1 //===- DWARFUnit.cpp ------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/DebugInfo/DWARF/DWARFUnit.h" 10 #include "llvm/ADT/SmallString.h" 11 #include "llvm/ADT/StringRef.h" 12 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h" 13 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 14 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 15 #include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h" 16 #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h" 17 #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h" 18 #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h" 19 #include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h" 20 #include "llvm/DebugInfo/DWARF/DWARFDie.h" 21 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" 22 #include "llvm/DebugInfo/DWARF/DWARFListTable.h" 23 #include "llvm/DebugInfo/DWARF/DWARFObject.h" 24 #include "llvm/DebugInfo/DWARF/DWARFSection.h" 25 #include "llvm/DebugInfo/DWARF/DWARFTypeUnit.h" 26 #include "llvm/Support/DataExtractor.h" 27 #include "llvm/Support/Errc.h" 28 #include "llvm/Support/Path.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstddef> 32 #include <cstdint> 33 #include <utility> 34 #include <vector> 35 36 using namespace llvm; 37 using namespace dwarf; 38 39 void DWARFUnitVector::addUnitsForSection(DWARFContext &C, 40 const DWARFSection &Section, 41 DWARFSectionKind SectionKind) { 42 const DWARFObject &D = C.getDWARFObj(); 43 addUnitsImpl(C, D, Section, C.getDebugAbbrev(), &D.getRangesSection(), 44 &D.getLocSection(), D.getStrSection(), 45 D.getStrOffsetsSection(), &D.getAddrSection(), 46 D.getLineSection(), D.isLittleEndian(), false, false, 47 SectionKind); 48 } 49 50 void DWARFUnitVector::addUnitsForDWOSection(DWARFContext &C, 51 const DWARFSection &DWOSection, 52 DWARFSectionKind SectionKind, 53 bool Lazy) { 54 const DWARFObject &D = C.getDWARFObj(); 55 addUnitsImpl(C, D, DWOSection, C.getDebugAbbrevDWO(), &D.getRangesDWOSection(), 56 &D.getLocDWOSection(), D.getStrDWOSection(), 57 D.getStrOffsetsDWOSection(), &D.getAddrSection(), 58 D.getLineDWOSection(), C.isLittleEndian(), true, Lazy, 59 SectionKind); 60 } 61 62 void DWARFUnitVector::addUnitsImpl( 63 DWARFContext &Context, const DWARFObject &Obj, const DWARFSection &Section, 64 const DWARFDebugAbbrev *DA, const DWARFSection *RS, 65 const DWARFSection *LocSection, StringRef SS, const DWARFSection &SOS, 66 const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO, 67 bool Lazy, DWARFSectionKind SectionKind) { 68 DWARFDataExtractor Data(Obj, Section, LE, 0); 69 // Lazy initialization of Parser, now that we have all section info. 70 if (!Parser) { 71 Parser = [=, &Context, &Obj, &Section, &SOS, 72 &LS](uint64_t Offset, DWARFSectionKind SectionKind, 73 const DWARFSection *CurSection, 74 const DWARFUnitIndex::Entry *IndexEntry) 75 -> std::unique_ptr<DWARFUnit> { 76 const DWARFSection &InfoSection = CurSection ? *CurSection : Section; 77 DWARFDataExtractor Data(Obj, InfoSection, LE, 0); 78 if (!Data.isValidOffset(Offset)) 79 return nullptr; 80 DWARFUnitHeader Header; 81 if (!Header.extract(Context, Data, &Offset, SectionKind)) 82 return nullptr; 83 if (!IndexEntry && IsDWO) { 84 const DWARFUnitIndex &Index = getDWARFUnitIndex( 85 Context, Header.isTypeUnit() ? DW_SECT_EXT_TYPES : DW_SECT_INFO); 86 IndexEntry = Index.getFromOffset(Header.getOffset()); 87 } 88 if (IndexEntry && !Header.applyIndexEntry(IndexEntry)) 89 return nullptr; 90 std::unique_ptr<DWARFUnit> U; 91 if (Header.isTypeUnit()) 92 U = std::make_unique<DWARFTypeUnit>(Context, InfoSection, Header, DA, 93 RS, LocSection, SS, SOS, AOS, LS, 94 LE, IsDWO, *this); 95 else 96 U = std::make_unique<DWARFCompileUnit>(Context, InfoSection, Header, 97 DA, RS, LocSection, SS, SOS, 98 AOS, LS, LE, IsDWO, *this); 99 return U; 100 }; 101 } 102 if (Lazy) 103 return; 104 // Find a reasonable insertion point within the vector. We skip over 105 // (a) units from a different section, (b) units from the same section 106 // but with lower offset-within-section. This keeps units in order 107 // within a section, although not necessarily within the object file, 108 // even if we do lazy parsing. 109 auto I = this->begin(); 110 uint64_t Offset = 0; 111 while (Data.isValidOffset(Offset)) { 112 if (I != this->end() && 113 (&(*I)->getInfoSection() != &Section || (*I)->getOffset() == Offset)) { 114 ++I; 115 continue; 116 } 117 auto U = Parser(Offset, SectionKind, &Section, nullptr); 118 // If parsing failed, we're done with this section. 