1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass lowers LLVM IR exception handling into something closer to what the 11 // backend wants for functions using a personality function from a runtime 12 // provided by MSVC. Functions with other personality functions are left alone 13 // and may be prepared by other passes. In particular, all supported MSVC 14 // personality functions require cleanup code to be outlined, and the C++ 15 // personality requires catch handler code to be outlined. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/TinyPtrVector.h" 26 #include "llvm/Analysis/LibCallSemantics.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/CodeGen/WinEHFuncInfo.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Pass.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include "llvm/Transforms/Utils/Cloning.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 43 #include <memory> 44 45 using namespace llvm; 46 using namespace llvm::PatternMatch; 47 48 #define DEBUG_TYPE "winehprepare" 49 50 namespace { 51 52 // This map is used to model frame variable usage during outlining, to 53 // construct a structure type to hold the frame variables in a frame 54 // allocation block, and to remap the frame variable allocas (including 55 // spill locations as needed) to GEPs that get the variable from the 56 // frame allocation structure. 57 typedef MapVector<Value *, TinyPtrVector<AllocaInst *>> FrameVarInfoMap; 58 59 // TinyPtrVector cannot hold nullptr, so we need our own sentinel that isn't 60 // quite null. 61 AllocaInst *getCatchObjectSentinel() { 62 return static_cast<AllocaInst *>(nullptr) + 1; 63 } 64 65 typedef SmallSet<BasicBlock *, 4> VisitedBlockSet; 66 67 class LandingPadActions; 68 class LandingPadMap; 69 70 typedef DenseMap<const BasicBlock *, CatchHandler *> CatchHandlerMapTy; 71 typedef DenseMap<const BasicBlock *, CleanupHandler *> CleanupHandlerMapTy; 72 73 class WinEHPrepare : public FunctionPass { 74 public: 75 static char ID; // Pass identification, replacement for typeid. 76 WinEHPrepare(const TargetMachine *TM = nullptr) 77 : FunctionPass(ID) { 78 if (TM) 79 TheTriple = TM->getTargetTriple(); 80 } 81 82 bool runOnFunction(Function &Fn) override; 83 84 bool doFinalization(Module &M) override; 85 86 void getAnalysisUsage(AnalysisUsage &AU) const override; 87 88 const char *getPassName() const override { 89 return "Windows exception handling preparation"; 90 } 91 92 private: 93 bool prepareExceptionHandlers(Function &F, 94 SmallVectorImpl<LandingPadInst *> &LPads); 95 void identifyEHBlocks(Function &F, SmallVectorImpl<LandingPadInst *> &LPads); 96 void promoteLandingPadValues(LandingPadInst *LPad); 97 void demoteValuesLiveAcrossHandlers(Function &F, 98 SmallVectorImpl<LandingPadInst *> &LPads); 99 void findSEHEHReturnPoints(Function &F, 100 SetVector<BasicBlock *> &EHReturnBlocks); 101 void findCXXEHReturnPoints(Function &F, 102 SetVector<BasicBlock *> &EHReturnBlocks); 103 void getPossibleReturnTargets(Function *ParentF, Function *HandlerF, 104 SetVector<BasicBlock*> &Targets); 105 void completeNestedLandingPad(Function *ParentFn, 106 LandingPadInst *OutlinedLPad, 107 const LandingPadInst *OriginalLPad, 108 FrameVarInfoMap &VarInfo); 109 Function *createHandlerFunc(Function *ParentFn, Type *RetTy, 110 const Twine &Name, Module *M, Value *&ParentFP); 111 bool outlineHandler(ActionHandler *Action, Function *SrcFn, 112 LandingPadInst *LPad, BasicBlock *StartBB, 113 FrameVarInfoMap &VarInfo); 114 void addStubInvokeToHandlerIfNeeded(Function *Handler); 115 116 void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions); 117 CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB, 118 VisitedBlockSet &VisitedBlocks); 119 void findCleanupHandlers(LandingPadActions &Actions, BasicBlock *StartBB, 120 BasicBlock *EndBB); 121 122 void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB); 123 124 Triple TheTriple; 125 126 // All fields are reset by runOnFunction. 127 DominatorTree *DT = nullptr; 128 const TargetLibraryInfo *LibInfo = nullptr; 129 EHPersonality Personality = EHPersonality::Unknown; 130 CatchHandlerMapTy CatchHandlerMap; 131 CleanupHandlerMapTy CleanupHandlerMap; 132 DenseMap<const LandingPadInst *, LandingPadMap> LPadMaps; 133 SmallPtrSet<BasicBlock *, 4> NormalBlocks; 134 SmallPtrSet<BasicBlock *, 4> EHBlocks; 135 SetVector<BasicBlock *> EHReturnBlocks; 136 137 // This maps landing pad instructions found in outlined handlers to 138 // the landing pad instruction in the parent function from which they 139 // were cloned. The cloned/nested landing pad is used as the key 140 // because the landing pad may be cloned into multiple handlers. 141 // This map will be used to add the llvm.eh.actions call to the nested 142 // landing pads after all handlers have been outlined. 143 DenseMap<LandingPadInst *, const LandingPadInst *> NestedLPtoOriginalLP; 144 145 // This maps blocks in the parent function which are destinations of 146 // catch handlers to cloned blocks in (other) outlined handlers. This 147 // handles the case where a nested landing pads has a catch handler that 148 // returns to a handler function rather than the parent function. 149 // The original block is used as the key here because there should only 150 // ever be one handler function from which the cloned block is not pruned. 151 // The original block will be pruned from the parent function after all 152 // handlers have been outlined. This map will be used to adjust the 153 // return instructions of handlers which return to the block that was 154 // outlined into a handler. This is done after all handlers have been 155 // outlined but before the outlined code is pruned from the parent function. 156 DenseMap<const BasicBlock *, BasicBlock *> LPadTargetBlocks; 157 158 // Map from outlined handler to call to llvm.frameaddress(1). Only used for 159 // 32-bit EH. 160 DenseMap<Function *, Value *> HandlerToParentFP; 161 162 AllocaInst *SEHExceptionCodeSlot = nullptr; 163 }; 164 165 class WinEHFrameVariableMaterializer : public ValueMaterializer { 166 public: 167 WinEHFrameVariableMaterializer(Function *OutlinedFn, Value *ParentFP, 168 FrameVarInfoMap &FrameVarInfo); 169 ~WinEHFrameVariableMaterializer() override {} 170 171 Value *materializeValueFor(Value *V) override; 172 173 void escapeCatchObject(Value *V); 174 175 private: 176 FrameVarInfoMap &FrameVarInfo; 177 IRBuilder<> Builder; 178 }; 179 180 class LandingPadMap { 181 public: 182 LandingPadMap() : OriginLPad(nullptr) {} 183 void mapLandingPad(const LandingPadInst *LPad); 184 185 bool isInitialized() { return OriginLPad != nullptr; } 186 187 bool isOriginLandingPadBlock(const BasicBlock *BB) const; 188 bool isLandingPadSpecificInst(const Instruction *Inst) const; 189 190 void remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue, 191 Value *SelectorValue) const; 192 193 private: 194 const LandingPadInst *OriginLPad; 195 // We will normally only see one of each of these instructions, but 196 // if more than one occurs for some reason we can handle that. 197 TinyPtrVector<const ExtractValueInst *> ExtractedEHPtrs; 198 TinyPtrVector<const ExtractValueInst *> ExtractedSelectors; 199 }; 200 201 class WinEHCloningDirectorBase : public CloningDirector { 202 public: 203 WinEHCloningDirectorBase(Function *HandlerFn, Value *ParentFP, 204 FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap) 205 : Materializer(HandlerFn, ParentFP, VarInfo), 206 SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())), 207 Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())), 208 LPadMap(LPadMap), ParentFP(ParentFP) {} 209 210 CloningAction handleInstruction(ValueToValueMapTy &VMap, 211 const Instruction *Inst, 212 BasicBlock *NewBB) override; 213 214 virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap, 215 const Instruction *Inst, 216 BasicBlock *NewBB) = 0; 217 virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap, 218 const Instruction *Inst, 219 BasicBlock *NewBB) = 0; 220 virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, 221 const Instruction *Inst, 222 BasicBlock *NewBB) = 0; 223 virtual CloningAction handleIndirectBr(ValueToValueMapTy &VMap, 224 const IndirectBrInst *IBr, 225 BasicBlock *NewBB) = 0; 226 virtual CloningAction handleInvoke(ValueToValueMapTy &VMap, 227 const InvokeInst *Invoke, 228 BasicBlock *NewBB) = 0; 229 virtual CloningAction handleResume(ValueToValueMapTy &VMap, 230 const ResumeInst *Resume, 231 BasicBlock *NewBB) = 0; 232 virtual CloningAction handleCompare(ValueToValueMapTy &VMap, 233 const CmpInst *Compare, 234 BasicBlock *NewBB) = 0; 235 virtual CloningAction handleLandingPad(ValueToValueMapTy &VMap, 236 const LandingPadInst *LPad, 237 BasicBlock *NewBB) = 0; 238 239 ValueMaterializer *getValueMaterializer() override { return &Materializer; } 240 241 protected: 242 WinEHFrameVariableMaterializer Materializer; 243 Type *SelectorIDType; 244 Type *Int8PtrType; 245 LandingPadMap &LPadMap; 246 247 /// The value representing the parent frame pointer. 248 Value *ParentFP; 249 }; 250 251 class WinEHCatchDirector : public WinEHCloningDirectorBase { 252 public: 253 WinEHCatchDirector( 254 Function *CatchFn, Value *ParentFP, Value *Selector, 255 FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap, 256 DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPads, 257 DominatorTree *DT, SmallPtrSetImpl<BasicBlock *> &EHBlocks) 258 : WinEHCloningDirectorBase(CatchFn, ParentFP, VarInfo, LPadMap), 259 CurrentSelector(Selector->stripPointerCasts()), 260 ExceptionObjectVar(nullptr), NestedLPtoOriginalLP(NestedLPads), 261 DT(DT), EHBlocks(EHBlocks) {} 262 263 CloningAction handleBeginCatch(ValueToValueMapTy &VMap, 264 const Instruction *Inst, 265 BasicBlock *NewBB) override; 266 CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, 267 BasicBlock *NewBB) override; 268 CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, 269 const Instruction *Inst, 270 BasicBlock *NewBB) override; 271 CloningAction handleIndirectBr(ValueToValueMapTy &VMap, 272 const IndirectBrInst *IBr, 273 BasicBlock *NewBB) override; 274 CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, 275 BasicBlock *NewBB) override; 276 CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, 277 BasicBlock *NewBB) override; 278 CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare, 279 BasicBlock *NewBB) override; 280 CloningAction handleLandingPad(ValueToValueMapTy &VMap, 281 const LandingPadInst *LPad, 282 BasicBlock *NewBB) override; 283 284 Value *getExceptionVar() { return ExceptionObjectVar; } 285 TinyPtrVector<BasicBlock *> &getReturnTargets() { return ReturnTargets; } 286 287 private: 288 Value *CurrentSelector; 289 290 Value *ExceptionObjectVar; 291 TinyPtrVector<BasicBlock *> ReturnTargets; 292 293 // This will be a reference to the field of the same name in the WinEHPrepare 294 // object which instantiates this WinEHCatchDirector object. 