1 //===- XRayInstrumentation.cpp - Adds XRay instrumentation to functions. --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a MachineFunctionPass that inserts the appropriate 11 // XRay instrumentation instructions. We look for XRay-specific attributes 12 // on the function to determine whether we should insert the replacement 13 // operations. 14 // 15 //===---------------------------------------------------------------------===// 16 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineLoopInfo.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Target/TargetMachine.h" 32 33 using namespace llvm; 34 35 namespace { 36 37 struct InstrumentationOptions { 38 // Whether to emit PATCHABLE_TAIL_CALL. 39 bool HandleTailcall; 40 41 // Whether to emit PATCHABLE_RET/PATCHABLE_FUNCTION_EXIT for all forms of 42 // return, e.g. conditional return. 43 bool HandleAllReturns; 44 }; 45 46 struct XRayInstrumentation : public MachineFunctionPass { 47 static char ID; 48 49 XRayInstrumentation() : MachineFunctionPass(ID) { 50 initializeXRayInstrumentationPass(*PassRegistry::getPassRegistry()); 51 } 52 53 void getAnalysisUsage(AnalysisUsage &AU) const override { 54 AU.setPreservesCFG(); 55 AU.addPreserved<MachineLoopInfo>(); 56 AU.addPreserved<MachineDominatorTree>(); 57 MachineFunctionPass::getAnalysisUsage(AU); 58 } 59 60 bool runOnMachineFunction(MachineFunction &MF) override; 61 62 private: 63 // Replace the original RET instruction with the exit sled code ("patchable 64 // ret" pseudo-instruction), so that at runtime XRay can replace the sled 65 // with a code jumping to XRay trampoline, which calls the tracing handler 66 // and, in the end, issues the RET instruction. 67 // This is the approach to go on CPUs which have a single RET instruction, 68 // like x86/x86_64. 69 void replaceRetWithPatchableRet(MachineFunction &MF, 70 const TargetInstrInfo *TII, 71 InstrumentationOptions); 72 73 // Prepend the original return instruction with the exit sled code ("patchable 74 // function exit" pseudo-instruction), preserving the original return 75 // instruction just after the exit sled code. 76 // This is the approach to go on CPUs which have multiple options for the 77 // return instruction, like ARM. For such CPUs we can't just jump into the 78 // XRay trampoline and issue a single return instruction there. We rather 79 // have to call the trampoline and return from it to the original return 80 // instruction of the function being instrumented. 81 void prependRetWithPatchableExit(MachineFunction &MF, 82 const TargetInstrInfo *TII, 83 InstrumentationOptions); 84 }; 85 86 } // end anonymous namespace 87 88 void XRayInstrumentation::replaceRetWithPatchableRet( 89 MachineFunction &MF, const TargetInstrInfo *TII, 90 InstrumentationOptions op) { 91 // We look for *all* terminators and returns, then replace those with 92 // PATCHABLE_RET instructions. 93 SmallVector<MachineInstr *, 4> Terminators; 94 for (auto &MBB : MF) { 95 for (auto &T : MBB.terminators()) { 96 unsigned Opc = 0; 97 if (T.isReturn() && 98 (op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) { 99 // Replace return instructions with: 100 // PATCHABLE_RET <Opcode>, <Operand>... 101 Opc = TargetOpcode::PATCHABLE_RET; 102 } 103 if (TII->isTailCall(T) && op.HandleTailcall) { 104 // Treat the tail call as a return instruction, which has a 105 // different-looking sled than the normal return case. 106 Opc = TargetOpcode::PATCHABLE_TAIL_CALL; 107 } 108 if (Opc != 0) { 109 auto MIB = BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc)) 110 .addImm(T.getOpcode()); 111 for (auto &MO : T.operands()) 112 MIB.add(MO); 113 Terminators.push_back(&T); 114 } 115 } 116 } 117 118 for (auto &I : Terminators) 119 I->eraseFromParent(); 120 } 121 122 void XRayInstrumentation::prependRetWithPatchableExit( 123 MachineFunction &MF, const TargetInstrInfo *TII, 124 InstrumentationOptions op) { 125 for (auto &MBB : MF) 126 for (auto &T : MBB.terminators()) { 127 unsigned Opc = 0; 128 if (T.isReturn() && 129 (op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) { 130 Opc = TargetOpcode::PATCHABLE_FUNCTION_EXIT; 131 } 132 if (TII->isTailCall(T) && op.HandleTailcall) { 133 Opc = TargetOpcode::PATCHABLE_TAIL_CALL; 134 } 135 if (Opc != 0) { 136 // Prepend the return instruction with PATCHABLE_FUNCTION_EXIT or 137 // PATCHABLE_TAIL_CALL . 