1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass lowers LLVM IR exception handling into something closer to what the 10 // backend wants for functions using a personality function from a runtime 11 // provided by MSVC. Functions with other personality functions are left alone 12 // and may be prepared by other passes. In particular, all supported MSVC 13 // personality functions require cleanup code to be outlined, and the C++ 14 // personality requires catch handler code to be outlined. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/CodeGen/WinEHFuncInfo.h" 26 #include "llvm/IR/Verifier.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/MC/MCSymbol.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/Cloning.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/SSAUpdater.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "winehprepare" 41 42 static cl::opt<bool> DisableDemotion( 43 "disable-demotion", cl::Hidden, 44 cl::desc( 45 "Clone multicolor basic blocks but do not demote cross scopes"), 46 cl::init(false)); 47 48 static cl::opt<bool> DisableCleanups( 49 "disable-cleanups", cl::Hidden, 50 cl::desc("Do not remove implausible terminators or other similar cleanups"), 51 cl::init(false)); 52 53 static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt( 54 "demote-catchswitch-only", cl::Hidden, 55 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false)); 56 57 namespace { 58 59 class WinEHPrepare : public FunctionPass { 60 public: 61 static char ID; // Pass identification, replacement for typeid. 62 WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false) 63 : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {} 64 65 bool runOnFunction(Function &Fn) override; 66 67 bool doFinalization(Module &M) override; 68 69 void getAnalysisUsage(AnalysisUsage &AU) const override; 70 71 StringRef getPassName() const override { 72 return "Windows exception handling preparation"; 73 } 74 75 private: 76 void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot); 77 void 78 insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot, 79 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist); 80 AllocaInst *insertPHILoads(PHINode *PN, Function &F); 81 void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot, 82 DenseMap<BasicBlock *, Value *> &Loads, Function &F); 83 bool prepareExplicitEH(Function &F); 84 void colorFunclets(Function &F); 85 86 void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly); 87 void cloneCommonBlocks(Function &F); 88 void removeImplausibleInstructions(Function &F); 89 void cleanupPreparedFunclets(Function &F); 90 void verifyPreparedFunclets(Function &F); 91 92 bool DemoteCatchSwitchPHIOnly; 93 94 // All fields are reset by runOnFunction. 95 EHPersonality Personality = EHPersonality::Unknown; 96 97 const DataLayout *DL = nullptr; 98 DenseMap<BasicBlock *, ColorVector> BlockColors; 99 MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks; 100 }; 101 102 } // end anonymous namespace 103 104 char WinEHPrepare::ID = 0; 105 INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions", 106 false, false) 107 108 FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) { 109 return new WinEHPrepare(DemoteCatchSwitchPHIOnly); 110 } 111 112 bool WinEHPrepare::runOnFunction(Function &Fn) { 113 if (!Fn.hasPersonalityFn()) 114 return false; 115 116 // Classify the personality to see what kind of preparation we need. 117 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 118 119 // Do nothing if this is not a scope-based personality. 120 if (!isScopedEHPersonality(Personality)) 121 return false; 122 123 DL = &Fn.getParent()->getDataLayout(); 124 return prepareExplicitEH(Fn); 125 } 126 127 bool WinEHPrepare::doFinalization(Module &M) { return false; } 128 129 void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {} 130 131 static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState, 132 const BasicBlock *BB) { 133 CxxUnwindMapEntry UME; 134 UME.ToState = ToState; 135 UME.Cleanup = BB; 136 FuncInfo.CxxUnwindMap.push_back(UME); 137 return FuncInfo.getLastStateNumber(); 138 } 139 140 static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow, 141 int TryHigh, int CatchHigh, 142 ArrayRef<const CatchPadInst *> Handlers) { 143 WinEHTryBlockMapEntry TBME; 144 TBME.TryLow = TryLow; 145 TBME.TryHigh = TryHigh; 146 TBME.CatchHigh = CatchHigh; 147 assert(TBME.TryLow <= TBME.TryHigh); 148 for (const CatchPadInst *CPI : Handlers) { 149 WinEHHandlerType HT; 150 Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0)); 151 if (TypeInfo->isNullValue()) 152 HT.TypeDescriptor = nullptr; 153 else 154 HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts()); 155 HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue(); 156 HT.Handler = CPI->getParent(); 157 if (auto *AI = 158 dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts())) 159 HT.CatchObj.Alloca = AI; 160 else 161 HT.CatchObj.Alloca = nullptr; 162 TBME.HandlerArray.push_back(HT); 163 } 164 FuncInfo.TryBlockMap.push_back(TBME); 165 } 166 167 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) { 168 for (const User *U : CleanupPad->users()) 169 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 170 return CRI->getUnwindDest(); 171 return nullptr; 172 } 173 174 static void calculateStateNumbersForInvokes(const Function *Fn, 175 WinEHFuncInfo &FuncInfo) { 176 auto *F = const_cast<Function *>(Fn); 177 DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F); 178 for (BasicBlock &BB : *F) { 179 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 180 if (!II) 181 continue; 182 183 auto &BBColors = BlockColors[&BB]; 184 assert(BBColors.size() == 1 && "multi-color BB not removed by preparation"); 185 BasicBlock *FuncletEntryBB = BBColors.front(); 186 187 BasicBlock *FuncletUnwindDest; 188 auto *FuncletPad = 189 dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI()); 190 assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock()); 191 if (!FuncletPad) 192 FuncletUnwindDest = nullptr; 193 else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 194 FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest(); 195 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad)) 196 FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad); 197 else 198 llvm_unreachable("unexpected funclet pad!"); 199 200 BasicBlock *InvokeUnwindDest = II->getUnwindDest(); 201 int BaseState = -1; 202 if (FuncletUnwindDest == InvokeUnwindDest) { 203 auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad); 204 if (BaseStateI != FuncInfo.FuncletBaseStateMap.end()) 205 BaseState = BaseStateI->second; 206 } 207 208 if (BaseState != -1) { 209 FuncInfo.InvokeStateMap[II] = BaseState; 210 } else { 211 Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI(); 212 assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!"); 213 FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst]; 214 } 215 } 216 } 217 218 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs 219 // to. If the unwind edge came from an invoke, return null. 220 static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB, 221 Value *ParentPad) { 222 const Instruction *TI = BB->getTerminator(); 223 if (isa<InvokeInst>(TI)) 224 return nullptr; 225 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 226 if (CatchSwitch->getParentPad() != ParentPad) 227 return nullptr; 228 return BB; 229 } 230 assert(!TI->isEHPad() && "unexpected EHPad!"); 231 auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad(); 232 if (CleanupPad->getParentPad() != ParentPad) 233 return nullptr; 234 return CleanupPad->getParent(); 235 } 236 237 // Starting from a EHPad, Backward walk through control-flow graph 238 // to produce two primary outputs: 239 // FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[] 240 static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo, 241 const Instruction *FirstNonPHI, 242 int ParentState) { 243 const BasicBlock *BB = FirstNonPHI->getParent(); 244 assert(BB->isEHPad() && "not a funclet!"); 245 246 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) { 247 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && 248 "shouldn't revist catch funclets!"); 249 250 SmallVector<const CatchPadInst *, 2> Handlers; 251 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 252 auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI()); 253 Handlers.push_back(CatchPad); 254 } 255 int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr); 256 FuncInfo.EHPadStateMap[CatchSwitch] = TryLow; 257 for (const BasicBlock *PredBlock : predecessors(BB)) 258 if ((PredBlock = getEHPadFromPredecessor(PredBlock, 259 CatchSwitch->getParentPad()))) 260 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), 261 TryLow); 262 int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr); 263 264 // catchpads are separate funclets in C++ EH due to the way rethrow works. 265 int TryHigh = CatchLow - 1; 266 for (const auto *CatchPad : Handlers) { 267 FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow; 268 for (const User *U : CatchPad->users()) { 269 const auto *UserI = cast<Instruction>(U); 270 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) { 271 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest(); 272 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) 273 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow); 274 } 275 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) { 276 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad); 277 // If a nested cleanup pad reports a null unwind destination and the 278 // enclosing catch pad doesn't it must be post-dominated by an 279 // unreachable instruction. 280 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) 281 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow); 282 } 283 } 284 } 285 int CatchHigh = FuncInfo.getLastStateNumber(); 286 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers); 287 LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n'); 288 LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh 289 << '\n'); 290 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh 291 << '\n'); 292 } else { 293 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI); 294 295 // It's possible for a cleanup to be visited twice: it might have multiple 296 // cleanupret instructions. 297 if (FuncInfo.EHPadStateMap.count(CleanupPad)) 298 return; 299 300 int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB); 301 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState; 302 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB " 303 << BB->getName() << '\n'); 304 for (const BasicBlock *PredBlock : predecessors(BB)) { 305 if ((PredBlock = getEHPadFromPredecessor(PredBlock, 306 CleanupPad->getParentPad()))) { 307 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), 308 CleanupState); 309 } 310 } 311 for (const User *U : CleanupPad->users()) { 312 const auto *UserI = cast<Instruction>(U); 313 if (UserI->isEHPad()) 314 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot " 315 "contain exceptional actions"); 316 } 317 } 318 } 319 320 static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState, 321 const Function *Filter, const BasicBlock *Handler) { 322 SEHUnwindMapEntry Entry; 323 Entry.ToState = ParentState; 324 Entry.IsFinally = false; 325 Entry.Filter = Filter; 326 Entry.Handler = Handler; 327 FuncInfo.SEHUnwindMap.push_back(Entry); 328 return FuncInfo.SEHUnwindMap.size() - 1; 329 } 330 331 static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState, 332 const BasicBlock *Handler) { 333 SEHUnwindMapEntry Entry; 334 Entry.ToState = ParentState; 335 Entry.IsFinally = true; 336 Entry.Filter = nullptr; 337 Entry.Handler = Handler; 338 FuncInfo.SEHUnwindMap.push_back(Entry); 339 return FuncInfo.SEHUnwindMap.size() - 1; 340 } 341 342 // Starting from a EHPad, Backward walk through control-flow graph 343 // to produce two primary outputs: 344 // FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[] 345 