1 //===- DWARFUnit.cpp ------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/DebugInfo/DWARF/DWARFUnit.h" 10 #include "llvm/ADT/SmallString.h" 11 #include "llvm/ADT/StringRef.h" 12 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h" 13 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 14 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 15 #include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h" 16 #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h" 17 #include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h" 18 #include "llvm/DebugInfo/DWARF/DWARFDie.h" 19 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" 20 #include "llvm/DebugInfo/DWARF/DWARFTypeUnit.h" 21 #include "llvm/Support/DataExtractor.h" 22 #include "llvm/Support/Errc.h" 23 #include "llvm/Support/Path.h" 24 #include "llvm/Support/WithColor.h" 25 #include <algorithm> 26 #include <cassert> 27 #include <cstddef> 28 #include <cstdint> 29 #include <cstdio> 30 #include <utility> 31 #include <vector> 32 33 using namespace llvm; 34 using namespace dwarf; 35 36 void DWARFUnitVector::addUnitsForSection(DWARFContext &C, 37 const DWARFSection &Section, 38 DWARFSectionKind SectionKind) { 39 const DWARFObject &D = C.getDWARFObj(); 40 addUnitsImpl(C, D, Section, C.getDebugAbbrev(), &D.getRangeSection(), 41 &D.getLocSection(), D.getStringSection(), 42 D.getStringOffsetSection(), &D.getAddrSection(), 43 D.getLineSection(), D.isLittleEndian(), false, false, 44 SectionKind); 45 } 46 47 void DWARFUnitVector::addUnitsForDWOSection(DWARFContext &C, 48 const DWARFSection &DWOSection, 49 DWARFSectionKind SectionKind, 50 bool Lazy) { 51 const DWARFObject &D = C.getDWARFObj(); 52 addUnitsImpl(C, D, DWOSection, C.getDebugAbbrevDWO(), &D.getRangeDWOSection(), 53 &D.getLocDWOSection(), D.getStringDWOSection(), 54 D.getStringOffsetDWOSection(), &D.getAddrSection(), 55 D.getLineDWOSection(), C.isLittleEndian(), true, Lazy, 56 SectionKind); 57 } 58 59 void DWARFUnitVector::addUnitsImpl( 60 DWARFContext &Context, const DWARFObject &Obj, const DWARFSection &Section, 61 const DWARFDebugAbbrev *DA, const DWARFSection *RS, 62 const DWARFSection *LocSection, StringRef SS, const DWARFSection &SOS, 63 const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO, 64 bool Lazy, DWARFSectionKind SectionKind) { 65 DWARFDataExtractor Data(Obj, Section, LE, 0); 66 // Lazy initialization of Parser, now that we have all section info. 67 if (!Parser) { 68 Parser = [=, &Context, &Obj, &Section, &SOS, 69 &LS](uint32_t Offset, DWARFSectionKind SectionKind, 70 const DWARFSection *CurSection, 71 const DWARFUnitIndex::Entry *IndexEntry) 72 -> std::unique_ptr<DWARFUnit> { 73 const DWARFSection &InfoSection = CurSection ? *CurSection : Section; 74 DWARFDataExtractor Data(Obj, InfoSection, LE, 0); 75 if (!Data.isValidOffset(Offset)) 76 return nullptr; 77 const DWARFUnitIndex *Index = nullptr; 78 if (IsDWO) 79 Index = &getDWARFUnitIndex(Context, SectionKind); 80 DWARFUnitHeader Header; 81 if (!Header.extract(Context, Data, &Offset, SectionKind, Index, 82 IndexEntry)) 83 return nullptr; 84 std::unique_ptr<DWARFUnit> U; 85 if (Header.isTypeUnit()) 86 U = llvm::make_unique<DWARFTypeUnit>(Context, InfoSection, Header, DA, 87 RS, LocSection, SS, SOS, AOS, LS, 88 LE, IsDWO, *this); 89 else 90 U = llvm::make_unique<DWARFCompileUnit>(Context, InfoSection, Header, 91 DA, RS, LocSection, SS, SOS, 92 AOS, LS, LE, IsDWO, *this); 93 return U; 94 }; 95 } 96 if (Lazy) 97 return; 98 // Find a reasonable insertion point within the vector. We skip over 99 // (a) units from a different section, (b) units from the same section 100 // but with lower offset-within-section. This keeps units in order 101 // within a section, although not necessarily within the object file, 102 // even if we do lazy parsing. 