. 109 this->~GVMemoryBlock(); 110 ::operator delete(this); 111 } 112 }; 113 } // anonymous namespace 114 115 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 116 return GVMemoryBlock::Create(GV, *getTargetData()); 117 } 118 119 bool ExecutionEngine::removeModule(Module *M) { 120 for(SmallVector<Module *, 1>::iterator I = Modules.begin(), 121 E = Modules.end(); I != E; ++I) { 122 Module *Found = *I; 123 if (Found == M) { 124 Modules.erase(I); 125 clearGlobalMappingsFromModule(M); 126 return true; 127 } 128 } 129 return false; 130 } 131 132 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 133 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 134 if (Function *F = Modules[i]->getFunction(FnName)) 135 return F; 136 } 137 return 0; 138 } 139 140 141 void *ExecutionEngineState::RemoveMapping(const MutexGuard &, 142 const GlobalValue *ToUnmap) { 143 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 144 void *OldVal; 145 146 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 147 // GlobalAddressMap. 148 if (I == GlobalAddressMap.end()) 149 OldVal = 0; 150 else { 151 OldVal = I->second; 152 GlobalAddressMap.erase(I); 153 } 154 155 GlobalAddressReverseMap.erase(OldVal); 156 return OldVal; 157 } 158 159 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 160 MutexGuard locked(lock); 161 162 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 163 << "\' to [" << Addr << "]\n";); 164 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 165 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 166 CurVal = Addr; 167 168 // If we are using the reverse mapping, add it too. 169 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 170 AssertingVH<const GlobalValue> &V = 171 EEState.getGlobalAddressReverseMap(locked)[Addr]; 172 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 173 V = GV; 174 } 175 } 176 177 void ExecutionEngine::clearAllGlobalMappings() { 178 MutexGuard locked(lock); 179 180 EEState.getGlobalAddressMap(locked).clear(); 181 EEState.getGlobalAddressReverseMap(locked).clear(); 182 } 183 184 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 185 MutexGuard locked(lock); 186 187 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 188 EEState.RemoveMapping(locked, FI); 189 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 190 GI != GE; ++GI) 191 EEState.RemoveMapping(locked, GI); 192 } 193 194 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 195 MutexGuard locked(lock); 196 197 ExecutionEngineState::GlobalAddressMapTy &Map = 198 EEState.getGlobalAddressMap(locked); 199 200 // Deleting from the mapping? 201 if (Addr == 0) 202 return EEState.RemoveMapping(locked, GV); 203 204 void *&CurVal = Map[GV]; 205 void *OldVal = CurVal; 206 207 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 208 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 209 CurVal = Addr; 210 211 // If we are using the reverse mapping, add it too. 212 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 213 AssertingVH<const GlobalValue> &V = 214 EEState.getGlobalAddressReverseMap(locked)[Addr]; 215 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 216 V = GV; 217 } 218 return OldVal; 219 } 220 221 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 222 MutexGuard locked(lock); 223 224 ExecutionEngineState::GlobalAddressMapTy::iterator I = 225 EEState.getGlobalAddressMap(locked).find(GV); 226 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 227 } 228 229 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 230 MutexGuard locked(lock); 231 232 // If we haven't computed the reverse mapping yet, do so first. 233 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 234 for (ExecutionEngineState::GlobalAddressMapTy::iterator 235 I = EEState.getGlobalAddressMap(locked).begin(), 236 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 237 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair( 238 I->second, I->first)); 239 } 240 241 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 242 EEState.getGlobalAddressReverseMap(locked).find(Addr); 243 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 244 } 245 246 namespace { 247 class ArgvArray { 248 char *Array; 249 std::vector<char*> Values; 250 public: 251 ArgvArray() : Array(NULL) {} 252 ~ArgvArray() { clear(); } 253 void clear() { 254 delete[] Array; 255 Array = NULL; 256 for (size_t I = 0, E = Values.size(); I != E; ++I) { 257 delete[] Values[I]; 258 } 259 Values.clear(); 260 } 261 /// Turn a vector of strings into a nice argv style array of pointers to null 262 /// terminated strings. 