static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo, 346 const Instruction *FirstNonPHI, 347 int ParentState) { 348 const BasicBlock *BB = FirstNonPHI->getParent(); 349 assert(BB->isEHPad() && "no a funclet!"); 350 351 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) { 352 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && 353 "shouldn't revist catch funclets!"); 354 355 // Extract the filter function and the __except basic block and create a 356 // state for them. 357 assert(CatchSwitch->getNumHandlers() == 1 && 358 "SEH doesn't have multiple handlers per __try"); 359 const auto *CatchPad = 360 cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI()); 361 const BasicBlock *CatchPadBB = CatchPad->getParent(); 362 const Constant *FilterOrNull = 363 cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts()); 364 const Function *Filter = dyn_cast<Function>(FilterOrNull); 365 assert((Filter || FilterOrNull->isNullValue()) && 366 "unexpected filter value"); 367 int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB); 368 369 // Everything in the __try block uses TryState as its parent state. 370 FuncInfo.EHPadStateMap[CatchSwitch] = TryState; 371 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB " 372 << CatchPadBB->getName() << '\n'); 373 for (const BasicBlock *PredBlock : predecessors(BB)) 374 if ((PredBlock = getEHPadFromPredecessor(PredBlock, 375 CatchSwitch->getParentPad()))) 376 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), 377 TryState); 378 379 // Everything in the __except block unwinds to ParentState, just like code 380 // outside the __try. 381 for (const User *U : CatchPad->users()) { 382 const auto *UserI = cast<Instruction>(U); 383 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) { 384 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest(); 385 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) 386 calculateSEHStateNumbers(FuncInfo, UserI, ParentState); 387 } 388 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) { 389 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad); 390 // If a nested cleanup pad reports a null unwind destination and the 391 // enclosing catch pad doesn't it must be post-dominated by an 392 // unreachable instruction. 393 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) 394 calculateSEHStateNumbers(FuncInfo, UserI, ParentState); 395 } 396 } 397 } else { 398 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI); 399 400 // It's possible for a cleanup to be visited twice: it might have multiple 401 // cleanupret instructions. 402 if (FuncInfo.EHPadStateMap.count(CleanupPad)) 403 return; 404 405 int CleanupState = addSEHFinally(FuncInfo, ParentState, BB); 406 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState; 407 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB " 408 << BB->getName() << '\n'); 409 for (const BasicBlock *PredBlock : predecessors(BB)) 410 if ((PredBlock = 411 getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad()))) 412 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), 413 CleanupState); 414 for (const User *U : CleanupPad->users()) { 415 const auto *UserI = cast<Instruction>(U); 416 if (UserI->isEHPad()) 417 report_fatal_error("Cleanup funclets for the SEH personality cannot " 418 "contain exceptional actions"); 419 } 420 } 421 } 422 423 static bool isTopLevelPadForMSVC(const Instruction *EHPad) { 424 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad)) 425 return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) && 426 CatchSwitch->unwindsToCaller(); 427 if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad)) 428 return isa<ConstantTokenNone>(CleanupPad->getParentPad()) && 429 getCleanupRetUnwindDest(CleanupPad) == nullptr; 430 if (isa<CatchPadInst>(EHPad)) 431 return false; 432 llvm_unreachable("unexpected EHPad!"); 433 } 434 435 void llvm::calculateSEHStateNumbers(const Function *Fn, 436 WinEHFuncInfo &FuncInfo) { 437 // Don't compute state numbers twice. 438 if (!FuncInfo.SEHUnwindMap.empty()) 439 return; 440 441 for (const BasicBlock &BB : *Fn) { 442 if (!BB.isEHPad()) 443 continue; 444 const Instruction *FirstNonPHI = BB.getFirstNonPHI(); 445 if (!isTopLevelPadForMSVC(FirstNonPHI)) 446 continue; 447 ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1); 448 } 449 450 calculateStateNumbersForInvokes(Fn, FuncInfo); 451 } 452 453 void llvm::calculateWinCXXEHStateNumbers(const Function *Fn, 454 WinEHFuncInfo &FuncInfo) { 455 // Return if it's already been done. 456 if (!FuncInfo.EHPadStateMap.empty()) 457 return; 458 459 for (const BasicBlock &BB : *Fn) { 460 if (!BB.isEHPad()) 461 continue; 462 const Instruction *FirstNonPHI = BB.getFirstNonPHI(); 463 if (!isTopLevelPadForMSVC(FirstNonPHI)) 464 continue; 465 calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1); 466 } 467 468 calculateStateNumbersForInvokes(Fn, FuncInfo); 469 } 470 471 static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState, 472 int TryParentState, ClrHandlerType HandlerType, 473 uint32_t TypeToken, const BasicBlock *Handler) { 474 ClrEHUnwindMapEntry Entry; 475 Entry.HandlerParentState = HandlerParentState; 476 Entry.TryParentState = TryParentState; 477 Entry.Handler = Handler; 478 Entry.HandlerType = HandlerType; 479 Entry.TypeToken = TypeToken; 480 FuncInfo.ClrEHUnwindMap.push_back(Entry); 481 return FuncInfo.ClrEHUnwindMap.size() - 1; 482 } 483 484 void llvm::calculateClrEHStateNumbers(const Function *Fn, 485 WinEHFuncInfo &FuncInfo) { 486 // Return if it's already been done. 487 if (!FuncInfo.EHPadStateMap.empty()) 488 return; 489 490 // This numbering assigns one state number to each catchpad and cleanuppad. 491 // It also computes two tree-like relations over states: 492 // 1) Each state has a "HandlerParentState", which is the state of the next 493 // outer handler enclosing this state's handler (same as nearest ancestor 494 // per the ParentPad linkage on EH pads, but skipping over catchswitches). 