1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass lowers LLVM IR exception handling into something closer to what the 11 // backend wants for functions using a personality function from a runtime 12 // provided by MSVC. Functions with other personality functions are left alone 13 // and may be prepared by other passes. In particular, all supported MSVC 14 // personality functions require cleanup code to be outlined, and the C++ 15 // personality requires catch handler code to be outlined. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/Passes.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/Verifier.h" 29 #include "llvm/MC/MCSymbol.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/Cloning.h" 35 #include "llvm/Transforms/Utils/SSAUpdater.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "winehprepare" 40 41 static cl::opt<bool> DisableDemotion( 42 "disable-demotion", cl::Hidden, 43 cl::desc( 44 "Clone multicolor basic blocks but do not demote cross scopes"), 45 cl::init(false)); 46 47 static cl::opt<bool> DisableCleanups( 48 "disable-cleanups", cl::Hidden, 49 cl::desc("Do not remove implausible terminators or other similar cleanups"), 50 cl::init(false)); 51 52 static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt( 53 "demote-catchswitch-only", cl::Hidden, 54 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false)); 55 56 namespace { 57 58 class WinEHPrepare : public FunctionPass { 59 public: 60 static char ID; // Pass identification, replacement for typeid. 61 WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false) 62 : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {} 63 64 bool runOnFunction(Function &Fn) override; 65 66 bool doFinalization(Module &M) override; 67 68 void getAnalysisUsage(AnalysisUsage &AU) const override; 69 70 StringRef getPassName() const override { 71 return "Windows exception handling preparation"; 72 } 73 74 private: 75 void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot); 76 void 77 insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot, 78 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist); 79 AllocaInst *insertPHILoads(PHINode *PN, Function &F); 80 void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot, 81 DenseMap<BasicBlock *, Value *> &Loads, Function &F); 82 bool prepareExplicitEH(Function &F); 83 void colorFunclets(Function &F); 84 85 void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly); 86 void cloneCommonBlocks(Function &F); 87 void removeImplausibleInstructions(Function &F); 88 void cleanupPreparedFunclets(Function &F); 89 void verifyPreparedFunclets(Function &F); 90 91 bool DemoteCatchSwitchPHIOnly; 92 93 // All fields are reset by runOnFunction. 94 EHPersonality Personality = EHPersonality::Unknown; 95 96 const DataLayout *DL = nullptr; 97 DenseMap<BasicBlock *, ColorVector> BlockColors; 98 MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks; 99 }; 100 101 } // end anonymous namespace 102 103 char WinEHPrepare::ID = 0; 104 INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions", 105 false, false) 106 107 FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) { 108 return new WinEHPrepare(DemoteCatchSwitchPHIOnly); 109 } 110 111 bool WinEHPrepare::runOnFunction(Function &Fn) { 112 if (!Fn.hasPersonalityFn()) 113 return false; 114 115 // Classify the personality to see what kind of preparation we need. 116 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 117 118 // Do nothing if this is not a scope-based personality. 119 if (!isScopedEHPersonality(Personality)) 120 return false; 121 122 DL = &Fn.getParent()->getDataLayout(); 123 return prepareExplicitEH(Fn); 124 } 125 126 bool WinEHPrepare::doFinalization(Module &M) { return false; } 127 128 void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {} 129 130 static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState, 131 const BasicBlock *BB) { 132 CxxUnwindMapEntry UME; 133 UME.ToState = ToState; 134 UME.Cleanup = BB; 135 FuncInfo.CxxUnwindMap.push_back(UME); 136 return FuncInfo.getLastStateNumber(); 137 } 138 139 static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow, 140 int TryHigh, int CatchHigh, 141 ArrayRef<const CatchPadInst *> Handlers) { 142 WinEHTryBlockMapEntry TBME; 143 TBME.TryLow = TryLow; 144 TBME.TryHigh = TryHigh; 145 TBME.CatchHigh = CatchHigh; 146 assert(TBME.TryLow <= TBME.TryHigh); 147 for (const CatchPadInst *CPI : Handlers) { 148 WinEHHandlerType HT; 149 Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0)); 150 if (TypeInfo->isNullValue()) 151 HT.TypeDescriptor = nullptr; 152 else 153 HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts()); 154 HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue(); 155 HT.Handler = CPI->getParent(); 156 if (auto *AI = 157 dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts())) 158 HT.CatchObj.Alloca = AI; 159 else 160 HT.CatchObj.Alloca = nullptr; 161 TBME.HandlerArray.push_back(HT); 162 } 163 FuncInfo.TryBlockMap.push_back(TBME); 164 } 165 166 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) { 167 for (const User *U : CleanupPad->users()) 168 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 169 return CRI->getUnwindDest(); 170 return nullptr; 171 } 172 173 static void calculateStateNumbersForInvokes(const Function *Fn, 174 WinEHFuncInfo &FuncInfo) { 175 auto *F = const_cast<Function *>(Fn); 176 DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F); 177 for (BasicBlock &BB : *F) { 178 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 179 if (!II) 180 continue; 181 182 auto &BBColors = BlockColors[&BB]; 183 assert(BBColors.size() == 1 && "multi-color BB not removed by preparation"); 184 BasicBlock *FuncletEntryBB = BBColors.front(); 185 186 BasicBlock *FuncletUnwindDest; 187 auto *FuncletPad = 188 dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI()); 189 assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock()); 190 if (!FuncletPad) 191 FuncletUnwindDest = nullptr; 192 else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 193 FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest(); 194 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad)) 195 FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad); 196 else 197 llvm_unreachable("unexpected funclet pad!"); 198 199 BasicBlock *InvokeUnwindDest = II->getUnwindDest(); 200 int BaseState = -1; 201 if (FuncletUnwindDest == InvokeUnwindDest) { 202 auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad); 203 if (BaseStateI != FuncInfo.FuncletBaseStateMap.end()) 204 BaseState = BaseStateI->second; 205 } 206 207 if (BaseState != -1) { 208 FuncInfo.InvokeStateMap[II] = BaseState; 209 } else { 210 Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI(); 211 assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!"); 212 FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst]; 213 } 214 } 215 } 216 217 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs 218 // to. If the unwind edge came from an invoke, return null. 219 static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB, 220 Value *ParentPad) { 221 const TerminatorInst *TI = BB->getTerminator(); 222 if (isa<InvokeInst>(TI)) 223 return nullptr; 224 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 225 if (CatchSwitch->getParentPad() != ParentPad) 226 return nullptr; 227 return BB; 228 } 229 assert(!TI->isEHPad() && "unexpected EHPad!"); 230 auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad(); 231 if (CleanupPad->getParentPad() != ParentPad) 232 return nullptr; 233 return CleanupPad->getParent(); 234 } 235 236 static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo, 237 const Instruction *FirstNonPHI, 238 int ParentState) { 239 const BasicBlock *BB = FirstNonPHI->getParent(); 240 assert(BB->isEHPad() && "not a funclet!"); 241 242 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) { 243 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && 244 "shouldn't revist catch funclets!"); 245 246 SmallVector<const CatchPadInst *, 2> Handlers; 247 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 248 auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI()); 249 Handlers.push_back(CatchPad); 250 } 251 int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr); 252 FuncInfo.EHPadStateMap[CatchSwitch] = TryLow; 253 for (const BasicBlock *PredBlock : predecessors(BB)) 254 if ((PredBlock = getEHPadFromPredecessor(PredBlock, 255 CatchSwitch->getParentPad()))) 256 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), 257 TryLow); 258 int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr); 259 260 // catchpads are separate funclets in C++ EH due to the way rethrow works. 261 int TryHigh = CatchLow - 1; 262 for (const auto *CatchPad : Handlers) { 263 FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow; 264 for (const User *U : CatchPad->users()) { 265 const auto *UserI = cast<Instruction>(U); 266 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) { 267 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest(); 268 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) 269 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow); 270 } 271 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) { 272 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad); 273 // If a nested cleanup pad reports a null unwind destination and the 274 // enclosing catch pad doesn't it must be post-dominated by an 275 // unreachable instruction. 276 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) 277 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow); 278 } 279 } 280 } 281 int CatchHigh = FuncInfo.getLastStateNumber(); 282 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers); 283 LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n'); 284 LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh 285 << '\n'); 286 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh 287 << '\n'); 288 } else { 289 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI); 290 291 // It's possible for a cleanup to be visited twice: it might have multiple 292 // cleanupret instructions. 293 if (FuncInfo.EHPadStateMap.count(CleanupPad)) 294 return; 295 296 int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB); 297 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState; 298 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB " 299 << BB->getName() << '\n'); 300 for (const BasicBlock *PredBlock : predecessors(BB)) { 301 if ((PredBlock = getEHPadFromPredecessor(PredBlock, 302 CleanupPad->getParentPad()))) { 303 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), 304 CleanupState); 305 } 306 } 307 for (const User *U : CleanupPad->users()) { 308 const auto *UserI = cast<Instruction>(U); 309 if (UserI->isEHPad()) 310 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot " 311 "contain exceptional actions"); 312 } 313 } 314 } 315 316 static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState, 317 const Function *Filter, const BasicBlock *Handler) { 318 SEHUnwindMapEntry Entry; 319 Entry.ToState = ParentState; 320 Entry.IsFinally = false; 321 Entry.Filter = Filter; 322 Entry.Handler = Handler; 323 FuncInfo.SEHUnwindMap.push_back(Entry); 324 return FuncInfo.SEHUnwindMap.size() - 1; 325 } 326 327 static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState, 328 const BasicBlock *Handler) { 329 SEHUnwindMapEntry Entry; 330 Entry.ToState = ParentState; 331 Entry.IsFinally = true; 332 Entry.Filter = nullptr; 333 Entry.Handler = Handler; 334 FuncInfo.SEHUnwindMap.push_back(Entry); 335 return FuncInfo.SEHUnwindMap.size() - 1; 336 } 337 338 static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo, 339 const Instruction *FirstNonPHI, 340 int ParentState) { 341 const BasicBlock *BB = FirstNonPHI->getParent(); 342 assert(BB->isEHPad() && "no a funclet!"); 343 344 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) { 345 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && 346 "shouldn't revist catch funclets!"); 347 348 // Extract the filter function and the __except basic block and create a 349 // state for them. 350 assert(CatchSwitch->getNumHandlers() == 1 && 351 "SEH doesn't have multiple handlers per __try"); 352 const auto *CatchPad = 353 cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI()); 354 const BasicBlock *CatchPadBB = CatchPad->getParent(); 355 const Constant *FilterOrNull = 356 cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts()); 357 const Function *Filter = dyn_cast<Function>(FilterOrNull); 358 assert((Filter || FilterOrNull->isNullValue()) && 359 "unexpected filter value"); 360 int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB); 361 362 // Everything in the __try block uses TryState as its parent state. 