1 //===-- DWARFDebugFrame.h - Parsing of .debug_frame -------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" 11 #include "llvm/ADT/ArrayRef.h" 12 #include "llvm/ADT/DenseMap.h" 13 #include "llvm/ADT/SmallString.h" 14 #include "llvm/Support/Casting.h" 15 #include "llvm/Support/DataTypes.h" 16 #include "llvm/Support/Dwarf.h" 17 #include "llvm/Support/ErrorHandling.h" 18 #include "llvm/Support/Format.h" 19 #include "llvm/Support/raw_ostream.h" 20 #include <string> 21 #include <vector> 22 23 using namespace llvm; 24 using namespace dwarf; 25 26 27 /// \brief Abstract frame entry defining the common interface concrete 28 /// entries implement. 29 class llvm::FrameEntry { 30 public: 31 enum FrameKind {FK_CIE, FK_FDE}; 32 FrameEntry(FrameKind K, uint64_t Offset, uint64_t Length) 33 : Kind(K), Offset(Offset), Length(Length) {} 34 35 virtual ~FrameEntry() { 36 } 37 38 FrameKind getKind() const { return Kind; } 39 virtual uint64_t getOffset() const { return Offset; } 40 41 /// \brief Parse and store a sequence of CFI instructions from Data, 42 /// starting at *Offset and ending at EndOffset. If everything 43 /// goes well, *Offset should be equal to EndOffset when this method 44 /// returns. Otherwise, an error occurred. 45 virtual void parseInstructions(DataExtractor Data, uint32_t *Offset, 46 uint32_t EndOffset); 47 48 /// \brief Dump the entry header to the given output stream. 49 virtual void dumpHeader(raw_ostream &OS) const = 0; 50 51 /// \brief Dump the entry's instructions to the given output stream. 52 virtual void dumpInstructions(raw_ostream &OS) const; 53 54 protected: 55 const FrameKind Kind; 56 57 /// \brief Offset of this entry in the section. 58 uint64_t Offset; 59 60 /// \brief Entry length as specified in DWARF. 61 uint64_t Length; 62 63 /// An entry may contain CFI instructions. An instruction consists of an 64 /// opcode and an optional sequence of operands. 65 typedef std::vector<uint64_t> Operands; 66 struct Instruction { 67 Instruction(uint8_t Opcode) 68 : Opcode(Opcode) 69 {} 70 71 uint8_t Opcode; 72 Operands Ops; 73 }; 74 75 std::vector<Instruction> Instructions; 76 77 /// Convenience methods to add a new instruction with the given opcode and 78 /// operands to the Instructions vector. 79 void addInstruction(uint8_t Opcode) { 80 Instructions.push_back(Instruction(Opcode)); 81 } 82 83 void addInstruction(uint8_t Opcode, uint64_t Operand1) { 84 Instructions.push_back(Instruction(Opcode)); 85 Instructions.back().Ops.push_back(Operand1); 86 } 87 88 void addInstruction(uint8_t Opcode, uint64_t Operand1, uint64_t Operand2) { 89 Instructions.push_back(Instruction(Opcode)); 90 Instructions.back().Ops.push_back(Operand1); 91 Instructions.back().Ops.push_back(Operand2); 92 } 93 }; 94 95 96 // See DWARF standard v3, section 7.23 97 const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0; 98 const uint8_t DWARF_CFI_PRIMARY_OPERAND_MASK = 0x3f; 99 100 void FrameEntry::parseInstructions(DataExtractor Data, uint32_t *Offset, 101 uint32_t EndOffset) { 102 while (*Offset < EndOffset) { 103 uint8_t Opcode = Data.getU8(Offset); 104 // Some instructions have a primary opcode encoded in the top bits. 105 uint8_t Primary = Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK; 106 107 if (Primary) { 108 // If it's a primary opcode, the first operand is encoded in the bottom 109 // bits of the opcode itself. 