263 void *reset(LLVMContext &C, ExecutionEngine *EE, 264 const std::vector<std::string> &InputArgv); 265 }; 266 } // anonymous namespace 267 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 268 const std::vector<std::string> &InputArgv) { 269 clear(); // Free the old contents. 270 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 271 Array = new char[(InputArgv.size()+1)*PtrSize]; 272 273 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 274 Type *SBytePtr = Type::getInt8PtrTy(C); 275 276 for (unsigned i = 0; i != InputArgv.size(); ++i) { 277 unsigned Size = InputArgv[i].size()+1; 278 char *Dest = new char[Size]; 279 Values.push_back(Dest); 280 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 281 282 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 283 Dest[Size-1] = 0; 284 285 // Endian safe: Array[i] = (PointerTy)Dest; 286 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 287 SBytePtr); 288 } 289 290 // Null terminate it 291 EE->StoreValueToMemory(PTOGV(0), 292 (GenericValue*)(Array+InputArgv.size()*PtrSize), 293 SBytePtr); 294 return Array; 295 } 296 297 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 298 bool isDtors) { 299 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 300 GlobalVariable *GV = module->getNamedGlobal(Name); 301 302 // If this global has internal linkage, or if it has a use, then it must be 303 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 304 // this is the case, don't execute any of the global ctors, __main will do 305 // it. 306 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 307 308 // Should be an array of '{ i32, void ()* }' structs. The first value is 309 // the init priority, which we ignore. 310 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 311 if (InitList == 0) 312 return; 313 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 314 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 315 if (CS == 0) continue; 316 317 Constant *FP = CS->getOperand(1); 318 if (FP->isNullValue()) 319 continue; // Found a sentinal value, ignore. 320 321 // Strip off constant expression casts. 322 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 323 if (CE->isCast()) 324 FP = CE->getOperand(0); 325 326 // Execute the ctor/dtor function! 327 if (Function *F = dyn_cast<Function>(FP)) 328 runFunction(F, std::vector<GenericValue>()); 329 330 // FIXME: It is marginally lame that we just do nothing here if we see an 331 // entry we don't recognize. It might not be unreasonable for the verifier 332 // to not even allow this and just assert here. 333 } 334 } 335 336 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 337 // Execute global ctors/dtors for each module in the program. 338 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 339 runStaticConstructorsDestructors(Modules[i], isDtors); 340 } 341 342 #ifndef NDEBUG 343 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 344 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 345 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 346 for (unsigned i = 0; i < PtrSize; ++i) 347 if (*(i + (uint8_t*)Loc)) 348 return false; 349 return true; 350 } 351 #endif 352 353 int ExecutionEngine::runFunctionAsMain(Function *Fn, 354 const std::vector<std::string> &argv, 355 const char * const * envp) { 356 std::vector<GenericValue> GVArgs; 357 GenericValue GVArgc; 358 GVArgc.IntVal = APInt(32, argv.size()); 359 360 // Check main() type 361 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 362 FunctionType *FTy = Fn->getFunctionType(); 363 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 364 365 // Check the argument types. 