119 if (!U) 120 break; 121 Offset = U->getNextUnitOffset(); 122 I = std::next(this->insert(I, std::move(U))); 123 } 124 } 125 126 DWARFUnit *DWARFUnitVector::addUnit(std::unique_ptr<DWARFUnit> Unit) { 127 auto I = std::upper_bound(begin(), end(), Unit, 128 [](const std::unique_ptr<DWARFUnit> &LHS, 129 const std::unique_ptr<DWARFUnit> &RHS) { 130 return LHS->getOffset() < RHS->getOffset(); 131 }); 132 return this->insert(I, std::move(Unit))->get(); 133 } 134 135 DWARFUnit *DWARFUnitVector::getUnitForOffset(uint64_t Offset) const { 136 auto end = begin() + getNumInfoUnits(); 137 auto *CU = 138 std::upper_bound(begin(), end, Offset, 139 [](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) { 140 return LHS < RHS->getNextUnitOffset(); 141 }); 142 if (CU != end && (*CU)->getOffset() <= Offset) 143 return CU->get(); 144 return nullptr; 145 } 146 147 DWARFUnit * 148 DWARFUnitVector::getUnitForIndexEntry(const DWARFUnitIndex::Entry &E) { 149 const auto *CUOff = E.getContribution(DW_SECT_INFO); 150 if (!CUOff) 151 return nullptr; 152 153 auto Offset = CUOff->Offset; 154 auto end = begin() + getNumInfoUnits(); 155 156 auto *CU = 157 std::upper_bound(begin(), end, CUOff->Offset, 158 [](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) { 159 return LHS < RHS->getNextUnitOffset(); 160 }); 161 if (CU != end && (*CU)->getOffset() <= Offset) 162 return CU->get(); 163 164 if (!Parser) 165 return nullptr; 166 167 auto U = Parser(Offset, DW_SECT_INFO, nullptr, &E); 168 if (!U) 169 U = nullptr; 170 171 auto *NewCU = U.get(); 172 this->insert(CU, std::move(U)); 173 ++NumInfoUnits; 174 return NewCU; 175 } 176 177 DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section, 178 const DWARFUnitHeader &Header, const DWARFDebugAbbrev *DA, 179 const DWARFSection *RS, const DWARFSection *LocSection, 180 StringRef SS, const DWARFSection &SOS, 181 const DWARFSection *AOS, const DWARFSection &LS, bool LE, 182 bool IsDWO, const DWARFUnitVector &UnitVector) 183 : Context(DC), InfoSection(Section), Header(Header), Abbrev(DA), 184 RangeSection(RS), LineSection(LS), StringSection(SS), 185 StringOffsetSection(SOS), AddrOffsetSection(AOS), isLittleEndian(LE), 186 IsDWO(IsDWO), UnitVector(UnitVector) { 187 clear(); 188 } 189 190 DWARFUnit::~DWARFUnit() = default; 191 192 DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const { 193 return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, isLittleEndian, 194 getAddressByteSize()); 195 } 196 197 Optional<object::SectionedAddress> 198 DWARFUnit::getAddrOffsetSectionItem(uint32_t Index) const { 199 if (!AddrOffsetSectionBase) { 200 auto R = Context.info_section_units(); 201 // Surprising if a DWO file has more than one skeleton unit in it - this 202 // probably shouldn't be valid, but if a use case is found, here's where to 203 // support it (probably have to linearly search for the matching skeleton CU 204 // here) 205 if (IsDWO && hasSingleElement(R)) 206 return (*R.begin())->getAddrOffsetSectionItem(Index); 207 208 return None; 209 } 210 211 uint64_t Offset = *AddrOffsetSectionBase + Index * getAddressByteSize(); 212 if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize()) 213 return None; 214 DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection, 215 isLittleEndian, getAddressByteSize()); 216 uint64_t Section; 217 uint64_t Address = DA.getRelocatedAddress(&Offset, &Section); 218 return {{Address, Section}}; 219 } 220 221 Expected<uint64_t> DWARFUnit::getStringOffsetSectionItem(uint32_t Index) const { 222 if (!StringOffsetsTableContribution) 223 return make_error<StringError>( 224 "DW_FORM_strx used without a valid string offsets table", 225 inconvertibleErrorCode()); 226 unsigned ItemSize = getDwarfStringOffsetsByteSize(); 227 uint64_t Offset = getStringOffsetsBase() + Index * ItemSize; 228 if (StringOffsetSection.Data.size() < Offset + ItemSize) 229 return make_error<StringError>("DW_FORM_strx uses index " + Twine(Index) + 230 ", which is too large", 231 inconvertibleErrorCode()); 232 DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, 233 isLittleEndian, 0); 234 return DA.getRelocatedValue(ItemSize, &Offset); 235 } 236 237 bool DWARFUnitHeader::extract(DWARFContext &Context, 238 const DWARFDataExtractor &debug_info, 239 uint64_t *offset_ptr, 240 DWARFSectionKind SectionKind) { 241 Offset = *offset_ptr; 242 Error Err = Error::success(); 243 IndexEntry = nullptr; 244 std::tie(Length, FormParams.Format) = 245 debug_info.getInitialLength(offset_ptr, &Err); 246 FormParams.Version = debug_info.getU16(offset_ptr, &Err); 247 if (FormParams.Version >= 5) { 248 UnitType = debug_info.getU8(offset_ptr, &Err); 249 FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err); 250 AbbrOffset = debug_info.getRelocatedValue( 251 FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err); 252 } else { 253 AbbrOffset = debug_info.getRelocatedValue( 254 FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err); 255 FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err); 256 // Fake a unit type based on the section type. This isn't perfect, 257 // but distinguishing compile and type units is generally enough. 