103 auto I = this->begin(); 104 uint32_t Offset = 0; 105 while (Data.isValidOffset(Offset)) { 106 if (I != this->end() && 107 (&(*I)->getInfoSection() != &Section || (*I)->getOffset() == Offset)) { 108 ++I; 109 continue; 110 } 111 auto U = Parser(Offset, SectionKind, &Section, nullptr); 112 // If parsing failed, we're done with this section. 113 if (!U) 114 break; 115 Offset = U->getNextUnitOffset(); 116 I = std::next(this->insert(I, std::move(U))); 117 } 118 } 119 120 DWARFUnit *DWARFUnitVector::addUnit(std::unique_ptr<DWARFUnit> Unit) { 121 auto I = std::upper_bound(begin(), end(), Unit, 122 [](const std::unique_ptr<DWARFUnit> &LHS, 123 const std::unique_ptr<DWARFUnit> &RHS) { 124 return LHS->getOffset() < RHS->getOffset(); 125 }); 126 return this->insert(I, std::move(Unit))->get(); 127 } 128 129 DWARFUnit *DWARFUnitVector::getUnitForOffset(uint32_t Offset) const { 130 auto end = begin() + getNumInfoUnits(); 131 auto *CU = 132 std::upper_bound(begin(), end, Offset, 133 [](uint32_t LHS, const std::unique_ptr<DWARFUnit> &RHS) { 134 return LHS < RHS->getNextUnitOffset(); 135 }); 136 if (CU != end && (*CU)->getOffset() <= Offset) 137 return CU->get(); 138 return nullptr; 139 } 140 141 DWARFUnit * 142 DWARFUnitVector::getUnitForIndexEntry(const DWARFUnitIndex::Entry &E) { 143 const auto *CUOff = E.getOffset(DW_SECT_INFO); 144 if (!CUOff) 145 return nullptr; 146 147 auto Offset = CUOff->Offset; 148 auto end = begin() + getNumInfoUnits(); 149 150 auto *CU = 151 std::upper_bound(begin(), end, CUOff->Offset, 152 [](uint32_t LHS, const std::unique_ptr<DWARFUnit> &RHS) { 153 return LHS < RHS->getNextUnitOffset(); 154 }); 155 if (CU != end && (*CU)->getOffset() <= Offset) 156 return CU->get(); 157 158 if (!Parser) 159 return nullptr; 160 161 auto U = Parser(Offset, DW_SECT_INFO, nullptr, &E); 162 if (!U) 163 U = nullptr; 164 165 auto *NewCU = U.get(); 166 this->insert(CU, std::move(U)); 167 ++NumInfoUnits; 168 return NewCU; 169 } 170 171 DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section, 172 const DWARFUnitHeader &Header, const DWARFDebugAbbrev *DA, 173 const DWARFSection *RS, const DWARFSection *LocSection, 174 StringRef SS, const DWARFSection &SOS, 175 const DWARFSection *AOS, const DWARFSection &LS, bool LE, 176 bool IsDWO, const DWARFUnitVector &UnitVector) 177 : Context(DC), InfoSection(Section), Header(Header), Abbrev(DA), 178 RangeSection(RS), LocSection(LocSection), LineSection(LS), 179 StringSection(SS), StringOffsetSection(SOS), AddrOffsetSection(AOS), 180 isLittleEndian(LE), IsDWO(IsDWO), UnitVector(UnitVector) { 181 clear(); 182 // For split DWARF we only need to keep track of the location list section's 183 // data (no relocations), and if we are reading a package file, we need to 184 // adjust the location list data based on the index entries. 185 if (IsDWO) { 186 LocSectionData = LocSection->Data; 187 if (auto *IndexEntry = Header.getIndexEntry()) 188 if (const auto *C = IndexEntry->getOffset(DW_SECT_LOC)) 189 LocSectionData = LocSectionData.substr(C->Offset, C->Length); 190 } 191 } 192 193 DWARFUnit::~DWARFUnit() = default; 194 195 DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const { 196 return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, isLittleEndian, 197 getAddressByteSize()); 198 } 199 200 Optional<object::SectionedAddress> 201 DWARFUnit::getAddrOffsetSectionItem(uint32_t Index) const { 202 if (IsDWO) { 203 auto R = Context.info_section_units(); 204 auto I = R.begin(); 205 // Surprising if a DWO file has more than one skeleton unit in it - this 206 // probably shouldn't be valid, but if a use case is found, here's where to 207 // support it (probably have to linearly search for the matching skeleton CU 208 // here) 209 if (I != R.end() && std::next(I) == R.end()) 210 return (*I)->getAddrOffsetSectionItem(Index); 211 } 212 uint32_t Offset = AddrOffsetSectionBase + Index * getAddressByteSize(); 