366 if (NumArgs > 3) 367 report_fatal_error("Invalid number of arguments of main() supplied"); 368 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 369 report_fatal_error("Invalid type for third argument of main() supplied"); 370 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 371 report_fatal_error("Invalid type for second argument of main() supplied"); 372 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 373 report_fatal_error("Invalid type for first argument of main() supplied"); 374 if (!FTy->getReturnType()->isIntegerTy() && 375 !FTy->getReturnType()->isVoidTy()) 376 report_fatal_error("Invalid return type of main() supplied"); 377 378 ArgvArray CArgv; 379 ArgvArray CEnv; 380 if (NumArgs) { 381 GVArgs.push_back(GVArgc); // Arg #0 = argc. 382 if (NumArgs > 1) { 383 // Arg #1 = argv. 384 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 385 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 386 "argv[0] was null after CreateArgv"); 387 if (NumArgs > 2) { 388 std::vector<std::string> EnvVars; 389 for (unsigned i = 0; envp[i]; ++i) 390 EnvVars.push_back(envp[i]); 391 // Arg #2 = envp. 392 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 393 } 394 } 395 } 396 397 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 398 } 399 400 ExecutionEngine *ExecutionEngine::create(Module *M, 401 bool ForceInterpreter, 402 std::string *ErrorStr, 403 CodeGenOpt::Level OptLevel, 404 bool GVsWithCode) { 405 EngineBuilder EB = EngineBuilder(M) 406 .setEngineKind(ForceInterpreter 407 ? EngineKind::Interpreter 408 : EngineKind::JIT) 409 .setErrorStr(ErrorStr) 410 .setOptLevel(OptLevel) 411 .setAllocateGVsWithCode(GVsWithCode); 412 413 return EB.create(); 414 } 415 416 /// createJIT - This is the factory method for creating a JIT for the current 417 /// machine, it does not fall back to the interpreter. This takes ownership 418 /// of the module. 419 ExecutionEngine *ExecutionEngine::createJIT(Module *M, 420 std::string *ErrorStr, 421 JITMemoryManager *JMM, 422 CodeGenOpt::Level OL, 423 bool GVsWithCode, 424 Reloc::Model RM, 425 CodeModel::Model CMM) { 426 if (ExecutionEngine::JITCtor == 0) { 427 if (ErrorStr) 428 *ErrorStr = "JIT has not been linked in."; 429 return 0; 430 } 431 432 // Use the defaults for extra parameters. Users can use EngineBuilder to 433 // set them. 434 EngineBuilder EB(M); 435 EB.setEngineKind(EngineKind::JIT); 436 EB.setErrorStr(ErrorStr); 437 EB.setRelocationModel(RM); 438 EB.setCodeModel(CMM); 439 EB.setAllocateGVsWithCode(GVsWithCode); 440 EB.setOptLevel(OL); 441 EB.setJITMemoryManager(JMM); 442 443 // TODO: permit custom TargetOptions here 444 TargetMachine *TM = EB.selectTarget(); 445 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0; 446 447 return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM); 448 } 449 450 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 451 // Make sure we can resolve symbols in the program as well. The zero arg 452 // to the function tells DynamicLibrary to load the program, not a library. 453 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 454 return 0; 455 456 // If the user specified a memory manager but didn't specify which engine to 457 // create, we assume they only want the JIT, and we fail if they only want 458 // the interpreter. 459 if (JMM) { 460 if (WhichEngine & EngineKind::JIT) 461 WhichEngine = EngineKind::JIT; 462 else { 463 if (ErrorStr) 464 *ErrorStr = "Cannot create an interpreter with a memory manager."; 465 return 0; 466 } 467 } 468 469 // Unless the interpreter was explicitly selected or the JIT is not linked, 470 // try making a JIT. 471 if ((WhichEngine & EngineKind::JIT) && TM) { 472 Triple TT(M->getTargetTriple()); 473 if (!TM->getTarget().hasJIT()) { 474 errs() << "WARNING: This target JIT is not designed for the host" 475 << " you are running. If bad things happen, please choose" 476 << " a different -march switch.\n"; 477 } 478 479 if (UseMCJIT && ExecutionEngine::MCJITCtor) { 480 ExecutionEngine *EE = 481 ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, 482 AllocateGVsWithCode, TM); 483 if (EE) return EE; 484 } else if (ExecutionEngine::JITCtor) { 485 ExecutionEngine *EE = 486 ExecutionEngine::JITCtor(M, ErrorStr, JMM, 487 AllocateGVsWithCode, TM); 488 if (EE) return EE; 489 } 490 } 491 492 // If we can't make a JIT and we didn't request one specifically, try making 493 // an interpreter instead. 494 if (WhichEngine & EngineKind::Interpreter) { 495 if (ExecutionEngine::InterpCtor) 496 return ExecutionEngine::InterpCtor(M, ErrorStr); 497 if (ErrorStr) 498 *ErrorStr = "Interpreter has not been linked in."; 499 return 0; 500 } 501 502 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 503 if (ErrorStr) 504 *ErrorStr = "JIT has not been linked in."; 505 } 506 507 return 0; 508 } 509 510 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 511 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 512 return getPointerToFunction(F); 513 514 MutexGuard locked(lock); 515 if (void *P = EEState.getGlobalAddressMap(locked)[GV]) 516 return P; 517 518 // Global variable might have been added since interpreter started. 