363 FuncInfo.EHPadStateMap[CatchSwitch] = TryState; 364 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB " 365 << CatchPadBB->getName() << '\n'); 366 for (const BasicBlock *PredBlock : predecessors(BB)) 367 if ((PredBlock = getEHPadFromPredecessor(PredBlock, 368 CatchSwitch->getParentPad()))) 369 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), 370 TryState); 371 372 // Everything in the __except block unwinds to ParentState, just like code 373 // outside the __try. 374 for (const User *U : CatchPad->users()) { 375 const auto *UserI = cast<Instruction>(U); 376 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) { 377 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest(); 378 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) 379 calculateSEHStateNumbers(FuncInfo, UserI, ParentState); 380 } 381 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) { 382 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad); 383 // If a nested cleanup pad reports a null unwind destination and the 384 // enclosing catch pad doesn't it must be post-dominated by an 385 // unreachable instruction. 386 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) 387 calculateSEHStateNumbers(FuncInfo, UserI, ParentState); 388 } 389 } 390 } else { 391 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI); 392 393 // It's possible for a cleanup to be visited twice: it might have multiple 394 // cleanupret instructions. 395 if (FuncInfo.EHPadStateMap.count(CleanupPad)) 396 return; 397 398 int CleanupState = addSEHFinally(FuncInfo, ParentState, BB); 399 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState; 400 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB " 401 << BB->getName() << '\n'); 402 for (const BasicBlock *PredBlock : predecessors(BB)) 403 if ((PredBlock = 404 getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad()))) 405 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), 406 CleanupState); 407 for (const User *U : CleanupPad->users()) { 408 const auto *UserI = cast<Instruction>(U); 409 if (UserI->isEHPad()) 410 report_fatal_error("Cleanup funclets for the SEH personality cannot " 411 "contain exceptional actions"); 412 } 413 } 414 } 415 416 static bool isTopLevelPadForMSVC(const Instruction *EHPad) { 417 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad)) 418 return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) && 419 CatchSwitch->unwindsToCaller(); 420 if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad)) 421 return isa<ConstantTokenNone>(CleanupPad->getParentPad()) && 422 getCleanupRetUnwindDest(CleanupPad) == nullptr; 423 if (isa<CatchPadInst>(EHPad)) 424 return false; 425 llvm_unreachable("unexpected EHPad!"); 426 } 427 428 void llvm::calculateSEHStateNumbers(const Function *Fn, 429 WinEHFuncInfo &FuncInfo) { 430 // Don't compute state numbers twice. 431 if (!FuncInfo.SEHUnwindMap.empty()) 432 return; 433 434 for (const BasicBlock &BB : *Fn) { 435 if (!BB.isEHPad()) 436 continue; 437 const Instruction *FirstNonPHI = BB.getFirstNonPHI(); 438 if (!isTopLevelPadForMSVC(FirstNonPHI)) 439 continue; 440 ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1); 441 } 442 443 calculateStateNumbersForInvokes(Fn, FuncInfo); 444 } 445 446 void llvm::calculateWinCXXEHStateNumbers(const Function *Fn, 447 WinEHFuncInfo &FuncInfo) { 448 // Return if it's already been done. 449 if (!FuncInfo.EHPadStateMap.empty()) 450 return; 451 452 for (const BasicBlock &BB : *Fn) { 453 if (!BB.isEHPad()) 454 continue; 455 const Instruction *FirstNonPHI = BB.getFirstNonPHI(); 456 if (!isTopLevelPadForMSVC(FirstNonPHI)) 457 continue; 458 calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1); 459 } 460 461 calculateStateNumbersForInvokes(Fn, FuncInfo); 462 } 463 464 static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState, 465 int TryParentState, ClrHandlerType HandlerType, 466 uint32_t TypeToken, const BasicBlock *Handler) { 467 ClrEHUnwindMapEntry Entry; 468 Entry.HandlerParentState = HandlerParentState; 469 Entry.TryParentState = TryParentState; 470 Entry.Handler = Handler; 471 Entry.HandlerType = HandlerType; 472 Entry.TypeToken = TypeToken; 473 FuncInfo.ClrEHUnwindMap.push_back(Entry); 474 return FuncInfo.ClrEHUnwindMap.size() - 1; 475 } 476 477 void llvm::calculateClrEHStateNumbers(const Function *Fn, 478 WinEHFuncInfo &FuncInfo) { 479 // Return if it's already been done. 480 if (!FuncInfo.EHPadStateMap.empty()) 481 return; 482 483 // This numbering assigns one state number to each catchpad and cleanuppad. 484 // It also computes two tree-like relations over states: 485 // 1) Each state has a "HandlerParentState", which is the state of the next 486 // outer handler enclosing this state's handler (same as nearest ancestor 487 // per the ParentPad linkage on EH pads, but skipping over catchswitches). 