495 // 2) Each state has a "TryParentState", which: 496 // a) for a catchpad that's not the last handler on its catchswitch, is 497 // the state of the next catchpad on that catchswitch 498 // b) for all other pads, is the state of the pad whose try region is the 499 // next outer try region enclosing this state's try region. The "try 500 // regions are not present as such in the IR, but will be inferred 501 // based on the placement of invokes and pads which reach each other 502 // by exceptional exits 503 // Catchswitches do not get their own states, but each gets mapped to the 504 // state of its first catchpad. 505 506 // Step one: walk down from outermost to innermost funclets, assigning each 507 // catchpad and cleanuppad a state number. Add an entry to the 508 // ClrEHUnwindMap for each state, recording its HandlerParentState and 509 // handler attributes. Record the TryParentState as well for each catchpad 510 // that's not the last on its catchswitch, but initialize all other entries' 511 // TryParentStates to a sentinel -1 value that the next pass will update. 512 513 // Seed a worklist with pads that have no parent. 514 SmallVector<std::pair<const Instruction *, int>, 8> Worklist; 515 for (const BasicBlock &BB : *Fn) { 516 const Instruction *FirstNonPHI = BB.getFirstNonPHI(); 517 const Value *ParentPad; 518 if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI)) 519 ParentPad = CPI->getParentPad(); 520 else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI)) 521 ParentPad = CSI->getParentPad(); 522 else 523 continue; 524 if (isa<ConstantTokenNone>(ParentPad)) 525 Worklist.emplace_back(FirstNonPHI, -1); 526 } 527 528 // Use the worklist to visit all pads, from outer to inner. Record 529 // HandlerParentState for all pads. Record TryParentState only for catchpads 530 // that aren't the last on their catchswitch (setting all other entries' 531 // TryParentStates to an initial value of -1). This loop is also responsible 532 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and 533 // catchswitches. 534 while (!Worklist.empty()) { 535 const Instruction *Pad; 536 int HandlerParentState; 537 std::tie(Pad, HandlerParentState) = Worklist.pop_back_val(); 538 539 if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) { 540 // Create the entry for this cleanup with the appropriate handler 541 // properties. Finally and fault handlers are distinguished by arity. 542 ClrHandlerType HandlerType = 543 (Cleanup->getNumArgOperands() ? ClrHandlerType::Fault 544 : ClrHandlerType::Finally); 545 int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1, 546 HandlerType, 0, Pad->getParent()); 547 // Queue any child EH pads on the worklist. 548 for (const User *U : Cleanup->users()) 549 if (const auto *I = dyn_cast<Instruction>(U)) 550 if (I->isEHPad()) 551 Worklist.emplace_back(I, CleanupState); 552 // Remember this pad's state. 553 FuncInfo.EHPadStateMap[Cleanup] = CleanupState; 554 } else { 555 // Walk the handlers of this catchswitch in reverse order since all but 556 // the last need to set the following one as its TryParentState. 557 const auto *CatchSwitch = cast<CatchSwitchInst>(Pad); 558 int CatchState = -1, FollowerState = -1; 559 SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers()); 560 for (auto CBI = CatchBlocks.rbegin(), CBE = CatchBlocks.rend(); 561 CBI != CBE; ++CBI, FollowerState = CatchState) { 562 const BasicBlock *CatchBlock = *CBI; 563 // Create the entry for this catch with the appropriate handler 564 // properties. 565 const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI()); 566 uint32_t TypeToken = static_cast<uint32_t>( 567 cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue()); 568 CatchState = 569 addClrEHHandler(FuncInfo, HandlerParentState, FollowerState, 570 ClrHandlerType::Catch, TypeToken, CatchBlock); 571 // Queue any child EH pads on the worklist. 572 for (const User *U : Catch->users()) 573 if (const auto *I = dyn_cast<Instruction>(U)) 574 if (I->isEHPad()) 575 Worklist.emplace_back(I, CatchState); 576 // Remember this catch's state. 577 FuncInfo.EHPadStateMap[Catch] = CatchState; 578 } 579 // Associate the catchswitch with the state of its first catch. 580 assert(CatchSwitch->getNumHandlers()); 581 FuncInfo.EHPadStateMap[CatchSwitch] = CatchState; 582 } 583 } 584 585 // Step two: record the TryParentState of each state. For cleanuppads that 586 // don't have cleanuprets, we may need to infer this from their child pads, 587 // so visit pads in descendant-most to ancestor-most order. 588 for (auto Entry = FuncInfo.ClrEHUnwindMap.rbegin(), 589 End = FuncInfo.ClrEHUnwindMap.rend(); 590 Entry != End; ++Entry) { 591 const Instruction *Pad = 592 Entry->Handler.get<const BasicBlock *>()->getFirstNonPHI(); 593 // For most pads, the TryParentState is the state associated with the 594 // unwind dest of exceptional exits from it. 595 const BasicBlock *UnwindDest; 596 if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) { 597 // If a catch is not the last in its catchswitch, its TryParentState is 598 // the state associated with the next catch in the switch, even though 599 // that's not the unwind dest of exceptions escaping the catch. Those 600 // cases were already assigned a TryParentState in the first pass, so 601 // skip them. 602 if (Entry->TryParentState != -1) 603 continue; 604 // Otherwise, get the unwind dest from the catchswitch. 