519 if (GlobalVariable *GVar = 520 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 521 EmitGlobalVariable(GVar); 522 else 523 llvm_unreachable("Global hasn't had an address allocated yet!"); 524 525 return EEState.getGlobalAddressMap(locked)[GV]; 526 } 527 528 /// \brief Converts a Constant* into a GenericValue, including handling of 529 /// ConstantExpr values. 530 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 531 // If its undefined, return the garbage. 532 if (isa<UndefValue>(C)) { 533 GenericValue Result; 534 switch (C->getType()->getTypeID()) { 535 case Type::IntegerTyID: 536 case Type::X86_FP80TyID: 537 case Type::FP128TyID: 538 case Type::PPC_FP128TyID: 539 // Although the value is undefined, we still have to construct an APInt 540 // with the correct bit width. 541 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 542 break; 543 default: 544 break; 545 } 546 return Result; 547 } 548 549 // Otherwise, if the value is a ConstantExpr... 550 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 551 Constant *Op0 = CE->getOperand(0); 552 switch (CE->getOpcode()) { 553 case Instruction::GetElementPtr: { 554 // Compute the index 555 GenericValue Result = getConstantValue(Op0); 556 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 557 uint64_t Offset = TD->getIndexedOffset(Op0->getType(), Indices); 558 559 char* tmp = (char*) Result.PointerVal; 560 Result = PTOGV(tmp + Offset); 561 return Result; 562 } 563 case Instruction::Trunc: { 564 GenericValue GV = getConstantValue(Op0); 565 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 566 GV.IntVal = GV.IntVal.trunc(BitWidth); 567 return GV; 568 } 569 case Instruction::ZExt: { 570 GenericValue GV = getConstantValue(Op0); 571 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 572 GV.IntVal = GV.IntVal.zext(BitWidth); 573 return GV; 574 } 575 case Instruction::SExt: { 576 GenericValue GV = getConstantValue(Op0); 577 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 578 GV.IntVal = GV.IntVal.sext(BitWidth); 579 return GV; 580 } 581 case Instruction::FPTrunc: { 582 // FIXME long double 583 GenericValue GV = getConstantValue(Op0); 584 GV.FloatVal = float(GV.DoubleVal); 585 return GV; 586 } 587 case Instruction::FPExt:{ 588 // FIXME long double 589 GenericValue GV = getConstantValue(Op0); 590 GV.DoubleVal = double(GV.FloatVal); 591 return GV; 592 } 593 case Instruction::UIToFP: { 594 GenericValue GV = getConstantValue(Op0); 595 if (CE->getType()->isFloatTy()) 596 GV.FloatVal = float(GV.IntVal.roundToDouble()); 597 else if (CE->getType()->isDoubleTy()) 598 GV.DoubleVal = GV.IntVal.roundToDouble(); 599 else if (CE->getType()->isX86_FP80Ty()) { 600 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 601 (void)apf.convertFromAPInt(GV.IntVal, 602 false, 603 APFloat::rmNearestTiesToEven); 604 GV.IntVal = apf.bitcastToAPInt(); 605 } 606 return GV; 607 } 608 case Instruction::SIToFP: { 609 GenericValue GV = getConstantValue(Op0); 610 if (CE->getType()->isFloatTy()) 611 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 612 else if (CE->getType()->isDoubleTy()) 613 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 614 else if (CE->getType()->isX86_FP80Ty()) { 615 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 616 (void)apf.convertFromAPInt(GV.IntVal, 617 true, 618 APFloat::rmNearestTiesToEven); 619 GV.IntVal = apf.bitcastToAPInt(); 620 } 621 return GV; 622 } 623 case Instruction::FPToUI: // double->APInt conversion handles sign 624 case Instruction::FPToSI: { 625 GenericValue GV = getConstantValue(Op0); 626 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 627 if (Op0->getType()->isFloatTy()) 628 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 629 else if (Op0->getType()->isDoubleTy()) 630 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 631 else if (Op0->getType()->isX86_FP80Ty()) { 632 APFloat apf = APFloat(GV.IntVal); 633 uint64_t v; 634 bool ignored; 635 (void)apf.convertToInteger(&v, BitWidth, 636 CE->getOpcode()==Instruction::FPToSI, 637 APFloat::rmTowardZero, &ignored); 638 GV.IntVal = v; // endian? 