488 // 2) Each state has a "TryParentState", which: 489 // a) for a catchpad that's not the last handler on its catchswitch, is 490 // the state of the next catchpad on that catchswitch 491 // b) for all other pads, is the state of the pad whose try region is the 492 // next outer try region enclosing this state's try region. The "try 493 // regions are not present as such in the IR, but will be inferred 494 // based on the placement of invokes and pads which reach each other 495 // by exceptional exits 496 // Catchswitches do not get their own states, but each gets mapped to the 497 // state of its first catchpad. 498 499 // Step one: walk down from outermost to innermost funclets, assigning each 500 // catchpad and cleanuppad a state number. Add an entry to the 501 // ClrEHUnwindMap for each state, recording its HandlerParentState and 502 // handler attributes. Record the TryParentState as well for each catchpad 503 // that's not the last on its catchswitch, but initialize all other entries' 504 // TryParentStates to a sentinel -1 value that the next pass will update. 505 506 // Seed a worklist with pads that have no parent. 507 SmallVector<std::pair<const Instruction *, int>, 8> Worklist; 508 for (const BasicBlock &BB : *Fn) { 509 const Instruction *FirstNonPHI = BB.getFirstNonPHI(); 510 const Value *ParentPad; 511 if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI)) 512 ParentPad = CPI->getParentPad(); 513 else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI)) 514 ParentPad = CSI->getParentPad(); 515 else 516 continue; 517 if (isa<ConstantTokenNone>(ParentPad)) 518 Worklist.emplace_back(FirstNonPHI, -1); 519 } 520 521 // Use the worklist to visit all pads, from outer to inner. Record 522 // HandlerParentState for all pads. Record TryParentState only for catchpads 523 // that aren't the last on their catchswitch (setting all other entries' 524 // TryParentStates to an initial value of -1). This loop is also responsible 525 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and 526 // catchswitches. 527 while (!Worklist.empty()) { 528 const Instruction *Pad; 529 int HandlerParentState; 530 std::tie(Pad, HandlerParentState) = Worklist.pop_back_val(); 531 532 if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) { 533 // Create the entry for this cleanup with the appropriate handler 534 // properties. Finally and fault handlers are distinguished by arity. 535 ClrHandlerType HandlerType = 536 (Cleanup->getNumArgOperands() ? ClrHandlerType::Fault 537 : ClrHandlerType::Finally); 538 int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1, 539 HandlerType, 0, Pad->getParent()); 540 // Queue any child EH pads on the worklist. 541 for (const User *U : Cleanup->users()) 542 if (const auto *I = dyn_cast<Instruction>(U)) 543 if (I->isEHPad()) 544 Worklist.emplace_back(I, CleanupState); 545 // Remember this pad's state. 546 FuncInfo.EHPadStateMap[Cleanup] = CleanupState; 547 } else { 548 // Walk the handlers of this catchswitch in reverse order since all but 549 // the last need to set the following one as its TryParentState. 550 const auto *CatchSwitch = cast<CatchSwitchInst>(Pad); 551 int CatchState = -1, FollowerState = -1; 552 SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers()); 553 for (auto CBI = CatchBlocks.rbegin(), CBE = CatchBlocks.rend(); 554 CBI != CBE; ++CBI, FollowerState = CatchState) { 555 const BasicBlock *CatchBlock = *CBI; 556 // Create the entry for this catch with the appropriate handler 557 // properties. 558 const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI()); 559 uint32_t TypeToken = static_cast<uint32_t>( 560 cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue()); 561 CatchState = 562 addClrEHHandler(FuncInfo, HandlerParentState, FollowerState, 563 ClrHandlerType::Catch, TypeToken, CatchBlock); 564 // Queue any child EH pads on the worklist. 565 for (const User *U : Catch->users()) 566 if (const auto *I = dyn_cast<Instruction>(U)) 567 if (I->isEHPad()) 568 Worklist.emplace_back(I, CatchState); 569 // Remember this catch's state. 570 FuncInfo.EHPadStateMap[Catch] = CatchState; 571 } 572 // Associate the catchswitch with the state of its first catch. 573 assert(CatchSwitch->getNumHandlers()); 574 FuncInfo.EHPadStateMap[CatchSwitch] = CatchState; 575 } 576 } 577 578 // Step two: record the TryParentState of each state. For cleanuppads that 579 // don't have cleanuprets, we may need to infer this from their child pads, 580 // so visit pads in descendant-most to ancestor-most order. 581 for (auto Entry = FuncInfo.ClrEHUnwindMap.rbegin(), 582 End = FuncInfo.ClrEHUnwindMap.rend(); 583 Entry != End; ++Entry) { 584 const Instruction *Pad = 585 Entry->Handler.get<const BasicBlock *>()->getFirstNonPHI(); 586 // For most pads, the TryParentState is the state associated with the 587 // unwind dest of exceptional exits from it. 588 const BasicBlock *UnwindDest; 589 if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) { 590 // If a catch is not the last in its catchswitch, its TryParentState is 591 // the state associated with the next catch in the switch, even though 592 // that's not the unwind dest of exceptions escaping the catch. Those 593 // cases were already assigned a TryParentState in the first pass, so 594 // skip them. 595 if (Entry->TryParentState != -1) 596 continue; 597 // Otherwise, get the unwind dest from the catchswitch. 598 UnwindDest = Catch->getCatchSwitch()->getUnwindDest(); 599 } else { 600 const auto *Cleanup = cast<CleanupPadInst>(Pad); 601 UnwindDest = nullptr; 602 for (const User *U : Cleanup->users()) { 603 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 604 // Common and unambiguous case -- cleanupret indicates cleanup's 605 // unwind dest. 606 UnwindDest = CleanupRet->getUnwindDest(); 607 break; 608 } 609 610 // Get an unwind dest for the user 611 const BasicBlock *UserUnwindDest = nullptr; 612 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 613 UserUnwindDest = Invoke->getUnwindDest(); 614 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) { 615 UserUnwindDest = CatchSwitch->getUnwindDest(); 616 } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) { 617 int UserState = FuncInfo.EHPadStateMap[ChildCleanup]; 618 int UserUnwindState = 619 FuncInfo.ClrEHUnwindMap[UserState].TryParentState; 620 if (UserUnwindState != -1) 621 UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState] 622 .Handler.get<const BasicBlock *>(); 623 } 624 625 // Not having an unwind dest for this user might indicate that it 626 // doesn't unwind, so can't be taken as proof that the cleanup itself 627 // may unwind to caller (see e.g. SimplifyUnreachable and 628 // RemoveUnwindEdge). 