295 DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPtoOriginalLP; 296 DominatorTree *DT; 297 SmallPtrSetImpl<BasicBlock *> &EHBlocks; 298 }; 299 300 class WinEHCleanupDirector : public WinEHCloningDirectorBase { 301 public: 302 WinEHCleanupDirector(Function *CleanupFn, Value *ParentFP, 303 FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap) 304 : WinEHCloningDirectorBase(CleanupFn, ParentFP, VarInfo, 305 LPadMap) {} 306 307 CloningAction handleBeginCatch(ValueToValueMapTy &VMap, 308 const Instruction *Inst, 309 BasicBlock *NewBB) override; 310 CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, 311 BasicBlock *NewBB) override; 312 CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, 313 const Instruction *Inst, 314 BasicBlock *NewBB) override; 315 CloningAction handleIndirectBr(ValueToValueMapTy &VMap, 316 const IndirectBrInst *IBr, 317 BasicBlock *NewBB) override; 318 CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, 319 BasicBlock *NewBB) override; 320 CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, 321 BasicBlock *NewBB) override; 322 CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare, 323 BasicBlock *NewBB) override; 324 CloningAction handleLandingPad(ValueToValueMapTy &VMap, 325 const LandingPadInst *LPad, 326 BasicBlock *NewBB) override; 327 }; 328 329 class LandingPadActions { 330 public: 331 LandingPadActions() : HasCleanupHandlers(false) {} 332 333 void insertCatchHandler(CatchHandler *Action) { Actions.push_back(Action); } 334 void insertCleanupHandler(CleanupHandler *Action) { 335 Actions.push_back(Action); 336 HasCleanupHandlers = true; 337 } 338 339 bool includesCleanup() const { return HasCleanupHandlers; } 340 341 SmallVectorImpl<ActionHandler *> &actions() { return Actions; } 342 SmallVectorImpl<ActionHandler *>::iterator begin() { return Actions.begin(); } 343 SmallVectorImpl<ActionHandler *>::iterator end() { return Actions.end(); } 344 345 private: 346 // Note that this class does not own the ActionHandler objects in this vector. 347 // The ActionHandlers are owned by the CatchHandlerMap and CleanupHandlerMap 348 // in the WinEHPrepare class. 349 SmallVector<ActionHandler *, 4> Actions; 350 bool HasCleanupHandlers; 351 }; 352 353 } // end anonymous namespace 354 355 char WinEHPrepare::ID = 0; 356 INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions", 357 false, false) 358 359 FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) { 360 return new WinEHPrepare(TM); 361 } 362 363 bool WinEHPrepare::runOnFunction(Function &Fn) { 364 // No need to prepare outlined handlers. 365 if (Fn.hasFnAttribute("wineh-parent")) 366 return false; 367 368 SmallVector<LandingPadInst *, 4> LPads; 369 SmallVector<ResumeInst *, 4> Resumes; 370 for (BasicBlock &BB : Fn) { 371 if (auto *LP = BB.getLandingPadInst()) 372 LPads.push_back(LP); 373 if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator())) 374 Resumes.push_back(Resume); 375 } 376 377 // No need to prepare functions that lack landing pads. 378 if (LPads.empty()) 379 return false; 380 381 // Classify the personality to see what kind of preparation we need. 382 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 383 384 // Do nothing if this is not an MSVC personality. 385 if (!isMSVCEHPersonality(Personality)) 386 return false; 387 388 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 389 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 390 391 // If there were any landing pads, prepareExceptionHandlers will make changes. 392 prepareExceptionHandlers(Fn, LPads); 393 return true; 394 } 395 396 bool WinEHPrepare::doFinalization(Module &M) { return false; } 397 398 void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const { 399 AU.addRequired<DominatorTreeWrapperPass>(); 400 AU.addRequired<TargetLibraryInfoWrapperPass>(); 401 } 402 403 static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler, 404 Constant *&Selector, BasicBlock *&NextBB); 405 406 // Finds blocks reachable from the starting set Worklist. Does not follow unwind 407 // edges or blocks listed in StopPoints. 408 static void findReachableBlocks(SmallPtrSetImpl<BasicBlock *> &ReachableBBs, 409 SetVector<BasicBlock *> &Worklist, 410 const SetVector<BasicBlock *> *StopPoints) { 411 while (!Worklist.empty()) { 412 BasicBlock *BB = Worklist.pop_back_val(); 413 414 // Don't cross blocks that we should stop at. 415 if (StopPoints && StopPoints->count(BB)) 416 continue; 417 418 if (!ReachableBBs.insert(BB).second) 419 continue; // Already visited. 420 421 // Don't follow unwind edges of invokes. 422 if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 423 Worklist.insert(II->getNormalDest()); 424 continue; 425 } 426 427 // Otherwise, follow all successors. 428 Worklist.insert(succ_begin(BB), succ_end(BB)); 429 } 430 } 431 432 // Attempt to find an instruction where a block can be split before 433 // a call to llvm.eh.begincatch and its operands. If the block 434 // begins with the begincatch call or one of its adjacent operands 435 // the block will not be split. 436 static Instruction *findBeginCatchSplitPoint(BasicBlock *BB, 437 IntrinsicInst *II) { 438 // If the begincatch call is already the first instruction in the block, 439 // don't split. 440 Instruction *FirstNonPHI = BB->getFirstNonPHI(); 441 if (II == FirstNonPHI) 442 return nullptr; 443 444 // If either operand is in the same basic block as the instruction and 445 // isn't used by another instruction before the begincatch call, include it 446 // in the split block. 447 auto *Op0 = dyn_cast<Instruction>(II->getOperand(0)); 448 auto *Op1 = dyn_cast<Instruction>(II->getOperand(1)); 449 450 Instruction *I = II->getPrevNode(); 451 Instruction *LastI = II; 452 453 while (I == Op0 || I == Op1) { 454 // If the block begins with one of the operands and there are no other 455 // instructions between the operand and the begincatch call, don't split. 456 if (I == FirstNonPHI) 457 return nullptr; 458 459 LastI = I; 460 I = I->getPrevNode(); 461 } 462 463 // If there is at least one instruction in the block before the begincatch 464 // call and its operands, split the block at either the begincatch or 465 // its operand. 466 return LastI; 467 } 468 469 /// Find all points where exceptional control rejoins normal control flow via 470 /// llvm.eh.endcatch. Add them to the normal bb reachability worklist. 471 void WinEHPrepare::findCXXEHReturnPoints( 472 Function &F, SetVector<BasicBlock *> &EHReturnBlocks) { 473 for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) { 474 BasicBlock *BB = BBI; 475 for (Instruction &I : *BB) { 476 if (match(&I, m_Intrinsic<Intrinsic::eh_begincatch>())) { 477 Instruction *SplitPt = 478 findBeginCatchSplitPoint(BB, cast<IntrinsicInst>(&I)); 479 if (SplitPt) { 480 // Split the block before the llvm.eh.begincatch call to allow 481 // cleanup and catch code to be distinguished later. 482 // Do not update BBI because we still need to process the 483 // portion of the block that we are splitting off. 484 SplitBlock(BB, SplitPt, DT); 485 break; 486 } 487 } 488 if (match(&I, m_Intrinsic<Intrinsic::eh_endcatch>())) { 489 // Split the block after the call to llvm.eh.endcatch if there is 490 // anything other than an unconditional branch, or if the successor 491 // starts with a phi. 492 auto *Br = dyn_cast<BranchInst>(I.getNextNode()); 493 if (!Br || !Br->isUnconditional() || 494 isa<PHINode>(Br->getSuccessor(0)->begin())) { 495 DEBUG(dbgs() << "splitting block " << BB->getName() 496 << " with llvm.eh.endcatch\n"); 497 BBI = SplitBlock(BB, I.getNextNode(), DT); 498 } 499 // The next BB is normal control flow. 500 EHReturnBlocks.insert(BB->getTerminator()->getSuccessor(0)); 501 break; 502 } 503 } 504 } 505 } 506 507 static bool isCatchAllLandingPad(const BasicBlock *BB) { 508 const LandingPadInst *LP = BB->getLandingPadInst(); 509 if (!LP) 510 return false; 511 unsigned N = LP->getNumClauses(); 512 return (N > 0 && LP->isCatch(N - 1) && 513 isa<ConstantPointerNull>(LP->getClause(N - 1))); 514 } 515 516 /// Find all points where exceptions control rejoins normal control flow via 517 /// selector dispatch. 518 void WinEHPrepare::findSEHEHReturnPoints( 519 Function &F, SetVector<BasicBlock *> &EHReturnBlocks) { 520 for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) { 521 BasicBlock *BB = BBI; 522 // If the landingpad is a catch-all, treat the whole lpad as if it is 523 // reachable from normal control flow. 524 // FIXME: This is imprecise. We need a better way of identifying where a 525 // catch-all starts and cleanups stop. As far as LLVM is concerned, there 526 // is no difference. 527 if (isCatchAllLandingPad(BB)) { 528 EHReturnBlocks.insert(BB); 529 continue; 530 } 531 532 BasicBlock *CatchHandler; 533 BasicBlock *NextBB; 534 Constant *Selector; 535 if (isSelectorDispatch(BB, CatchHandler, Selector, NextBB)) { 536 // Split the edge if there is a phi node. Returning from EH to a phi node 537 // is just as impossible as having a phi after an indirectbr. 538 if (isa<PHINode>(CatchHandler->begin())) { 539 DEBUG(dbgs() << "splitting EH return edge from " << BB->getName() 540 << " to " << CatchHandler->getName() << '\n'); 541 BBI = CatchHandler = SplitCriticalEdge( 542 BB, std::find(succ_begin(BB), succ_end(BB), CatchHandler)); 543 } 544 EHReturnBlocks.insert(CatchHandler); 545 } 546 } 547 } 548 549 void WinEHPrepare::identifyEHBlocks(Function &F, 550 SmallVectorImpl<LandingPadInst *> &LPads) { 551 DEBUG(dbgs() << "Demoting values live across exception handlers in function " 552 << F.getName() << '\n'); 553 554 // Build a set of all non-exceptional blocks and exceptional blocks. 555 // - Non-exceptional blocks are blocks reachable from the entry block while 556 // not following invoke unwind edges. 557 // - Exceptional blocks are blocks reachable from landingpads. Analysis does 558 // not follow llvm.eh.endcatch blocks, which mark a transition from 559 // exceptional to normal control. 560 561 if (Personality == EHPersonality::MSVC_CXX) 562 findCXXEHReturnPoints(F, EHReturnBlocks); 563 else 564 findSEHEHReturnPoints(F, EHReturnBlocks); 565 566 DEBUG({ 567 dbgs() << "identified the following blocks as EH return points:\n"; 568 for (BasicBlock *BB : EHReturnBlocks) 569 dbgs() << " " << BB->getName() << '\n'; 570 }); 571 572 // Join points should not have phis at this point, unless they are a 573 // landingpad, in which case we will demote their phis later. 574 #ifndef NDEBUG 575 for (BasicBlock *BB : EHReturnBlocks) 576 assert((BB->isLandingPad() || !isa<PHINode>(BB->begin())) && 577 "non-lpad EH return block has phi"); 578 #endif 579 580 // Normal blocks are the blocks reachable from the entry block and all EH 581 // return points. 582 SetVector<BasicBlock *> Worklist; 583 Worklist = EHReturnBlocks; 584 Worklist.insert(&F.getEntryBlock()); 585 findReachableBlocks(NormalBlocks, Worklist, nullptr); 586 DEBUG({ 587 dbgs() << "marked the following blocks as normal:\n"; 588 for (BasicBlock *BB : NormalBlocks) 589 dbgs() << " " << BB->getName() << '\n'; 590 }); 591 592 // Exceptional blocks are the blocks reachable from landingpads that don't 593 // cross EH return points. 