639 } 640 return GV; 641 } 642 case Instruction::PtrToInt: { 643 GenericValue GV = getConstantValue(Op0); 644 uint32_t PtrWidth = TD->getPointerSizeInBits(); 645 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 646 return GV; 647 } 648 case Instruction::IntToPtr: { 649 GenericValue GV = getConstantValue(Op0); 650 uint32_t PtrWidth = TD->getPointerSizeInBits(); 651 if (PtrWidth != GV.IntVal.getBitWidth()) 652 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 653 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 654 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 655 return GV; 656 } 657 case Instruction::BitCast: { 658 GenericValue GV = getConstantValue(Op0); 659 Type* DestTy = CE->getType(); 660 switch (Op0->getType()->getTypeID()) { 661 default: llvm_unreachable("Invalid bitcast operand"); 662 case Type::IntegerTyID: 663 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 664 if (DestTy->isFloatTy()) 665 GV.FloatVal = GV.IntVal.bitsToFloat(); 666 else if (DestTy->isDoubleTy()) 667 GV.DoubleVal = GV.IntVal.bitsToDouble(); 668 break; 669 case Type::FloatTyID: 670 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 671 GV.IntVal = APInt::floatToBits(GV.FloatVal); 672 break; 673 case Type::DoubleTyID: 674 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 675 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 676 break; 677 case Type::PointerTyID: 678 assert(DestTy->isPointerTy() && "Invalid bitcast"); 679 break; // getConstantValue(Op0) above already converted it 680 } 681 return GV; 682 } 683 case Instruction::Add: 684 case Instruction::FAdd: 685 case Instruction::Sub: 686 case Instruction::FSub: 687 case Instruction::Mul: 688 case Instruction::FMul: 689 case Instruction::UDiv: 690 case Instruction::SDiv: 691 case Instruction::URem: 692 case Instruction::SRem: 693 case Instruction::And: 694 case Instruction::Or: 695 case Instruction::Xor: { 696 GenericValue LHS = getConstantValue(Op0); 697 GenericValue RHS = getConstantValue(CE->getOperand(1)); 698 GenericValue GV; 699 switch (CE->getOperand(0)->getType()->getTypeID()) { 700 default: llvm_unreachable("Bad add type!"); 701 case Type::IntegerTyID: 702 switch (CE->getOpcode()) { 703 default: llvm_unreachable("Invalid integer opcode"); 704 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 705 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 706 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 707 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 708 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 709 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 710 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 711 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 712 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 713 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 714 } 715 break; 716 case Type::FloatTyID: 717 switch (CE->getOpcode()) { 718 default: llvm_unreachable("Invalid float opcode"); 719 case Instruction::FAdd: 720 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 721 case Instruction::FSub: 722 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 723 case Instruction::FMul: 724 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 725 case Instruction::FDiv: 726 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 727 case Instruction::FRem: 728 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 729 } 730 break; 731 case Type::DoubleTyID: 732 switch (CE->getOpcode()) { 733 default: llvm_unreachable("Invalid double opcode"); 734 case Instruction::FAdd: 735 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 736 case Instruction::FSub: 737 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 738 case Instruction::FMul: 739 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 740 case Instruction::FDiv: 741 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 742 case Instruction::FRem: 743 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 744 } 745 break; 746 case Type::X86_FP80TyID: 747 case Type::PPC_FP128TyID: 748 case Type::FP128TyID: { 749 APFloat apfLHS = APFloat(LHS.IntVal); 750 switch (CE->getOpcode()) { 751 default: llvm_unreachable("Invalid long double opcode"); 752 case Instruction::FAdd: 753 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 754 GV.IntVal = apfLHS.bitcastToAPInt(); 755 break; 756 case Instruction::FSub: 757 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 