629 if (!UserUnwindDest) 630 continue; 631 632 // Now we have an unwind dest for the user, but we need to see if it 633 // unwinds all the way out of the cleanup or if it stays within it. 634 const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI(); 635 const Value *UserUnwindParent; 636 if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad)) 637 UserUnwindParent = CSI->getParentPad(); 638 else 639 UserUnwindParent = 640 cast<CleanupPadInst>(UserUnwindPad)->getParentPad(); 641 642 // The unwind stays within the cleanup iff it targets a child of the 643 // cleanup. 644 if (UserUnwindParent == Cleanup) 645 continue; 646 647 // This unwind exits the cleanup, so its dest is the cleanup's dest. 648 UnwindDest = UserUnwindDest; 649 break; 650 } 651 } 652 653 // Record the state of the unwind dest as the TryParentState. 654 int UnwindDestState; 655 656 // If UnwindDest is null at this point, either the pad in question can 657 // be exited by unwind to caller, or it cannot be exited by unwind. In 658 // either case, reporting such cases as unwinding to caller is correct. 659 // This can lead to EH tables that "look strange" -- if this pad's is in 660 // a parent funclet which has other children that do unwind to an enclosing 661 // pad, the try region for this pad will be missing the "duplicate" EH 662 // clause entries that you'd expect to see covering the whole parent. That 663 // should be benign, since the unwind never actually happens. If it were 664 // an issue, we could add a subsequent pass that pushes unwind dests down 665 // from parents that have them to children that appear to unwind to caller. 666 if (!UnwindDest) { 667 UnwindDestState = -1; 668 } else { 669 UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()]; 670 } 671 672 Entry->TryParentState = UnwindDestState; 673 } 674 675 // Step three: transfer information from pads to invokes. 676 calculateStateNumbersForInvokes(Fn, FuncInfo); 677 } 678 679 void WinEHPrepare::colorFunclets(Function &F) { 680 BlockColors = colorEHFunclets(F); 681 682 // Invert the map from BB to colors to color to BBs. 683 for (BasicBlock &BB : F) { 684 ColorVector &Colors = BlockColors[&BB]; 685 for (BasicBlock *Color : Colors) 686 FuncletBlocks[Color].push_back(&BB); 687 } 688 } 689 690 void WinEHPrepare::demotePHIsOnFunclets(Function &F, 691 bool DemoteCatchSwitchPHIOnly) { 692 // Strip PHI nodes off of EH pads. 693 SmallVector<PHINode *, 16> PHINodes; 694 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) { 695 BasicBlock *BB = &*FI++; 696 if (!BB->isEHPad()) 697 continue; 698 if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB->getFirstNonPHI())) 699 continue; 700 701 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { 702 Instruction *I = &*BI++; 703 auto *PN = dyn_cast<PHINode>(I); 704 // Stop at the first non-PHI. 705 if (!PN) 706 break; 707 708 AllocaInst *SpillSlot = insertPHILoads(PN, F); 709 if (SpillSlot) 710 insertPHIStores(PN, SpillSlot); 711 712 PHINodes.push_back(PN); 713 } 714 } 715 716 for (auto *PN : PHINodes) { 717 // There may be lingering uses on other EH PHIs being removed 718 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 719 PN->eraseFromParent(); 720 } 721 } 722 723 void WinEHPrepare::cloneCommonBlocks(Function &F) { 724 // We need to clone all blocks which belong to multiple funclets. Values are 725 // remapped throughout the funclet to propagate both the new instructions 726 // *and* the new basic blocks themselves. 727 for (auto &Funclets : FuncletBlocks) { 728 BasicBlock *FuncletPadBB = Funclets.first; 729 std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second; 730 Value *FuncletToken; 731 if (FuncletPadBB == &F.getEntryBlock()) 732 FuncletToken = ConstantTokenNone::get(F.getContext()); 733 else 734 FuncletToken = FuncletPadBB->getFirstNonPHI(); 735 736 std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone; 737 ValueToValueMapTy VMap; 738 for (BasicBlock *BB : BlocksInFunclet) { 739 ColorVector &ColorsForBB = BlockColors[BB]; 740 // We don't need to do anything if the block is monochromatic. 741 size_t NumColorsForBB = ColorsForBB.size(); 742 if (NumColorsForBB == 1) 743 continue; 744 745 DEBUG_WITH_TYPE("winehprepare-coloring", 746 dbgs() << " Cloning block \'" << BB->getName() 747 << "\' for funclet \'" << FuncletPadBB->getName() 748 << "\'.\n"); 749 750 // Create a new basic block and copy instructions into it! 751 BasicBlock *CBB = 752 CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName())); 753 // Insert the clone immediately after the original to ensure determinism 754 // and to keep the same relative ordering of any funclet's blocks. 755 CBB->insertInto(&F, BB->getNextNode()); 756 757 // Add basic block mapping. 758 VMap[BB] = CBB; 759 760 // Record delta operations that we need to perform to our color mappings. 761 Orig2Clone.emplace_back(BB, CBB); 762 } 763 764 // If nothing was cloned, we're done cloning in this funclet. 765 if (Orig2Clone.empty()) 766 continue; 767 768 // Update our color mappings to reflect that one block has lost a color and 769 // another has gained a color. 770 for (auto &BBMapping : Orig2Clone) { 771 BasicBlock *OldBlock = BBMapping.first; 772 BasicBlock *NewBlock = BBMapping.second; 773 774 BlocksInFunclet.push_back(NewBlock); 775 ColorVector &NewColors = BlockColors[NewBlock]; 776 assert(NewColors.empty() && "A new block should only have one color!"); 777 NewColors.push_back(FuncletPadBB); 778 779 DEBUG_WITH_TYPE("winehprepare-coloring", 780 dbgs() << " Assigned color \'" << FuncletPadBB->getName() 781 << "\' to block \'" << NewBlock->getName() 782 << "\'.