605 UnwindDest = Catch->getCatchSwitch()->getUnwindDest(); 606 } else { 607 const auto *Cleanup = cast<CleanupPadInst>(Pad); 608 UnwindDest = nullptr; 609 for (const User *U : Cleanup->users()) { 610 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 611 // Common and unambiguous case -- cleanupret indicates cleanup's 612 // unwind dest. 613 UnwindDest = CleanupRet->getUnwindDest(); 614 break; 615 } 616 617 // Get an unwind dest for the user 618 const BasicBlock *UserUnwindDest = nullptr; 619 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 620 UserUnwindDest = Invoke->getUnwindDest(); 621 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) { 622 UserUnwindDest = CatchSwitch->getUnwindDest(); 623 } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) { 624 int UserState = FuncInfo.EHPadStateMap[ChildCleanup]; 625 int UserUnwindState = 626 FuncInfo.ClrEHUnwindMap[UserState].TryParentState; 627 if (UserUnwindState != -1) 628 UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState] 629 .Handler.get<const BasicBlock *>(); 630 } 631 632 // Not having an unwind dest for this user might indicate that it 633 // doesn't unwind, so can't be taken as proof that the cleanup itself 634 // may unwind to caller (see e.g. SimplifyUnreachable and 635 // RemoveUnwindEdge). 636 if (!UserUnwindDest) 637 continue; 638 639 // Now we have an unwind dest for the user, but we need to see if it 640 // unwinds all the way out of the cleanup or if it stays within it. 641 const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI(); 642 const Value *UserUnwindParent; 643 if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad)) 644 UserUnwindParent = CSI->getParentPad(); 645 else 646 UserUnwindParent = 647 cast<CleanupPadInst>(UserUnwindPad)->getParentPad(); 648 649 // The unwind stays within the cleanup iff it targets a child of the 650 // cleanup. 651 if (UserUnwindParent == Cleanup) 652 continue; 653 654 // This unwind exits the cleanup, so its dest is the cleanup's dest. 655 UnwindDest = UserUnwindDest; 656 break; 657 } 658 } 659 660 // Record the state of the unwind dest as the TryParentState. 661 int UnwindDestState; 662 663 // If UnwindDest is null at this point, either the pad in question can 664 // be exited by unwind to caller, or it cannot be exited by unwind. In 665 // either case, reporting such cases as unwinding to caller is correct. 666 // This can lead to EH tables that "look strange" -- if this pad's is in 667 // a parent funclet which has other children that do unwind to an enclosing 668 // pad, the try region for this pad will be missing the "duplicate" EH 669 // clause entries that you'd expect to see covering the whole parent. That 670 // should be benign, since the unwind never actually happens. If it were 671 // an issue, we could add a subsequent pass that pushes unwind dests down 672 // from parents that have them to children that appear to unwind to caller. 673 if (!UnwindDest) { 674 UnwindDestState = -1; 675 } else { 676 UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()]; 677 } 678 679 Entry->TryParentState = UnwindDestState; 680 } 681 682 // Step three: transfer information from pads to invokes. 683 calculateStateNumbersForInvokes(Fn, FuncInfo); 684 } 685 686 void WinEHPrepare::colorFunclets(Function &F) { 687 BlockColors = colorEHFunclets(F); 688 689 // Invert the map from BB to colors to color to BBs. 690 for (BasicBlock &BB : F) { 691 ColorVector &Colors = BlockColors[&BB]; 692 for (BasicBlock *Color : Colors) 693 FuncletBlocks[Color].push_back(&BB); 694 } 695 } 696 697 void WinEHPrepare::demotePHIsOnFunclets(Function &F, 698 bool DemoteCatchSwitchPHIOnly) { 699 // Strip PHI nodes off of EH pads. 700 SmallVector<PHINode *, 16> PHINodes; 701 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) { 702 BasicBlock *BB = &*FI++; 703 if (!BB->isEHPad()) 704 continue; 705 if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB->getFirstNonPHI())) 706 continue; 707 708 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { 709 Instruction *I = &*BI++; 710 auto *PN = dyn_cast<PHINode>(I); 711 // Stop at the first non-PHI. 712 if (!PN) 713 break; 714 715 AllocaInst *SpillSlot = insertPHILoads(PN, F); 716 if (SpillSlot) 717 insertPHIStores(PN, SpillSlot); 718 719 PHINodes.push_back(PN); 720 } 721 } 722 723 for (auto *PN : PHINodes) { 724 // There may be lingering uses on other EH PHIs being removed 725 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 726 PN->eraseFromParent(); 727 } 728 } 729 730 void WinEHPrepare::cloneCommonBlocks(Function &F) { 731 // We need to clone all blocks which belong to multiple funclets. Values are 732 // remapped throughout the funclet to propagate both the new instructions 733 // *and* the new basic blocks themselves. 734 for (auto &Funclets : FuncletBlocks) { 735 BasicBlock *FuncletPadBB = Funclets.first; 736 std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second; 737 Value *FuncletToken; 738 if (FuncletPadBB == &F.getEntryBlock()) 739 FuncletToken = ConstantTokenNone::get(F.getContext()); 740 else 741 FuncletToken = FuncletPadBB->getFirstNonPHI(); 742 743 std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone; 744 ValueToValueMapTy VMap; 745 for (BasicBlock *BB : BlocksInFunclet) { 746 ColorVector &ColorsForBB = BlockColors[BB]; 747 // We don't need to do anything if the block is monochromatic. 748 size_t NumColorsForBB = ColorsForBB.size(); 749 if (NumColorsForBB == 1) 750 continue; 751 752 DEBUG_WITH_TYPE("winehprepare-coloring", 753 dbgs() << " Cloning block \'" << BB->getName() 754 << "\' for funclet \'" << FuncletPadBB->getName() 755 << "\'.\n"); 756 757 // Create a new basic block and copy instructions into it! 758 BasicBlock *CBB = 759 CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName())); 760 // Insert the clone immediately after the original to ensure determinism 761 // and to keep the same relative ordering of any funclet's blocks. 762 CBB->insertInto(&F, BB->getNextNode()); 763 764 // Add basic block mapping. 765 VMap[BB] = CBB; 766 767 // Record delta operations that we need to perform to our color mappings. 768 Orig2Clone.emplace_back(BB, CBB); 769 } 770 771 // If nothing was cloned, we're done cloning in this funclet. 772 if (Orig2Clone.empty()) 773 continue; 774 775 // Update our color mappings to reflect that one block has lost a color and 776 // another has gained a color. 