758 GV.IntVal = apfLHS.bitcastToAPInt(); 759 break; 760 case Instruction::FMul: 761 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 762 GV.IntVal = apfLHS.bitcastToAPInt(); 763 break; 764 case Instruction::FDiv: 765 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 766 GV.IntVal = apfLHS.bitcastToAPInt(); 767 break; 768 case Instruction::FRem: 769 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 770 GV.IntVal = apfLHS.bitcastToAPInt(); 771 break; 772 } 773 } 774 break; 775 } 776 return GV; 777 } 778 default: 779 break; 780 } 781 782 SmallString<256> Msg; 783 raw_svector_ostream OS(Msg); 784 OS << "ConstantExpr not handled: " << *CE; 785 report_fatal_error(OS.str()); 786 } 787 788 // Otherwise, we have a simple constant. 789 GenericValue Result; 790 switch (C->getType()->getTypeID()) { 791 case Type::FloatTyID: 792 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 793 break; 794 case Type::DoubleTyID: 795 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 796 break; 797 case Type::X86_FP80TyID: 798 case Type::FP128TyID: 799 case Type::PPC_FP128TyID: 800 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 801 break; 802 case Type::IntegerTyID: 803 Result.IntVal = cast<ConstantInt>(C)->getValue(); 804 break; 805 case Type::PointerTyID: 806 if (isa<ConstantPointerNull>(C)) 807 Result.PointerVal = 0; 808 else if (const Function *F = dyn_cast<Function>(C)) 809 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 810 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 811 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 812 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 813 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 814 BA->getBasicBlock()))); 815 else 816 llvm_unreachable("Unknown constant pointer type!"); 817 break; 818 default: 819 SmallString<256> Msg; 820 raw_svector_ostream OS(Msg); 821 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 822 report_fatal_error(OS.str()); 823 } 824 825 return Result; 826 } 827 828 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 829 /// with the integer held in IntVal. 830 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 831 unsigned StoreBytes) { 832 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 833 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 834 835 if (sys::isLittleEndianHost()) { 836 // Little-endian host - the source is ordered from LSB to MSB. Order the 837 // destination from LSB to MSB: Do a straight copy. 838 memcpy(Dst, Src, StoreBytes); 839 } else { 840 // Big-endian host - the source is an array of 64 bit words ordered from 841 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 842 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 843 while (StoreBytes > sizeof(uint64_t)) { 844 StoreBytes -= sizeof(uint64_t); 845 // May not be aligned so use memcpy. 846 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 847 Src += sizeof(uint64_t); 848 } 849 850 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 851 } 852 } 853 854 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 855 GenericValue *Ptr, Type *Ty) { 856 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 857 858 switch (Ty->getTypeID()) { 859 case Type::IntegerTyID: 860 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 861 break; 862 case Type::FloatTyID: 863 *((float*)Ptr) = Val.FloatVal; 864 break; 865 case Type::DoubleTyID: 866 *((double*)Ptr) = Val.DoubleVal; 867 break; 868 case Type::X86_FP80TyID: 869 memcpy(Ptr, Val.IntVal.getRawData(), 10); 870 break; 871 case Type::PointerTyID: 872 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 873 if (StoreBytes != sizeof(PointerTy)) 874 memset(&(Ptr->PointerVal), 0, StoreBytes); 875 876 *((PointerTy*)Ptr) = Val.PointerVal; 877 break; 878 default: 879 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 880 } 881 882 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 883 // Host and target are different endian - reverse the stored bytes. 