213 if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize()) 214 return None; 215 DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection, 216 isLittleEndian, getAddressByteSize()); 217 uint64_t Section; 218 uint64_t Address = DA.getRelocatedAddress(&Offset, &Section); 219 return {{Address, Section}}; 220 } 221 222 Optional<uint64_t> DWARFUnit::getStringOffsetSectionItem(uint32_t Index) const { 223 if (!StringOffsetsTableContribution) 224 return None; 225 unsigned ItemSize = getDwarfStringOffsetsByteSize(); 226 uint32_t Offset = getStringOffsetsBase() + Index * ItemSize; 227 if (StringOffsetSection.Data.size() < Offset + ItemSize) 228 return None; 229 DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, 230 isLittleEndian, 0); 231 return DA.getRelocatedValue(ItemSize, &Offset); 232 } 233 234 bool DWARFUnitHeader::extract(DWARFContext &Context, 235 const DWARFDataExtractor &debug_info, 236 uint32_t *offset_ptr, 237 DWARFSectionKind SectionKind, 238 const DWARFUnitIndex *Index, 239 const DWARFUnitIndex::Entry *Entry) { 240 Offset = *offset_ptr; 241 IndexEntry = Entry; 242 if (!IndexEntry && Index) 243 IndexEntry = Index->getFromOffset(*offset_ptr); 244 Length = debug_info.getU32(offset_ptr); 245 // FIXME: Support DWARF64. 246 unsigned SizeOfLength = 4; 247 FormParams.Format = DWARF32; 248 FormParams.Version = debug_info.getU16(offset_ptr); 249 if (FormParams.Version >= 5) { 250 UnitType = debug_info.getU8(offset_ptr); 251 FormParams.AddrSize = debug_info.getU8(offset_ptr); 252 AbbrOffset = debug_info.getU32(offset_ptr); 253 } else { 254 AbbrOffset = debug_info.getRelocatedValue(4, offset_ptr); 255 FormParams.AddrSize = debug_info.getU8(offset_ptr); 256 // Fake a unit type based on the section type. This isn't perfect, 257 // but distinguishing compile and type units is generally enough. 258 if (SectionKind == DW_SECT_TYPES) 259 UnitType = DW_UT_type; 260 else 261 UnitType = DW_UT_compile; 262 } 263 if (IndexEntry) { 264 if (AbbrOffset) 265 return false; 266 auto *UnitContrib = IndexEntry->getOffset(); 267 if (!UnitContrib || UnitContrib->Length != (Length + 4)) 268 return false; 269 auto *AbbrEntry = IndexEntry->getOffset(DW_SECT_ABBREV); 270 if (!AbbrEntry) 271 return false; 272 AbbrOffset = AbbrEntry->Offset; 273 } 274 if (isTypeUnit()) { 275 TypeHash = debug_info.getU64(offset_ptr); 276 TypeOffset = debug_info.getU32(offset_ptr); 277 } else if (UnitType == DW_UT_split_compile || UnitType == DW_UT_skeleton) 278 DWOId = debug_info.getU64(offset_ptr); 279 280 // Header fields all parsed, capture the size of this unit header. 281 assert(*offset_ptr - Offset <= 255 && "unexpected header size"); 282 Size = uint8_t(*offset_ptr - Offset); 283 284 // Type offset is unit-relative; should be after the header and before 285 // the end of the current unit. 286 bool TypeOffsetOK = 287 !isTypeUnit() 288 ? true 289 : TypeOffset >= Size && TypeOffset < getLength() + SizeOfLength; 290 bool LengthOK = debug_info.isValidOffset(getNextUnitOffset() - 1); 291 bool VersionOK = DWARFContext::isSupportedVersion(getVersion()); 292 bool AddrSizeOK = getAddressByteSize() == 4 || getAddressByteSize() == 8; 293 294 if (!LengthOK || !VersionOK || !AddrSizeOK || !TypeOffsetOK) 295 return false; 296 297 // Keep track of the highest DWARF version we encounter across all units. 298 Context.setMaxVersionIfGreater(getVersion()); 299 return true; 300 } 301 302 // Parse the rangelist table header, including the optional array of offsets 303 // following it (DWARF v5 and later). 304 static Expected<DWARFDebugRnglistTable> 305 parseRngListTableHeader(DWARFDataExtractor &DA, uint32_t Offset) { 306 // TODO: Support DWARF64 307 // We are expected to be called with Offset 0 or pointing just past the table 308 // header, which is 12 bytes long for DWARF32. 