258 if (SectionKind == DW_SECT_EXT_TYPES) 259 UnitType = DW_UT_type; 260 else 261 UnitType = DW_UT_compile; 262 } 263 if (isTypeUnit()) { 264 TypeHash = debug_info.getU64(offset_ptr, &Err); 265 TypeOffset = debug_info.getUnsigned( 266 offset_ptr, FormParams.getDwarfOffsetByteSize(), &Err); 267 } else if (UnitType == DW_UT_split_compile || UnitType == DW_UT_skeleton) 268 DWOId = debug_info.getU64(offset_ptr, &Err); 269 270 if (Err) { 271 Context.getWarningHandler()(joinErrors( 272 createStringError( 273 errc::invalid_argument, 274 "DWARF unit at 0x%8.8" PRIx64 " cannot be parsed:", Offset), 275 std::move(Err))); 276 return false; 277 } 278 279 // Header fields all parsed, capture the size of this unit header. 280 assert(*offset_ptr - Offset <= 255 && "unexpected header size"); 281 Size = uint8_t(*offset_ptr - Offset); 282 uint64_t NextCUOffset = Offset + getUnitLengthFieldByteSize() + getLength(); 283 284 if (!debug_info.isValidOffset(getNextUnitOffset() - 1)) { 285 Context.getWarningHandler()( 286 createStringError(errc::invalid_argument, 287 "DWARF unit from offset 0x%8.8" PRIx64 " incl. " 288 "to offset 0x%8.8" PRIx64 " excl. " 289 "extends past section size 0x%8.8zx", 290 Offset, NextCUOffset, debug_info.size())); 291 return false; 292 } 293 294 if (!DWARFContext::isSupportedVersion(getVersion())) { 295 Context.getWarningHandler()(createStringError( 296 errc::invalid_argument, 297 "DWARF unit at offset 0x%8.8" PRIx64 " " 298 "has unsupported version %" PRIu16 ", supported are 2-%u", 299 Offset, getVersion(), DWARFContext::getMaxSupportedVersion())); 300 return false; 301 } 302 303 // Type offset is unit-relative; should be after the header and before 304 // the end of the current unit. 305 if (isTypeUnit() && TypeOffset < Size) { 306 Context.getWarningHandler()( 307 createStringError(errc::invalid_argument, 308 "DWARF type unit at offset " 309 "0x%8.8" PRIx64 " " 310 "has its relocated type_offset 0x%8.8" PRIx64 " " 311 "pointing inside the header", 312 Offset, Offset + TypeOffset)); 313 return false; 314 } 315 if (isTypeUnit() && 316 TypeOffset >= getUnitLengthFieldByteSize() + getLength()) { 317 Context.getWarningHandler()(createStringError( 318 errc::invalid_argument, 319 "DWARF type unit from offset 0x%8.8" PRIx64 " incl. " 320 "to offset 0x%8.8" PRIx64 " excl. has its " 321 "relocated type_offset 0x%8.8" PRIx64 " pointing past the unit end", 322 Offset, NextCUOffset, Offset + TypeOffset)); 323 return false; 324 } 325 326 if (Error SizeErr = DWARFContext::checkAddressSizeSupported( 327 getAddressByteSize(), errc::invalid_argument, 328 "DWARF unit at offset 0x%8.8" PRIx64, Offset)) { 329 Context.getWarningHandler()(std::move(SizeErr)); 330 return false; 331 } 332 333 // Keep track of the highest DWARF version we encounter across all units. 334 Context.setMaxVersionIfGreater(getVersion()); 335 return true; 336 } 337 338 bool DWARFUnitHeader::applyIndexEntry(const DWARFUnitIndex::Entry *Entry) { 339 assert(Entry); 340 assert(!IndexEntry); 341 IndexEntry = Entry; 342 if (AbbrOffset) 343 return false; 344 auto *UnitContrib = IndexEntry->getContribution(); 345 if (!UnitContrib || 346 UnitContrib->Length != (getLength() + getUnitLengthFieldByteSize())) 347 return false; 348 auto *AbbrEntry = IndexEntry->getContribution(DW_SECT_ABBREV); 349 if (!AbbrEntry) 350 return false; 351 AbbrOffset = AbbrEntry->Offset; 352 return true; 353 } 354 355 Error DWARFUnit::extractRangeList(uint64_t RangeListOffset, 356 DWARFDebugRangeList &RangeList) const { 357 // Require that compile unit is extracted. 358 assert(!DieArray.empty()); 359 DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection, 360 isLittleEndian, getAddressByteSize()); 361 uint64_t ActualRangeListOffset = RangeSectionBase + RangeListOffset; 362 return RangeList.extract(RangesData, &ActualRangeListOffset); 363 } 364 365 void DWARFUnit::clear() { 366 Abbrevs = nullptr; 367 BaseAddr.reset(); 368 RangeSectionBase = 0; 369 LocSectionBase = 0; 370 AddrOffsetSectionBase = None; 371 SU = nullptr; 372 clearDIEs(false); 373 DWO.reset(); 374 } 375 376 const char *DWARFUnit::getCompilationDir() { 377 return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr); 378 } 379 380 void DWARFUnit::extractDIEsToVector( 381 bool AppendCUDie, bool AppendNonCUDies, 382 std::vector<DWARFDebugInfoEntry> &Dies) const { 383 if (!AppendCUDie && !AppendNonCUDies) 384 return; 385 386 // Set the offset to that of the first DIE and calculate the start of the 387 // next compilation unit header. 388 uint64_t DIEOffset = getOffset() + getHeaderSize(); 389 uint64_t NextCUOffset = getNextUnitOffset(); 390 DWARFDebugInfoEntry DIE; 391 DWARFDataExtractor DebugInfoData = getDebugInfoExtractor(); 392 // The end offset has been already checked by DWARFUnitHeader::extract. 