594 Worklist.clear(); 595 for (auto *LPI : LPads) 596 Worklist.insert(LPI->getParent()); 597 findReachableBlocks(EHBlocks, Worklist, &EHReturnBlocks); 598 DEBUG({ 599 dbgs() << "marked the following blocks as exceptional:\n"; 600 for (BasicBlock *BB : EHBlocks) 601 dbgs() << " " << BB->getName() << '\n'; 602 }); 603 604 } 605 606 /// Ensure that all values live into and out of exception handlers are stored 607 /// in memory. 608 /// FIXME: This falls down when values are defined in one handler and live into 609 /// another handler. For example, a cleanup defines a value used only by a 610 /// catch handler. 611 void WinEHPrepare::demoteValuesLiveAcrossHandlers( 612 Function &F, SmallVectorImpl<LandingPadInst *> &LPads) { 613 DEBUG(dbgs() << "Demoting values live across exception handlers in function " 614 << F.getName() << '\n'); 615 616 // identifyEHBlocks() should have been called before this function. 617 assert(!NormalBlocks.empty()); 618 619 SetVector<Argument *> ArgsToDemote; 620 SetVector<Instruction *> InstrsToDemote; 621 for (BasicBlock &BB : F) { 622 bool IsNormalBB = NormalBlocks.count(&BB); 623 bool IsEHBB = EHBlocks.count(&BB); 624 if (!IsNormalBB && !IsEHBB) 625 continue; // Blocks that are neither normal nor EH are unreachable. 626 for (Instruction &I : BB) { 627 for (Value *Op : I.operands()) { 628 // Don't demote static allocas, constants, and labels. 629 if (isa<Constant>(Op) || isa<BasicBlock>(Op) || isa<InlineAsm>(Op)) 630 continue; 631 auto *AI = dyn_cast<AllocaInst>(Op); 632 if (AI && AI->isStaticAlloca()) 633 continue; 634 635 if (auto *Arg = dyn_cast<Argument>(Op)) { 636 if (IsEHBB) { 637 DEBUG(dbgs() << "Demoting argument " << *Arg 638 << " used by EH instr: " << I << "\n"); 639 ArgsToDemote.insert(Arg); 640 } 641 continue; 642 } 643 644 auto *OpI = cast<Instruction>(Op); 645 BasicBlock *OpBB = OpI->getParent(); 646 // If a value is produced and consumed in the same BB, we don't need to 647 // demote it. 648 if (OpBB == &BB) 649 continue; 650 bool IsOpNormalBB = NormalBlocks.count(OpBB); 651 bool IsOpEHBB = EHBlocks.count(OpBB); 652 if (IsNormalBB != IsOpNormalBB || IsEHBB != IsOpEHBB) { 653 DEBUG({ 654 dbgs() << "Demoting instruction live in-out from EH:\n"; 655 dbgs() << "Instr: " << *OpI << '\n'; 656 dbgs() << "User: " << I << '\n'; 657 }); 658 InstrsToDemote.insert(OpI); 659 } 660 } 661 } 662 } 663 664 // Demote values live into and out of handlers. 665 // FIXME: This demotion is inefficient. We should insert spills at the point 666 // of definition, insert one reload in each handler that uses the value, and 667 // insert reloads in the BB used to rejoin normal control flow. 668 Instruction *AllocaInsertPt = F.getEntryBlock().getFirstInsertionPt(); 669 for (Instruction *I : InstrsToDemote) 670 DemoteRegToStack(*I, false, AllocaInsertPt); 671 672 // Demote arguments separately, and only for uses in EH blocks. 673 for (Argument *Arg : ArgsToDemote) { 674 auto *Slot = new AllocaInst(Arg->getType(), nullptr, 675 Arg->getName() + ".reg2mem", AllocaInsertPt); 676 SmallVector<User *, 4> Users(Arg->user_begin(), Arg->user_end()); 677 for (User *U : Users) { 678 auto *I = dyn_cast<Instruction>(U); 679 if (I && EHBlocks.count(I->getParent())) { 680 auto *Reload = new LoadInst(Slot, Arg->getName() + ".reload", false, I); 681 U->replaceUsesOfWith(Arg, Reload); 682 } 683 } 684 new StoreInst(Arg, Slot, AllocaInsertPt); 685 } 686 687 // Demote landingpad phis, as the landingpad will be removed from the machine 688 // CFG. 689 for (LandingPadInst *LPI : LPads) { 690 BasicBlock *BB = LPI->getParent(); 691 while (auto *Phi = dyn_cast<PHINode>(BB->begin())) 692 DemotePHIToStack(Phi, AllocaInsertPt); 693 } 694 695 DEBUG(dbgs() << "Demoted " << InstrsToDemote.size() << " instructions and " 696 << ArgsToDemote.size() << " arguments for WinEHPrepare\n\n"); 697 } 698 699 bool WinEHPrepare::prepareExceptionHandlers( 700 Function &F, SmallVectorImpl<LandingPadInst *> &LPads) { 701 // Don't run on functions that are already prepared. 702 for (LandingPadInst *LPad : LPads) { 703 BasicBlock *LPadBB = LPad->getParent(); 704 for (Instruction &Inst : *LPadBB) 705 if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>())) 706 return false; 707 } 708 709 identifyEHBlocks(F, LPads); 710 demoteValuesLiveAcrossHandlers(F, LPads); 711 712 // These containers are used to re-map frame variables that are used in 713 // outlined catch and cleanup handlers. They will be populated as the 714 // handlers are outlined. 715 FrameVarInfoMap FrameVarInfo; 716 717 bool HandlersOutlined = false; 718 719 Module *M = F.getParent(); 720 LLVMContext &Context = M->getContext(); 721 722 // Create a new function to receive the handler contents. 723 PointerType *Int8PtrType = Type::getInt8PtrTy(Context); 724 Type *Int32Type = Type::getInt32Ty(Context); 725 Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions); 726 727 if (isAsynchronousEHPersonality(Personality)) { 728 // FIXME: Switch the ehptr type to i32 and then switch this. 729 SEHExceptionCodeSlot = 730 new AllocaInst(Int8PtrType, nullptr, "seh_exception_code", 731 F.getEntryBlock().getFirstInsertionPt()); 732 } 733 734 // In order to handle the case where one outlined catch handler returns 735 // to a block within another outlined catch handler that would otherwise 736 // be unreachable, we need to outline the nested landing pad before we 737 // outline the landing pad which encloses it. 738 if (!isAsynchronousEHPersonality(Personality)) 739 std::sort(LPads.begin(), LPads.end(), 740 [this](LandingPadInst *const &L, LandingPadInst *const &R) { 741 return DT->properlyDominates(R->getParent(), L->getParent()); 742 }); 743 744 // This container stores the llvm.eh.recover and IndirectBr instructions 745 // that make up the body of each landing pad after it has been outlined. 746 // We need to defer the population of the target list for the indirectbr 747 // until all landing pads have been outlined so that we can handle the 748 // case of blocks in the target that are reached only from nested 749 // landing pads. 750 SmallVector<std::pair<CallInst*, IndirectBrInst *>, 4> LPadImpls; 751 752 for (LandingPadInst *LPad : LPads) { 753 // Look for evidence that this landingpad has already been processed. 754 bool LPadHasActionList = false; 755 BasicBlock *LPadBB = LPad->getParent(); 756 for (Instruction &Inst : *LPadBB) { 757 if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>())) { 758 LPadHasActionList = true; 759 break; 760 } 761 } 762 763 // If we've already outlined the handlers for this landingpad, 764 // there's nothing more to do here. 765 if (LPadHasActionList) 766 continue; 767 768 // If either of the values in the aggregate returned by the landing pad is 769 // extracted and stored to memory, promote the stored value to a register. 770 promoteLandingPadValues(LPad); 771 772 LandingPadActions Actions; 773 mapLandingPadBlocks(LPad, Actions); 774 775 HandlersOutlined |= !Actions.actions().empty(); 776 for (ActionHandler *Action : Actions) { 777 if (Action->hasBeenProcessed()) 778 continue; 779 BasicBlock *StartBB = Action->getStartBlock(); 780 781 // SEH doesn't do any outlining for catches. Instead, pass the handler 782 // basic block addr to llvm.eh.actions and list the block as a return 783 // target. 784 if (isAsynchronousEHPersonality(Personality)) { 785 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) { 786 processSEHCatchHandler(CatchAction, StartBB); 787 continue; 788 } 789 } 790 791 outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo); 792 } 793 794 // Split the block after the landingpad instruction so that it is just a 795 // call to llvm.eh.actions followed by indirectbr. 796 assert(!isa<PHINode>(LPadBB->begin()) && "lpad phi not removed"); 797 SplitBlock(LPadBB, LPad->getNextNode(), DT); 798 // Erase the branch inserted by the split so we can insert indirectbr. 799 LPadBB->getTerminator()->eraseFromParent(); 800 801 // Replace all extracted values with undef and ultimately replace the 802 // landingpad with undef. 803 SmallVector<Instruction *, 4> SEHCodeUses; 804 SmallVector<Instruction *, 4> EHUndefs; 805 for (User *U : LPad->users()) { 806 auto *E = dyn_cast<ExtractValueInst>(U); 807 if (!E) 808 continue; 809 assert(E->getNumIndices() == 1 && 810 "Unexpected operation: extracting both landing pad values"); 811 unsigned Idx = *E->idx_begin(); 812 assert((Idx == 0 || Idx == 1) && "unexpected index"); 813 if (Idx == 0 && isAsynchronousEHPersonality(Personality)) 814 SEHCodeUses.push_back(E); 815 else 816 EHUndefs.push_back(E); 817 } 818 for (Instruction *E : EHUndefs) { 819 E->replaceAllUsesWith(UndefValue::get(E->getType())); 820 E->eraseFromParent(); 821 } 822 LPad->replaceAllUsesWith(UndefValue::get(LPad->getType())); 823 824 // Rewrite uses of the exception pointer to loads of an alloca. 825 for (Instruction *E : SEHCodeUses) { 826 SmallVector<Use *, 4> Uses; 827 for (Use &U : E->uses()) 828 Uses.push_back(&U); 829 for (Use *U : Uses) { 830 auto *I = cast<Instruction>(U->getUser()); 831 if (isa<ResumeInst>(I)) 832 continue; 833 LoadInst *LI; 834 if (auto *Phi = dyn_cast<PHINode>(I)) 835 LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false, 836 Phi->getIncomingBlock(*U)); 837 else 838 LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false, I); 839 U->set(LI); 840 } 841 E->replaceAllUsesWith(UndefValue::get(E->getType())); 842 E->eraseFromParent(); 843 } 844 845 // Add a call to describe the actions for this landing pad. 846 std::vector<Value *> ActionArgs; 847 for (ActionHandler *Action : Actions) { 848 // Action codes from docs are: 0 cleanup, 1 catch. 849 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) { 850 ActionArgs.push_back(ConstantInt::get(Int32Type, 1)); 851 ActionArgs.push_back(CatchAction->getSelector()); 852 // Find the frame escape index of the exception object alloca in the 853 // parent. 854 int FrameEscapeIdx = -1; 855 Value *EHObj = const_cast<Value *>(CatchAction->getExceptionVar()); 856 if (EHObj && !isa<ConstantPointerNull>(EHObj)) { 857 auto I = FrameVarInfo.find(EHObj); 858 assert(I != FrameVarInfo.end() && 859 "failed to map llvm.eh.begincatch var"); 860 FrameEscapeIdx = std::distance(FrameVarInfo.begin(), I); 861 } 862 ActionArgs.push_back(ConstantInt::get(Int32Type, FrameEscapeIdx)); 863 } else { 864 ActionArgs.push_back(ConstantInt::get(Int32Type, 0)); 865 } 866 ActionArgs.push_back(Action->getHandlerBlockOrFunc()); 867 } 868 CallInst *Recover = 869 CallInst::Create(ActionIntrin, ActionArgs, "recover", LPadBB); 870 871 SetVector<BasicBlock *> ReturnTargets; 872 for (ActionHandler *Action : Actions) { 873 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) { 874 const auto &CatchTargets = CatchAction->getReturnTargets(); 875 ReturnTargets.insert(CatchTargets.begin(), CatchTargets.end()); 876 } 877 } 878 IndirectBrInst *Branch = 879 IndirectBrInst::Create(Recover, ReturnTargets.size(), LPadBB); 880 for (BasicBlock *Target : ReturnTargets) 881 Branch->addDestination(Target); 882 883 if (!isAsynchronousEHPersonality(Personality)) { 884 // C++ EH must repopulate the targets later to handle the case of 885 // targets that are reached indirectly through nested landing pads. 886 LPadImpls.push_back(std::make_pair(Recover, Branch)); 887 } 888 889 } // End for each landingpad 890 891 // If nothing got outlined, there is no more processing to be done. 892 if (!HandlersOutlined) 893 return false; 894 895 // Replace any nested landing pad stubs with the correct action handler. 