1 //===- DWARFDebugFrame.h - Parsing of .debug_frame ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/Optional.h" 12 #include "llvm/ADT/StringExtras.h" 13 #include "llvm/ADT/StringRef.h" 14 #include "llvm/BinaryFormat/Dwarf.h" 15 #include "llvm/MC/MCRegisterInfo.h" 16 #include "llvm/Support/Casting.h" 17 #include "llvm/Support/Compiler.h" 18 #include "llvm/Support/DataExtractor.h" 19 #include "llvm/Support/Errc.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/Support/Format.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include <algorithm> 24 #include <cassert> 25 #include <cinttypes> 26 #include <cstdint> 27 #include <string> 28 29 using namespace llvm; 30 using namespace dwarf; 31 32 static void printRegister(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH, 33 unsigned RegNum) { 34 if (MRI) { 35 if (Optional<unsigned> LLVMRegNum = MRI->getLLVMRegNum(RegNum, IsEH)) { 36 if (const char *RegName = MRI->getName(*LLVMRegNum)) { 37 OS << RegName; 38 return; 39 } 40 } 41 } 42 OS << "reg" << RegNum; 43 } 44 45 UnwindLocation UnwindLocation::createUnspecified() { return {Unspecified}; } 46 47 UnwindLocation UnwindLocation::createUndefined() { return {Undefined}; } 48 49 UnwindLocation UnwindLocation::createSame() { return {Same}; } 50 51 UnwindLocation UnwindLocation::createIsConstant(int32_t Value) { 52 return {Constant, InvalidRegisterNumber, Value, false}; 53 } 54 55 UnwindLocation UnwindLocation::createIsCFAPlusOffset(int32_t Offset) { 56 return {CFAPlusOffset, InvalidRegisterNumber, Offset, false}; 57 } 58 59 UnwindLocation UnwindLocation::createAtCFAPlusOffset(int32_t Offset) { 60 return {CFAPlusOffset, InvalidRegisterNumber, Offset, true}; 61 } 62 63 UnwindLocation UnwindLocation::createIsRegisterPlusOffset(uint32_t RegNum, 64 int32_t Offset) { 65 return {RegPlusOffset, RegNum, Offset, false}; 66 } 67 UnwindLocation UnwindLocation::createAtRegisterPlusOffset(uint32_t RegNum, 68 int32_t Offset) { 69 return {RegPlusOffset, RegNum, Offset, true}; 70 } 71 72 UnwindLocation UnwindLocation::createIsDWARFExpression(DWARFExpression Expr) { 73 return {Expr, false}; 74 } 75 76 UnwindLocation UnwindLocation::createAtDWARFExpression(DWARFExpression Expr) { 77 return {Expr, true}; 78 } 79 80 void UnwindLocation::dump(raw_ostream &OS, const MCRegisterInfo *MRI, 81 bool IsEH) const { 82 if (Dereference) 83 OS << '['; 84 switch (Kind) { 85 case Unspecified: 86 OS << "unspecified"; 87 break; 88 case Undefined: 89 OS << "undefined"; 90 break; 91 case Same: 92 OS << "same"; 93 break; 94 case CFAPlusOffset: 95 OS << "CFA"; 96 if (Offset == 0) 97 break; 98 if (Offset > 0) 99 OS << "+"; 100 OS << Offset; 101 break; 102 case RegPlusOffset: 103 printRegister(OS, MRI, IsEH, RegNum); 104 if (Offset == 0) 105 break; 106 if (Offset > 0) 107 OS << "+"; 108 OS << Offset; 109 break; 110 case DWARFExpr: 111 Expr->print(OS, DIDumpOptions(), MRI, nullptr, IsEH); 112 break; 113 case Constant: 114 OS << Offset; 115 break; 116 } 117 if (Dereference) 118 OS << ']'; 119 } 120 121 raw_ostream &llvm::dwarf::operator<<(raw_ostream &OS, 122 const UnwindLocation &UL) { 123 UL.dump(OS, nullptr, false); 124 return OS; 125 } 126 127 bool UnwindLocation::operator==(const UnwindLocation &RHS) const { 128 if (Kind != RHS.Kind) 129 return false; 130 switch (Kind) { 131 case Unspecified: 132 case Undefined: 133 case Same: 134 return true; 135 case CFAPlusOffset: 136 return Offset == RHS.Offset && Dereference == RHS.Dereference; 137 case RegPlusOffset: 138 return RegNum == RHS.RegNum && Offset == RHS.Offset && 139 Dereference == RHS.Dereference; 140 case DWARFExpr: 141 return *Expr == *RHS.Expr && Dereference == RHS.Dereference; 142 case Constant: 143 return Offset == RHS.Offset; 144 } 145 return false; 146 } 147 148 void RegisterLocations::dump(raw_ostream &OS, const MCRegisterInfo *MRI, 149 bool IsEH) const { 150 bool First = true; 151 for (const auto &RegLocPair : Locations) { 152 if (First) 153 First = false; 154 else 155 OS << ", "; 156 printRegister(OS, MRI, IsEH, RegLocPair.first); 157 OS << '='; 158 RegLocPair.second.dump(OS, MRI, IsEH); 159 } 160 } 161 162 raw_ostream &llvm::dwarf::operator<<(raw_ostream &OS, 163 const RegisterLocations &RL) { 164 RL.dump(OS, nullptr, false); 165 return OS; 166 } 167 168 void UnwindRow::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH, 169 unsigned IndentLevel) const { 170 OS.indent(2 * IndentLevel); 171 if (hasAddress()) 172 OS << format("0x%" PRIx64 ": ", *Address); 173 OS << "CFA="; 174 CFAValue.dump(OS, MRI, IsEH); 175 if (RegLocs.hasLocations()) { 176 OS << ": "; 177 RegLocs.dump(OS, MRI, IsEH); 178 } 179 OS << "\n"; 180 } 181 182 raw_ostream &llvm::dwarf::operator<<(raw_ostream &OS, const UnwindRow &Row) { 183 Row.dump(OS, nullptr, false, 0); 184 return OS; 185 } 186 187 void UnwindTable::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH, 188 unsigned IndentLevel) const { 189 for (const UnwindRow &Row : Rows) 190 Row.dump(OS, MRI, IsEH, IndentLevel); 191 } 192 193 raw_ostream &llvm::dwarf::operator<<(raw_ostream &OS, const UnwindTable &Rows) { 194 Rows.dump(OS, nullptr, false, 0); 195 return OS; 196 } 197 198 Expected<UnwindTable> UnwindTable::create(const FDE *Fde) { 199 UnwindTable UT; 200 UnwindRow Row; 201 Row.setAddress(Fde->getInitialLocation()); 202 UT.EndAddress = Fde->getInitialLocation() + Fde->getAddressRange(); 203 204 const CIE *Cie = Fde->getLinkedCIE(); 205 if (Cie == nullptr) 206 return createStringError(errc::invalid_argument, 207 "unable to get CIE for FDE at offset 0x%" PRIx64, 208 Fde->getOffset()); 209 210 if (Error CieError = UT.parseRows(Cie->cfis(), Row, nullptr)) 211 return std::move(CieError); 212 // We need to save the initial locations of registers from the CIE parsing 213 // in case we run into DW_CFA_restore or DW_CFA_restore_extended opcodes. 214 const RegisterLocations InitialLocs = Row.getRegisterLocations(); 215 if (Error FdeError = UT.parseRows(Fde->cfis(), Row, &InitialLocs)) 216 return std::move(FdeError); 217 UT.Rows.push_back(Row); 218 return UT; 219 } 220 221 Expected<UnwindTable> UnwindTable::create(const CIE *Cie) { 222 UnwindTable UT; 223 UnwindRow Row; 224 if (Error CieError = UT.parseRows(Cie->cfis(), Row, nullptr)) 225 return std::move(CieError); 226 UT.Rows.push_back(Row); 227 return UT; 228 } 229 230 // See DWARF standard v3, section 7.23 231 const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0; 232 const uint8_t DWARF_CFI_PRIMARY_OPERAND_MASK = 0x3f; 233 234 Error CFIProgram::parse(DWARFDataExtractor Data, uint64_t *Offset, 235 uint64_t EndOffset) { 236 DataExtractor::Cursor C(*Offset); 237 while (C && C.tell() < EndOffset) { 238 uint8_t Opcode = Data.getRelocatedValue(C, 1); 239 if (!C) 240 break; 241 242 // Some instructions have a primary opcode encoded in the top bits. 243 if (uint8_t Primary = Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK) { 244 // If it's a primary opcode, the first operand is encoded in the bottom 245 // bits of the opcode itself. 246 uint64_t Op1 = Opcode & DWARF_CFI_PRIMARY_OPERAND_MASK; 247 switch (Primary) { 248 case DW_CFA_advance_loc: 249 case DW_CFA_restore: 250 addInstruction(Primary, Op1); 251 break; 252 case DW_CFA_offset: 253 addInstruction(Primary, Op1, Data.getULEB128(C)); 254 break; 255 default: 256 llvm_unreachable("invalid primary CFI opcode"); 257 } 258 continue; 259 } 260 261 // Extended opcode - its value is Opcode itself. 262 switch (Opcode) { 263 default: 264 return createStringError(errc::illegal_byte_sequence, 265 "invalid extended CFI opcode 0x%" PRIx8, Opcode); 266 case DW_CFA_nop: 267 case DW_CFA_remember_state: 268 case DW_CFA_restore_state: 269 case DW_CFA_GNU_window_save: 270 // No operands 271 addInstruction(Opcode); 272 break; 273 case DW_CFA_set_loc: 274 // Operands: Address 275 addInstruction(Opcode, Data.getRelocatedAddress(C)); 276 break; 277 case DW_CFA_advance_loc1: 278 // Operands: 1-byte delta 279 addInstruction(Opcode, Data.getRelocatedValue(C, 1)); 280 break; 281 case DW_CFA_advance_loc2: 282 // Operands: 2-byte delta 283 addInstruction(Opcode, Data.getRelocatedValue(C, 2)); 284 break; 285 case DW_CFA_advance_loc4: 286 // Operands: 4-byte delta 287 addInstruction(Opcode, Data.getRelocatedValue(C, 4)); 288 break; 289 case DW_CFA_restore_extended: 290 case DW_CFA_undefined: 291 case DW_CFA_same_value: 292 case DW_CFA_def_cfa_register: 293 case DW_CFA_def_cfa_offset: 294 case DW_CFA_GNU_args_size: 295 // Operands: ULEB128 296 addInstruction(Opcode, Data.getULEB128(C)); 297 break; 298 case DW_CFA_def_cfa_offset_sf: 299 // Operands: SLEB128 300 addInstruction(Opcode, Data.getSLEB128(C)); 301 break; 302 case DW_CFA_offset_extended: 303 case DW_CFA_register: 304 case DW_CFA_def_cfa: 305 case DW_CFA_val_offset: { 306 // Operands: ULEB128, ULEB128 307 // Note: We can not embed getULEB128 directly into function 308 // argument list. getULEB128 changes Offset and order of evaluation 309 // for arguments is unspecified. 310 uint64_t op1 = Data.getULEB128(C); 311 uint64_t op2 = Data.getULEB128(C); 312 addInstruction(Opcode, op1, op2); 313 break; 314 } 315 case DW_CFA_offset_extended_sf: 316 case DW_CFA_def_cfa_sf: 317 case DW_CFA_val_offset_sf: { 318 // Operands: ULEB128, SLEB128 319 // Note: see comment for the previous case 320 uint64_t op1 = Data.getULEB128(C); 321 uint64_t op2 = (uint64_t)Data.getSLEB128(C); 322 addInstruction(Opcode, op1, op2); 323 break; 324 } 325 case DW_CFA_def_cfa_expression: { 326 uint64_t ExprLength = Data.getULEB128(C); 327 addInstruction(Opcode, 0); 328 StringRef Expression = Data.getBytes(C, ExprLength); 329 330 DataExtractor Extractor(Expression, Data.isLittleEndian(), 331 Data.getAddressSize()); 332 // Note. We do not pass the DWARF format to DWARFExpression, because 333 // DW_OP_call_ref, the only operation which depends on the format, is 334 // prohibited in call frame instructions, see sec. 6.4.2 in DWARFv5. 