393 assert(DebugInfoData.isValidOffset(NextCUOffset - 1)); 394 std::vector<uint32_t> Parents; 395 std::vector<uint32_t> PrevSiblings; 396 bool IsCUDie = true; 397 398 assert( 399 ((AppendCUDie && Dies.empty()) || (!AppendCUDie && Dies.size() == 1)) && 400 "Dies array is not empty"); 401 402 // Fill Parents and Siblings stacks with initial value. 403 Parents.push_back(UINT32_MAX); 404 if (!AppendCUDie) 405 Parents.push_back(0); 406 PrevSiblings.push_back(0); 407 408 // Start to extract dies. 409 do { 410 assert(Parents.size() > 0 && "Empty parents stack"); 411 assert((Parents.back() == UINT32_MAX || Parents.back() <= Dies.size()) && 412 "Wrong parent index"); 413 414 // Extract die. Stop if any error occurred. 415 if (!DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset, 416 Parents.back())) 417 break; 418 419 // If previous sibling is remembered then update it`s SiblingIdx field. 420 if (PrevSiblings.back() > 0) { 421 assert(PrevSiblings.back() < Dies.size() && 422 "Previous sibling index is out of Dies boundaries"); 423 Dies[PrevSiblings.back()].setSiblingIdx(Dies.size()); 424 } 425 426 // Store die into the Dies vector. 427 if (IsCUDie) { 428 if (AppendCUDie) 429 Dies.push_back(DIE); 430 if (!AppendNonCUDies) 431 break; 432 // The average bytes per DIE entry has been seen to be 433 // around 14-20 so let's pre-reserve the needed memory for 434 // our DIE entries accordingly. 435 Dies.reserve(Dies.size() + getDebugInfoSize() / 14); 436 } else { 437 // Remember last previous sibling. 438 PrevSiblings.back() = Dies.size(); 439 440 Dies.push_back(DIE); 441 } 442 443 // Check for new children scope. 444 if (const DWARFAbbreviationDeclaration *AbbrDecl = 445 DIE.getAbbreviationDeclarationPtr()) { 446 if (AbbrDecl->hasChildren()) { 447 if (AppendCUDie || !IsCUDie) { 448 assert(Dies.size() > 0 && "Dies does not contain any die"); 449 Parents.push_back(Dies.size() - 1); 450 PrevSiblings.push_back(0); 451 } 452 } else if (IsCUDie) 453 // Stop if we have single compile unit die w/o children. 454 break; 455 } else { 456 // NULL DIE: finishes current children scope. 457 Parents.pop_back(); 458 PrevSiblings.pop_back(); 459 } 460 461 if (IsCUDie) 462 IsCUDie = false; 463 464 // Stop when compile unit die is removed from the parents stack. 465 } while (Parents.size() > 1); 466 } 467 468 void DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) { 469 if (Error e = tryExtractDIEsIfNeeded(CUDieOnly)) 470 Context.getRecoverableErrorHandler()(std::move(e)); 471 } 472 473 Error DWARFUnit::tryExtractDIEsIfNeeded(bool CUDieOnly) { 474 if ((CUDieOnly && !DieArray.empty()) || 475 DieArray.size() > 1) 476 return Error::success(); // Already parsed. 477 478 bool HasCUDie = !DieArray.empty(); 479 extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray); 480 481 if (DieArray.empty()) 482 return Error::success(); 483 484 // If CU DIE was just parsed, copy several attribute values from it. 485 if (HasCUDie) 486 return Error::success(); 487 488 DWARFDie UnitDie(this, &DieArray[0]); 489 if (Optional<uint64_t> DWOId = toUnsigned(UnitDie.find(DW_AT_GNU_dwo_id))) 490 Header.setDWOId(*DWOId); 491 if (!IsDWO) { 492 assert(AddrOffsetSectionBase == None); 493 assert(RangeSectionBase == 0); 494 assert(LocSectionBase == 0); 495 AddrOffsetSectionBase = toSectionOffset(UnitDie.find(DW_AT_addr_base)); 496 if (!AddrOffsetSectionBase) 497 AddrOffsetSectionBase = 498 toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base)); 499 RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0); 500 LocSectionBase = toSectionOffset(UnitDie.find(DW_AT_loclists_base), 0); 501 } 502 503 // In general, in DWARF v5 and beyond we derive the start of the unit's 504 // contribution to the string offsets table from the unit DIE's 505 // DW_AT_str_offsets_base attribute. Split DWARF units do not use this 506 // attribute, so we assume that there is a contribution to the string 507 // offsets table starting at offset 0 of the debug_str_offsets.dwo section. 508 // In both cases we need to determine the format of the contribution, 509 // which may differ from the unit's format. 510 DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, 511 isLittleEndian, 0); 512 if (IsDWO || getVersion() >= 5) { 513 auto StringOffsetOrError = 514 IsDWO ? determineStringOffsetsTableContributionDWO(DA) 515 : determineStringOffsetsTableContribution(DA); 516 if (!StringOffsetOrError) 517 return createStringError(errc::invalid_argument, 518 "invalid reference to or invalid content in " 519 ".debug_str_offsets[.dwo]: " + 520 toString(StringOffsetOrError.takeError())); 521 522 StringOffsetsTableContribution = *StringOffsetOrError; 523 } 524 525 // DWARF v5 uses the .debug_rnglists and .debug_rnglists.dwo sections to 526 // describe address ranges. 