896 // This must be done before we remove unreachable blocks because it 897 // cleans up references to outlined blocks that will be deleted. 898 for (auto &LPadPair : NestedLPtoOriginalLP) 899 completeNestedLandingPad(&F, LPadPair.first, LPadPair.second, FrameVarInfo); 900 NestedLPtoOriginalLP.clear(); 901 902 // Update the indirectbr instructions' target lists if necessary. 903 SetVector<BasicBlock*> CheckedTargets; 904 SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList; 905 for (auto &LPadImplPair : LPadImpls) { 906 IntrinsicInst *Recover = cast<IntrinsicInst>(LPadImplPair.first); 907 IndirectBrInst *Branch = LPadImplPair.second; 908 909 // Get a list of handlers called by 910 parseEHActions(Recover, ActionList); 911 912 // Add an indirect branch listing possible successors of the catch handlers. 913 SetVector<BasicBlock *> ReturnTargets; 914 for (const auto &Action : ActionList) { 915 if (auto *CA = dyn_cast<CatchHandler>(Action.get())) { 916 Function *Handler = cast<Function>(CA->getHandlerBlockOrFunc()); 917 getPossibleReturnTargets(&F, Handler, ReturnTargets); 918 } 919 } 920 ActionList.clear(); 921 // Clear any targets we already knew about. 922 for (unsigned int I = 0, E = Branch->getNumDestinations(); I < E; ++I) { 923 BasicBlock *KnownTarget = Branch->getDestination(I); 924 if (ReturnTargets.count(KnownTarget)) 925 ReturnTargets.remove(KnownTarget); 926 } 927 for (BasicBlock *Target : ReturnTargets) { 928 Branch->addDestination(Target); 929 // The target may be a block that we excepted to get pruned. 930 // If it is, it may contain a call to llvm.eh.endcatch. 931 if (CheckedTargets.insert(Target)) { 932 // Earlier preparations guarantee that all calls to llvm.eh.endcatch 933 // will be followed by an unconditional branch. 934 auto *Br = dyn_cast<BranchInst>(Target->getTerminator()); 935 if (Br && Br->isUnconditional() && 936 Br != Target->getFirstNonPHIOrDbgOrLifetime()) { 937 Instruction *Prev = Br->getPrevNode(); 938 if (match(cast<Value>(Prev), m_Intrinsic<Intrinsic::eh_endcatch>())) 939 Prev->eraseFromParent(); 940 } 941 } 942 } 943 } 944 LPadImpls.clear(); 945 946 F.addFnAttr("wineh-parent", F.getName()); 947 948 // Delete any blocks that were only used by handlers that were outlined above. 949 removeUnreachableBlocks(F); 950 951 BasicBlock *Entry = &F.getEntryBlock(); 952 IRBuilder<> Builder(F.getParent()->getContext()); 953 Builder.SetInsertPoint(Entry->getFirstInsertionPt()); 954 955 Function *FrameEscapeFn = 956 Intrinsic::getDeclaration(M, Intrinsic::frameescape); 957 Function *RecoverFrameFn = 958 Intrinsic::getDeclaration(M, Intrinsic::framerecover); 959 SmallVector<Value *, 8> AllocasToEscape; 960 961 // Scan the entry block for an existing call to llvm.frameescape. We need to 962 // keep escaping those objects. 963 for (Instruction &I : F.front()) { 964 auto *II = dyn_cast<IntrinsicInst>(&I); 965 if (II && II->getIntrinsicID() == Intrinsic::frameescape) { 966 auto Args = II->arg_operands(); 967 AllocasToEscape.append(Args.begin(), Args.end()); 968 II->eraseFromParent(); 969 break; 970 } 971 } 972 973 // Finally, replace all of the temporary allocas for frame variables used in 974 // the outlined handlers with calls to llvm.framerecover. 975 for (auto &VarInfoEntry : FrameVarInfo) { 976 Value *ParentVal = VarInfoEntry.first; 977 TinyPtrVector<AllocaInst *> &Allocas = VarInfoEntry.second; 978 AllocaInst *ParentAlloca = cast<AllocaInst>(ParentVal); 979 980 // FIXME: We should try to sink unescaped allocas from the parent frame into 981 // the child frame. If the alloca is escaped, we have to use the lifetime 982 // markers to ensure that the alloca is only live within the child frame. 983 984 // Add this alloca to the list of things to escape. 985 AllocasToEscape.push_back(ParentAlloca); 986 987 // Next replace all outlined allocas that are mapped to it. 988 for (AllocaInst *TempAlloca : Allocas) { 989 if (TempAlloca == getCatchObjectSentinel()) 990 continue; // Skip catch parameter sentinels. 991 Function *HandlerFn = TempAlloca->getParent()->getParent(); 992 llvm::Value *FP = HandlerToParentFP[HandlerFn]; 993 assert(FP); 994 995 // FIXME: Sink this framerecover into the blocks where it is used. 996 Builder.SetInsertPoint(TempAlloca); 997 Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc()); 998 Value *RecoverArgs[] = { 999 Builder.CreateBitCast(&F, Int8PtrType, ""), FP, 1000 llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)}; 1001 Instruction *RecoveredAlloca = 1002 Builder.CreateCall(RecoverFrameFn, RecoverArgs); 1003 1004 // Add a pointer bitcast if the alloca wasn't an i8. 1005 if (RecoveredAlloca->getType() != TempAlloca->getType()) { 1006 RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8"); 1007 RecoveredAlloca = cast<Instruction>( 1008 Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType())); 1009 } 1010 TempAlloca->replaceAllUsesWith(RecoveredAlloca); 1011 TempAlloca->removeFromParent(); 1012 RecoveredAlloca->takeName(TempAlloca); 1013 delete TempAlloca; 1014 } 1015 } // End for each FrameVarInfo entry. 1016 1017 // Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry 1018 // block. 1019 Builder.SetInsertPoint(&F.getEntryBlock().back()); 1020 Builder.CreateCall(FrameEscapeFn, AllocasToEscape); 1021 1022 if (SEHExceptionCodeSlot) { 1023 if (isAllocaPromotable(SEHExceptionCodeSlot)) { 1024 SmallPtrSet<BasicBlock *, 4> UserBlocks; 1025 for (User *U : SEHExceptionCodeSlot->users()) { 1026 if (auto *Inst = dyn_cast<Instruction>(U)) 1027 UserBlocks.insert(Inst->getParent()); 1028 } 1029 PromoteMemToReg(SEHExceptionCodeSlot, *DT); 1030 // After the promotion, kill off dead instructions. 1031 for (BasicBlock *BB : UserBlocks) 1032 SimplifyInstructionsInBlock(BB, LibInfo); 1033 } 1034 } 1035 1036 // Clean up the handler action maps we created for this function 1037 DeleteContainerSeconds(CatchHandlerMap); 1038 CatchHandlerMap.clear(); 1039 DeleteContainerSeconds(CleanupHandlerMap); 1040 CleanupHandlerMap.clear(); 1041 HandlerToParentFP.clear(); 1042 DT = nullptr; 1043 LibInfo = nullptr; 1044 SEHExceptionCodeSlot = nullptr; 1045 EHBlocks.clear(); 1046 NormalBlocks.clear(); 1047 EHReturnBlocks.clear(); 1048 1049 return HandlersOutlined; 1050 } 1051 1052 void WinEHPrepare::promoteLandingPadValues(LandingPadInst *LPad) { 1053 // If the return values of the landing pad instruction are extracted and 1054 // stored to memory, we want to promote the store locations to reg values. 1055 SmallVector<AllocaInst *, 2> EHAllocas; 1056 1057 // The landingpad instruction returns an aggregate value. Typically, its 1058 // value will be passed to a pair of extract value instructions and the 1059 // results of those extracts are often passed to store instructions. 1060 // In unoptimized code the stored value will often be loaded and then stored 1061 // again. 1062 for (auto *U : LPad->users()) { 1063 ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U); 1064 if (!Extract) 1065 continue; 1066 1067 for (auto *EU : Extract->users()) { 1068 if (auto *Store = dyn_cast<StoreInst>(EU)) { 1069 auto *AV = cast<AllocaInst>(Store->getPointerOperand()); 1070 EHAllocas.push_back(AV); 1071 } 1072 } 1073 } 1074 1075 // We can't do this without a dominator tree. 1076 assert(DT); 1077 1078 if (!EHAllocas.empty()) { 1079 PromoteMemToReg(EHAllocas, *DT); 1080 EHAllocas.clear(); 1081 } 1082 1083 // After promotion, some extracts may be trivially dead. Remove them. 1084 SmallVector<Value *, 4> Users(LPad->user_begin(), LPad->user_end()); 1085 for (auto *U : Users) 1086 RecursivelyDeleteTriviallyDeadInstructions(U); 1087 } 1088 1089 void WinEHPrepare::getPossibleReturnTargets(Function *ParentF, 1090 Function *HandlerF, 1091 SetVector<BasicBlock*> &Targets) { 1092 for (BasicBlock &BB : *HandlerF) { 1093 // If the handler contains landing pads, check for any 1094 // handlers that may return directly to a block in the 1095 // parent function. 1096 if (auto *LPI = BB.getLandingPadInst()) { 1097 IntrinsicInst *Recover = cast<IntrinsicInst>(LPI->getNextNode()); 1098 SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList; 1099 parseEHActions(Recover, ActionList); 1100 for (const auto &Action : ActionList) { 1101 if (auto *CH = dyn_cast<CatchHandler>(Action.get())) { 1102 Function *NestedF = cast<Function>(CH->getHandlerBlockOrFunc()); 1103 getPossibleReturnTargets(ParentF, NestedF, Targets); 1104 } 1105 } 1106 } 1107 1108 auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()); 1109 if (!Ret) 1110 continue; 1111 1112 // Handler functions must always return a block address. 1113 BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue()); 1114 1115 // If this is the handler for a nested landing pad, the 1116 // return address may have been remapped to a block in the 1117 // parent handler. We're not interested in those. 1118 if (BA->getFunction() != ParentF) 1119 continue; 1120 1121 Targets.insert(BA->getBasicBlock()); 1122 } 1123 } 1124 1125 void WinEHPrepare::completeNestedLandingPad(Function *ParentFn, 1126 LandingPadInst *OutlinedLPad, 1127 const LandingPadInst *OriginalLPad, 1128 FrameVarInfoMap &FrameVarInfo) { 1129 // Get the nested block and erase the unreachable instruction that was 1130 // temporarily inserted as its terminator. 1131 LLVMContext &Context = ParentFn->getContext(); 1132 BasicBlock *OutlinedBB = OutlinedLPad->getParent(); 1133 // If the nested landing pad was outlined before the landing pad that enclosed 1134 // it, it will already be in outlined form. In that case, we just need to see 1135 // if the returns and the enclosing branch instruction need to be updated. 1136 IndirectBrInst *Branch = 1137 dyn_cast<IndirectBrInst>(OutlinedBB->getTerminator()); 1138 if (!Branch) { 1139 // If the landing pad wasn't in outlined form, it should be a stub with 1140 // an unreachable terminator. 1141 assert(isa<UnreachableInst>(OutlinedBB->getTerminator())); 1142 OutlinedBB->getTerminator()->eraseFromParent(); 1143 // That should leave OutlinedLPad as the last instruction in its block. 1144 assert(&OutlinedBB->back() == OutlinedLPad); 1145 } 1146 1147 // The original landing pad will have already had its action intrinsic 1148 // built by the outlining loop. We need to clone that into the outlined 1149 // location. It may also be necessary to add references to the exception 1150 // variables to the outlined handler in which this landing pad is nested 1151 // and remap return instructions in the nested handlers that should return 1152 // to an address in the outlined handler. 1153 Function *OutlinedHandlerFn = OutlinedBB->getParent(); 1154 BasicBlock::const_iterator II = OriginalLPad; 1155 ++II; 1156 // The instruction after the landing pad should now be a call to eh.actions. 1157 const Instruction *Recover = II; 1158 const IntrinsicInst *EHActions = cast<IntrinsicInst>(Recover); 1159 1160 // Remap the return target in the nested handler. 