335 Instructions.back().Expression = 336 DWARFExpression(Extractor, Data.getAddressSize()); 337 break; 338 } 339 case DW_CFA_expression: 340 case DW_CFA_val_expression: { 341 uint64_t RegNum = Data.getULEB128(C); 342 addInstruction(Opcode, RegNum, 0); 343 344 uint64_t BlockLength = Data.getULEB128(C); 345 StringRef Expression = Data.getBytes(C, BlockLength); 346 DataExtractor Extractor(Expression, Data.isLittleEndian(), 347 Data.getAddressSize()); 348 // Note. We do not pass the DWARF format to DWARFExpression, because 349 // DW_OP_call_ref, the only operation which depends on the format, is 350 // prohibited in call frame instructions, see sec. 6.4.2 in DWARFv5. 351 Instructions.back().Expression = 352 DWARFExpression(Extractor, Data.getAddressSize()); 353 break; 354 } 355 } 356 } 357 358 *Offset = C.tell(); 359 return C.takeError(); 360 } 361 362 StringRef CFIProgram::callFrameString(unsigned Opcode) const { 363 return dwarf::CallFrameString(Opcode, Arch); 364 } 365 366 const char *CFIProgram::operandTypeString(CFIProgram::OperandType OT) { 367 #define ENUM_TO_CSTR(e) \ 368 case e: \ 369 return #e; 370 switch (OT) { 371 ENUM_TO_CSTR(OT_Unset); 372 ENUM_TO_CSTR(OT_None); 373 ENUM_TO_CSTR(OT_Address); 374 ENUM_TO_CSTR(OT_Offset); 375 ENUM_TO_CSTR(OT_FactoredCodeOffset); 376 ENUM_TO_CSTR(OT_SignedFactDataOffset); 377 ENUM_TO_CSTR(OT_UnsignedFactDataOffset); 378 ENUM_TO_CSTR(OT_Register); 379 ENUM_TO_CSTR(OT_Expression); 380 } 381 return "<unknown CFIProgram::OperandType>"; 382 } 383 384 llvm::Expected<uint64_t> 385 CFIProgram::Instruction::getOperandAsUnsigned(const CFIProgram &CFIP, 386 uint32_t OperandIdx) const { 387 if (OperandIdx >= 2) 388 return createStringError(errc::invalid_argument, 389 "operand index %" PRIu32 " is not valid", 390 OperandIdx); 391 OperandType Type = CFIP.getOperandTypes()[Opcode][OperandIdx]; 392 uint64_t Operand = Ops[OperandIdx]; 393 switch (Type) { 394 case OT_Unset: 395 case OT_None: 396 case OT_Expression: 397 return createStringError(errc::invalid_argument, 398 "op[%" PRIu32 "] has type %s which has no value", 399 OperandIdx, CFIProgram::operandTypeString(Type)); 400 401 case OT_Offset: 402 case OT_SignedFactDataOffset: 403 case OT_UnsignedFactDataOffset: 404 return createStringError( 405 errc::invalid_argument, 406 "op[%" PRIu32 "] has OperandType OT_Offset which produces a signed " 407 "result, call getOperandAsSigned instead", 408 OperandIdx); 409 410 case OT_Address: 411 case OT_Register: 412 return Operand; 413 414 case OT_FactoredCodeOffset: { 415 const uint64_t CodeAlignmentFactor = CFIP.codeAlign(); 416 if (CodeAlignmentFactor == 0) 417 return createStringError( 418 errc::invalid_argument, 419 "op[%" PRIu32 "] has type OT_FactoredCodeOffset but code alignment " 420 "is zero", 421 OperandIdx); 422 return Operand * CodeAlignmentFactor; 423 } 424 } 425 llvm_unreachable("invalid operand type"); 426 } 427 428 llvm::Expected<int64_t> 429 CFIProgram::Instruction::getOperandAsSigned(const CFIProgram &CFIP, 430 uint32_t OperandIdx) const { 431 if (OperandIdx >= 2) 432 return createStringError(errc::invalid_argument, 433 "operand index %" PRIu32 " is not valid", 434 OperandIdx); 435 OperandType Type = CFIP.getOperandTypes()[Opcode][OperandIdx]; 436 uint64_t Operand = Ops[OperandIdx]; 437 switch (Type) { 438 case OT_Unset: 439 case OT_None: 440 case OT_Expression: 441 return createStringError(errc::invalid_argument, 442 "op[%" PRIu32 "] has type %s which has no value", 443 OperandIdx, CFIProgram::operandTypeString(Type)); 444 445 case OT_Address: 446 case OT_Register: 447 return createStringError( 448 errc::invalid_argument, 449 "op[%" PRIu32 "] has OperandType %s which produces an unsigned result, " 450 "call getOperandAsUnsigned instead", 451 OperandIdx, CFIProgram::operandTypeString(Type)); 452 453 case OT_Offset: 454 return (int64_t)Operand; 455 456 case OT_FactoredCodeOffset: 457 case OT_SignedFactDataOffset: { 458 const int64_t DataAlignmentFactor = CFIP.dataAlign(); 459 if (DataAlignmentFactor == 0) 460 return createStringError(errc::invalid_argument, 461 "op[%" PRIu32 "] has type %s but data " 462 "alignment is zero", 463 OperandIdx, CFIProgram::operandTypeString(Type)); 464 return int64_t(Operand) * DataAlignmentFactor; 465 } 466 467 case OT_UnsignedFactDataOffset: { 468 const int64_t DataAlignmentFactor = CFIP.dataAlign(); 469 if (DataAlignmentFactor == 0) 470 return createStringError(errc::invalid_argument, 471 "op[%" PRIu32 472 "] has type OT_UnsignedFactDataOffset but data " 473 "alignment is zero", 474 OperandIdx); 475 return Operand * DataAlignmentFactor; 476 } 477 } 478 llvm_unreachable("invalid operand type"); 479 } 480 481 Error UnwindTable::parseRows(const CFIProgram &CFIP, UnwindRow &Row, 482 const RegisterLocations *InitialLocs) { 483 std::vector<RegisterLocations> RegisterStates; 484 for (const CFIProgram::Instruction &Inst : CFIP) { 485 switch (Inst.Opcode) { 486 case dwarf::DW_CFA_set_loc: { 487 // The DW_CFA_set_loc instruction takes a single operand that 488 // represents a target address. The required action is to create a new 489 // table row using the specified address as the location. All