\n"); 783 784 BlocksInFunclet.erase( 785 std::remove(BlocksInFunclet.begin(), BlocksInFunclet.end(), OldBlock), 786 BlocksInFunclet.end()); 787 ColorVector &OldColors = BlockColors[OldBlock]; 788 OldColors.erase( 789 std::remove(OldColors.begin(), OldColors.end(), FuncletPadBB), 790 OldColors.end()); 791 792 DEBUG_WITH_TYPE("winehprepare-coloring", 793 dbgs() << " Removed color \'" << FuncletPadBB->getName() 794 << "\' from block \'" << OldBlock->getName() 795 << "\'.\n"); 796 } 797 798 // Loop over all of the instructions in this funclet, fixing up operand 799 // references as we go. This uses VMap to do all the hard work. 800 for (BasicBlock *BB : BlocksInFunclet) 801 // Loop over all instructions, fixing each one as we find it... 802 for (Instruction &I : *BB) 803 RemapInstruction(&I, VMap, 804 RF_IgnoreMissingLocals | RF_NoModuleLevelChanges); 805 806 // Catchrets targeting cloned blocks need to be updated separately from 807 // the loop above because they are not in the current funclet. 808 SmallVector<CatchReturnInst *, 2> FixupCatchrets; 809 for (auto &BBMapping : Orig2Clone) { 810 BasicBlock *OldBlock = BBMapping.first; 811 BasicBlock *NewBlock = BBMapping.second; 812 813 FixupCatchrets.clear(); 814 for (BasicBlock *Pred : predecessors(OldBlock)) 815 if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator())) 816 if (CatchRet->getCatchSwitchParentPad() == FuncletToken) 817 FixupCatchrets.push_back(CatchRet); 818 819 for (CatchReturnInst *CatchRet : FixupCatchrets) 820 CatchRet->setSuccessor(NewBlock); 821 } 822 823 auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) { 824 unsigned NumPreds = PN->getNumIncomingValues(); 825 for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd; 826 ++PredIdx) { 827 BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx); 828 bool EdgeTargetsFunclet; 829 if (auto *CRI = 830 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) { 831 EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken); 832 } else { 833 ColorVector &IncomingColors = BlockColors[IncomingBlock]; 834 assert(!IncomingColors.empty() && "Block not colored!"); 835 assert((IncomingColors.size() == 1 || 836 llvm::all_of(IncomingColors, 837 [&](BasicBlock *Color) { 838 return Color != FuncletPadBB; 839 })) && 840 "Cloning should leave this funclet's blocks monochromatic"); 841 EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB); 842 } 843 if (IsForOldBlock != EdgeTargetsFunclet) 844 continue; 845 PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false); 846 // Revisit the next entry. 847 --PredIdx; 848 --PredEnd; 849 } 850 }; 851 852 for (auto &BBMapping : Orig2Clone) { 853 BasicBlock *OldBlock = BBMapping.first; 854 BasicBlock *NewBlock = BBMapping.second; 855 for (PHINode &OldPN : OldBlock->phis()) { 856 UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true); 857 } 858 for (PHINode &NewPN : NewBlock->phis()) { 859 UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false); 860 } 861 } 862 863 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to 864 // the PHI nodes for NewBB now. 865 for (auto &BBMapping : Orig2Clone) { 866 BasicBlock *OldBlock = BBMapping.first; 867 BasicBlock *NewBlock = BBMapping.second; 868 for (BasicBlock *SuccBB : successors(NewBlock)) { 869 for (PHINode &SuccPN : SuccBB->phis()) { 870 // Ok, we have a PHI node. Figure out what the incoming value was for 871 // the OldBlock. 872 int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock); 873 if (OldBlockIdx == -1) 874 break; 875 Value *IV = SuccPN.getIncomingValue(OldBlockIdx); 876 877 // Remap the value if necessary. 878 if (auto *Inst = dyn_cast<Instruction>(IV)) { 879 ValueToValueMapTy::iterator I = VMap.find(Inst); 880 if (I != VMap.end()) 881 IV = I->second; 882 } 883 884 SuccPN.addIncoming(IV, NewBlock); 885 } 886 } 887 } 888 889 for (ValueToValueMapTy::value_type VT : VMap) { 890 // If there were values defined in BB that are used outside the funclet, 891 // then we now have to update all uses of the value to use either the 892 // original value, the cloned value, or some PHI derived value. This can 893 // require arbitrary PHI insertion, of which we are prepared to do, clean 894 // these up now. 895 SmallVector<Use *, 16> UsesToRename; 896 897 auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first)); 898 if (!OldI) 899 continue; 900 auto *NewI = cast<Instruction>(VT.second); 901 // Scan all uses of this instruction to see if it is used outside of its 902 // funclet, and if so, record them in UsesToRename. 903 for (Use &U : OldI->uses()) { 904 Instruction *UserI = cast<Instruction>(U.getUser()); 905 BasicBlock *UserBB = UserI->getParent(); 906 ColorVector &ColorsForUserBB = BlockColors[UserBB]; 907 assert(!ColorsForUserBB.empty()); 908 if (ColorsForUserBB.size() > 1 || 909 *ColorsForUserBB.begin() != FuncletPadBB) 910 UsesToRename.push_back(&U); 911 } 912 913 // If there are no uses outside the block, we're done with this 914 // instruction. 915 if (UsesToRename.empty()) 916 continue; 917 918 // We found a use of OldI outside of the funclet. Rename all uses of OldI 919 // that are outside its funclet to be uses of the appropriate PHI node 920 // etc. 921 SSAUpdater SSAUpdate; 922 SSAUpdate.Initialize(OldI->getType(), OldI->getName()); 923 SSAUpdate.AddAvailableValue(OldI->getParent(), OldI); 924 SSAUpdate.AddAvailableValue(NewI->getParent(), NewI); 925 926 while (!UsesToRename.empty()) 927 SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val()); 928 } 929 } 930 } 931 932 void WinEHPrepare::removeImplausibleInstructions(Function &F) { 933 // Remove implausible terminators and replace them with UnreachableInst. 