1161 SmallVector<BlockAddress *, 4> ActionTargets; 1162 SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList; 1163 parseEHActions(EHActions, ActionList); 1164 for (const auto &Action : ActionList) { 1165 auto *Catch = dyn_cast<CatchHandler>(Action.get()); 1166 if (!Catch) 1167 continue; 1168 // The dyn_cast to function here selects C++ catch handlers and skips 1169 // SEH catch handlers. 1170 auto *Handler = dyn_cast<Function>(Catch->getHandlerBlockOrFunc()); 1171 if (!Handler) 1172 continue; 1173 // Visit all the return instructions, looking for places that return 1174 // to a location within OutlinedHandlerFn. 1175 for (BasicBlock &NestedHandlerBB : *Handler) { 1176 auto *Ret = dyn_cast<ReturnInst>(NestedHandlerBB.getTerminator()); 1177 if (!Ret) 1178 continue; 1179 1180 // Handler functions must always return a block address. 1181 BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue()); 1182 // The original target will have been in the main parent function, 1183 // but if it is the address of a block that has been outlined, it 1184 // should be a block that was outlined into OutlinedHandlerFn. 1185 assert(BA->getFunction() == ParentFn); 1186 1187 // Ignore targets that aren't part of an outlined handler function. 1188 if (!LPadTargetBlocks.count(BA->getBasicBlock())) 1189 continue; 1190 1191 // If the return value is the address ofF a block that we 1192 // previously outlined into the parent handler function, replace 1193 // the return instruction and add the mapped target to the list 1194 // of possible return addresses. 1195 BasicBlock *MappedBB = LPadTargetBlocks[BA->getBasicBlock()]; 1196 assert(MappedBB->getParent() == OutlinedHandlerFn); 1197 BlockAddress *NewBA = BlockAddress::get(OutlinedHandlerFn, MappedBB); 1198 Ret->eraseFromParent(); 1199 ReturnInst::Create(Context, NewBA, &NestedHandlerBB); 1200 ActionTargets.push_back(NewBA); 1201 } 1202 } 1203 ActionList.clear(); 1204 1205 if (Branch) { 1206 // If the landing pad was already in outlined form, just update its targets. 1207 for (unsigned int I = Branch->getNumDestinations(); I > 0; --I) 1208 Branch->removeDestination(I); 1209 // Add the previously collected action targets. 1210 for (auto *Target : ActionTargets) 1211 Branch->addDestination(Target->getBasicBlock()); 1212 } else { 1213 // If the landing pad was previously stubbed out, fill in its outlined form. 1214 IntrinsicInst *NewEHActions = cast<IntrinsicInst>(EHActions->clone()); 1215 OutlinedBB->getInstList().push_back(NewEHActions); 1216 1217 // Insert an indirect branch into the outlined landing pad BB. 1218 IndirectBrInst *IBr = IndirectBrInst::Create(NewEHActions, 0, OutlinedBB); 1219 // Add the previously collected action targets. 1220 for (auto *Target : ActionTargets) 1221 IBr->addDestination(Target->getBasicBlock()); 1222 } 1223 } 1224 1225 // This function examines a block to determine whether the block ends with a 1226 // conditional branch to a catch handler based on a selector comparison. 1227 // This function is used both by the WinEHPrepare::findSelectorComparison() and 1228 // WinEHCleanupDirector::handleTypeIdFor(). 1229 static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler, 1230 Constant *&Selector, BasicBlock *&NextBB) { 1231 ICmpInst::Predicate Pred; 1232 BasicBlock *TBB, *FBB; 1233 Value *LHS, *RHS; 1234 1235 if (!match(BB->getTerminator(), 1236 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TBB, FBB))) 1237 return false; 1238 1239 if (!match(LHS, 1240 m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))) && 1241 !match(RHS, m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector)))) 1242 return false; 1243 1244 if (Pred == CmpInst::ICMP_EQ) { 1245 CatchHandler = TBB; 1246 NextBB = FBB; 1247 return true; 1248 } 1249 1250 if (Pred == CmpInst::ICMP_NE) { 1251 CatchHandler = FBB; 1252 NextBB = TBB; 1253 return true; 1254 } 1255 1256 return false; 1257 } 1258 1259 static bool isCatchBlock(BasicBlock *BB) { 1260 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); 1261 II != IE; ++II) { 1262 if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_begincatch>())) 1263 return true; 1264 } 1265 return false; 1266 } 1267 1268 static BasicBlock *createStubLandingPad(Function *Handler) { 1269 // FIXME: Finish this! 1270 LLVMContext &Context = Handler->getContext(); 1271 BasicBlock *StubBB = BasicBlock::Create(Context, "stub"); 1272 Handler->getBasicBlockList().push_back(StubBB); 1273 IRBuilder<> Builder(StubBB); 1274 LandingPadInst *LPad = Builder.CreateLandingPad( 1275 llvm::StructType::get(Type::getInt8PtrTy(Context), 1276 Type::getInt32Ty(Context), nullptr), 1277 0); 1278 // Insert a call to llvm.eh.actions so that we don't try to outline this lpad. 1279 Function *ActionIntrin = 1280 Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::eh_actions); 1281 Builder.CreateCall(ActionIntrin, {}, "recover"); 1282 LPad->setCleanup(true); 1283 Builder.CreateUnreachable(); 1284 return StubBB; 1285 } 1286 1287 // Cycles through the blocks in an outlined handler function looking for an 1288 // invoke instruction and inserts an invoke of llvm.donothing with an empty 1289 // landing pad if none is found. The code that generates the .xdata tables for 1290 // the handler needs at least one landing pad to identify the parent function's 1291 // personality. 1292 void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler) { 1293 ReturnInst *Ret = nullptr; 1294 UnreachableInst *Unreached = nullptr; 1295 for (BasicBlock &BB : *Handler) { 1296 TerminatorInst *Terminator = BB.getTerminator(); 1297 // If we find an invoke, there is nothing to be done. 1298 auto *II = dyn_cast<InvokeInst>(Terminator); 1299 if (II) 1300 return; 1301 // If we've already recorded a return instruction, keep looking for invokes. 1302 if (!Ret) 1303 Ret = dyn_cast<ReturnInst>(Terminator); 1304 // If we haven't recorded an unreachable instruction, try this terminator. 1305 if (!Unreached) 1306 Unreached = dyn_cast<UnreachableInst>(Terminator); 1307 } 1308 1309 // If we got this far, the handler contains no invokes. We should have seen 1310 // at least one return or unreachable instruction. We'll insert an invoke of 1311 // llvm.donothing ahead of that instruction. 1312 assert(Ret || Unreached); 1313 TerminatorInst *Term; 1314 if (Ret) 1315 Term = Ret; 1316 else 1317 Term = Unreached; 1318 BasicBlock *OldRetBB = Term->getParent(); 1319 BasicBlock *NewRetBB = SplitBlock(OldRetBB, Term, DT); 1320 // SplitBlock adds an unconditional branch instruction at the end of the 1321 // parent block. We want to replace that with an invoke call, so we can 1322 // erase it now. 1323 OldRetBB->getTerminator()->eraseFromParent(); 1324 BasicBlock *StubLandingPad = createStubLandingPad(Handler); 1325 Function *F = 1326 Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::donothing); 1327 InvokeInst::Create(F, NewRetBB, StubLandingPad, None, "", OldRetBB); 1328 } 1329 1330 // FIXME: Consider sinking this into lib/Target/X86 somehow. TargetLowering 1331 // usually doesn't build LLVM IR, so that's probably the wrong place. 1332 Function *WinEHPrepare::createHandlerFunc(Function *ParentFn, Type *RetTy, 1333 const Twine &Name, Module *M, 1334 Value *&ParentFP) { 1335 // x64 uses a two-argument prototype where the parent FP is the second 1336 // argument. x86 uses no arguments, just the incoming EBP value. 1337 LLVMContext &Context = M->getContext(); 1338 Type *Int8PtrType = Type::getInt8PtrTy(Context); 1339 FunctionType *FnType; 1340 if (TheTriple.getArch() == Triple::x86_64) { 1341 Type *ArgTys[2] = {Int8PtrType, Int8PtrType}; 1342 FnType = FunctionType::get(RetTy, ArgTys, false); 1343 } else { 1344 FnType = FunctionType::get(RetTy, None, false); 1345 } 1346 1347 Function *Handler = 1348 Function::Create(FnType, GlobalVariable::InternalLinkage, Name, M); 1349 BasicBlock *Entry = BasicBlock::Create(Context, "entry"); 1350 Handler->getBasicBlockList().push_front(Entry); 1351 if (TheTriple.getArch() == Triple::x86_64) { 1352 ParentFP = &(Handler->getArgumentList().back()); 1353 } else { 1354 assert(M); 1355 Function *FrameAddressFn = 1356 Intrinsic::getDeclaration(M, Intrinsic::frameaddress); 1357 Function *RecoverFPFn = 1358 Intrinsic::getDeclaration(M, Intrinsic::x86_seh_recoverfp); 1359 IRBuilder<> Builder(&Handler->getEntryBlock()); 1360 Value *EBP = 1361 Builder.CreateCall(FrameAddressFn, {Builder.getInt32(1)}, "ebp"); 1362 Value *ParentI8Fn = Builder.CreateBitCast(ParentFn, Int8PtrType); 1363 ParentFP = Builder.CreateCall(RecoverFPFn, {ParentI8Fn, EBP}); 1364 } 1365 return Handler; 1366 } 1367 1368 bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn, 1369 LandingPadInst *LPad, BasicBlock *StartBB, 1370 FrameVarInfoMap &VarInfo) { 1371 Module *M = SrcFn->getParent(); 1372 LLVMContext &Context = M->getContext(); 1373 Type *Int8PtrType = Type::getInt8PtrTy(Context); 1374 1375 // Create a new function to receive the handler contents. 1376 Value *ParentFP; 1377 Function *Handler; 1378 if (Action->getType() == Catch) { 1379 Handler = createHandlerFunc(SrcFn, Int8PtrType, SrcFn->getName() + ".catch", M, 1380 ParentFP); 1381 } else { 1382 Handler = createHandlerFunc(SrcFn, Type::getVoidTy(Context), 1383 SrcFn->getName() + ".cleanup", M, ParentFP); 1384 } 1385 Handler->setPersonalityFn(SrcFn->getPersonalityFn()); 1386 HandlerToParentFP[Handler] = ParentFP; 1387 Handler->addFnAttr("wineh-parent", SrcFn->getName()); 1388 BasicBlock *Entry = &Handler->getEntryBlock(); 1389 1390 // Generate a standard prolog to setup the frame recovery structure. 1391 IRBuilder<> Builder(Context); 1392 Builder.SetInsertPoint(Entry); 1393 Builder.SetCurrentDebugLocation(LPad->getDebugLoc()); 1394 1395 std::unique_ptr<WinEHCloningDirectorBase> Director; 1396 1397 ValueToValueMapTy VMap; 1398 1399 LandingPadMap &LPadMap = LPadMaps[LPad]; 1400 if (!LPadMap.isInitialized()) 1401 LPadMap.mapLandingPad(LPad); 1402 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) { 1403 Constant *Sel = CatchAction->getSelector(); 1404 Director.reset(new WinEHCatchDirector(Handler, ParentFP, Sel, VarInfo, 1405 LPadMap, NestedLPtoOriginalLP, DT, 1406 EHBlocks)); 1407 LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType), 1408 ConstantInt::get(Type::getInt32Ty(Context), 1)); 1409 } else { 1410 Director.reset( 1411 new WinEHCleanupDirector(Handler, ParentFP, VarInfo, LPadMap)); 1412 LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType), 1413 UndefValue::get(Type::getInt32Ty(Context))); 1414 } 1415 1416 SmallVector<ReturnInst *, 8> Returns; 1417 ClonedCodeInfo OutlinedFunctionInfo; 1418 1419 // If the start block contains PHI nodes, we need to map them. 1420 BasicBlock::iterator II = StartBB->begin(); 1421 while (auto *PN = dyn_cast<PHINode>(II)) { 1422 bool Mapped = false; 1423 // Look for PHI values that we have already mapped (such as the selector). 1424 for (Value *Val : PN->incoming_values()) { 1425 if (VMap.count(Val)) { 1426 VMap[PN] = VMap[Val]; 1427 Mapped = true; 1428 } 1429 } 1430 // If we didn't find a match for this value, map it as an undef. 