other 490 // values in the new row are initially identical to the current row. 491 // The new location value is always greater than the current one. If 492 // the segment_size field of this FDE's CIE is non- zero, the initial 493 // location is preceded by a segment selector of the given length 494 llvm::Expected<uint64_t> NewAddress = Inst.getOperandAsUnsigned(CFIP, 0); 495 if (!NewAddress) 496 return NewAddress.takeError(); 497 if (*NewAddress <= Row.getAddress()) 498 return createStringError( 499 errc::invalid_argument, 500 "%s with adrress 0x%" PRIx64 " which must be greater than the " 501 "current row address 0x%" PRIx64, 502 CFIP.callFrameString(Inst.Opcode).str().c_str(), *NewAddress, 503 Row.getAddress()); 504 Rows.push_back(Row); 505 Row.setAddress(*NewAddress); 506 break; 507 } 508 509 case dwarf::DW_CFA_advance_loc: 510 case dwarf::DW_CFA_advance_loc1: 511 case dwarf::DW_CFA_advance_loc2: 512 case dwarf::DW_CFA_advance_loc4: { 513 // The DW_CFA_advance instruction takes a single operand that 514 // represents a constant delta. The required action is to create a new 515 // table row with a location value that is computed by taking the 516 // current entry’s location value and adding the value of delta * 517 // code_alignment_factor. All other values in the new row are initially 518 // identical to the current row. 519 Rows.push_back(Row); 520 llvm::Expected<uint64_t> Offset = Inst.getOperandAsUnsigned(CFIP, 0); 521 if (!Offset) 522 return Offset.takeError(); 523 Row.slideAddress(*Offset); 524 break; 525 } 526 527 case dwarf::DW_CFA_restore: 528 case dwarf::DW_CFA_restore_extended: { 529 // The DW_CFA_restore instruction takes a single operand (encoded with 530 // the opcode) that represents a register number. The required action 531 // is to change the rule for the indicated register to the rule 532 // assigned it by the initial_instructions in the CIE. 533 if (InitialLocs == nullptr) 534 return createStringError( 535 errc::invalid_argument, "%s encountered while parsing a CIE", 536 CFIP.callFrameString(Inst.Opcode).str().c_str()); 537 llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0); 538 if (!RegNum) 539 return RegNum.takeError(); 540 if (Optional<UnwindLocation> O = 541 InitialLocs->getRegisterLocation(*RegNum)) 542 Row.getRegisterLocations().setRegisterLocation(*RegNum, *O); 543 else 544 Row.getRegisterLocations().removeRegisterLocation(*RegNum); 545 break; 546 } 547 548 case dwarf::DW_CFA_offset: 549 case dwarf::DW_CFA_offset_extended: 550 case dwarf::DW_CFA_offset_extended_sf: { 551 llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0); 552 if (!RegNum) 553 return RegNum.takeError(); 554 llvm::Expected<int64_t> Offset = Inst.getOperandAsSigned(CFIP, 1); 555 if (!Offset) 556 return Offset.takeError(); 557 Row.getRegisterLocations().setRegisterLocation( 558 *RegNum, UnwindLocation::createAtCFAPlusOffset(*Offset)); 559 break; 560 } 561 562 case dwarf::DW_CFA_nop: 563 break; 564 565 case dwarf::DW_CFA_remember_state: 566 RegisterStates.push_back(Row.getRegisterLocations()); 567 break; 568 569 case dwarf::DW_CFA_restore_state: 570 if (RegisterStates.empty()) 571 return createStringError(errc::invalid_argument, 572 "DW_CFA_restore_state without a matching " 573 "previous DW_CFA_remember_state"); 574 Row.getRegisterLocations() = RegisterStates.back(); 575 RegisterStates.pop_back(); 576 break; 577 578 case dwarf::DW_CFA_GNU_window_save: 579 switch (CFIP.triple()) { 580 case Triple::aarch64: 581 case Triple::aarch64_be: 582 case Triple::aarch64_32: { 583 // DW_CFA_GNU_window_save is used for different things on different 584 // architectures. For aarch64 it is known as 585 // DW_CFA_AARCH64_negate_ra_state. The action is to toggle the 586 // value of the return address state between 1 and 0. If there is 587 // no rule for the AARCH64_DWARF_PAUTH_RA_STATE register, then it 588 // should be initially set to 1. 589 constexpr uint32_t AArch64DWARFPAuthRaState = 34; 590 auto LRLoc = Row.getRegisterLocations().getRegisterLocation( 591 AArch64DWARFPAuthRaState); 592 if (LRLoc) { 593 if (LRLoc->getLocation() == UnwindLocation::Constant) { 594 // Toggle the constant value from 0 to 1 or 1 to 0. 595 LRLoc->setConstant(LRLoc->getConstant() ^ 1); 596 } else { 597 return createStringError( 598 errc::invalid_argument, 599 "%s encountered when existing rule for this register is not " 600 "a constant", 601 CFIP.callFrameString(Inst.Opcode).str().c_str()); 602 } 603 } else { 604 Row.getRegisterLocations().setRegisterLocation( 605 AArch64DWARFPAuthRaState, UnwindLocation::createIsConstant(1)); 606 } 607 break; 608 } 609 610 case Triple::sparc: 611 case Triple::sparcv9: 612 case Triple::sparcel: 613 for (uint32_t RegNum = 16; RegNum < 32; ++RegNum) { 614 Row.getRegisterLocations().setRegisterLocation( 615 RegNum, UnwindLocation::createAtCFAPlusOffset((RegNum - 16) * 8)); 616 } 617 break; 618 619 default: { 620 return createStringError( 621 errc::not_supported, 622 "DW_CFA opcode %#x is not supported for architecture %s", 623 Inst.Opcode, Triple::getArchTypeName(CFIP.triple()).str().c_str()); 624 625 break; 626 } 627 } 628 break; 629 630 case dwarf::DW_CFA_undefined: { 631 llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0); 632 if (!RegNum) 633 return RegNum.takeError(); 634 Row.getRegisterLocations().setRegisterLocation( 635 *RegNum, UnwindLocation::createUndefined()); 636 break; 637 } 638 639 case dwarf::DW_CFA_same_value: { 640 llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0); 641 if (!RegNum) 642 return RegNum.takeError(); 643 Row.getRegisterLocations().setRegisterLocation( 644 *RegNum, UnwindLocation::createSame()); 645 break; 646 } 647 648 case dwarf::DW_CFA_GNU_args_size: 649 break; 650 651 case dwarf::DW_CFA_register: { 652 llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0); 653 if (!RegNum) 654 return RegNum.takeError(); 655 llvm::Expected<uint64_t> NewRegNum = Inst.getOperandAsUnsigned(CFIP, 1); 656 if (!NewRegNum) 657 return NewRegNum.takeError(); 658 Row.getRegisterLocations().setRegisterLocation( 659 *RegNum, UnwindLocation::createIsRegisterPlusOffset(*NewRegNum, 0)); 660 break; 661 } 662 663 case dwarf::DW_CFA_val_offset: 664 case dwarf::DW_CFA_val_offset_sf: { 665 llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0); 666 if (!RegNum) 667 return RegNum.takeError(); 668 llvm::Expected<int64_t> Offset = Inst.getOperandAsSigned(CFIP, 1); 669 if (!Offset) 670 return Offset.takeError(); 671 Row.getRegisterLocations().setRegisterLocation( 672 *RegNum, UnwindLocation::createIsCFAPlusOffset(*Offset)); 673 break; 674 } 675 676 case dwarf::DW_CFA_expression: { 677 llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0); 678 if (!RegNum) 679 return RegNum.takeError(); 680 Row.getRegisterLocations().setRegisterLocation( 681 *RegNum, UnwindLocation::createAtDWARFExpression(*Inst.Expression)); 682 break; 683 } 684 685 case dwarf::DW_CFA_val_expression: { 686 llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0); 687 if (!RegNum) 688 return RegNum.takeError(); 689 Row.getRegisterLocations().setRegisterLocation( 690 *RegNum, UnwindLocation::createIsDWARFExpression(*Inst.Expression)); 691 break; 692 } 693 694 case dwarf::DW_CFA_def_cfa_register: { 695 llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0); 696 if (!RegNum) 697 return RegNum.takeError(); 698 if (Row.getCFAValue().getLocation() != UnwindLocation::RegPlusOffset) 699 Row.getCFAValue() = 700 UnwindLocation::createIsRegisterPlusOffset(*RegNum, 0); 701 else 702 Row.getCFAValue().setRegister(*RegNum); 703 break; 704 } 705 706 case dwarf::DW_CFA_def_cfa_offset: 707 case dwarf::DW_CFA_def_cfa_offset_sf: { 708 llvm::Expected<int64_t> Offset = Inst.getOperandAsSigned(CFIP, 0); 709 if (!Offset) 710 return Offset.takeError(); 711 if (Row.getCFAValue().getLocation() != UnwindLocation::RegPlusOffset) { 712 return createStringError( 713 errc::invalid_argument, 714 "%s found when CFA rule was not RegPlusOffset", 715 CFIP.callFrameString(Inst.Opcode).str().c_str()); 716 } 717 Row.getCFAValue().setOffset(*Offset); 718 break; 719 } 720 721 case dwarf::DW_CFA_def_cfa: 722 case dwarf::DW_CFA_def_cfa_sf: { 723 llvm::Expected<uint64_t> RegNum = Inst.getOperandAsUnsigned(CFIP, 0); 724 if (!RegNum) 725 return RegNum.takeError(); 726 llvm::Expected<int64_t> Offset = Inst.getOperandAsSigned(CFIP, 1); 727 if (!Offset) 728 return Offset.takeError(); 729 Row.getCFAValue() = 730 UnwindLocation::createIsRegisterPlusOffset(*RegNum, *Offset); 731 break; 732 } 733 734 case dwarf::DW_CFA_def_cfa_expression: 735 Row.getCFAValue() = 736 UnwindLocation::createIsDWARFExpression(*Inst.Expression); 737 break; 738 } 739 } 740 return Error::success(); 741 } 742 743 ArrayRef<CFIProgram::OperandType[2]> CFIProgram::getOperandTypes() { 744 static OperandType OpTypes[DW_CFA_restore+1][2]; 745 static bool Initialized = false; 746 if (Initialized) { 747 return ArrayRef<OperandType[2]>(&OpTypes[0], DW_CFA_restore+1); 748 } 749 Initialized = true; 750 751 #define DECLARE_OP2(OP, OPTYPE0, OPTYPE1) \ 752 do { \ 753 OpTypes[OP][0] = OPTYPE0; \ 754 OpTypes[OP][1] = OPTYPE1; \ 755 } while (false) 756 #define DECLARE_OP1(OP, OPTYPE0) DECLARE_OP2(OP, OPTYPE0, OT_None) 757 #define DECLARE_OP0(OP) DECLARE_OP1(OP, OT_None) 758 759 DECLARE_OP1(DW_CFA_set_loc, OT_Address); 760 DECLARE_OP1(DW_CFA_advance_loc, OT_FactoredCodeOffset); 761 DECLARE_OP1(DW_CFA_advance_loc1, OT_FactoredCodeOffset); 762 DECLARE_OP1(DW_CFA_advance_loc2, OT_FactoredCodeOffset); 763 DECLARE_OP1(DW_CFA_advance_loc4, OT_FactoredCodeOffset); 764 DECLARE_OP1(DW_CFA_MIPS_advance_loc8, OT_FactoredCodeOffset); 765 DECLARE_OP2(DW_CFA_def_cfa, OT_Register, OT_Offset); 766 DECLARE_OP2(DW_CFA_def_cfa_sf, OT_Register, OT_SignedFactDataOffset); 767 DECLARE_OP1(DW_CFA_def_cfa_register, OT_Register); 768 DECLARE_OP1(DW_CFA_def_cfa_offset, OT_Offset); 769 DECLARE_OP1(DW_CFA_def_cfa_offset_sf, OT_SignedFactDataOffset); 770 DECLARE_OP1(DW_CFA_def_cfa_expression, OT_Expression); 771 DECLARE_OP1(DW_CFA_undefined, OT_Register); 772 