934 for (auto &Funclet : FuncletBlocks) { 935 BasicBlock *FuncletPadBB = Funclet.first; 936 std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second; 937 Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI(); 938 auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI); 939 auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad); 940 auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad); 941 942 for (BasicBlock *BB : BlocksInFunclet) { 943 for (Instruction &I : *BB) { 944 CallSite CS(&I); 945 if (!CS) 946 continue; 947 948 Value *FuncletBundleOperand = nullptr; 949 if (auto BU = CS.getOperandBundle(LLVMContext::OB_funclet)) 950 FuncletBundleOperand = BU->Inputs.front(); 951 952 if (FuncletBundleOperand == FuncletPad) 953 continue; 954 955 // Skip call sites which are nounwind intrinsics or inline asm. 956 auto *CalledFn = 957 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); 958 if (CalledFn && ((CalledFn->isIntrinsic() && CS.doesNotThrow()) || 959 CS.isInlineAsm())) 960 continue; 961 962 // This call site was not part of this funclet, remove it. 963 if (CS.isInvoke()) { 964 // Remove the unwind edge if it was an invoke. 965 removeUnwindEdge(BB); 966 // Get a pointer to the new call. 967 BasicBlock::iterator CallI = 968 std::prev(BB->getTerminator()->getIterator()); 969 auto *CI = cast<CallInst>(&*CallI); 970 changeToUnreachable(CI, /*UseLLVMTrap=*/false); 971 } else { 972 changeToUnreachable(&I, /*UseLLVMTrap=*/false); 973 } 974 975 // There are no more instructions in the block (except for unreachable), 976 // we are done. 977 break; 978 } 979 980 TerminatorInst *TI = BB->getTerminator(); 981 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst. 982 bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad; 983 // The token consumed by a CatchReturnInst must match the funclet token. 984 bool IsUnreachableCatchret = false; 985 if (auto *CRI = dyn_cast<CatchReturnInst>(TI)) 986 IsUnreachableCatchret = CRI->getCatchPad() != CatchPad; 987 // The token consumed by a CleanupReturnInst must match the funclet token. 988 bool IsUnreachableCleanupret = false; 989 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) 990 IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad; 991 if (IsUnreachableRet || IsUnreachableCatchret || 992 IsUnreachableCleanupret) { 993 changeToUnreachable(TI, /*UseLLVMTrap=*/false); 994 } else if (isa<InvokeInst>(TI)) { 995 if (Personality == EHPersonality::MSVC_CXX && CleanupPad) { 996 // Invokes within a cleanuppad for the MSVC++ personality never 997 // transfer control to their unwind edge: the personality will 998 // terminate the program. 999 removeUnwindEdge(BB); 1000 } 1001 } 1002 } 1003 } 1004 } 1005 1006 void WinEHPrepare::cleanupPreparedFunclets(Function &F) { 1007 // Clean-up some of the mess we made by removing useles PHI nodes, trivial 1008 // branches, etc. 1009 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) { 1010 BasicBlock *BB = &*FI++; 1011 SimplifyInstructionsInBlock(BB); 1012 ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true); 1013 MergeBlockIntoPredecessor(BB); 1014 } 1015 1016 // We might have some unreachable blocks after cleaning up some impossible 1017 // control flow. 1018 removeUnreachableBlocks(F); 1019 } 1020 1021 #ifndef NDEBUG 1022 void WinEHPrepare::verifyPreparedFunclets(Function &F) { 1023 for (BasicBlock &BB : F) { 1024 size_t NumColors = BlockColors[&BB].size(); 1025 assert(NumColors == 1 && "Expected monochromatic BB!"); 1026 if (NumColors == 0) 1027 report_fatal_error("Uncolored BB!"); 1028 if (NumColors > 1) 1029 report_fatal_error("Multicolor BB!"); 1030 assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) && 1031 "EH Pad still has a PHI!"); 1032 } 1033 } 1034 #endif 1035 1036 bool WinEHPrepare::prepareExplicitEH(Function &F) { 1037 // Remove unreachable blocks. It is not valuable to assign them a color and 1038 // their existence can trick us into thinking values are alive when they are 1039 // not. 1040 removeUnreachableBlocks(F); 1041 1042 // Determine which blocks are reachable from which funclet entries. 1043 colorFunclets(F); 1044 1045 cloneCommonBlocks(F); 1046 1047 if (!DisableDemotion) 1048 demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly || 1049 DemoteCatchSwitchPHIOnlyOpt); 1050 1051 if (!DisableCleanups) { 1052 LLVM_DEBUG(verifyFunction(F)); 1053 removeImplausibleInstructions(F); 1054 1055 LLVM_DEBUG(verifyFunction(F)); 1056 cleanupPreparedFunclets(F); 1057 } 1058 1059 LLVM_DEBUG(verifyPreparedFunclets(F)); 1060 // Recolor the CFG to verify that all is well. 1061 LLVM_DEBUG(colorFunclets(F)); 1062 LLVM_DEBUG(verifyPreparedFunclets(F)); 1063 1064 BlockColors.clear(); 1065 FuncletBlocks.clear(); 1066 1067 return true; 1068 } 1069 1070 // TODO: Share loads when one use dominates another, or when a catchpad exit 1071 // dominates uses (needs dominators). 1072 AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) { 1073 BasicBlock *PHIBlock = PN->getParent(); 1074 AllocaInst *SpillSlot = nullptr; 1075 Instruction *EHPad = PHIBlock->getFirstNonPHI(); 1076 1077 if (!EHPad->isTerminator()) { 1078 // If the EHPad isn't a terminator, then we can insert a load in this block 1079 // that will dominate all uses. 1080 SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr, 1081 Twine(PN->getName(), ".wineh.spillslot"), 1082 &F.getEntryBlock().front()); 1083 Value *V = new LoadInst(SpillSlot, Twine(PN->getName(), ".wineh.reload"), 1084 &*PHIBlock->getFirstInsertionPt()); 1085 PN->replaceAllUsesWith(V); 1086 return SpillSlot; 1087 } 1088 1089 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert 1090 // loads of the slot before every use. 1091 DenseMap<BasicBlock *, Value *> Loads; 1092 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end(); 1093 UI != UE;) { 1094 Use &U = *UI++; 1095 auto *UsingInst = cast<Instruction>(U.getUser()); 1096 if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) { 1097 // Use is on an EH pad phi. Leave it alone; we'll insert loads and 1098 // stores for it separately. 