309 if (Offset > 0) { 310 if (Offset < 12U) 311 return createStringError(errc::invalid_argument, "Did not detect a valid" 312 " range list table with base = 0x%" PRIu32, 313 Offset); 314 Offset -= 12U; 315 } 316 llvm::DWARFDebugRnglistTable Table; 317 if (Error E = Table.extractHeaderAndOffsets(DA, &Offset)) 318 return std::move(E); 319 return Table; 320 } 321 322 Error DWARFUnit::extractRangeList(uint32_t RangeListOffset, 323 DWARFDebugRangeList &RangeList) const { 324 // Require that compile unit is extracted. 325 assert(!DieArray.empty()); 326 DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection, 327 isLittleEndian, getAddressByteSize()); 328 uint32_t ActualRangeListOffset = RangeSectionBase + RangeListOffset; 329 return RangeList.extract(RangesData, &ActualRangeListOffset); 330 } 331 332 void DWARFUnit::clear() { 333 Abbrevs = nullptr; 334 BaseAddr.reset(); 335 RangeSectionBase = 0; 336 AddrOffsetSectionBase = 0; 337 clearDIEs(false); 338 DWO.reset(); 339 } 340 341 const char *DWARFUnit::getCompilationDir() { 342 return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr); 343 } 344 345 void DWARFUnit::extractDIEsToVector( 346 bool AppendCUDie, bool AppendNonCUDies, 347 std::vector<DWARFDebugInfoEntry> &Dies) const { 348 if (!AppendCUDie && !AppendNonCUDies) 349 return; 350 351 // Set the offset to that of the first DIE and calculate the start of the 352 // next compilation unit header. 353 uint32_t DIEOffset = getOffset() + getHeaderSize(); 354 uint32_t NextCUOffset = getNextUnitOffset(); 355 DWARFDebugInfoEntry DIE; 356 DWARFDataExtractor DebugInfoData = getDebugInfoExtractor(); 357 uint32_t Depth = 0; 358 bool IsCUDie = true; 359 360 while (DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset, 361 Depth)) { 362 if (IsCUDie) { 363 if (AppendCUDie) 364 Dies.push_back(DIE); 365 if (!AppendNonCUDies) 366 break; 367 // The average bytes per DIE entry has been seen to be 368 // around 14-20 so let's pre-reserve the needed memory for 369 // our DIE entries accordingly. 370 Dies.reserve(Dies.size() + getDebugInfoSize() / 14); 371 IsCUDie = false; 372 } else { 373 Dies.push_back(DIE); 374 } 375 376 if (const DWARFAbbreviationDeclaration *AbbrDecl = 377 DIE.getAbbreviationDeclarationPtr()) { 378 // Normal DIE 379 if (AbbrDecl->hasChildren()) 380 ++Depth; 381 } else { 382 // NULL DIE. 383 if (Depth > 0) 384 --Depth; 385 if (Depth == 0) 386 break; // We are done with this compile unit! 387 } 388 } 389 390 // Give a little bit of info if we encounter corrupt DWARF (our offset 391 // should always terminate at or before the start of the next compilation 392 // unit header). 393 if (DIEOffset > NextCUOffset) 394 WithColor::warning() << format("DWARF compile unit extends beyond its " 395 "bounds cu 0x%8.8x at 0x%8.8x\n", 396 getOffset(), DIEOffset); 397 } 398 399 size_t DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) { 400 if ((CUDieOnly && !DieArray.empty()) || 401 DieArray.size() > 1) 402 return 0; // Already parsed. 403 404 bool HasCUDie = !DieArray.empty(); 405 extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray); 406 407 if (DieArray.empty()) 408 return 0; 409 410 // If CU DIE was just parsed, copy several attribute values from it. 411 if (!HasCUDie) { 412 DWARFDie UnitDie = getUnitDIE(); 413 if (Optional<uint64_t> DWOId = toUnsigned(UnitDie.find(DW_AT_GNU_dwo_id))) 414 Header.setDWOId(*DWOId); 415 if (!IsDWO) { 416 assert(AddrOffsetSectionBase == 0); 417 assert(RangeSectionBase == 0); 418 AddrOffsetSectionBase = toSectionOffset(UnitDie.find(DW_AT_addr_base), 0); 419 if (!AddrOffsetSectionBase) 420 AddrOffsetSectionBase = 421 toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base), 0); 422 RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0); 423 } 424 425 // In general, in DWARF v5 and beyond we derive the start of the unit's 426 // contribution to the string offsets table from the unit DIE's 427 // DW_AT_str_offsets_base attribute. Split DWARF units do not use this 428 // attribute, so we assume that there is a contribution to the string 429 // offsets table starting at offset 0 of the debug_str_offsets.dwo section. 