DECLARE_OP1(DW_CFA_same_value, OT_Register); 773 DECLARE_OP2(DW_CFA_offset, OT_Register, OT_UnsignedFactDataOffset); 774 DECLARE_OP2(DW_CFA_offset_extended, OT_Register, OT_UnsignedFactDataOffset); 775 DECLARE_OP2(DW_CFA_offset_extended_sf, OT_Register, OT_SignedFactDataOffset); 776 DECLARE_OP2(DW_CFA_val_offset, OT_Register, OT_UnsignedFactDataOffset); 777 DECLARE_OP2(DW_CFA_val_offset_sf, OT_Register, OT_SignedFactDataOffset); 778 DECLARE_OP2(DW_CFA_register, OT_Register, OT_Register); 779 DECLARE_OP2(DW_CFA_expression, OT_Register, OT_Expression); 780 DECLARE_OP2(DW_CFA_val_expression, OT_Register, OT_Expression); 781 DECLARE_OP1(DW_CFA_restore, OT_Register); 782 DECLARE_OP1(DW_CFA_restore_extended, OT_Register); 783 DECLARE_OP0(DW_CFA_remember_state); 784 DECLARE_OP0(DW_CFA_restore_state); 785 DECLARE_OP0(DW_CFA_GNU_window_save); 786 DECLARE_OP1(DW_CFA_GNU_args_size, OT_Offset); 787 DECLARE_OP0(DW_CFA_nop); 788 789 #undef DECLARE_OP0 790 #undef DECLARE_OP1 791 #undef DECLARE_OP2 792 793 return ArrayRef<OperandType[2]>(&OpTypes[0], DW_CFA_restore+1); 794 } 795 796 /// Print \p Opcode's operand number \p OperandIdx which has value \p Operand. 797 void CFIProgram::printOperand(raw_ostream &OS, DIDumpOptions DumpOpts, 798 const MCRegisterInfo *MRI, bool IsEH, 799 const Instruction &Instr, unsigned OperandIdx, 800 uint64_t Operand) const { 801 assert(OperandIdx < 2); 802 uint8_t Opcode = Instr.Opcode; 803 OperandType Type = getOperandTypes()[Opcode][OperandIdx]; 804 805 switch (Type) { 806 case OT_Unset: { 807 OS << " Unsupported " << (OperandIdx ? "second" : "first") << " operand to"; 808 auto OpcodeName = callFrameString(Opcode); 809 if (!OpcodeName.empty()) 810 OS << " " << OpcodeName; 811 else 812 OS << format(" Opcode %x", Opcode); 813 break; 814 } 815 case OT_None: 816 break; 817 case OT_Address: 818 OS << format(" %" PRIx64, Operand); 819 break; 820 case OT_Offset: 821 // The offsets are all encoded in a unsigned form, but in practice 822 // consumers use them signed. It's most certainly legacy due to 823 // the lack of signed variants in the first Dwarf standards. 824 OS << format(" %+" PRId64, int64_t(Operand)); 825 break; 826 case OT_FactoredCodeOffset: // Always Unsigned 827 if (CodeAlignmentFactor) 828 OS << format(" %" PRId64, Operand * CodeAlignmentFactor); 829 else 830 OS << format(" %" PRId64 "*code_alignment_factor" , Operand); 831 break; 832 case OT_SignedFactDataOffset: 833 if (DataAlignmentFactor) 834 OS << format(" %" PRId64, int64_t(Operand) * DataAlignmentFactor); 835 else 836 OS << format(" %" PRId64 "*data_alignment_factor" , int64_t(Operand)); 837 break; 838 case OT_UnsignedFactDataOffset: 839 if (DataAlignmentFactor) 840 OS << format(" %" PRId64, Operand * DataAlignmentFactor); 841 else 842 OS << format(" %" PRId64 "*data_alignment_factor" , Operand); 843 break; 844 case OT_Register: 845 OS << ' '; 846 printRegister(OS, MRI, IsEH, Operand); 847 break; 848 case OT_Expression: 849 assert(Instr.Expression && "missing DWARFExpression object"); 850 OS << " "; 851 Instr.Expression->print(OS, DumpOpts, MRI, nullptr, IsEH); 852 break; 853 } 854 } 855 856 void CFIProgram::dump(raw_ostream &OS, DIDumpOptions DumpOpts, 857 const MCRegisterInfo *MRI, bool IsEH, 858 unsigned IndentLevel) const { 859 for (const auto &Instr : Instructions) { 860 uint8_t Opcode = Instr.Opcode; 861 OS.indent(2 * IndentLevel); 862 OS << callFrameString(Opcode) << ":"; 863 for (unsigned i = 0; i < Instr.Ops.size(); ++i) 864 printOperand(OS, DumpOpts, MRI, IsEH, Instr, i, Instr.Ops[i]); 865 OS << '\n'; 866 } 867 } 868 869 // Returns the CIE identifier to be used by the requested format. 870 // CIE ids for .debug_frame sections are defined in Section 7.24 of DWARFv5. 871 // For CIE ID in .eh_frame sections see 872 // https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html 873 constexpr uint64_t getCIEId(bool IsDWARF64, bool IsEH) { 874 if (IsEH) 875 return 0; 876 if (IsDWARF64) 877 return DW64_CIE_ID; 878 return DW_CIE_ID; 879 } 880 881 void CIE::dump(raw_ostream &OS, DIDumpOptions DumpOpts, 882 const MCRegisterInfo *MRI, bool IsEH) const { 883 // A CIE with a zero length is a terminator entry in the .eh_frame section. 884 if (IsEH && Length == 0) { 885 OS << format("%08" PRIx64, Offset) << " ZERO terminator\n"; 886 return; 887 } 888 889 OS << format("%08" PRIx64, Offset) 890 << format(" %0*" PRIx64, IsDWARF64 ? 16 : 8, Length) 891 << format(" %0*" PRIx64, IsDWARF64 && !IsEH ? 