110 uint64_t Op1 = Opcode & DWARF_CFI_PRIMARY_OPERAND_MASK; 111 switch (Primary) { 112 default: llvm_unreachable("Impossible primary CFI opcode"); 113 case DW_CFA_advance_loc: 114 case DW_CFA_restore: 115 addInstruction(Primary, Op1); 116 break; 117 case DW_CFA_offset: 118 addInstruction(Primary, Op1, Data.getULEB128(Offset)); 119 break; 120 } 121 } else { 122 // Extended opcode - its value is Opcode itself. 123 switch (Opcode) { 124 default: llvm_unreachable("Invalid extended CFI opcode"); 125 case DW_CFA_nop: 126 case DW_CFA_remember_state: 127 case DW_CFA_restore_state: 128 case DW_CFA_GNU_window_save: 129 // No operands 130 addInstruction(Opcode); 131 break; 132 case DW_CFA_set_loc: 133 // Operands: Address 134 addInstruction(Opcode, Data.getAddress(Offset)); 135 break; 136 case DW_CFA_advance_loc1: 137 // Operands: 1-byte delta 138 addInstruction(Opcode, Data.getU8(Offset)); 139 break; 140 case DW_CFA_advance_loc2: 141 // Operands: 2-byte delta 142 addInstruction(Opcode, Data.getU16(Offset)); 143 break; 144 case DW_CFA_advance_loc4: 145 // Operands: 4-byte delta 146 addInstruction(Opcode, Data.getU32(Offset)); 147 break; 148 case DW_CFA_restore_extended: 149 case DW_CFA_undefined: 150 case DW_CFA_same_value: 151 case DW_CFA_def_cfa_register: 152 case DW_CFA_def_cfa_offset: 153 // Operands: ULEB128 154 addInstruction(Opcode, Data.getULEB128(Offset)); 155 break; 156 case DW_CFA_def_cfa_offset_sf: 157 // Operands: SLEB128 158 addInstruction(Opcode, Data.getSLEB128(Offset)); 159 break; 160 case DW_CFA_offset_extended: 161 case DW_CFA_register: 162 case DW_CFA_def_cfa: 163 case DW_CFA_val_offset: 164 // Operands: ULEB128, ULEB128 165 addInstruction(Opcode, Data.getULEB128(Offset), 166 Data.getULEB128(Offset)); 167 break; 168 case DW_CFA_offset_extended_sf: 169 case DW_CFA_def_cfa_sf: 170 case DW_CFA_val_offset_sf: 171 // Operands: ULEB128, SLEB128 172 addInstruction(Opcode, Data.getULEB128(Offset), 173 Data.getSLEB128(Offset)); 174 break; 175 case DW_CFA_def_cfa_expression: 176 case DW_CFA_expression: 177 case DW_CFA_val_expression: 178 // TODO: implement this 179 report_fatal_error("Values with expressions not implemented yet!"); 180 } 181 } 182 } 183 } 184 185 namespace { 186 /// \brief DWARF Common Information Entry (CIE) 187 class CIE : public FrameEntry { 188 public: 189 // CIEs (and FDEs) are simply container classes, so the only sensible way to 190 // create them is by providing the full parsed contents in the constructor. 191 CIE(uint64_t Offset, uint64_t Length, uint8_t Version, 192 SmallString<8> Augmentation, uint64_t CodeAlignmentFactor, 193 int64_t DataAlignmentFactor, uint64_t ReturnAddressRegister) 194 : FrameEntry(FK_CIE, Offset, Length), Version(Version), 195 Augmentation(std::move(Augmentation)), 196 CodeAlignmentFactor(CodeAlignmentFactor), 197 DataAlignmentFactor(DataAlignmentFactor), 198 ReturnAddressRegister(ReturnAddressRegister) {} 199 200 ~CIE() { 201 } 202 203 uint64_t getCodeAlignmentFactor() const { return CodeAlignmentFactor; } 204 int64_t getDataAlignmentFactor() const { return DataAlignmentFactor; } 205 206 void dumpHeader(raw_ostream &OS) const override { 207 OS << format("%08x %08x %08x CIE", 208 (uint32_t)Offset, (uint32_t)Length, DW_CIE_ID) 209 << "\n"; 210 OS << format(" Version: %d\n", Version); 211 OS << " Augmentation: \"" << Augmentation << "\"\n"; 212 OS << format(" Code alignment factor: %u\n", 213 (uint32_t)CodeAlignmentFactor); 214 OS << format(" Data alignment factor: %d\n", 