430 // In both cases we need to determine the format of the contribution, 431 // which may differ from the unit's format. 432 DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, 433 isLittleEndian, 0); 434 if (IsDWO) 435 StringOffsetsTableContribution = 436 determineStringOffsetsTableContributionDWO(DA); 437 else if (getVersion() >= 5) 438 StringOffsetsTableContribution = 439 determineStringOffsetsTableContribution(DA); 440 441 // DWARF v5 uses the .debug_rnglists and .debug_rnglists.dwo sections to 442 // describe address ranges. 443 if (getVersion() >= 5) { 444 if (IsDWO) 445 setRangesSection(&Context.getDWARFObj().getRnglistsDWOSection(), 0); 446 else 447 setRangesSection(&Context.getDWARFObj().getRnglistsSection(), 448 toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0)); 449 if (RangeSection->Data.size()) { 450 // Parse the range list table header. Individual range lists are 451 // extracted lazily. 452 DWARFDataExtractor RangesDA(Context.getDWARFObj(), *RangeSection, 453 isLittleEndian, 0); 454 if (auto TableOrError = 455 parseRngListTableHeader(RangesDA, RangeSectionBase)) 456 RngListTable = TableOrError.get(); 457 else 458 WithColor::error() << "parsing a range list table: " 459 << toString(TableOrError.takeError()) 460 << '\n'; 461 462 // In a split dwarf unit, there is no DW_AT_rnglists_base attribute. 463 // Adjust RangeSectionBase to point past the table header. 464 if (IsDWO && RngListTable) 465 RangeSectionBase = RngListTable->getHeaderSize(); 466 } 467 } 468 469 // Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for 470 // skeleton CU DIE, so that DWARF users not aware of it are not broken. 471 } 472 473 return DieArray.size(); 474 } 475 476 bool DWARFUnit::parseDWO() { 477 if (IsDWO) 478 return false; 479 if (DWO.get()) 480 return false; 481 DWARFDie UnitDie = getUnitDIE(); 482 if (!UnitDie) 483 return false; 484 auto DWOFileName = dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name)); 485 if (!DWOFileName) 486 return false; 487 auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir)); 488 SmallString<16> AbsolutePath; 489 if (sys::path::is_relative(*DWOFileName) && CompilationDir && 490 *CompilationDir) { 491 sys::path::append(AbsolutePath, *CompilationDir); 492 } 493 sys::path::append(AbsolutePath, *DWOFileName); 494 auto DWOId = getDWOId(); 495 if (!DWOId) 496 return false; 497 auto DWOContext = Context.getDWOContext(AbsolutePath); 498 if (!DWOContext) 499 return false; 500 501 DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId); 502 if (!DWOCU) 503 return false; 504 DWO = std::shared_ptr<DWARFCompileUnit>(std::move(DWOContext), DWOCU); 505 // Share .debug_addr and .debug_ranges section with compile unit in .dwo 506 DWO->setAddrOffsetSection(AddrOffsetSection, AddrOffsetSectionBase); 507 if (getVersion() >= 5) { 508 DWO->setRangesSection(&Context.getDWARFObj().getRnglistsDWOSection(), 0); 509 DWARFDataExtractor RangesDA(Context.getDWARFObj(), *RangeSection, 510 isLittleEndian, 0); 511 if (auto TableOrError = parseRngListTableHeader(RangesDA, RangeSectionBase)) 512 DWO->RngListTable = TableOrError.get(); 513 else 514 WithColor::error() << "parsing a range list table: " 515 << toString(TableOrError.takeError()) 516 << '\n'; 517 if (DWO->RngListTable) 518 DWO->RangeSectionBase = DWO->RngListTable->getHeaderSize(); 519 } else { 520 auto DWORangesBase = UnitDie.getRangesBaseAttribute(); 521 DWO->setRangesSection(RangeSection, DWORangesBase ? *DWORangesBase : 0); 522 } 523 524 return true; 525 } 526 527 void DWARFUnit::clearDIEs(bool KeepCUDie) { 528 if (DieArray.size() > (unsigned)KeepCUDie) { 529 