16 : 8, 892 getCIEId(IsDWARF64, IsEH)) 893 << " CIE\n" 894 << " Format: " << FormatString(IsDWARF64) << "\n"; 895 if (IsEH && Version != 1) 896 OS << "WARNING: unsupported CIE version\n"; 897 OS << format(" Version: %d\n", Version) 898 << " Augmentation: \"" << Augmentation << "\"\n"; 899 if (Version >= 4) { 900 OS << format(" Address size: %u\n", (uint32_t)AddressSize); 901 OS << format(" Segment desc size: %u\n", 902 (uint32_t)SegmentDescriptorSize); 903 } 904 OS << format(" Code alignment factor: %u\n", (uint32_t)CodeAlignmentFactor); 905 OS << format(" Data alignment factor: %d\n", (int32_t)DataAlignmentFactor); 906 OS << format(" Return address column: %d\n", (int32_t)ReturnAddressRegister); 907 if (Personality) 908 OS << format(" Personality Address: %016" PRIx64 "\n", *Personality); 909 if (!AugmentationData.empty()) { 910 OS << " Augmentation data: "; 911 for (uint8_t Byte : AugmentationData) 912 OS << ' ' << hexdigit(Byte >> 4) << hexdigit(Byte & 0xf); 913 OS << "\n"; 914 } 915 OS << "\n"; 916 CFIs.dump(OS, DumpOpts, MRI, IsEH); 917 OS << "\n"; 918 919 if (Expected<UnwindTable> RowsOrErr = UnwindTable::create(this)) 920 RowsOrErr->dump(OS, MRI, IsEH, 1); 921 else { 922 DumpOpts.RecoverableErrorHandler(joinErrors( 923 createStringError(errc::invalid_argument, 924 "decoding the CIE opcodes into rows failed"), 925 RowsOrErr.takeError())); 926 } 927 OS << "\n"; 928 } 929 930 void FDE::dump(raw_ostream &OS, DIDumpOptions DumpOpts, 931 const MCRegisterInfo *MRI, bool IsEH) const { 932 OS << format("%08" PRIx64, Offset) 933 << format(" %0*" PRIx64, IsDWARF64 ? 16 : 8, Length) 934 << format(" %0*" PRIx64, IsDWARF64 && !IsEH ? 16 : 8, CIEPointer) 935 << " FDE cie="; 936 if (LinkedCIE) 937 OS << format("%08" PRIx64, LinkedCIE->getOffset()); 938 else 939 OS << "<invalid offset>"; 940 OS << format(" pc=%08" PRIx64 "...%08" PRIx64 "\n", InitialLocation, 941 InitialLocation + AddressRange); 942 OS << " Format: " << FormatString(IsDWARF64) << "\n"; 943 if (LSDAAddress) 944 OS << format(" LSDA Address: %016" PRIx64 "\n", *LSDAAddress); 945 CFIs.dump(OS, DumpOpts, MRI, IsEH); 946 OS << "\n"; 947 948 if (Expected<UnwindTable> RowsOrErr = UnwindTable::create(this)) 949 RowsOrErr->dump(OS, MRI, IsEH, 1); 950 else { 951 DumpOpts.RecoverableErrorHandler(joinErrors( 952 createStringError(errc::invalid_argument, 953 "decoding the FDE opcodes into rows failed"), 954 RowsOrErr.takeError())); 955 } 956 OS << "\n"; 957 } 958 959 DWARFDebugFrame::DWARFDebugFrame(Triple::ArchType Arch, 960 bool IsEH, uint64_t EHFrameAddress) 961 : Arch(Arch), IsEH(IsEH), EHFrameAddress(EHFrameAddress) {} 962 963 DWARFDebugFrame::~DWARFDebugFrame() = default; 964 965 static void LLVM_ATTRIBUTE_UNUSED dumpDataAux(DataExtractor Data, 966 uint64_t Offset, int Length) { 967 errs() << "DUMP: "; 968 for (int i = 0; i < Length; ++i) { 969 uint8_t c = Data.getU8(&Offset); 970 errs().write_hex(c); errs() << " "; 971 } 972 errs() << "\n"; 973 } 974 975 Error DWARFDebugFrame::parse(DWARFDataExtractor Data) { 976 uint64_t Offset = 0; 977 DenseMap<uint64_t, CIE *> CIEs; 978 979 while (Data.isValidOffset(Offset)) { 980 uint64_t StartOffset = Offset; 981 982 uint64_t Length; 983 DwarfFormat Format; 984 std::tie(Length, Format) = Data.getInitialLength(&Offset); 985 bool IsDWARF64 = Format == DWARF64; 986 987 // If the Length is 0, then this CIE is a terminator. We add it because some 988 // dumper tools might need it to print something special for such entries 989 // (e.g. llvm-objdump --dwarf=frames prints "ZERO terminator"). 990 if (Length == 0) { 991 auto Cie = std::make_unique<CIE>( 992 IsDWARF64, StartOffset, 0, 0, SmallString<8>(), 0, 0, 0, 0, 0, 993 SmallString<8>(), 0, 0, None, None, Arch); 994 CIEs[StartOffset] = Cie.get(); 995 Entries.push_back(std::move(Cie)); 996 break; 997 } 998 999 // At this point, Offset points to the next field after Length. 1000 // Length is the structure size excluding itself. Compute an offset one 1001 // past the end of the structure (needed to know how many instructions to 1002 // read). 1003 uint64_t StartStructureOffset = Offset; 1004 uint64_t EndStructureOffset = Offset + Length; 1005 1006 // The Id field's size depends on the DWARF format 1007 Error Err = Error::success(); 1008 uint64_t Id = Data.getRelocatedValue((IsDWARF64 && !IsEH) ? 8 : 4, &Offset, 1009 /*SectionIndex=*/nullptr, &Err); 1010 if (Err) 1011 return Err; 1012 1013 if (Id == getCIEId(IsDWARF64, IsEH)) { 1014 uint8_t Version = Data.getU8(&Offset); 1015 const char *Augmentation = Data.getCStr(&Offset); 1016 StringRef AugmentationString(Augmentation ? Augmentation : ""); 1017 uint8_t AddressSize = Version < 4 ? Data.getAddressSize() : 1018 Data.getU8(&Offset); 1019 Data.setAddressSize(AddressSize); 1020 uint8_t SegmentDescriptorSize = Version < 4 ? 0 : Data.getU8(&Offset); 1021 uint64_t CodeAlignmentFactor = Data.getULEB128(&Offset); 1022 int64_t DataAlignmentFactor = Data.getSLEB128(&Offset); 1023 uint64_t ReturnAddressRegister = 1024 Version == 1 ? Data.getU8(&Offset) : Data.getULEB128(&Offset); 1025 1026 // Parse the augmentation data for EH CIEs 1027 StringRef AugmentationData(""); 1028 uint32_t FDEPointerEncoding = DW_EH_PE_absptr; 1029 uint32_t LSDAPointerEncoding = DW_EH_PE_omit; 1030 Optional<uint64_t> Personality; 1031 Optional<uint32_t> PersonalityEncoding; 1032 if (IsEH) { 1033 Optional<uint64_t> AugmentationLength; 1034 uint64_t StartAugmentationOffset; 1035 uint64_t EndAugmentationOffset; 1036 1037 // Walk the augmentation string to get all the augmentation data. 1038 for (unsigned i = 0, e = AugmentationString.size(); i != e; ++i) { 1039 switch (AugmentationString[i]) { 1040 default: 1041 return createStringError( 1042 errc::invalid_argument, 1043 "unknown augmentation character in entry at 0x%" PRIx64, 1044 StartOffset); 1045 case 'L': 1046 LSDAPointerEncoding = Data.getU8(&Offset); 1047 break; 1048 case 'P': { 1049 if (Personality) 1050 return createStringError( 1051 errc::invalid_argument, 1052 "duplicate personality in entry at 0x%" PRIx64, StartOffset); 1053 PersonalityEncoding = Data.getU8(&Offset); 1054 Personality = Data.getEncodedPointer( 1055 &Offset, *PersonalityEncoding, 1056 EHFrameAddress ? EHFrameAddress + Offset : 0); 1057 break; 1058 } 1059 case 'R': 1060 FDEPointerEncoding = Data.getU8(&Offset); 1061 break; 1062 case 'S': 1063 // Current frame is a signal trampoline. 1064 break; 1065 case 'z': 1066 if (i) 1067 return createStringError( 1068 errc::invalid_argument, 1069 "'z' must be the first character at 0x%" PRIx64, StartOffset); 1070 // Parse the augmentation length first. We only parse it if 1071 // the string contains a 'z'. 1072 AugmentationLength = Data.getULEB128(&Offset); 1073 StartAugmentationOffset = Offset; 1074 EndAugmentationOffset = Offset + *AugmentationLength; 1075 break; 1076 case 'B': 1077 // B-Key is used for signing functions associated with this 1078 // augmentation string 1079 break; 1080 } 1081 } 1082 1083 if (AugmentationLength.hasValue()) { 1084 if (Offset != EndAugmentationOffset) 1085 return createStringError(errc::invalid_argument, 1086 "parsing augmentation data at 0x%" PRIx64 1087 " failed", 1088 StartOffset); 1089 AugmentationData = Data.getData().slice(StartAugmentationOffset, 1090 EndAugmentationOffset); 1091 } 1092 } 1093 1094 auto Cie = std::make_unique<CIE>( 1095 IsDWARF64, StartOffset, Length, Version, AugmentationString, 1096 AddressSize, SegmentDescriptorSize, CodeAlignmentFactor, 1097 DataAlignmentFactor, ReturnAddressRegister, AugmentationData, 1098 FDEPointerEncoding, LSDAPointerEncoding, Personality, 1099 PersonalityEncoding, Arch); 1100 CIEs[StartOffset] = Cie.get(); 1101 Entries.emplace_back(std::move(Cie)); 1102 } else { 1103 // FDE 1104 uint64_t CIEPointer = Id; 1105 uint64_t InitialLocation = 0; 1106 uint64_t AddressRange = 0; 1107 Optional<uint64_t> LSDAAddress; 1108 CIE *Cie = CIEs[IsEH ? (StartStructureOffset - CIEPointer) : CIEPointer]; 1109 1110 if (IsEH) { 1111 // The address size is encoded in the CIE we reference. 1112 if (!Cie) 1113 return createStringError(errc::invalid_argument, 1114 "parsing FDE data at 0x%" PRIx64 1115 " failed due to missing CIE", 1116 StartOffset); 1117 if (auto Val = 1118 Data.getEncodedPointer(&Offset, Cie->getFDEPointerEncoding(), 1119 EHFrameAddress + Offset)) { 1120 InitialLocation = *Val; 1121 } 1122 if (auto Val = Data.getEncodedPointer( 1123 &Offset, Cie->getFDEPointerEncoding(), 0)) { 1124 AddressRange = *Val; 1125 } 1126 1127 StringRef AugmentationString = Cie->getAugmentationString(); 1128 if (!AugmentationString.empty()) { 1129 // Parse the augmentation length and data for this FDE. 1130 uint64_t AugmentationLength = Data.getULEB128(&Offset); 1131 1132 uint64_t EndAugmentationOffset = Offset + AugmentationLength; 1133 1134 // Decode the LSDA if the CIE augmentation string said we should. 1135 if (Cie->getLSDAPointerEncoding() != DW_EH_PE_omit) { 1136 LSDAAddress = Data.getEncodedPointer( 1137 &Offset, Cie->getLSDAPointerEncoding(), 1138 EHFrameAddress ? Offset + EHFrameAddress : 0); 1139 } 1140 1141 if (Offset != EndAugmentationOffset) 1142 return createStringError(errc::invalid_argument, 1143 "parsing augmentation data at 0x%" PRIx64 1144 " failed", 1145 StartOffset); 1146 } 1147 } else { 1148 InitialLocation = Data.getRelocatedAddress(&Offset); 1149 AddressRange = Data.getRelocatedAddress(&Offset); 1150 } 1151 1152 Entries.emplace_back(new FDE(IsDWARF64, StartOffset, Length, CIEPointer, 1153 InitialLocation, AddressRange, Cie, 1154 LSDAAddress, Arch)); 1155 } 1156 1157 if (Error E = 1158 Entries.back()->cfis().parse(Data, &Offset, EndStructureOffset)) 1159 return E; 1160 1161 if (Offset != EndStructureOffset) 1162 return createStringError( 1163 errc::invalid_argument, 1164 "parsing entry instructions at 0x%" PRIx64 " failed", StartOffset); 1165 } 1166 1167 return Error::success(); 1168 } 1169 1170 FrameEntry *DWARFDebugFrame::getEntryAtOffset(uint64_t Offset) const { 1171 auto It = partition_point(Entries, [=](const std::unique_ptr<FrameEntry> &E) { 1172 return E->getOffset() < Offset; 1173 }); 1174 if (It != Entries.end() && (*It)->getOffset() == Offset) 1175 return It->get(); 1176 return nullptr; 1177 } 1178 1179 void DWARFDebugFrame::dump(raw_ostream &OS, DIDumpOptions DumpOpts, 1180 const MCRegisterInfo *MRI, 1181 Optional<uint64_t> Offset) const { 1182 if (Offset) { 1183 if (auto *Entry = getEntryAtOffset(*Offset)) 1184 Entry->dump(OS, DumpOpts, MRI, IsEH); 1185 return; 1186 } 1187 1188 OS << "\n"; 1189 for (const auto &Entry : Entries) 1190 Entry->dump(OS, DumpOpts, MRI, IsEH); 1191 } 1192