1099 continue; 1100 } 1101 replaceUseWithLoad(PN, U, SpillSlot, Loads, F); 1102 } 1103 return SpillSlot; 1104 } 1105 1106 // TODO: improve store placement. Inserting at def is probably good, but need 1107 // to be careful not to introduce interfering stores (needs liveness analysis). 1108 // TODO: identify related phi nodes that can share spill slots, and share them 1109 // (also needs liveness). 1110 void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI, 1111 AllocaInst *SpillSlot) { 1112 // Use a worklist of (Block, Value) pairs -- the given Value needs to be 1113 // stored to the spill slot by the end of the given Block. 1114 SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist; 1115 1116 Worklist.push_back({OriginalPHI->getParent(), OriginalPHI}); 1117 1118 while (!Worklist.empty()) { 1119 BasicBlock *EHBlock; 1120 Value *InVal; 1121 std::tie(EHBlock, InVal) = Worklist.pop_back_val(); 1122 1123 PHINode *PN = dyn_cast<PHINode>(InVal); 1124 if (PN && PN->getParent() == EHBlock) { 1125 // The value is defined by another PHI we need to remove, with no room to 1126 // insert a store after the PHI, so each predecessor needs to store its 1127 // incoming value. 1128 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { 1129 Value *PredVal = PN->getIncomingValue(i); 1130 1131 // Undef can safely be skipped. 1132 if (isa<UndefValue>(PredVal)) 1133 continue; 1134 1135 insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist); 1136 } 1137 } else { 1138 // We need to store InVal, which dominates EHBlock, but can't put a store 1139 // in EHBlock, so need to put stores in each predecessor. 1140 for (BasicBlock *PredBlock : predecessors(EHBlock)) { 1141 insertPHIStore(PredBlock, InVal, SpillSlot, Worklist); 1142 } 1143 } 1144 } 1145 } 1146 1147 void WinEHPrepare::insertPHIStore( 1148 BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot, 1149 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) { 1150 1151 if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) { 1152 // Pred is unsplittable, so we need to queue it on the worklist. 1153 Worklist.push_back({PredBlock, PredVal}); 1154 return; 1155 } 1156 1157 // Otherwise, insert the store at the end of the basic block. 1158 new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator()); 1159 } 1160 1161 void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot, 1162 DenseMap<BasicBlock *, Value *> &Loads, 1163 Function &F) { 1164 // Lazilly create the spill slot. 1165 if (!SpillSlot) 1166 SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr, 1167 Twine(V->getName(), ".wineh.spillslot"), 1168 &F.getEntryBlock().front()); 1169 1170 auto *UsingInst = cast<Instruction>(U.getUser()); 1171 if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) { 1172 // If this is a PHI node, we can't insert a load of the value before 1173 // the use. Instead insert the load in the predecessor block 1174 // corresponding to the incoming value. 1175 // 1176 // Note that if there are multiple edges from a basic block to this 1177 // PHI node that we cannot have multiple loads. The problem is that 1178 // the resulting PHI node will have multiple values (from each load) 1179 // coming in from the same block, which is illegal SSA form. 1180 // For this reason, we keep track of and reuse loads we insert. 1181 BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U); 1182 if (auto *CatchRet = 1183 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) { 1184 // Putting a load above a catchret and use on the phi would still leave 1185 // a cross-funclet def/use. We need to split the edge, change the 1186 // catchret to target the new block, and put the load there. 1187 BasicBlock *PHIBlock = UsingInst->getParent(); 1188 BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock); 1189 // SplitEdge gives us: 1190 // IncomingBlock: 1191 // ... 1192 // br label %NewBlock 1193 // NewBlock: 1194 // catchret label %PHIBlock 1195 // But we need: 1196 // IncomingBlock: 1197 // ... 1198 // catchret label %NewBlock 1199 // NewBlock: 1200 // br label %PHIBlock 1201 // So move the terminators to each others' blocks and swap their 1202 // successors. 1203 BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator()); 1204 Goto->removeFromParent(); 1205 CatchRet->removeFromParent(); 1206 IncomingBlock->getInstList().push_back(CatchRet); 1207 NewBlock->getInstList().push_back(Goto); 1208 Goto->setSuccessor(0, PHIBlock); 1209 CatchRet->setSuccessor(NewBlock); 1210 // Update the color mapping for the newly split edge. 1211 // Grab a reference to the ColorVector to be inserted before getting the 1212 // reference to the vector we are copying because inserting the new 1213 // element in BlockColors might cause the map to be reallocated. 1214 ColorVector &ColorsForNewBlock = BlockColors[NewBlock]; 1215 ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock]; 1216 ColorsForNewBlock = ColorsForPHIBlock; 1217 for (BasicBlock *FuncletPad : ColorsForPHIBlock) 1218 FuncletBlocks[FuncletPad].push_back(NewBlock); 1219 // Treat the new block as incoming for load insertion. 1220 IncomingBlock = NewBlock; 1221 } 1222 Value *&Load = Loads[IncomingBlock]; 1223 // Insert the load into the predecessor block 1224 if (!Load) 1225 Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"), 1226 /*Volatile=*/false, IncomingBlock->getTerminator()); 1227 1228 U.set(Load); 1229 } else { 1230 // Reload right before the old use. 1231 auto *Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"), 1232 /*Volatile=*/false, UsingInst); 1233 U.set(Load); 1234 } 1235 } 1236 1237 void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II, 1238 MCSymbol *InvokeBegin, 1239 MCSymbol *InvokeEnd) { 1240 assert(InvokeStateMap.count(II) && 1241 "should get invoke with precomputed state"); 1242 LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd); 1243 } 1244 1245 WinEHFuncInfo::WinEHFuncInfo() {} 1246