215 (int32_t)DataAlignmentFactor); 216 OS << format(" Return address column: %d\n", 217 (int32_t)ReturnAddressRegister); 218 OS << "\n"; 219 } 220 221 static bool classof(const FrameEntry *FE) { 222 return FE->getKind() == FK_CIE; 223 } 224 225 private: 226 /// The following fields are defined in section 6.4.1 of the DWARF standard v3 227 uint8_t Version; 228 SmallString<8> Augmentation; 229 uint64_t CodeAlignmentFactor; 230 int64_t DataAlignmentFactor; 231 uint64_t ReturnAddressRegister; 232 }; 233 234 235 /// \brief DWARF Frame Description Entry (FDE) 236 class FDE : public FrameEntry { 237 public: 238 // Each FDE has a CIE it's "linked to". Our FDE contains is constructed with 239 // an offset to the CIE (provided by parsing the FDE header). The CIE itself 240 // is obtained lazily once it's actually required. 241 FDE(uint64_t Offset, uint64_t Length, int64_t LinkedCIEOffset, 242 uint64_t InitialLocation, uint64_t AddressRange, 243 CIE *Cie) 244 : FrameEntry(FK_FDE, Offset, Length), LinkedCIEOffset(LinkedCIEOffset), 245 InitialLocation(InitialLocation), AddressRange(AddressRange), 246 LinkedCIE(Cie) {} 247 248 ~FDE() { 249 } 250 251 CIE *getLinkedCIE() const { return LinkedCIE; } 252 253 void dumpHeader(raw_ostream &OS) const override { 254 OS << format("%08x %08x %08x FDE ", 255 (uint32_t)Offset, (uint32_t)Length, (int32_t)LinkedCIEOffset); 256 OS << format("cie=%08x pc=%08x...%08x\n", 257 (int32_t)LinkedCIEOffset, 258 (uint32_t)InitialLocation, 259 (uint32_t)InitialLocation + (uint32_t)AddressRange); 260 } 261 262 static bool classof(const FrameEntry *FE) { 263 return FE->getKind() == FK_FDE; 264 } 265 266 private: 267 /// The following fields are defined in section 6.4.1 of the DWARF standard v3 268 uint64_t LinkedCIEOffset; 269 uint64_t InitialLocation; 270 uint64_t AddressRange; 271 CIE *LinkedCIE; 272 }; 273 274 /// \brief Types of operands to CF instructions. 275 enum OperandType { 276 OT_Unset, 277 OT_None, 278 OT_Address, 279 OT_Offset, 280 OT_FactoredCodeOffset, 281 OT_SignedFactDataOffset, 282 OT_UnsignedFactDataOffset, 283 OT_Register, 284 OT_Expression 285 }; 286 287 } // end anonymous namespace 288 289 /// \brief Initialize the array describing the types of operands. 290 static ArrayRef<OperandType[2]> getOperandTypes() { 291 static OperandType OpTypes[DW_CFA_restore+1][2]; 292 293 #define DECLARE_OP2(OP, OPTYPE0, OPTYPE1) \ 294 do { \ 295 OpTypes[OP][0] = OPTYPE0; \ 296 OpTypes[OP][1] = OPTYPE1; \ 297 } while (0) 298 #define DECLARE_OP1(OP, OPTYPE0) DECLARE_OP2(OP, OPTYPE0, OT_None) 299 #define DECLARE_OP0(OP) DECLARE_OP1(OP, OT_None) 300 301 DECLARE_OP1(DW_CFA_set_loc, OT_Address); 302 DECLARE_OP1(DW_CFA_advance_loc, OT_FactoredCodeOffset); 303 DECLARE_OP1(DW_CFA_advance_loc1, OT_FactoredCodeOffset); 304 DECLARE_OP1(DW_CFA_advance_loc2, OT_FactoredCodeOffset); 305 DECLARE_OP1(DW_CFA_advance_loc4, OT_FactoredCodeOffset); 306 DECLARE_OP1(DW_CFA_MIPS_advance_loc8, OT_FactoredCodeOffset); 307 DECLARE_OP2(DW_CFA_def_cfa, OT_Register, OT_Offset); 308 DECLARE_OP2(DW_CFA_def_cfa_sf, OT_Register, OT_SignedFactDataOffset); 309 DECLARE_OP1(DW_CFA_def_cfa_register, OT_Register); 310 DECLARE_OP1(DW_CFA_def_cfa_offset, OT_Offset); 311 DECLARE_OP1(DW_CFA_def_cfa_offset_sf, OT_SignedFactDataOffset); 312 DECLARE_OP1(DW_CFA_def_cfa_expression, OT_Expression); 313 DECLARE_OP1(DW_CFA_undefined, OT_Register); 314 DECLARE_OP1(DW_CFA_same_value, OT_Register); 315 