527 if (getVersion() >= 5) { 528 // In case of DWP, the base offset from the index has to be added. 529 if (IsDWO) { 530 uint64_t ContributionBaseOffset = 0; 531 if (auto *IndexEntry = Header.getIndexEntry()) 532 if (auto *Contrib = IndexEntry->getContribution(DW_SECT_RNGLISTS)) 533 ContributionBaseOffset = Contrib->Offset; 534 setRangesSection( 535 &Context.getDWARFObj().getRnglistsDWOSection(), 536 ContributionBaseOffset + 537 DWARFListTableHeader::getHeaderSize(Header.getFormat())); 538 } else 539 setRangesSection(&Context.getDWARFObj().getRnglistsSection(), 540 toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 541 DWARFListTableHeader::getHeaderSize( 542 Header.getFormat()))); 543 } 544 545 if (IsDWO) { 546 // If we are reading a package file, we need to adjust the location list 547 // data based on the index entries. 548 StringRef Data = Header.getVersion() >= 5 549 ? Context.getDWARFObj().getLoclistsDWOSection().Data 550 : Context.getDWARFObj().getLocDWOSection().Data; 551 if (auto *IndexEntry = Header.getIndexEntry()) 552 if (const auto *C = IndexEntry->getContribution( 553 Header.getVersion() >= 5 ? DW_SECT_LOCLISTS : DW_SECT_EXT_LOC)) 554 Data = Data.substr(C->Offset, C->Length); 555 556 DWARFDataExtractor DWARFData(Data, isLittleEndian, getAddressByteSize()); 557 LocTable = 558 std::make_unique<DWARFDebugLoclists>(DWARFData, Header.getVersion()); 559 LocSectionBase = DWARFListTableHeader::getHeaderSize(Header.getFormat()); 560 } else if (getVersion() >= 5) { 561 LocTable = std::make_unique<DWARFDebugLoclists>( 562 DWARFDataExtractor(Context.getDWARFObj(), 563 Context.getDWARFObj().getLoclistsSection(), 564 isLittleEndian, getAddressByteSize()), 565 getVersion()); 566 } else { 567 LocTable = std::make_unique<DWARFDebugLoc>(DWARFDataExtractor( 568 Context.getDWARFObj(), Context.getDWARFObj().getLocSection(), 569 isLittleEndian, getAddressByteSize())); 570 } 571 572 // Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for 573 // skeleton CU DIE, so that DWARF users not aware of it are not broken. 574 return Error::success(); 575 } 576 577 bool DWARFUnit::parseDWO() { 578 if (IsDWO) 579 return false; 580 if (DWO.get()) 581 return false; 582 DWARFDie UnitDie = getUnitDIE(); 583 if (!UnitDie) 584 return false; 585 auto DWOFileName = getVersion() >= 5 586 ? dwarf::toString(UnitDie.find(DW_AT_dwo_name)) 587 : dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name)); 588 if (!DWOFileName) 589 return false; 590 auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir)); 591 SmallString<16> AbsolutePath; 592 if (sys::path::is_relative(*DWOFileName) && CompilationDir && 593 *CompilationDir) { 594 sys::path::append(AbsolutePath, *CompilationDir); 595 } 596 sys::path::append(AbsolutePath, *DWOFileName); 597 auto DWOId = getDWOId(); 598 if (!DWOId) 599 return false; 600 auto DWOContext = Context.getDWOContext(AbsolutePath); 601 if (!DWOContext) 602 return false; 603 604 DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId); 605 if (!DWOCU) 606 return false; 607 DWO = std::shared_ptr<DWARFCompileUnit>(std::move(DWOContext), DWOCU); 608 DWO->setSkeletonUnit(this); 609 // Share .debug_addr and .debug_ranges section with compile unit in .dwo 610 if (AddrOffsetSectionBase) 611 DWO->setAddrOffsetSection(AddrOffsetSection, *AddrOffsetSectionBase); 612 if (getVersion() == 4) { 613 auto DWORangesBase = UnitDie.getRangesBaseAttribute(); 614 DWO->setRangesSection(RangeSection, DWORangesBase.getValueOr(0)); 615 } 616 617 return true; 618 } 619 620 void DWARFUnit::clearDIEs(bool KeepCUDie) { 621 // Do not use resize() + shrink_to_fit() to free memory occupied by dies. 622 // shrink_to_fit() is a *non-binding* request to reduce capacity() to size(). 623 // It depends on the implementation whether the request is fulfilled. 624 // Create a new vector with a small capacity and assign it to the DieArray to 625 // have previous contents freed. 626 DieArray = (KeepCUDie && !DieArray.empty()) 627 ? std::vector<DWARFDebugInfoEntry>({DieArray[0]}) 628 : std::vector<DWARFDebugInfoEntry>(); 629 } 630 631 Expected<DWARFAddressRangesVector> 632 DWARFUnit::findRnglistFromOffset(uint64_t Offset) { 633 if (getVersion() <= 4) { 634 DWARFDebugRangeList RangeList; 635 if (Error E = extractRangeList(Offset, RangeList)) 636 return std::move(E); 637 return RangeList.getAbsoluteRanges(getBaseAddress()); 638 } 639 DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection, 640 isLittleEndian, Header.getAddressByteSize()); 641 DWARFDebugRnglistTable RnglistTable; 642 auto RangeListOrError = RnglistTable.findList(RangesData, Offset); 643 if (RangeListOrError) 644 return RangeListOrError.get().getAbsoluteRanges(getBaseAddress(), *this); 645 return RangeListOrError.takeError(); 646 } 647 648 Expected<DWARFAddressRangesVector> 649 