777 for (auto &BBMapping : Orig2Clone) { 778 BasicBlock *OldBlock = BBMapping.first; 779 BasicBlock *NewBlock = BBMapping.second; 780 781 BlocksInFunclet.push_back(NewBlock); 782 ColorVector &NewColors = BlockColors[NewBlock]; 783 assert(NewColors.empty() && "A new block should only have one color!"); 784 NewColors.push_back(FuncletPadBB); 785 786 DEBUG_WITH_TYPE("winehprepare-coloring", 787 dbgs() << " Assigned color \'" << FuncletPadBB->getName() 788 << "\' to block \'" << NewBlock->getName() 789 << "\'.\n"); 790 791 BlocksInFunclet.erase( 792 std::remove(BlocksInFunclet.begin(), BlocksInFunclet.end(), OldBlock), 793 BlocksInFunclet.end()); 794 ColorVector &OldColors = BlockColors[OldBlock]; 795 OldColors.erase( 796 std::remove(OldColors.begin(), OldColors.end(), FuncletPadBB), 797 OldColors.end()); 798 799 DEBUG_WITH_TYPE("winehprepare-coloring", 800 dbgs() << " Removed color \'" << FuncletPadBB->getName() 801 << "\' from block \'" << OldBlock->getName() 802 << "\'.\n"); 803 } 804 805 // Loop over all of the instructions in this funclet, fixing up operand 806 // references as we go. This uses VMap to do all the hard work. 807 for (BasicBlock *BB : BlocksInFunclet) 808 // Loop over all instructions, fixing each one as we find it... 809 for (Instruction &I : *BB) 810 RemapInstruction(&I, VMap, 811 RF_IgnoreMissingLocals | RF_NoModuleLevelChanges); 812 813 // Catchrets targeting cloned blocks need to be updated separately from 814 // the loop above because they are not in the current funclet. 815 SmallVector<CatchReturnInst *, 2> FixupCatchrets; 816 for (auto &BBMapping : Orig2Clone) { 817 BasicBlock *OldBlock = BBMapping.first; 818 BasicBlock *NewBlock = BBMapping.second; 819 820 FixupCatchrets.clear(); 821 for (BasicBlock *Pred : predecessors(OldBlock)) 822 if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator())) 823 if (CatchRet->getCatchSwitchParentPad() == FuncletToken) 824 FixupCatchrets.push_back(CatchRet); 825 826 for (CatchReturnInst *CatchRet : FixupCatchrets) 827 CatchRet->setSuccessor(NewBlock); 828 } 829 830 auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) { 831 unsigned NumPreds = PN->getNumIncomingValues(); 832 for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd; 833 ++PredIdx) { 834 BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx); 835 bool EdgeTargetsFunclet; 836 if (auto *CRI = 837 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) { 838 EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken); 839 } else { 840 ColorVector &IncomingColors = BlockColors[IncomingBlock]; 841 assert(!IncomingColors.empty() && "Block not colored!"); 842 assert((IncomingColors.size() == 1 || 843 llvm::all_of(IncomingColors, 844 [&](BasicBlock *Color) { 845 return Color != FuncletPadBB; 846 })) && 847 "Cloning should leave this funclet's blocks monochromatic"); 848 EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB); 849 } 850 if (IsForOldBlock != EdgeTargetsFunclet) 851 continue; 852 PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false); 853 // Revisit the next entry. 854 --PredIdx; 855 --PredEnd; 856 } 857 }; 858 859 for (auto &BBMapping : Orig2Clone) { 860 BasicBlock *OldBlock = BBMapping.first; 861 BasicBlock *NewBlock = BBMapping.second; 862 for (PHINode &OldPN : OldBlock->phis()) { 863 UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true); 864 } 865 for (PHINode &NewPN : NewBlock->phis()) { 866 UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false); 867 } 868 } 869 870 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to 871 // the PHI nodes for NewBB now. 872 for (auto &BBMapping : Orig2Clone) { 873 BasicBlock *OldBlock = BBMapping.first; 874 BasicBlock *NewBlock = BBMapping.second; 875 for (BasicBlock *SuccBB : successors(NewBlock)) { 876 for (PHINode &SuccPN : SuccBB->phis()) { 877 // Ok, we have a PHI node. Figure out what the incoming value was for 878 // the OldBlock. 879 int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock); 880 if (OldBlockIdx == -1) 881 break; 882 Value *IV = SuccPN.getIncomingValue(OldBlockIdx); 883 884 // Remap the value if necessary. 885 if (auto *Inst = dyn_cast<Instruction>(IV)) { 886 ValueToValueMapTy::iterator I = VMap.find(Inst); 887 if (I != VMap.end()) 888 IV = I->second; 889 } 890 891 SuccPN.addIncoming(IV, NewBlock); 892 } 893 } 894 } 895 896 for (ValueToValueMapTy::value_type VT : VMap) { 897 // If there were values defined in BB that are used outside the funclet, 898 // then we now have to update all uses of the value to use either the 899 // original value, the cloned value, or some PHI derived value. This can 900 // require arbitrary PHI insertion, of which we are prepared to do, clean 901 // these up now. 902 SmallVector<Use *, 16> UsesToRename; 903 904 auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first)); 905 if (!OldI) 906 continue; 907 auto *NewI = cast<Instruction>(VT.second); 908 // Scan all uses of this instruction to see if it is used outside of its 909 // funclet, and if so, record them in UsesToRename. 910 for (Use &U : OldI->uses()) { 911 Instruction *UserI = cast<Instruction>(U.getUser()); 912 BasicBlock *UserBB = UserI->getParent(); 913 ColorVector &ColorsForUserBB = BlockColors[UserBB]; 914 assert(!ColorsForUserBB.empty()); 915 if (ColorsForUserBB.size() > 1 || 916 *ColorsForUserBB.begin() != FuncletPadBB) 917 UsesToRename.push_back(&U); 918 } 919 920 // If there are no uses outside the block, we're done with this 921 // instruction. 922 if (UsesToRename.empty()) 923 continue; 924 925 // We found a use of OldI outside of the funclet. Rename all uses of OldI 926 // that are outside its funclet to be uses of the appropriate PHI node 927 // etc. 928 SSAUpdater SSAUpdate; 929 SSAUpdate.Initialize(OldI->getType(), OldI->getName()); 930 SSAUpdate.AddAvailableValue(OldI->getParent(), OldI); 931 SSAUpdate.AddAvailableValue(NewI->getParent(), NewI); 932 933 while (!UsesToRename.empty()) 934 SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val()); 935 } 936 } 937 } 938 939 void WinEHPrepare::removeImplausibleInstructions(Function &F) { 940 // Remove implausible terminators and replace them with UnreachableInst. 