884 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 885 } 886 887 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 888 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 889 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 890 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 891 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 892 893 if (sys::isLittleEndianHost()) 894 // Little-endian host - the destination must be ordered from LSB to MSB. 895 // The source is ordered from LSB to MSB: Do a straight copy. 896 memcpy(Dst, Src, LoadBytes); 897 else { 898 // Big-endian - the destination is an array of 64 bit words ordered from 899 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 900 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 901 // a word. 902 while (LoadBytes > sizeof(uint64_t)) { 903 LoadBytes -= sizeof(uint64_t); 904 // May not be aligned so use memcpy. 905 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 906 Dst += sizeof(uint64_t); 907 } 908 909 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 910 } 911 } 912 913 /// FIXME: document 914 /// 915 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 916 GenericValue *Ptr, 917 Type *Ty) { 918 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 919 920 switch (Ty->getTypeID()) { 921 case Type::IntegerTyID: 922 // An APInt with all words initially zero. 923 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 924 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 925 break; 926 case Type::FloatTyID: 927 Result.FloatVal = *((float*)Ptr); 928 break; 929 case Type::DoubleTyID: 930 Result.DoubleVal = *((double*)Ptr); 931 break; 932 case Type::PointerTyID: 933 Result.PointerVal = *((PointerTy*)Ptr); 934 break; 935 case Type::X86_FP80TyID: { 936 // This is endian dependent, but it will only work on x86 anyway. 937 // FIXME: Will not trap if loading a signaling NaN. 938 uint64_t y[2]; 939 memcpy(y, Ptr, 10); 940 Result.IntVal = APInt(80, y); 941 break; 942 } 943 default: 944 SmallString<256> Msg; 945 raw_svector_ostream OS(Msg); 946 OS << "Cannot load value of type " << *Ty << "!"; 947 report_fatal_error(OS.str()); 948 } 949 } 950 951 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 952 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 953 DEBUG(Init->dump()); 954 if (isa<UndefValue>(Init)) 955 return; 956 957 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 958 unsigned ElementSize = 959 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 960 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 961 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 962 return; 963 } 964 965 if (isa<ConstantAggregateZero>(Init)) { 966 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 967 return; 968 } 969 970 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 971 unsigned ElementSize = 972 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 973 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 974 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 975 return; 976 } 977 978 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 979 const StructLayout *SL = 980 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 981 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 982 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 983 return; 984 } 985 986 if (const ConstantDataSequential *CDS = 987 dyn_cast<ConstantDataSequential>(Init)) { 988 // CDS is already laid out in host memory order. 989 StringRef Data = CDS->getRawDataValues(); 990 memcpy(Addr, Data.data(), Data.size()); 991 return; 992 } 993 994 if (Init->getType()->isFirstClassType()) { 995 GenericValue Val = getConstantValue(Init); 996 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 997 return; 998 } 999 1000 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1001 llvm_unreachable("Unknown constant type to initialize memory with!"); 1002 } 1003 1004 /// EmitGlobals - Emit all of the global variables to memory, storing their 1005 /// addresses into GlobalAddress. This must make sure to copy the contents of 1006 /// their initializers into the memory. 1007 void ExecutionEngine::emitGlobals() { 1008 // Loop over all of the global variables in the program, allocating the memory 1009 // to hold them. If there is more than one module, do a prepass over globals 1010 // to figure out how the different modules should link together. 1011 std::map<std::pair<std::string, Type*>, 1012 const GlobalValue*> LinkedGlobalsMap; 1013 1014 if (Modules.size() != 1) { 1015 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1016 Module &M = *Modules[m]; 1017 for (Module::const_global_iterator I = M.global_begin(), 1018 E = M.global_end(); I != E; ++I) { 1019 const GlobalValue *GV = I; 1020 if (GV->hasLocalLinkage() || GV->isDeclaration() || 1021 GV->hasAppendingLinkage() || !GV->hasName()) 1022 continue;// Ignore external globals and globals with internal linkage. 