DWARFUnit::findRnglistFromIndex(uint32_t Index) { 650 if (auto Offset = getRnglistOffset(Index)) 651 return findRnglistFromOffset(*Offset); 652 653 return createStringError(errc::invalid_argument, 654 "invalid range list table index %d (possibly " 655 "missing the entire range list table)", 656 Index); 657 } 658 659 Expected<DWARFAddressRangesVector> DWARFUnit::collectAddressRanges() { 660 DWARFDie UnitDie = getUnitDIE(); 661 if (!UnitDie) 662 return createStringError(errc::invalid_argument, "No unit DIE"); 663 664 // First, check if unit DIE describes address ranges for the whole unit. 665 auto CUDIERangesOrError = UnitDie.getAddressRanges(); 666 if (!CUDIERangesOrError) 667 return createStringError(errc::invalid_argument, 668 "decoding address ranges: %s", 669 toString(CUDIERangesOrError.takeError()).c_str()); 670 return *CUDIERangesOrError; 671 } 672 673 Expected<DWARFLocationExpressionsVector> 674 DWARFUnit::findLoclistFromOffset(uint64_t Offset) { 675 DWARFLocationExpressionsVector Result; 676 677 Error InterpretationError = Error::success(); 678 679 Error ParseError = getLocationTable().visitAbsoluteLocationList( 680 Offset, getBaseAddress(), 681 [this](uint32_t Index) { return getAddrOffsetSectionItem(Index); }, 682 [&](Expected<DWARFLocationExpression> L) { 683 if (L) 684 Result.push_back(std::move(*L)); 685 else 686 InterpretationError = 687 joinErrors(L.takeError(), std::move(InterpretationError)); 688 return !InterpretationError; 689 }); 690 691 if (ParseError || InterpretationError) 692 return joinErrors(std::move(ParseError), std::move(InterpretationError)); 693 694 return Result; 695 } 696 697 void DWARFUnit::updateAddressDieMap(DWARFDie Die) { 698 if (Die.isSubroutineDIE()) { 699 auto DIERangesOrError = Die.getAddressRanges(); 700 if (DIERangesOrError) { 701 for (const auto &R : DIERangesOrError.get()) { 702 // Ignore 0-sized ranges. 703 if (R.LowPC == R.HighPC) 704 continue; 705 auto B = AddrDieMap.upper_bound(R.LowPC); 706 if (B != AddrDieMap.begin() && R.LowPC < (--B)->second.first) { 707 // The range is a sub-range of existing ranges, we need to split the 708 // existing range. 709 if (R.HighPC < B->second.first) 710 AddrDieMap[R.HighPC] = B->second; 711 if (R.LowPC > B->first) 712 AddrDieMap[B->first].first = R.LowPC; 713 } 714 AddrDieMap[R.LowPC] = std::make_pair(R.HighPC, Die); 715 } 716 } else 717 llvm::consumeError(DIERangesOrError.takeError()); 718 } 719 // Parent DIEs are added to the AddrDieMap prior to the Children DIEs to 720 // simplify the logic to update AddrDieMap. The child's range will always 721 // be equal or smaller than the parent's range. With this assumption, when 722 // adding one range into the map, it will at most split a range into 3 723 // sub-ranges. 724 for (DWARFDie Child = Die.getFirstChild(); Child; Child = Child.getSibling()) 725 updateAddressDieMap(Child); 726 } 727 728 DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) { 729 extractDIEsIfNeeded(false); 730 if (AddrDieMap.empty()) 731 updateAddressDieMap(getUnitDIE()); 732 auto R = AddrDieMap.upper_bound(Address); 733 if (R == AddrDieMap.begin()) 734 return DWARFDie(); 735 // upper_bound's previous item contains Address. 736 --R; 737 if (Address >= R->second.first) 738 return DWARFDie(); 739 return R->second.second; 740 } 741 742 void 743 DWARFUnit::getInlinedChainForAddress(uint64_t Address, 744 SmallVectorImpl<DWARFDie> &InlinedChain) { 745 assert(InlinedChain.empty()); 746 // Try to look for subprogram DIEs in the DWO file. 747 parseDWO(); 748 // First, find the subroutine that contains the given address (the leaf 749 // of inlined chain). 750 DWARFDie SubroutineDIE = 751 (DWO ? *DWO : *this).getSubroutineForAddress(Address); 752 753 while (SubroutineDIE) { 754 if (SubroutineDIE.isSubprogramDIE()) { 755 InlinedChain.push_back(SubroutineDIE); 756 return; 757 } 758 if (SubroutineDIE.getTag() == DW_TAG_inlined_subroutine) 759 InlinedChain.push_back(SubroutineDIE); 760 SubroutineDIE = SubroutineDIE.getParent(); 761 } 762 } 763 764 const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context, 765 DWARFSectionKind Kind) { 766 if (Kind == DW_SECT_INFO) 767 return Context.getCUIndex(); 768 assert(Kind == DW_SECT_EXT_TYPES); 769 return Context.getTUIndex(); 770 } 771 772 DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) { 773 if (!Die) 774 return DWARFDie(); 775 776 if (Optional<uint32_t> ParentIdx = Die->getParentIdx()) { 777 assert(*ParentIdx < DieArray.size() && 778 "ParentIdx is out of DieArray boundaries"); 779 return DWARFDie(this, &DieArray[*ParentIdx]); 780 } 781 782 return DWARFDie(); 783 } 784 785 DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) { 786 if (!Die) 787 return DWARFDie(); 788 789 if (Optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) { 790 assert(*SiblingIdx < DieArray.size() && 791 "SiblingIdx is out of DieArray boundaries"); 792 return DWARFDie(this, &DieArray[*SiblingIdx]); 793 } 794 795 return DWARFDie(); 796 } 797 798 DWARFDie DWARFUnit::getPreviousSibling(const DWARFDebugInfoEntry *Die) { 799 if (!Die) 800 return DWARFDie(); 801 802 Optional<uint32_t> ParentIdx = Die->getParentIdx(); 803 if (!ParentIdx) 804 // Die is a root die, there is no previous sibling. 