941 for (auto &Funclet : FuncletBlocks) { 942 BasicBlock *FuncletPadBB = Funclet.first; 943 std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second; 944 Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI(); 945 auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI); 946 auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad); 947 auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad); 948 949 for (BasicBlock *BB : BlocksInFunclet) { 950 for (Instruction &I : *BB) { 951 auto *CB = dyn_cast<CallBase>(&I); 952 if (!CB) 953 continue; 954 955 Value *FuncletBundleOperand = nullptr; 956 if (auto BU = CB->getOperandBundle(LLVMContext::OB_funclet)) 957 FuncletBundleOperand = BU->Inputs.front(); 958 959 if (FuncletBundleOperand == FuncletPad) 960 continue; 961 962 // Skip call sites which are nounwind intrinsics or inline asm. 963 auto *CalledFn = 964 dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts()); 965 if (CalledFn && ((CalledFn->isIntrinsic() && CB->doesNotThrow()) || 966 CB->isInlineAsm())) 967 continue; 968 969 // This call site was not part of this funclet, remove it. 970 if (isa<InvokeInst>(CB)) { 971 // Remove the unwind edge if it was an invoke. 972 removeUnwindEdge(BB); 973 // Get a pointer to the new call. 974 BasicBlock::iterator CallI = 975 std::prev(BB->getTerminator()->getIterator()); 976 auto *CI = cast<CallInst>(&*CallI); 977 changeToUnreachable(CI, /*UseLLVMTrap=*/false); 978 } else { 979 changeToUnreachable(&I, /*UseLLVMTrap=*/false); 980 } 981 982 // There are no more instructions in the block (except for unreachable), 983 // we are done. 984 break; 985 } 986 987 Instruction *TI = BB->getTerminator(); 988 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst. 989 bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad; 990 // The token consumed by a CatchReturnInst must match the funclet token. 991 bool IsUnreachableCatchret = false; 992 if (auto *CRI = dyn_cast<CatchReturnInst>(TI)) 993 IsUnreachableCatchret = CRI->getCatchPad() != CatchPad; 994 // The token consumed by a CleanupReturnInst must match the funclet token. 995 bool IsUnreachableCleanupret = false; 996 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) 997 IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad; 998 if (IsUnreachableRet || IsUnreachableCatchret || 999 IsUnreachableCleanupret) { 1000 changeToUnreachable(TI, /*UseLLVMTrap=*/false); 1001 } else if (isa<InvokeInst>(TI)) { 1002 if (Personality == EHPersonality::MSVC_CXX && CleanupPad) { 1003 // Invokes within a cleanuppad for the MSVC++ personality never 1004 // transfer control to their unwind edge: the personality will 1005 // terminate the program. 1006 removeUnwindEdge(BB); 1007 } 1008 } 1009 } 1010 } 1011 } 1012 1013 void WinEHPrepare::cleanupPreparedFunclets(Function &F) { 1014 // Clean-up some of the mess we made by removing useles PHI nodes, trivial 1015 // branches, etc. 1016 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) { 1017 BasicBlock *BB = &*FI++; 1018 SimplifyInstructionsInBlock(BB); 1019 ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true); 1020 MergeBlockIntoPredecessor(BB); 1021 } 1022 1023 // We might have some unreachable blocks after cleaning up some impossible 1024 // control flow. 1025 removeUnreachableBlocks(F); 1026 } 1027 1028 #ifndef NDEBUG 1029 void WinEHPrepare::verifyPreparedFunclets(Function &F) { 1030 for (BasicBlock &BB : F) { 1031 size_t NumColors = BlockColors[&BB].size(); 1032 assert(NumColors == 1 && "Expected monochromatic BB!"); 1033 if (NumColors == 0) 1034 report_fatal_error("Uncolored BB!"); 1035 if (NumColors > 1) 1036 report_fatal_error("Multicolor BB!"); 1037 assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) && 1038 "EH Pad still has a PHI!"); 1039 } 1040 } 1041 #endif 1042 1043 bool WinEHPrepare::prepareExplicitEH(Function &F) { 1044 // Remove unreachable blocks. It is not valuable to assign them a color and 1045 // their existence can trick us into thinking values are alive when they are 1046 // not. 1047 removeUnreachableBlocks(F); 1048 1049 // Determine which blocks are reachable from which funclet entries. 1050 colorFunclets(F); 1051 1052 cloneCommonBlocks(F); 1053 1054 if (!DisableDemotion) 1055 demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly || 1056 DemoteCatchSwitchPHIOnlyOpt); 1057 1058 if (!DisableCleanups) { 1059 LLVM_DEBUG(verifyFunction(F)); 1060 removeImplausibleInstructions(F); 1061 1062 LLVM_DEBUG(verifyFunction(F)); 1063 cleanupPreparedFunclets(F); 1064 } 1065 1066 LLVM_DEBUG(verifyPreparedFunclets(F)); 1067 // Recolor the CFG to verify that all is well. 1068 LLVM_DEBUG(colorFunclets(F)); 1069 LLVM_DEBUG(verifyPreparedFunclets(F)); 1070 1071 BlockColors.clear(); 1072 FuncletBlocks.clear(); 1073 1074 return true; 1075 } 1076 1077 // TODO: Share loads when one use dominates another, or when a catchpad exit 1078 // dominates uses (needs dominators). 1079 AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) { 1080 BasicBlock *PHIBlock = PN->getParent(); 1081 AllocaInst *SpillSlot = nullptr; 1082 Instruction *EHPad = PHIBlock->getFirstNonPHI(); 1083 1084 if (!EHPad->isTerminator()) { 1085 // If the EHPad isn't a terminator, then we can insert a load in this block 1086 // that will dominate all uses. 1087 SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr, 1088 Twine(PN->getName(), ".wineh.spillslot"), 1089 &F.getEntryBlock().front()); 1090 Value *V = new LoadInst(PN->getType(), SpillSlot, 1091 Twine(PN->getName(), ".wineh.reload"), 1092 &*PHIBlock->getFirstInsertionPt()); 1093 PN->replaceAllUsesWith(V); 1094 return SpillSlot; 1095 } 1096 1097 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert 1098 // loads of the slot before every use. 1099 DenseMap<BasicBlock *, Value *> Loads; 1100 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end(); 1101 UI != UE;) { 1102 Use &U = *UI++; 1103 auto *UsingInst = cast<Instruction>(U.getUser()); 1104 if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) { 1105 // Use is on an EH pad phi. Leave it alone; we'll insert loads and 1106 // stores for it separately. 