1431 if (!Mapped) { 1432 VMap[PN] = UndefValue::get(PN->getType()); 1433 } 1434 ++II; 1435 } 1436 1437 // The landing pad value may be used by PHI nodes. It will ultimately be 1438 // eliminated, but we need it in the map for intermediate handling. 1439 VMap[LPad] = UndefValue::get(LPad->getType()); 1440 1441 // Skip over PHIs and, if applicable, landingpad instructions. 1442 II = StartBB->getFirstInsertionPt(); 1443 1444 CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap, 1445 /*ModuleLevelChanges=*/false, Returns, "", 1446 &OutlinedFunctionInfo, Director.get()); 1447 1448 // Move all the instructions in the cloned "entry" block into our entry block. 1449 // Depending on how the parent function was laid out, the block that will 1450 // correspond to the outlined entry block may not be the first block in the 1451 // list. We can recognize it, however, as the cloned block which has no 1452 // predecessors. Any other block wouldn't have been cloned if it didn't 1453 // have a predecessor which was also cloned. 1454 Function::iterator ClonedIt = std::next(Function::iterator(Entry)); 1455 while (!pred_empty(ClonedIt)) 1456 ++ClonedIt; 1457 BasicBlock *ClonedEntryBB = ClonedIt; 1458 assert(ClonedEntryBB); 1459 Entry->getInstList().splice(Entry->end(), ClonedEntryBB->getInstList()); 1460 ClonedEntryBB->eraseFromParent(); 1461 1462 // Make sure we can identify the handler's personality later. 1463 addStubInvokeToHandlerIfNeeded(Handler); 1464 1465 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) { 1466 WinEHCatchDirector *CatchDirector = 1467 reinterpret_cast<WinEHCatchDirector *>(Director.get()); 1468 CatchAction->setExceptionVar(CatchDirector->getExceptionVar()); 1469 CatchAction->setReturnTargets(CatchDirector->getReturnTargets()); 1470 1471 // Look for blocks that are not part of the landing pad that we just 1472 // outlined but terminate with a call to llvm.eh.endcatch and a 1473 // branch to a block that is in the handler we just outlined. 1474 // These blocks will be part of a nested landing pad that intends to 1475 // return to an address in this handler. This case is best handled 1476 // after both landing pads have been outlined, so for now we'll just 1477 // save the association of the blocks in LPadTargetBlocks. The 1478 // return instructions which are created from these branches will be 1479 // replaced after all landing pads have been outlined. 1480 for (const auto MapEntry : VMap) { 1481 // VMap maps all values and blocks that were just cloned, but dead 1482 // blocks which were pruned will map to nullptr. 1483 if (!isa<BasicBlock>(MapEntry.first) || MapEntry.second == nullptr) 1484 continue; 1485 const BasicBlock *MappedBB = cast<BasicBlock>(MapEntry.first); 1486 for (auto *Pred : predecessors(const_cast<BasicBlock *>(MappedBB))) { 1487 auto *Branch = dyn_cast<BranchInst>(Pred->getTerminator()); 1488 if (!Branch || !Branch->isUnconditional() || Pred->size() <= 1) 1489 continue; 1490 BasicBlock::iterator II = const_cast<BranchInst *>(Branch); 1491 --II; 1492 if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_endcatch>())) { 1493 // This would indicate that a nested landing pad wants to return 1494 // to a block that is outlined into two different handlers. 1495 assert(!LPadTargetBlocks.count(MappedBB)); 1496 LPadTargetBlocks[MappedBB] = cast<BasicBlock>(MapEntry.second); 1497 } 1498 } 1499 } 1500 } // End if (CatchAction) 1501 1502 Action->setHandlerBlockOrFunc(Handler); 1503 1504 return true; 1505 } 1506 1507 /// This BB must end in a selector dispatch. All we need to do is pass the 1508 /// handler block to llvm.eh.actions and list it as a possible indirectbr 1509 /// target. 1510 void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction, 1511 BasicBlock *StartBB) { 1512 BasicBlock *HandlerBB; 1513 BasicBlock *NextBB; 1514 Constant *Selector; 1515 bool Res = isSelectorDispatch(StartBB, HandlerBB, Selector, NextBB); 1516 if (Res) { 1517 // If this was EH dispatch, this must be a conditional branch to the handler 1518 // block. 1519 // FIXME: Handle instructions in the dispatch block. Currently we drop them, 1520 // leading to crashes if some optimization hoists stuff here. 1521 assert(CatchAction->getSelector() && HandlerBB && 1522 "expected catch EH dispatch"); 1523 } else { 1524 // This must be a catch-all. Split the block after the landingpad. 1525 assert(CatchAction->getSelector()->isNullValue() && "expected catch-all"); 1526 HandlerBB = SplitBlock(StartBB, StartBB->getFirstInsertionPt(), DT); 1527 } 1528 IRBuilder<> Builder(HandlerBB->getFirstInsertionPt()); 1529 Function *EHCodeFn = Intrinsic::getDeclaration( 1530 StartBB->getParent()->getParent(), Intrinsic::eh_exceptioncode); 1531 Value *Code = Builder.CreateCall(EHCodeFn, {}, "sehcode"); 1532 Code = Builder.CreateIntToPtr(Code, SEHExceptionCodeSlot->getAllocatedType()); 1533 Builder.CreateStore(Code, SEHExceptionCodeSlot); 1534 CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB)); 1535 TinyPtrVector<BasicBlock *> Targets(HandlerBB); 1536 CatchAction->setReturnTargets(Targets); 1537 } 1538 1539 void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) { 1540 // Each instance of this class should only ever be used to map a single 1541 // landing pad. 1542 assert(OriginLPad == nullptr || OriginLPad == LPad); 1543 1544 // If the landing pad has already been mapped, there's nothing more to do. 1545 if (OriginLPad == LPad) 1546 return; 1547 1548 OriginLPad = LPad; 1549 1550 // The landingpad instruction returns an aggregate value. Typically, its 1551 // value will be passed to a pair of extract value instructions and the 1552 // results of those extracts will have been promoted to reg values before 1553 // this routine is called. 1554 for (auto *U : LPad->users()) { 1555 const ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U); 1556 if (!Extract) 1557 continue; 1558 assert(Extract->getNumIndices() == 1 && 1559 "Unexpected operation: extracting both landing pad values"); 1560 unsigned int Idx = *(Extract->idx_begin()); 1561 assert((Idx == 0 || Idx == 1) && 1562 "Unexpected operation: extracting an unknown landing pad element"); 1563 if (Idx == 0) { 1564 ExtractedEHPtrs.push_back(Extract); 1565 } else if (Idx == 1) { 1566 ExtractedSelectors.push_back(Extract); 1567 } 1568 } 1569 } 1570 1571 bool LandingPadMap::isOriginLandingPadBlock(const BasicBlock *BB) const { 1572 return BB->getLandingPadInst() == OriginLPad; 1573 } 1574 1575 bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const { 1576 if (Inst == OriginLPad) 1577 return true; 1578 for (auto *Extract : ExtractedEHPtrs) { 1579 if (Inst == Extract) 1580 return true; 1581 } 1582 for (auto *Extract : ExtractedSelectors) { 1583 if (Inst == Extract) 1584 return true; 1585 } 1586 return false; 1587 } 1588 1589 void LandingPadMap::remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue, 1590 Value *SelectorValue) const { 1591 // Remap all landing pad extract instructions to the specified values. 1592 for (auto *Extract : ExtractedEHPtrs) 1593 VMap[Extract] = EHPtrValue; 1594 for (auto *Extract : ExtractedSelectors) 1595 VMap[Extract] = SelectorValue; 1596 } 1597 1598 static bool isFrameAddressCall(const Value *V) { 1599 return match(const_cast<Value *>(V), 1600 m_Intrinsic<Intrinsic::frameaddress>(m_SpecificInt(0))); 1601 } 1602 1603 CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction( 1604 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { 1605 // If this is one of the boilerplate landing pad instructions, skip it. 1606 // The instruction will have already been remapped in VMap. 1607 if (LPadMap.isLandingPadSpecificInst(Inst)) 1608 return CloningDirector::SkipInstruction; 1609 1610 // Nested landing pads that have not already been outlined will be cloned as 1611 // stubs, with just the landingpad instruction and an unreachable instruction. 1612 // When all landingpads have been outlined, we'll replace this with the 1613 // llvm.eh.actions call and indirect branch created when the landing pad was 1614 // outlined. 1615 if (auto *LPad = dyn_cast<LandingPadInst>(Inst)) { 1616 return handleLandingPad(VMap, LPad, NewBB); 1617 } 1618 1619 // Nested landing pads that have already been outlined will be cloned in their 1620 // outlined form, but we need to intercept the ibr instruction to filter out 1621 // targets that do not return to the handler we are outlining. 1622 if (auto *IBr = dyn_cast<IndirectBrInst>(Inst)) { 1623 return handleIndirectBr(VMap, IBr, NewBB); 1624 } 1625 1626 if (auto *Invoke = dyn_cast<InvokeInst>(Inst)) 1627 return handleInvoke(VMap, Invoke, NewBB); 1628 1629 if (auto *Resume = dyn_cast<ResumeInst>(Inst)) 1630 return handleResume(VMap, Resume, NewBB); 1631 1632 if (auto *Cmp = dyn_cast<CmpInst>(Inst)) 1633 return handleCompare(VMap, Cmp, NewBB); 1634 1635 if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>())) 1636 return handleBeginCatch(VMap, Inst, NewBB); 1637 if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>())) 1638 return handleEndCatch(VMap, Inst, NewBB); 1639 if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>())) 1640 return handleTypeIdFor(VMap, Inst, NewBB); 1641 1642 // When outlining llvm.frameaddress(i32 0), remap that to the second argument, 1643 // which is the FP of the parent. 1644 if (isFrameAddressCall(Inst)) { 1645 VMap[Inst] = ParentFP; 1646 return CloningDirector::SkipInstruction; 1647 } 1648 1649 // Continue with the default cloning behavior. 1650 return CloningDirector::CloneInstruction; 1651 } 1652 1653 CloningDirector::CloningAction WinEHCatchDirector::handleLandingPad( 1654 ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) { 1655 // If the instruction after the landing pad is a call to llvm.eh.actions 1656 // the landing pad has already been outlined. In this case, we should 1657 // clone it because it may return to a block in the handler we are 1658 // outlining now that would otherwise be unreachable. The landing pads 1659 // are sorted before outlining begins to enable this case to work 1660 // properly. 1661 const Instruction *NextI = LPad->getNextNode(); 1662 if (match(NextI, m_Intrinsic<Intrinsic::eh_actions>())) 1663 return CloningDirector::CloneInstruction; 1664 1665 // If the landing pad hasn't been outlined yet, the landing pad we are 1666 // outlining now does not dominate it and so it cannot return to a block 1667 // in this handler. In that case, we can just insert a stub landing 1668 // pad now and patch it up later. 1669 Instruction *NewInst = LPad->clone(); 1670 if (LPad->hasName()) 1671 NewInst->setName(LPad->getName()); 1672 // Save this correlation for later processing. 1673 NestedLPtoOriginalLP[cast<LandingPadInst>(NewInst)] = LPad; 1674 VMap[LPad] = NewInst; 1675 BasicBlock::InstListType &InstList = NewBB->getInstList(); 1676 InstList.push_back(NewInst); 1677 InstList.push_back(new UnreachableInst(NewBB->getContext())); 1678 return CloningDirector::StopCloningBB; 1679 } 1680 1681 CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch( 1682 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { 1683 // The argument to the call is some form of the first element of the 1684 // landingpad aggregate value, but that doesn't matter. It isn't used 1685 // here. 1686 // The second argument is an outparameter where the exception object will be 1687 // stored. Typically the exception object is a scalar, but it can be an 1688 // aggregate when catching by value. 