DieArray.resize((unsigned)KeepCUDie); 530 DieArray.shrink_to_fit(); 531 } 532 } 533 534 Expected<DWARFAddressRangesVector> 535 DWARFUnit::findRnglistFromOffset(uint32_t Offset) { 536 if (getVersion() <= 4) { 537 DWARFDebugRangeList RangeList; 538 if (Error E = extractRangeList(Offset, RangeList)) 539 return std::move(E); 540 return RangeList.getAbsoluteRanges(getBaseAddress()); 541 } 542 if (RngListTable) { 543 DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection, 544 isLittleEndian, RngListTable->getAddrSize()); 545 auto RangeListOrError = RngListTable->findList(RangesData, Offset); 546 if (RangeListOrError) 547 return RangeListOrError.get().getAbsoluteRanges(getBaseAddress(), *this); 548 return RangeListOrError.takeError(); 549 } 550 551 return createStringError(errc::invalid_argument, 552 "missing or invalid range list table"); 553 } 554 555 Expected<DWARFAddressRangesVector> 556 DWARFUnit::findRnglistFromIndex(uint32_t Index) { 557 if (auto Offset = getRnglistOffset(Index)) 558 return findRnglistFromOffset(*Offset + RangeSectionBase); 559 560 if (RngListTable) 561 return createStringError(errc::invalid_argument, 562 "invalid range list table index %d", Index); 563 else 564 return createStringError(errc::invalid_argument, 565 "missing or invalid range list table"); 566 } 567 568 Expected<DWARFAddressRangesVector> DWARFUnit::collectAddressRanges() { 569 DWARFDie UnitDie = getUnitDIE(); 570 if (!UnitDie) 571 return createStringError(errc::invalid_argument, "No unit DIE"); 572 573 // First, check if unit DIE describes address ranges for the whole unit. 574 auto CUDIERangesOrError = UnitDie.getAddressRanges(); 575 if (!CUDIERangesOrError) 576 return createStringError(errc::invalid_argument, 577 "decoding address ranges: %s", 578 toString(CUDIERangesOrError.takeError()).c_str()); 579 return *CUDIERangesOrError; 580 } 581 582 void DWARFUnit::updateAddressDieMap(DWARFDie Die) { 583 if (Die.isSubroutineDIE()) { 584 auto DIERangesOrError = Die.getAddressRanges(); 585 if (DIERangesOrError) { 586 for (const auto &R : DIERangesOrError.get()) { 587 // Ignore 0-sized ranges. 588 if (R.LowPC == R.HighPC) 589 continue; 590 auto B = AddrDieMap.upper_bound(R.LowPC); 591 if (B != AddrDieMap.begin() && R.LowPC < (--B)->second.first) { 592 // The range is a sub-range of existing ranges, we need to split the 593 // existing range. 594 if (R.HighPC < B->second.first) 595 AddrDieMap[R.HighPC] = B->second; 596 if (R.LowPC > B->first) 597 AddrDieMap[B->first].first = R.LowPC; 598 } 599 AddrDieMap[R.LowPC] = std::make_pair(R.HighPC, Die); 600 } 601 } else 602 llvm::consumeError(DIERangesOrError.takeError()); 603 } 604 // Parent DIEs are added to the AddrDieMap prior to the Children DIEs to 605 // simplify the logic to update AddrDieMap. The child's range will always 606 // be equal or smaller than the parent's range. With this assumption, when 607 // adding one range into the map, it will at most split a range into 3 608 // sub-ranges. 609 for (DWARFDie Child = Die.getFirstChild(); Child; Child = Child.getSibling()) 610 updateAddressDieMap(Child); 611 } 612 613 DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) { 614 extractDIEsIfNeeded(false); 615 if (AddrDieMap.empty()) 616 updateAddressDieMap(getUnitDIE()); 617 auto R = AddrDieMap.upper_bound(Address); 618 if (R == AddrDieMap.begin()) 619 return DWARFDie(); 620 // upper_bound's previous item contains Address. 621 --R; 622 if (Address >= R->second.first) 623 return DWARFDie(); 624 return R->second.second; 625 } 626 627 void 628 DWARFUnit::getInlinedChainForAddress(uint64_t Address, 629 SmallVectorImpl<DWARFDie> &InlinedChain) { 630 assert(InlinedChain.empty()); 631 // Try to look for subprogram DIEs in the DWO file. 632 parseDWO(); 633 // First, find the subroutine that contains the given address (the leaf 634 // of inlined chain). 