805 return DWARFDie(); 806 807 assert(*ParentIdx < DieArray.size() && 808 "ParentIdx is out of DieArray boundaries"); 809 assert(getDIEIndex(Die) > 0 && "Die is a root die"); 810 811 uint32_t PrevDieIdx = getDIEIndex(Die) - 1; 812 if (PrevDieIdx == *ParentIdx) 813 // Immediately previous node is parent, there is no previous sibling. 814 return DWARFDie(); 815 816 while (DieArray[PrevDieIdx].getParentIdx() != *ParentIdx) { 817 PrevDieIdx = *DieArray[PrevDieIdx].getParentIdx(); 818 819 assert(PrevDieIdx < DieArray.size() && 820 "PrevDieIdx is out of DieArray boundaries"); 821 assert(PrevDieIdx >= *ParentIdx && 822 "PrevDieIdx is not a child of parent of Die"); 823 } 824 825 return DWARFDie(this, &DieArray[PrevDieIdx]); 826 } 827 828 DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) { 829 if (!Die->hasChildren()) 830 return DWARFDie(); 831 832 // TODO: Instead of checking here for invalid die we might reject 833 // invalid dies at parsing stage(DWARFUnit::extractDIEsToVector). 834 // We do not want access out of bounds when parsing corrupted debug data. 835 size_t I = getDIEIndex(Die) + 1; 836 if (I >= DieArray.size()) 837 return DWARFDie(); 838 return DWARFDie(this, &DieArray[I]); 839 } 840 841 DWARFDie DWARFUnit::getLastChild(const DWARFDebugInfoEntry *Die) { 842 if (!Die->hasChildren()) 843 return DWARFDie(); 844 845 if (Optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) { 846 assert(*SiblingIdx < DieArray.size() && 847 "SiblingIdx is out of DieArray boundaries"); 848 assert(DieArray[*SiblingIdx - 1].getTag() == dwarf::DW_TAG_null && 849 "Bad end of children marker"); 850 return DWARFDie(this, &DieArray[*SiblingIdx - 1]); 851 } 852 853 // If SiblingIdx is set for non-root dies we could be sure that DWARF is 854 // correct and "end of children marker" must be found. For root die we do not 855 // have such a guarantee(parsing root die might be stopped if "end of children 856 // marker" is missing, SiblingIdx is always zero for root die). That is why we 857 // do not use assertion for checking for "end of children marker" for root 858 // die. 859 860 // TODO: Instead of checking here for invalid die we might reject 861 // invalid dies at parsing stage(DWARFUnit::extractDIEsToVector). 862 if (getDIEIndex(Die) == 0 && DieArray.size() > 1 && 863 DieArray.back().getTag() == dwarf::DW_TAG_null) { 864 // For the unit die we might take last item from DieArray. 865 assert(getDIEIndex(Die) == getDIEIndex(getUnitDIE()) && "Bad unit die"); 866 return DWARFDie(this, &DieArray.back()); 867 } 868 869 return DWARFDie(); 870 } 871 872 const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const { 873 if (!Abbrevs) 874 Abbrevs = Abbrev->getAbbreviationDeclarationSet(getAbbreviationsOffset()); 875 return Abbrevs; 876 } 877 878 llvm::Optional<object::SectionedAddress> DWARFUnit::getBaseAddress() { 879 if (BaseAddr) 880 return BaseAddr; 881 882 DWARFDie UnitDie = getUnitDIE(); 883 Optional<DWARFFormValue> PC = UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc}); 884 BaseAddr = toSectionedAddress(PC); 885 return BaseAddr; 886 } 887 888 Expected<StrOffsetsContributionDescriptor> 889 StrOffsetsContributionDescriptor::validateContributionSize( 890 DWARFDataExtractor &DA) { 891 uint8_t EntrySize = getDwarfOffsetByteSize(); 892 // In order to ensure that we don't read a partial record at the end of 893 // the section we validate for a multiple of the entry size. 894 uint64_t ValidationSize = alignTo(Size, EntrySize); 895 // Guard against overflow. 896 if (ValidationSize >= Size) 897 if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize)) 898 return *this; 899 return createStringError(errc::invalid_argument, "length exceeds section size"); 900 } 901 902 // Look for a DWARF64-formatted contribution to the string offsets table 903 // starting at a given offset and record it in a descriptor. 904 static Expected<StrOffsetsContributionDescriptor> 905 parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) { 906 if (!DA.isValidOffsetForDataOfSize(Offset, 16)) 907 return createStringError(errc::invalid_argument, "section offset exceeds section size"); 908 909 if (DA.getU32(&Offset) != dwarf::DW_LENGTH_DWARF64) 910 return createStringError(errc::invalid_argument, "32 bit contribution referenced from a 64 bit unit"); 911 912 uint64_t Size = DA.getU64(&Offset); 913 uint8_t Version = DA.getU16(&Offset); 914 (void)DA.getU16(&Offset); // padding 915 // The encoded length includes the 2-byte version field and the 2-byte 916 // padding, so we need to subtract them out when we populate the descriptor. 