1689 // FIXME: Leave something behind to indicate where the exception object lives 1690 // for this handler. Should it be part of llvm.eh.actions? 1691 assert(ExceptionObjectVar == nullptr && "Multiple calls to " 1692 "llvm.eh.begincatch found while " 1693 "outlining catch handler."); 1694 ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts(); 1695 if (isa<ConstantPointerNull>(ExceptionObjectVar)) 1696 return CloningDirector::SkipInstruction; 1697 assert(cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca() && 1698 "catch parameter is not static alloca"); 1699 Materializer.escapeCatchObject(ExceptionObjectVar); 1700 return CloningDirector::SkipInstruction; 1701 } 1702 1703 CloningDirector::CloningAction 1704 WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap, 1705 const Instruction *Inst, BasicBlock *NewBB) { 1706 auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst); 1707 // It might be interesting to track whether or not we are inside a catch 1708 // function, but that might make the algorithm more brittle than it needs 1709 // to be. 1710 1711 // The end catch call can occur in one of two places: either in a 1712 // landingpad block that is part of the catch handlers exception mechanism, 1713 // or at the end of the catch block. However, a catch-all handler may call 1714 // end catch from the original landing pad. If the call occurs in a nested 1715 // landing pad block, we must skip it and continue so that the landing pad 1716 // gets cloned. 1717 auto *ParentBB = IntrinCall->getParent(); 1718 if (ParentBB->isLandingPad() && !LPadMap.isOriginLandingPadBlock(ParentBB)) 1719 return CloningDirector::SkipInstruction; 1720 1721 // If an end catch occurs anywhere else we want to terminate the handler 1722 // with a return to the code that follows the endcatch call. If the 1723 // next instruction is not an unconditional branch, we need to split the 1724 // block to provide a clear target for the return instruction. 1725 BasicBlock *ContinueBB; 1726 auto Next = std::next(BasicBlock::const_iterator(IntrinCall)); 1727 const BranchInst *Branch = dyn_cast<BranchInst>(Next); 1728 if (!Branch || !Branch->isUnconditional()) { 1729 // We're interrupting the cloning process at this location, so the 1730 // const_cast we're doing here will not cause a problem. 1731 ContinueBB = SplitBlock(const_cast<BasicBlock *>(ParentBB), 1732 const_cast<Instruction *>(cast<Instruction>(Next))); 1733 } else { 1734 ContinueBB = Branch->getSuccessor(0); 1735 } 1736 1737 ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueBB), NewBB); 1738 ReturnTargets.push_back(ContinueBB); 1739 1740 // We just added a terminator to the cloned block. 1741 // Tell the caller to stop processing the current basic block so that 1742 // the branch instruction will be skipped. 1743 return CloningDirector::StopCloningBB; 1744 } 1745 1746 CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor( 1747 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { 1748 auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst); 1749 Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts(); 1750 // This causes a replacement that will collapse the landing pad CFG based 1751 // on the filter function we intend to match. 1752 if (Selector == CurrentSelector) 1753 VMap[Inst] = ConstantInt::get(SelectorIDType, 1); 1754 else 1755 VMap[Inst] = ConstantInt::get(SelectorIDType, 0); 1756 // Tell the caller not to clone this instruction. 1757 return CloningDirector::SkipInstruction; 1758 } 1759 1760 CloningDirector::CloningAction WinEHCatchDirector::handleIndirectBr( 1761 ValueToValueMapTy &VMap, 1762 const IndirectBrInst *IBr, 1763 BasicBlock *NewBB) { 1764 // If this indirect branch is not part of a landing pad block, just clone it. 1765 const BasicBlock *ParentBB = IBr->getParent(); 1766 if (!ParentBB->isLandingPad()) 1767 return CloningDirector::CloneInstruction; 1768 1769 // If it is part of a landing pad, we want to filter out target blocks 1770 // that are not part of the handler we are outlining. 1771 const LandingPadInst *LPad = ParentBB->getLandingPadInst(); 1772 1773 // Save this correlation for later processing. 1774 NestedLPtoOriginalLP[cast<LandingPadInst>(VMap[LPad])] = LPad; 1775 1776 // We should only get here for landing pads that have already been outlined. 1777 assert(match(LPad->getNextNode(), m_Intrinsic<Intrinsic::eh_actions>())); 1778 1779 // Copy the indirectbr, but only include targets that were previously 1780 // identified as EH blocks and are dominated by the nested landing pad. 1781 SetVector<const BasicBlock *> ReturnTargets; 1782 for (int I = 0, E = IBr->getNumDestinations(); I < E; ++I) { 1783 auto *TargetBB = IBr->getDestination(I); 1784 if (EHBlocks.count(const_cast<BasicBlock*>(TargetBB)) && 1785 DT->dominates(ParentBB, TargetBB)) { 1786 DEBUG(dbgs() << " Adding destination " << TargetBB->getName() << "\n"); 1787 ReturnTargets.insert(TargetBB); 1788 } 1789 } 1790 IndirectBrInst *NewBranch = 1791 IndirectBrInst::Create(const_cast<Value *>(IBr->getAddress()), 1792 ReturnTargets.size(), NewBB); 1793 for (auto *Target : ReturnTargets) 1794 NewBranch->addDestination(const_cast<BasicBlock*>(Target)); 1795 1796 // The operands and targets of the branch instruction are remapped later 1797 // because it is a terminator. Tell the cloning code to clone the 1798 // blocks we just added to the target list. 1799 return CloningDirector::CloneSuccessors; 1800 } 1801 1802 CloningDirector::CloningAction 1803 WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap, 1804 const InvokeInst *Invoke, BasicBlock *NewBB) { 1805 return CloningDirector::CloneInstruction; 1806 } 1807 1808 CloningDirector::CloningAction 1809 WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap, 1810 const ResumeInst *Resume, BasicBlock *NewBB) { 1811 // Resume instructions shouldn't be reachable from catch handlers. 1812 // We still need to handle it, but it will be pruned. 1813 BasicBlock::InstListType &InstList = NewBB->getInstList(); 1814 InstList.push_back(new UnreachableInst(NewBB->getContext())); 1815 return CloningDirector::StopCloningBB; 1816 } 1817 1818 CloningDirector::CloningAction 1819 WinEHCatchDirector::handleCompare(ValueToValueMapTy &VMap, 1820 const CmpInst *Compare, BasicBlock *NewBB) { 1821 const IntrinsicInst *IntrinCall = nullptr; 1822 if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>())) { 1823 IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(0)); 1824 } else if (match(Compare->getOperand(1), 1825 m_Intrinsic<Intrinsic::eh_typeid_for>())) { 1826 IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(1)); 1827 } 1828 if (IntrinCall) { 1829 Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts(); 1830 // This causes a replacement that will collapse the landing pad CFG based 1831 // on the filter function we intend to match. 1832 if (Selector == CurrentSelector->stripPointerCasts()) { 1833 VMap[Compare] = ConstantInt::get(SelectorIDType, 1); 1834 } else { 1835 VMap[Compare] = ConstantInt::get(SelectorIDType, 0); 1836 } 1837 return CloningDirector::SkipInstruction; 1838 } 1839 return CloningDirector::CloneInstruction; 1840 } 1841 1842 CloningDirector::CloningAction WinEHCleanupDirector::handleLandingPad( 1843 ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) { 1844 // The MS runtime will terminate the process if an exception occurs in a 1845 // cleanup handler, so we shouldn't encounter landing pads in the actual 1846 // cleanup code, but they may appear in catch blocks. Depending on where 1847 // we started cloning we may see one, but it will get dropped during dead 1848 // block pruning. 1849 Instruction *NewInst = new UnreachableInst(NewBB->getContext()); 1850 VMap[LPad] = NewInst; 1851 BasicBlock::InstListType &InstList = NewBB->getInstList(); 1852 InstList.push_back(NewInst); 1853 return CloningDirector::StopCloningBB; 1854 } 1855 1856 CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch( 1857 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { 1858 // Cleanup code may flow into catch blocks or the catch block may be part 1859 // of a branch that will be optimized away. We'll insert a return 1860 // instruction now, but it may be pruned before the cloning process is 1861 // complete. 1862 ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); 1863 return CloningDirector::StopCloningBB; 1864 } 1865 1866 CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch( 1867 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { 1868 // Cleanup handlers nested within catch handlers may begin with a call to 1869 // eh.endcatch. We can just ignore that instruction. 1870 return CloningDirector::SkipInstruction; 1871 } 1872 1873 CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor( 1874 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { 1875 // If we encounter a selector comparison while cloning a cleanup handler, 1876 // we want to stop cloning immediately. Anything after the dispatch 1877 // will be outlined into a different handler. 1878 BasicBlock *CatchHandler; 1879 Constant *Selector; 1880 BasicBlock *NextBB; 1881 if (isSelectorDispatch(const_cast<BasicBlock *>(Inst->getParent()), 1882 CatchHandler, Selector, NextBB)) { 1883 ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); 1884 return CloningDirector::StopCloningBB; 1885 } 1886 // If eg.typeid.for is called for any other reason, it can be ignored. 1887 VMap[Inst] = ConstantInt::get(SelectorIDType, 0); 1888 return CloningDirector::SkipInstruction; 1889 } 1890 1891 CloningDirector::CloningAction WinEHCleanupDirector::handleIndirectBr( 1892 ValueToValueMapTy &VMap, 1893 const IndirectBrInst *IBr, 1894 BasicBlock *NewBB) { 1895 // No special handling is required for cleanup cloning. 1896 return CloningDirector::CloneInstruction; 1897 } 1898 1899 CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke( 1900 ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) { 1901 // All invokes in cleanup handlers can be replaced with calls. 1902 SmallVector<Value *, 16> CallArgs(Invoke->op_begin(), Invoke->op_end() - 3); 1903 // Insert a normal call instruction... 1904 CallInst *NewCall = 1905 CallInst::Create(const_cast<Value *>(Invoke->getCalledValue()), CallArgs, 1906 Invoke->getName(), NewBB); 1907 NewCall->setCallingConv(Invoke->getCallingConv()); 1908 NewCall->setAttributes(Invoke->getAttributes()); 1909 NewCall->setDebugLoc(Invoke->getDebugLoc()); 1910 VMap[Invoke] = NewCall; 1911 1912 // Remap the operands. 1913 llvm::RemapInstruction(NewCall, VMap, RF_None, nullptr, &Materializer); 1914 1915 // Insert an unconditional branch to the normal destination. 1916 BranchInst::Create(Invoke->getNormalDest(), NewBB); 1917 1918 // The unwind destination won't be cloned into the new function, so 1919 // we don't need to clean up its phi nodes. 