635 DWARFDie SubroutineDIE = 636 (DWO ? DWO.get() : this)->getSubroutineForAddress(Address); 637 638 if (!SubroutineDIE) 639 return; 640 641 while (!SubroutineDIE.isSubprogramDIE()) { 642 if (SubroutineDIE.getTag() == DW_TAG_inlined_subroutine) 643 InlinedChain.push_back(SubroutineDIE); 644 SubroutineDIE = SubroutineDIE.getParent(); 645 } 646 InlinedChain.push_back(SubroutineDIE); 647 } 648 649 const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context, 650 DWARFSectionKind Kind) { 651 if (Kind == DW_SECT_INFO) 652 return Context.getCUIndex(); 653 assert(Kind == DW_SECT_TYPES); 654 return Context.getTUIndex(); 655 } 656 657 DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) { 658 if (!Die) 659 return DWARFDie(); 660 const uint32_t Depth = Die->getDepth(); 661 // Unit DIEs always have a depth of zero and never have parents. 662 if (Depth == 0) 663 return DWARFDie(); 664 // Depth of 1 always means parent is the compile/type unit. 665 if (Depth == 1) 666 return getUnitDIE(); 667 // Look for previous DIE with a depth that is one less than the Die's depth. 668 const uint32_t ParentDepth = Depth - 1; 669 for (uint32_t I = getDIEIndex(Die) - 1; I > 0; --I) { 670 if (DieArray[I].getDepth() == ParentDepth) 671 return DWARFDie(this, &DieArray[I]); 672 } 673 return DWARFDie(); 674 } 675 676 DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) { 677 if (!Die) 678 return DWARFDie(); 679 uint32_t Depth = Die->getDepth(); 680 // Unit DIEs always have a depth of zero and never have siblings. 681 if (Depth == 0) 682 return DWARFDie(); 683 // NULL DIEs don't have siblings. 684 if (Die->getAbbreviationDeclarationPtr() == nullptr) 685 return DWARFDie(); 686 687 // Find the next DIE whose depth is the same as the Die's depth. 688 for (size_t I = getDIEIndex(Die) + 1, EndIdx = DieArray.size(); I < EndIdx; 689 ++I) { 690 if (DieArray[I].getDepth() == Depth) 691 return DWARFDie(this, &DieArray[I]); 692 } 693 return DWARFDie(); 694 } 695 696 DWARFDie DWARFUnit::getPreviousSibling(const DWARFDebugInfoEntry *Die) { 697 if (!Die) 698 return DWARFDie(); 699 uint32_t Depth = Die->getDepth(); 700 // Unit DIEs always have a depth of zero and never have siblings. 701 if (Depth == 0) 702 return DWARFDie(); 703 704 // Find the previous DIE whose depth is the same as the Die's depth. 705 for (size_t I = getDIEIndex(Die); I > 0;) { 706 --I; 707 if (DieArray[I].getDepth() == Depth - 1) 708 return DWARFDie(); 709 if (DieArray[I].getDepth() == Depth) 710 return DWARFDie(this, &DieArray[I]); 711 } 712 return DWARFDie(); 713 } 714 715 DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) { 716 if (!Die->hasChildren()) 717 return DWARFDie(); 718 719 // We do not want access out of bounds when parsing corrupted debug data. 720 size_t I = getDIEIndex(Die) + 1; 721 if (I >= DieArray.size()) 722 return DWARFDie(); 723 return DWARFDie(this, &DieArray[I]); 724 } 725 726 DWARFDie DWARFUnit::getLastChild(const DWARFDebugInfoEntry *Die) { 727 if (!Die->hasChildren()) 728 return DWARFDie(); 729 730 uint32_t Depth = Die->getDepth(); 731 for (size_t I = getDIEIndex(Die) + 1, EndIdx = DieArray.size(); I < EndIdx; 732 ++I) { 733 if (DieArray[I].getDepth() == Depth + 1 && 734 DieArray[I].getTag() == dwarf::DW_TAG_null) 735 return DWARFDie(this, &DieArray[I]); 736 assert(DieArray[I].getDepth() > Depth && "Not processing children?"); 737 } 738 return DWARFDie(); 739 } 740 741 const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const { 742 if (!Abbrevs) 743 Abbrevs = Abbrev->getAbbreviationDeclarationSet(Header.getAbbrOffset()); 744 return Abbrevs; 745 } 746 747 llvm::Optional<object::SectionedAddress> DWARFUnit::getBaseAddress() { 748 if (BaseAddr) 749 return BaseAddr; 750 751 DWARFDie UnitDie = getUnitDIE(); 752 Optional<DWARFFormValue> PC = UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc}); 753 BaseAddr = toSectionedAddress(PC); 754 return BaseAddr; 755 } 756 757 Optional<StrOffsetsContributionDescriptor> 758 StrOffsetsContributionDescriptor::validateContributionSize( 759 DWARFDataExtractor &DA) { 760 uint8_t EntrySize = getDwarfOffsetByteSize(); 761 // In order to ensure that we don't read a partial record at the end of 762 // the section we validate for a multiple of the entry size. 763 uint64_t ValidationSize = alignTo(Size, EntrySize); 764 // Guard against overflow. 