917 return StrOffsetsContributionDescriptor(Offset, Size - 4, Version, DWARF64); 918 } 919 920 // Look for a DWARF32-formatted contribution to the string offsets table 921 // starting at a given offset and record it in a descriptor. 922 static Expected<StrOffsetsContributionDescriptor> 923 parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) { 924 if (!DA.isValidOffsetForDataOfSize(Offset, 8)) 925 return createStringError(errc::invalid_argument, "section offset exceeds section size"); 926 927 uint32_t ContributionSize = DA.getU32(&Offset); 928 if (ContributionSize >= dwarf::DW_LENGTH_lo_reserved) 929 return createStringError(errc::invalid_argument, "invalid length"); 930 931 uint8_t Version = DA.getU16(&Offset); 932 (void)DA.getU16(&Offset); // padding 933 // The encoded length includes the 2-byte version field and the 2-byte 934 // padding, so we need to subtract them out when we populate the descriptor. 935 return StrOffsetsContributionDescriptor(Offset, ContributionSize - 4, Version, 936 DWARF32); 937 } 938 939 static Expected<StrOffsetsContributionDescriptor> 940 parseDWARFStringOffsetsTableHeader(DWARFDataExtractor &DA, 941 llvm::dwarf::DwarfFormat Format, 942 uint64_t Offset) { 943 StrOffsetsContributionDescriptor Desc; 944 switch (Format) { 945 case dwarf::DwarfFormat::DWARF64: { 946 if (Offset < 16) 947 return createStringError(errc::invalid_argument, "insufficient space for 64 bit header prefix"); 948 auto DescOrError = parseDWARF64StringOffsetsTableHeader(DA, Offset - 16); 949 if (!DescOrError) 950 return DescOrError.takeError(); 951 Desc = *DescOrError; 952 break; 953 } 954 case dwarf::DwarfFormat::DWARF32: { 955 if (Offset < 8) 956 return createStringError(errc::invalid_argument, "insufficient space for 32 bit header prefix"); 957 auto DescOrError = parseDWARF32StringOffsetsTableHeader(DA, Offset - 8); 958 if (!DescOrError) 959 return DescOrError.takeError(); 960 Desc = *DescOrError; 961 break; 962 } 963 } 964 return Desc.validateContributionSize(DA); 965 } 966 967 Expected<Optional<StrOffsetsContributionDescriptor>> 968 DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA) { 969 assert(!IsDWO); 970 auto OptOffset = toSectionOffset(getUnitDIE().find(DW_AT_str_offsets_base)); 971 if (!OptOffset) 972 return None; 973 auto DescOrError = 974 parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), *OptOffset); 975 if (!DescOrError) 976 return DescOrError.takeError(); 977 return *DescOrError; 978 } 979 980 Expected<Optional<StrOffsetsContributionDescriptor>> 981 DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor & DA) { 982 assert(IsDWO); 983 uint64_t Offset = 0; 984 auto IndexEntry = Header.getIndexEntry(); 985 const auto *C = 986 IndexEntry ? IndexEntry->getContribution(DW_SECT_STR_OFFSETS) : nullptr; 987 if (C) 988 Offset = C->Offset; 989 if (getVersion() >= 5) { 990 if (DA.getData().data() == nullptr) 991 return None; 992 Offset += Header.getFormat() == dwarf::DwarfFormat::DWARF32 ? 8 : 16; 993 // Look for a valid contribution at the given offset. 994 auto DescOrError = parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), Offset); 995 if (!DescOrError) 996 return DescOrError.takeError(); 997 return *DescOrError; 998 } 999 // Prior to DWARF v5, we derive the contribution size from the 1000 // index table (in a package file). In a .dwo file it is simply 1001 // the length of the string offsets section. 1002 StrOffsetsContributionDescriptor Desc; 1003 if (C) 1004 Desc = StrOffsetsContributionDescriptor(C->Offset, C->Length, 4, 1005 Header.getFormat()); 1006 else if (!IndexEntry && !StringOffsetSection.Data.empty()) 1007 Desc = StrOffsetsContributionDescriptor(0, StringOffsetSection.Data.size(), 1008 4, Header.getFormat()); 1009 else 1010 return None; 1011 auto DescOrError = Desc.validateContributionSize(DA); 1012 if (!DescOrError) 1013 return DescOrError.takeError(); 1014 return *DescOrError; 1015 } 1016 1017 Optional<uint64_t> DWARFUnit::getRnglistOffset(uint32_t Index) { 1018 DataExtractor RangesData(RangeSection->Data, isLittleEndian, 1019 getAddressByteSize()); 1020 DWARFDataExtractor RangesDA(Context.getDWARFObj(), *RangeSection, 1021 isLittleEndian, 0); 1022 if (Optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry( 1023 RangesData, RangeSectionBase, getFormat(), Index)) 1024 return *Off + RangeSectionBase; 1025 return None; 1026 } 1027 1028 Optional<uint64_t> DWARFUnit::getLoclistOffset(uint32_t Index) { 1029 if (Optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry( 1030 LocTable->getData(), LocSectionBase, getFormat(), Index)) 1031 return *Off + LocSectionBase; 1032 return None; 1033 } 1034