DECLARE_OP2(DW_CFA_offset, OT_Register, OT_UnsignedFactDataOffset); 316 DECLARE_OP2(DW_CFA_offset_extended, OT_Register, OT_UnsignedFactDataOffset); 317 DECLARE_OP2(DW_CFA_offset_extended_sf, OT_Register, OT_SignedFactDataOffset); 318 DECLARE_OP2(DW_CFA_val_offset, OT_Register, OT_UnsignedFactDataOffset); 319 DECLARE_OP2(DW_CFA_val_offset_sf, OT_Register, OT_SignedFactDataOffset); 320 DECLARE_OP2(DW_CFA_register, OT_Register, OT_Register); 321 DECLARE_OP2(DW_CFA_expression, OT_Register, OT_Expression); 322 DECLARE_OP2(DW_CFA_val_expression, OT_Register, OT_Expression); 323 DECLARE_OP1(DW_CFA_restore, OT_Register); 324 DECLARE_OP1(DW_CFA_restore_extended, OT_Register); 325 DECLARE_OP0(DW_CFA_remember_state); 326 DECLARE_OP0(DW_CFA_restore_state); 327 DECLARE_OP0(DW_CFA_GNU_window_save); 328 DECLARE_OP1(DW_CFA_GNU_args_size, OT_Offset); 329 DECLARE_OP0(DW_CFA_nop); 330 331 #undef DECLARE_OP0 332 #undef DECLARE_OP1 333 #undef DECLARE_OP2 334 return ArrayRef<OperandType[2]>(&OpTypes[0], DW_CFA_restore+1); 335 } 336 337 static ArrayRef<OperandType[2]> OpTypes = getOperandTypes(); 338 339 /// \brief Print \p Opcode's operand number \p OperandIdx which has 340 /// value \p Operand. 341 static void printOperand(raw_ostream &OS, uint8_t Opcode, unsigned OperandIdx, 342 uint64_t Operand, uint64_t CodeAlignmentFactor, 343 int64_t DataAlignmentFactor) { 344 assert(OperandIdx < 2); 345 OperandType Type = OpTypes[Opcode][OperandIdx]; 346 347 switch (Type) { 348 case OT_Unset: 349 OS << " Unsupported " << (OperandIdx ? "second" : "first") << " operand to"; 350 if (const char *OpcodeName = CallFrameString(Opcode)) 351 OS << " " << OpcodeName; 352 else 353 OS << format(" Opcode %x", Opcode); 354 break; 355 case OT_None: 356 break; 357 case OT_Address: 358 OS << format(" %" PRIx64, Operand); 359 break; 360 case OT_Offset: 361 // The offsets are all encoded in a unsigned form, but in practice 362 // consumers use them signed. It's most certainly legacy due to 363 // the lack of signed variants in the first Dwarf standards. 364 OS << format(" %+" PRId64, int64_t(Operand)); 365 break; 366 case OT_FactoredCodeOffset: // Always Unsigned 367 if (CodeAlignmentFactor) 368 OS << format(" %" PRId64, Operand * CodeAlignmentFactor); 369 else 370 OS << format(" %" PRId64 "*code_alignment_factor" , Operand); 371 break; 372 case OT_SignedFactDataOffset: 373 if (DataAlignmentFactor) 374 OS << format(" %" PRId64, int64_t(Operand) * DataAlignmentFactor); 375 else 376 OS << format(" %" PRId64 "*data_alignment_factor" , int64_t(Operand)); 377 break; 378 case OT_UnsignedFactDataOffset: 379 if (DataAlignmentFactor) 380 OS << format(" %" PRId64, Operand * DataAlignmentFactor); 381 else 382 OS << format(" %" PRId64 "*data_alignment_factor" , Operand); 383 break; 384 case OT_Register: 385 OS << format(" reg%" PRId64, Operand); 386 break; 387 case OT_Expression: 388 OS << " expression"; 389 break; 390 } 391 } 392 393 void FrameEntry::dumpInstructions(raw_ostream &OS) const { 394 uint64_t CodeAlignmentFactor = 0; 395 int64_t DataAlignmentFactor = 0; 396 const CIE *Cie = dyn_cast<CIE>(this); 397 398 if (!Cie) 399 Cie = cast<FDE>(this)->getLinkedCIE(); 400 if (Cie) { 401 CodeAlignmentFactor = Cie->getCodeAlignmentFactor(); 402 DataAlignmentFactor = Cie->getDataAlignmentFactor(); 403 } 404 405 for (const auto &Instr : Instructions) { 406 uint8_t Opcode = Instr.Opcode; 407 if (Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK) 