765 if (ValidationSize >= Size) 766 if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize)) 767 return *this; 768 return None; 769 } 770 771 // Look for a DWARF64-formatted contribution to the string offsets table 772 // starting at a given offset and record it in a descriptor. 773 static Optional<StrOffsetsContributionDescriptor> 774 parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint32_t Offset) { 775 if (!DA.isValidOffsetForDataOfSize(Offset, 16)) 776 return None; 777 778 if (DA.getU32(&Offset) != 0xffffffff) 779 return None; 780 781 uint64_t Size = DA.getU64(&Offset); 782 uint8_t Version = DA.getU16(&Offset); 783 (void)DA.getU16(&Offset); // padding 784 // The encoded length includes the 2-byte version field and the 2-byte 785 // padding, so we need to subtract them out when we populate the descriptor. 786 return {{Offset, Size - 4, Version, DWARF64}}; 787 } 788 789 // Look for a DWARF32-formatted contribution to the string offsets table 790 // starting at a given offset and record it in a descriptor. 791 static Optional<StrOffsetsContributionDescriptor> 792 parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint32_t Offset) { 793 if (!DA.isValidOffsetForDataOfSize(Offset, 8)) 794 return None; 795 uint32_t ContributionSize = DA.getU32(&Offset); 796 if (ContributionSize >= 0xfffffff0) 797 return None; 798 uint8_t Version = DA.getU16(&Offset); 799 (void)DA.getU16(&Offset); // padding 800 // The encoded length includes the 2-byte version field and the 2-byte 801 // padding, so we need to subtract them out when we populate the descriptor. 802 return {{Offset, ContributionSize - 4, Version, DWARF32}}; 803 } 804 805 Optional<StrOffsetsContributionDescriptor> 806 DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA) { 807 auto Offset = toSectionOffset(getUnitDIE().find(DW_AT_str_offsets_base), 0); 808 Optional<StrOffsetsContributionDescriptor> Descriptor; 809 // Attempt to find a DWARF64 contribution 16 bytes before the base. 810 if (Offset >= 16) 811 Descriptor = 812 parseDWARF64StringOffsetsTableHeader(DA, (uint32_t)Offset - 16); 813 // Try to find a DWARF32 contribution 8 bytes before the base. 814 if (!Descriptor && Offset >= 8) 815 Descriptor = parseDWARF32StringOffsetsTableHeader(DA, (uint32_t)Offset - 8); 816 return Descriptor ? Descriptor->validateContributionSize(DA) : Descriptor; 817 } 818 819 Optional<StrOffsetsContributionDescriptor> 820 DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor & DA) { 821 uint64_t Offset = 0; 822 auto IndexEntry = Header.getIndexEntry(); 823 const auto *C = 824 IndexEntry ? IndexEntry->getOffset(DW_SECT_STR_OFFSETS) : nullptr; 825 if (C) 826 Offset = C->Offset; 827 if (getVersion() >= 5) { 828 // Look for a valid contribution at the given offset. 829 auto Descriptor = 830 parseDWARF64StringOffsetsTableHeader(DA, (uint32_t)Offset); 831 if (!Descriptor) 832 Descriptor = parseDWARF32StringOffsetsTableHeader(DA, (uint32_t)Offset); 833 return Descriptor ? Descriptor->validateContributionSize(DA) : Descriptor; 834 } 835 // Prior to DWARF v5, we derive the contribution size from the 836 // index table (in a package file). In a .dwo file it is simply 837 // the length of the string offsets section. 838 if (!IndexEntry) 839 return {{0, StringOffsetSection.Data.size(), 4, DWARF32}}; 840 if (C) 841 return {{C->Offset, C->Length, 4, DWARF32}}; 842 return None; 843 } 844