1023 1024 const GlobalValue *&GVEntry = 1025 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1026 1027 // If this is the first time we've seen this global, it is the canonical 1028 // version. 1029 if (!GVEntry) { 1030 GVEntry = GV; 1031 continue; 1032 } 1033 1034 // If the existing global is strong, never replace it. 1035 if (GVEntry->hasExternalLinkage() || 1036 GVEntry->hasDLLImportLinkage() || 1037 GVEntry->hasDLLExportLinkage()) 1038 continue; 1039 1040 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1041 // symbol. FIXME is this right for common? 1042 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1043 GVEntry = GV; 1044 } 1045 } 1046 } 1047 1048 std::vector<const GlobalValue*> NonCanonicalGlobals; 1049 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1050 Module &M = *Modules[m]; 1051 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1052 I != E; ++I) { 1053 // In the multi-module case, see what this global maps to. 1054 if (!LinkedGlobalsMap.empty()) { 1055 if (const GlobalValue *GVEntry = 1056 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1057 // If something else is the canonical global, ignore this one. 1058 if (GVEntry != &*I) { 1059 NonCanonicalGlobals.push_back(I); 1060 continue; 1061 } 1062 } 1063 } 1064 1065 if (!I->isDeclaration()) { 1066 addGlobalMapping(I, getMemoryForGV(I)); 1067 } else { 1068 // External variable reference. Try to use the dynamic loader to 1069 // get a pointer to it. 1070 if (void *SymAddr = 1071 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1072 addGlobalMapping(I, SymAddr); 1073 else { 1074 report_fatal_error("Could not resolve external global address: " 1075 +I->getName()); 1076 } 1077 } 1078 } 1079 1080 // If there are multiple modules, map the non-canonical globals to their 1081 // canonical location. 1082 if (!NonCanonicalGlobals.empty()) { 1083 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1084 const GlobalValue *GV = NonCanonicalGlobals[i]; 1085 const GlobalValue *CGV = 1086 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1087 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1088 assert(Ptr && "Canonical global wasn't codegen'd!"); 1089 addGlobalMapping(GV, Ptr); 1090 } 1091 } 1092 1093 // Now that all of the globals are set up in memory, loop through them all 1094 // and initialize their contents. 1095 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1096 I != E; ++I) { 1097 if (!I->isDeclaration()) { 1098 if (!LinkedGlobalsMap.empty()) { 1099 if (const GlobalValue *GVEntry = 1100 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1101 if (GVEntry != &*I) // Not the canonical variable. 1102 continue; 1103 } 1104 EmitGlobalVariable(I); 1105 } 1106 } 1107 } 1108 } 1109 1110 // EmitGlobalVariable - This method emits the specified global variable to the 1111 // address specified in GlobalAddresses, or allocates new memory if it's not 1112 // already in the map. 1113 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1114 void *GA = getPointerToGlobalIfAvailable(GV); 1115 1116 if (GA == 0) { 1117 // If it's not already specified, allocate memory for the global. 1118 GA = getMemoryForGV(GV); 1119 addGlobalMapping(GV, GA); 1120 } 1121 1122 // Don't initialize if it's thread local, let the client do it. 1123 if (!GV->isThreadLocal()) 1124 InitializeMemory(GV->getInitializer(), GA); 1125 1126 Type *ElTy = GV->getType()->getElementType(); 1127 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1128 NumInitBytes += (unsigned)GVSize; 1129 ++NumGlobals; 1130 } 1131 1132 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1133 : EE(EE), GlobalAddressMap(this) { 1134 } 1135 1136 sys::Mutex * 1137 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1138 return &EES->EE.lock; 1139 } 1140 1141 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1142 const GlobalValue *Old) { 1143 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1144 EES->GlobalAddressReverseMap.erase(OldVal); 1145 } 1146 1147 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1148 const GlobalValue *, 1149 const GlobalValue *) { 1150 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1151 " RAUW on a value it has a global mapping for."); 1152 } 1153