408 Opcode &= DWARF_CFI_PRIMARY_OPCODE_MASK; 409 OS << " " << CallFrameString(Opcode) << ":"; 410 for (unsigned i = 0; i < Instr.Ops.size(); ++i) 411 printOperand(OS, Opcode, i, Instr.Ops[i], CodeAlignmentFactor, 412 DataAlignmentFactor); 413 OS << '\n'; 414 } 415 } 416 417 DWARFDebugFrame::DWARFDebugFrame() { 418 } 419 420 DWARFDebugFrame::~DWARFDebugFrame() { 421 } 422 423 static void LLVM_ATTRIBUTE_UNUSED dumpDataAux(DataExtractor Data, 424 uint32_t Offset, int Length) { 425 errs() << "DUMP: "; 426 for (int i = 0; i < Length; ++i) { 427 uint8_t c = Data.getU8(&Offset); 428 errs().write_hex(c); errs() << " "; 429 } 430 errs() << "\n"; 431 } 432 433 434 void DWARFDebugFrame::parse(DataExtractor Data) { 435 uint32_t Offset = 0; 436 DenseMap<uint32_t, CIE *> CIEs; 437 438 while (Data.isValidOffset(Offset)) { 439 uint32_t StartOffset = Offset; 440 441 bool IsDWARF64 = false; 442 uint64_t Length = Data.getU32(&Offset); 443 uint64_t Id; 444 445 if (Length == UINT32_MAX) { 446 // DWARF-64 is distinguished by the first 32 bits of the initial length 447 // field being 0xffffffff. Then, the next 64 bits are the actual entry 448 // length. 449 IsDWARF64 = true; 450 Length = Data.getU64(&Offset); 451 } 452 453 // At this point, Offset points to the next field after Length. 454 // Length is the structure size excluding itself. Compute an offset one 455 // past the end of the structure (needed to know how many instructions to 456 // read). 457 // TODO: For honest DWARF64 support, DataExtractor will have to treat 458 // offset_ptr as uint64_t* 459 uint32_t EndStructureOffset = Offset + static_cast<uint32_t>(Length); 460 461 // The Id field's size depends on the DWARF format 462 Id = Data.getUnsigned(&Offset, IsDWARF64 ? 8 : 4); 463 bool IsCIE = ((IsDWARF64 && Id == DW64_CIE_ID) || Id == DW_CIE_ID); 464 465 if (IsCIE) { 466 // Note: this is specifically DWARFv3 CIE header structure. It was 467 // changed in DWARFv4. We currently don't support reading DWARFv4 468 // here because LLVM itself does not emit it (and LLDB doesn't 469 // support it either). 470 uint8_t Version = Data.getU8(&Offset); 471 const char *Augmentation = Data.getCStr(&Offset); 472 uint64_t CodeAlignmentFactor = Data.getULEB128(&Offset); 473 int64_t DataAlignmentFactor = Data.getSLEB128(&Offset); 474 uint64_t ReturnAddressRegister = Data.getULEB128(&Offset); 475 476 auto Cie = make_unique<CIE>(StartOffset, Length, Version, 477 StringRef(Augmentation), CodeAlignmentFactor, 478 DataAlignmentFactor, ReturnAddressRegister); 479 CIEs[StartOffset] = Cie.get(); 480 Entries.emplace_back(std::move(Cie)); 481 } else { 482 // FDE 483 uint64_t CIEPointer = Id; 484 uint64_t InitialLocation = Data.getAddress(&Offset); 485 uint64_t AddressRange = Data.getAddress(&Offset); 486 487 Entries.emplace_back(new FDE(StartOffset, Length, CIEPointer, 488 InitialLocation, AddressRange, 489 CIEs[CIEPointer])); 490 } 491 492 Entries.back()->parseInstructions(Data, &Offset, EndStructureOffset); 493 494 if (Offset != EndStructureOffset) { 495 std::string Str; 496 raw_string_ostream OS(Str); 497 OS << format("Parsing entry instructions at %lx failed", StartOffset); 498 report_fatal_error(Str); 499 } 500 } 501 } 502 503 504 void DWARFDebugFrame::dump(raw_ostream &OS) const { 505 OS << "\n"; 506 for (const auto &Entry : Entries) { 507 Entry->dumpHeader(OS); 508 Entry->dumpInstructions(OS); 509 OS << "\n"; 510 } 511 } 512 513