1107 continue; 1108 } 1109 replaceUseWithLoad(PN, U, SpillSlot, Loads, F); 1110 } 1111 return SpillSlot; 1112 } 1113 1114 // TODO: improve store placement. Inserting at def is probably good, but need 1115 // to be careful not to introduce interfering stores (needs liveness analysis). 1116 // TODO: identify related phi nodes that can share spill slots, and share them 1117 // (also needs liveness). 1118 void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI, 1119 AllocaInst *SpillSlot) { 1120 // Use a worklist of (Block, Value) pairs -- the given Value needs to be 1121 // stored to the spill slot by the end of the given Block. 1122 SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist; 1123 1124 Worklist.push_back({OriginalPHI->getParent(), OriginalPHI}); 1125 1126 while (!Worklist.empty()) { 1127 BasicBlock *EHBlock; 1128 Value *InVal; 1129 std::tie(EHBlock, InVal) = Worklist.pop_back_val(); 1130 1131 PHINode *PN = dyn_cast<PHINode>(InVal); 1132 if (PN && PN->getParent() == EHBlock) { 1133 // The value is defined by another PHI we need to remove, with no room to 1134 // insert a store after the PHI, so each predecessor needs to store its 1135 // incoming value. 1136 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { 1137 Value *PredVal = PN->getIncomingValue(i); 1138 1139 // Undef can safely be skipped. 1140 if (isa<UndefValue>(PredVal)) 1141 continue; 1142 1143 insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist); 1144 } 1145 } else { 1146 // We need to store InVal, which dominates EHBlock, but can't put a store 1147 // in EHBlock, so need to put stores in each predecessor. 1148 for (BasicBlock *PredBlock : predecessors(EHBlock)) { 1149 insertPHIStore(PredBlock, InVal, SpillSlot, Worklist); 1150 } 1151 } 1152 } 1153 } 1154 1155 void WinEHPrepare::insertPHIStore( 1156 BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot, 1157 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) { 1158 1159 if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) { 1160 // Pred is unsplittable, so we need to queue it on the worklist. 1161 Worklist.push_back({PredBlock, PredVal}); 1162 return; 1163 } 1164 1165 // Otherwise, insert the store at the end of the basic block. 1166 new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator()); 1167 } 1168 1169 void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot, 1170 DenseMap<BasicBlock *, Value *> &Loads, 1171 Function &F) { 1172 // Lazilly create the spill slot. 1173 if (!SpillSlot) 1174 SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr, 1175 Twine(V->getName(), ".wineh.spillslot"), 1176 &F.getEntryBlock().front()); 1177 1178 auto *UsingInst = cast<Instruction>(U.getUser()); 1179 if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) { 1180 // If this is a PHI node, we can't insert a load of the value before 1181 // the use. Instead insert the load in the predecessor block 1182 // corresponding to the incoming value. 1183 // 1184 // Note that if there are multiple edges from a basic block to this 1185 // PHI node that we cannot have multiple loads. The problem is that 1186 // the resulting PHI node will have multiple values (from each load) 1187 // coming in from the same block, which is illegal SSA form. 1188 // For this reason, we keep track of and reuse loads we insert. 1189 BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U); 1190 if (auto *CatchRet = 1191 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) { 1192 // Putting a load above a catchret and use on the phi would still leave 1193 // a cross-funclet def/use. We need to split the edge, change the 1194 // catchret to target the new block, and put the load there. 1195 BasicBlock *PHIBlock = UsingInst->getParent(); 1196 BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock); 1197 // SplitEdge gives us: 1198 // IncomingBlock: 1199 // ... 1200 // br label %NewBlock 1201 // NewBlock: 1202 // catchret label %PHIBlock 1203 // But we need: 1204 // IncomingBlock: 1205 // ... 1206 // catchret label %NewBlock 1207 // NewBlock: 1208 // br label %PHIBlock 1209 // So move the terminators to each others' blocks and swap their 1210 // successors. 1211 BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator()); 1212 Goto->removeFromParent(); 1213 CatchRet->removeFromParent(); 1214 IncomingBlock->getInstList().push_back(CatchRet); 1215 NewBlock->getInstList().push_back(Goto); 1216 Goto->setSuccessor(0, PHIBlock); 1217 CatchRet->setSuccessor(NewBlock); 1218 // Update the color mapping for the newly split edge. 1219 // Grab a reference to the ColorVector to be inserted before getting the 1220 // reference to the vector we are copying because inserting the new 1221 // element in BlockColors might cause the map to be reallocated. 1222 ColorVector &ColorsForNewBlock = BlockColors[NewBlock]; 1223 ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock]; 1224 ColorsForNewBlock = ColorsForPHIBlock; 1225 for (BasicBlock *FuncletPad : ColorsForPHIBlock) 1226 FuncletBlocks[FuncletPad].push_back(NewBlock); 1227 // Treat the new block as incoming for load insertion. 1228 IncomingBlock = NewBlock; 1229 } 1230 Value *&Load = Loads[IncomingBlock]; 1231 // Insert the load into the predecessor block 1232 if (!Load) 1233 Load = new LoadInst(V->getType(), SpillSlot, 1234 Twine(V->getName(), ".wineh.reload"), 1235 /*isVolatile=*/false, IncomingBlock->getTerminator()); 1236 1237 U.set(Load); 1238 } else { 1239 // Reload right before the old use. 1240 auto *Load = new LoadInst(V->getType(), SpillSlot, 1241 Twine(V->getName(), ".wineh.reload"), 1242 /*isVolatile=*/false, UsingInst); 1243 U.set(Load); 1244 } 1245 } 1246 1247 void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II, 1248 MCSymbol *InvokeBegin, 1249 MCSymbol *InvokeEnd) { 1250 assert(InvokeStateMap.count(II) && 1251 "should get invoke with precomputed state"); 1252 LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd); 1253 } 1254 1255 WinEHFuncInfo::WinEHFuncInfo() {} 1256