138 BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc)); 139 } 140 } 141 } 142 143 bool XRayInstrumentation::runOnMachineFunction(MachineFunction &MF) { 144 auto &F = MF.getFunction(); 145 auto InstrAttr = F.getFnAttribute("function-instrument"); 146 bool AlwaysInstrument = !InstrAttr.hasAttribute(Attribute::None) && 147 InstrAttr.isStringAttribute() && 148 InstrAttr.getValueAsString() == "xray-always"; 149 Attribute Attr = F.getFnAttribute("xray-instruction-threshold"); 150 unsigned XRayThreshold = 0; 151 if (!AlwaysInstrument) { 152 if (Attr.hasAttribute(Attribute::None) || !Attr.isStringAttribute()) 153 return false; // XRay threshold attribute not found. 154 if (Attr.getValueAsString().getAsInteger(10, XRayThreshold)) 155 return false; // Invalid value for threshold. 156 157 // Count the number of MachineInstr`s in MachineFunction 158 int64_t MICount = 0; 159 for (const auto &MBB : MF) 160 MICount += MBB.size(); 161 162 // Get MachineDominatorTree or compute it on the fly if it's unavailable 163 auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 164 MachineDominatorTree ComputedMDT; 165 if (!MDT) { 166 ComputedMDT.getBase().recalculate(MF); 167 MDT = &ComputedMDT; 168 } 169 170 // Get MachineLoopInfo or compute it on the fly if it's unavailable 171 auto *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 172 MachineLoopInfo ComputedMLI; 173 if (!MLI) { 174 ComputedMLI.getBase().analyze(MDT->getBase()); 175 MLI = &ComputedMLI; 176 } 177 178 // Check if we have a loop. 179 // FIXME: Maybe make this smarter, and see whether the loops are dependent 180 // on inputs or side-effects? 181 if (MLI->empty() && MICount < XRayThreshold) 182 return false; // Function is too small and has no loops. 183 } 184 185 // We look for the first non-empty MachineBasicBlock, so that we can insert 186 // the function instrumentation in the appropriate place. 187 auto MBI = llvm::find_if( 188 MF, [&](const MachineBasicBlock &MBB) { return !MBB.empty(); }); 189 if (MBI == MF.end()) 190 return false; // The function is empty. 191 192 auto *TII = MF.getSubtarget().getInstrInfo(); 193 auto &FirstMBB = *MBI; 194 auto &FirstMI = *FirstMBB.begin(); 195 196 if (!MF.getSubtarget().isXRaySupported()) { 197 FirstMI.emitError("An attempt to perform XRay instrumentation for an" 198 " unsupported target."); 199 return false; 200 } 201 202 // First, insert an PATCHABLE_FUNCTION_ENTER as the first instruction of the 203 // MachineFunction. 204 BuildMI(FirstMBB, FirstMI, FirstMI.getDebugLoc(), 205 TII->get(TargetOpcode::PATCHABLE_FUNCTION_ENTER)); 206 207 switch (MF.getTarget().getTargetTriple().getArch()) { 208 case Triple::ArchType::arm: 209 case Triple::ArchType::thumb: 210 case Triple::ArchType::aarch64: 211 case Triple::ArchType::mips: 212 case Triple::ArchType::mipsel: 213 case Triple::ArchType::mips64: 214 case Triple::ArchType::mips64el: { 215 // For the architectures which don't have a single return instruction 216 InstrumentationOptions op; 217 op.HandleTailcall = false; 218 op.HandleAllReturns = true; 219 prependRetWithPatchableExit(MF, TII, op); 220 break; 221 } 222 case Triple::ArchType::ppc64le: { 223 // PPC has conditional returns. Turn them into branch and plain returns. 224 InstrumentationOptions op; 225 op.HandleTailcall = false; 226 op.HandleAllReturns = true; 227 replaceRetWithPatchableRet(MF, TII, op); 228 break; 229 } 230 default: { 231 // For the architectures that have a single return instruction (such as 232 // RETQ on x86_64). 233 InstrumentationOptions op; 234 op.HandleTailcall = true; 235 op.HandleAllReturns = false; 236 replaceRetWithPatchableRet(MF, TII, op); 237 break; 238 } 239 } 240 return true; 241 } 242 243 char XRayInstrumentation::ID = 0; 244 char &llvm::XRayInstrumentationID = XRayInstrumentation::ID; 245 INITIALIZE_PASS_BEGIN(XRayInstrumentation, "xray-instrumentation", 246 "Insert XRay ops", false, false) 247 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 248 INITIALIZE_PASS_END(XRayInstrumentation, "xray-instrumentation", 249 "Insert XRay ops", false, false) 250