1920 1921 // We just added a terminator to the cloned block. 1922 // Tell the caller to stop processing the current basic block. 1923 return CloningDirector::CloneSuccessors; 1924 } 1925 1926 CloningDirector::CloningAction WinEHCleanupDirector::handleResume( 1927 ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) { 1928 ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); 1929 1930 // We just added a terminator to the cloned block. 1931 // Tell the caller to stop processing the current basic block so that 1932 // the branch instruction will be skipped. 1933 return CloningDirector::StopCloningBB; 1934 } 1935 1936 CloningDirector::CloningAction 1937 WinEHCleanupDirector::handleCompare(ValueToValueMapTy &VMap, 1938 const CmpInst *Compare, BasicBlock *NewBB) { 1939 if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>()) || 1940 match(Compare->getOperand(1), m_Intrinsic<Intrinsic::eh_typeid_for>())) { 1941 VMap[Compare] = ConstantInt::get(SelectorIDType, 1); 1942 return CloningDirector::SkipInstruction; 1943 } 1944 return CloningDirector::CloneInstruction; 1945 } 1946 1947 WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer( 1948 Function *OutlinedFn, Value *ParentFP, FrameVarInfoMap &FrameVarInfo) 1949 : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) { 1950 BasicBlock *EntryBB = &OutlinedFn->getEntryBlock(); 1951 1952 // New allocas should be inserted in the entry block, but after the parent FP 1953 // is established if it is an instruction. 1954 Instruction *InsertPoint = EntryBB->getFirstInsertionPt(); 1955 if (auto *FPInst = dyn_cast<Instruction>(ParentFP)) 1956 InsertPoint = FPInst->getNextNode(); 1957 Builder.SetInsertPoint(EntryBB, InsertPoint); 1958 } 1959 1960 Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) { 1961 // If we're asked to materialize a static alloca, we temporarily create an 1962 // alloca in the outlined function and add this to the FrameVarInfo map. When 1963 // all the outlining is complete, we'll replace these temporary allocas with 1964 // calls to llvm.framerecover. 1965 if (auto *AV = dyn_cast<AllocaInst>(V)) { 1966 assert(AV->isStaticAlloca() && 1967 "cannot materialize un-demoted dynamic alloca"); 1968 AllocaInst *NewAlloca = dyn_cast<AllocaInst>(AV->clone()); 1969 Builder.Insert(NewAlloca, AV->getName()); 1970 FrameVarInfo[AV].push_back(NewAlloca); 1971 return NewAlloca; 1972 } 1973 1974 if (isa<Instruction>(V) || isa<Argument>(V)) { 1975 Function *Parent = isa<Instruction>(V) 1976 ? cast<Instruction>(V)->getParent()->getParent() 1977 : cast<Argument>(V)->getParent(); 1978 errs() 1979 << "Failed to demote instruction used in exception handler of function " 1980 << GlobalValue::getRealLinkageName(Parent->getName()) << ":\n"; 1981 errs() << " " << *V << '\n'; 1982 report_fatal_error("WinEHPrepare failed to demote instruction"); 1983 } 1984 1985 // Don't materialize other values. 1986 return nullptr; 1987 } 1988 1989 void WinEHFrameVariableMaterializer::escapeCatchObject(Value *V) { 1990 // Catch parameter objects have to live in the parent frame. When we see a use 1991 // of a catch parameter, add a sentinel to the multimap to indicate that it's 1992 // used from another handler. This will prevent us from trying to sink the 1993 // alloca into the handler and ensure that the catch parameter is present in 1994 // the call to llvm.frameescape. 1995 FrameVarInfo[V].push_back(getCatchObjectSentinel()); 1996 } 1997 1998 // This function maps the catch and cleanup handlers that are reachable from the 1999 // specified landing pad. The landing pad sequence will have this basic shape: 2000 // 2001 // <cleanup handler> 2002 // <selector comparison> 2003 // <catch handler> 2004 // <cleanup handler> 2005 // <selector comparison> 2006 // <catch handler> 2007 // <cleanup handler> 2008 // ... 2009 // 2010 // Any of the cleanup slots may be absent. The cleanup slots may be occupied by 2011 // any arbitrary control flow, but all paths through the cleanup code must 2012 // eventually reach the next selector comparison and no path can skip to a 2013 // different selector comparisons, though some paths may terminate abnormally. 2014 // Therefore, we will use a depth first search from the start of any given 2015 // cleanup block and stop searching when we find the next selector comparison. 2016 // 2017 // If the landingpad instruction does not have a catch clause, we will assume 2018 // that any instructions other than selector comparisons and catch handlers can 2019 // be ignored. In practice, these will only be the boilerplate instructions. 2020 // 2021 // The catch handlers may also have any control structure, but we are only 2022 // interested in the start of the catch handlers, so we don't need to actually 2023 // follow the flow of the catch handlers. The start of the catch handlers can 2024 // be located from the compare instructions, but they can be skipped in the 2025 // flow by following the contrary branch. 2026 void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad, 2027 LandingPadActions &Actions) { 2028 unsigned int NumClauses = LPad->getNumClauses(); 2029 unsigned int HandlersFound = 0; 2030 BasicBlock *BB = LPad->getParent(); 2031 2032 DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n"); 2033 2034 if (NumClauses == 0) { 2035 findCleanupHandlers(Actions, BB, nullptr); 2036 return; 2037 } 2038 2039 VisitedBlockSet VisitedBlocks; 2040 2041 while (HandlersFound != NumClauses) { 2042 BasicBlock *NextBB = nullptr; 2043 2044 // Skip over filter clauses. 2045 if (LPad->isFilter(HandlersFound)) { 2046 ++HandlersFound; 2047 continue; 2048 } 2049 2050 // See if the clause we're looking for is a catch-all. 2051 // If so, the catch begins immediately. 2052 Constant *ExpectedSelector = 2053 LPad->getClause(HandlersFound)->stripPointerCasts(); 2054 if (isa<ConstantPointerNull>(ExpectedSelector)) { 2055 // The catch all must occur last. 2056 assert(HandlersFound == NumClauses - 1); 2057 2058 // There can be additional selector dispatches in the call chain that we 2059 // need to ignore. 2060 BasicBlock *CatchBlock = nullptr; 2061 Constant *Selector; 2062 while (BB && isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) { 2063 DEBUG(dbgs() << " Found extra catch dispatch in block " 2064 << CatchBlock->getName() << "\n"); 2065 BB = NextBB; 2066 } 2067 2068 // Add the catch handler to the action list. 2069 CatchHandler *Action = nullptr; 2070 if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) { 2071 // If the CatchHandlerMap already has an entry for this BB, re-use it. 2072 Action = CatchHandlerMap[BB]; 2073 assert(Action->getSelector() == ExpectedSelector); 2074 } else { 2075 // We don't expect a selector dispatch, but there may be a call to 2076 // llvm.eh.begincatch, which separates catch handling code from 2077 // cleanup code in the same control flow. This call looks for the 2078 // begincatch intrinsic. 2079 Action = findCatchHandler(BB, NextBB, VisitedBlocks); 2080 if (Action) { 2081 // For C++ EH, check if there is any interesting cleanup code before 2082 // we begin the catch. This is important because cleanups cannot 2083 // rethrow exceptions but code called from catches can. For SEH, it 2084 // isn't important if some finally code before a catch-all is executed 2085 // out of line or after recovering from the exception. 2086 if (Personality == EHPersonality::MSVC_CXX) 2087 findCleanupHandlers(Actions, BB, BB); 2088 } else { 2089 // If an action was not found, it means that the control flows 2090 // directly into the catch-all handler and there is no cleanup code. 2091 // That's an expected situation and we must create a catch action. 2092 // Since this is a catch-all handler, the selector won't actually 2093 // appear in the code anywhere. ExpectedSelector here is the constant 2094 // null ptr that we got from the landing pad instruction. 2095 Action = new CatchHandler(BB, ExpectedSelector, nullptr); 2096 CatchHandlerMap[BB] = Action; 2097 } 2098 } 2099 Actions.insertCatchHandler(Action); 2100 DEBUG(dbgs() << " Catch all handler at block " << BB->getName() << "\n"); 2101 ++HandlersFound; 2102 2103 // Once we reach a catch-all, don't expect to hit a resume instruction. 2104 BB = nullptr; 2105 break; 2106 } 2107 2108 CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks); 2109 assert(CatchAction); 2110 2111 // See if there is any interesting code executed before the dispatch. 2112 findCleanupHandlers(Actions, BB, CatchAction->getStartBlock()); 2113 2114 // When the source program contains multiple nested try blocks the catch 2115 // handlers can get strung together in such a way that we can encounter 2116 // a dispatch for a selector that we've already had a handler for. 2117 if (CatchAction->getSelector()->stripPointerCasts() == ExpectedSelector) { 2118 ++HandlersFound; 2119 2120 // Add the catch handler to the action list. 2121 DEBUG(dbgs() << " Found catch dispatch in block " 2122 << CatchAction->getStartBlock()->getName() << "\n"); 2123 Actions.insertCatchHandler(CatchAction); 2124 } else { 2125 // Under some circumstances optimized IR will flow unconditionally into a 2126 // handler block without checking the selector. This can only happen if 2127 // the landing pad has a catch-all handler and the handler for the 2128 // preceeding catch clause is identical to the catch-call handler 2129 // (typically an empty catch). In this case, the handler must be shared 2130 // by all remaining clauses. 2131 if (isa<ConstantPointerNull>( 2132 CatchAction->getSelector()->stripPointerCasts())) { 2133 DEBUG(dbgs() << " Applying early catch-all handler in block " 2134 << CatchAction->getStartBlock()->getName() 2135 << " to all remaining clauses.\n"); 2136 Actions.insertCatchHandler(CatchAction); 2137 return; 2138 } 2139 2140 DEBUG(dbgs() << " Found extra catch dispatch in block " 2141 << CatchAction->getStartBlock()->getName() << "\n"); 2142 } 2143 2144 // Move on to the block after the catch handler. 2145 BB = NextBB; 2146 } 2147 2148 // If we didn't wind up in a catch-all, see if there is any interesting code 2149 // executed before the resume. 2150 findCleanupHandlers(Actions, BB, BB); 2151 2152 // It's possible that some optimization moved code into a landingpad that 2153 // wasn't 2154 // previously being used for cleanup. If that happens, we need to execute 2155 // that 2156 // extra code from a cleanup handler. 2157 if (Actions.includesCleanup() && !LPad->isCleanup()) 2158 LPad->setCleanup(true); 2159 } 2160 2161 // This function searches starting with the input block for the next 2162 // block that terminates with a branch whose condition is based on a selector 2163 // comparison. This may be the input block. See the mapLandingPadBlocks 2164 // comments for a discussion of control flow assumptions. 2165 // 2166 CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB, 2167 BasicBlock *&NextBB, 2168 VisitedBlockSet &VisitedBlocks) { 2169 // See if we've already found a catch handler use it. 2170 // Call count() first to avoid creating a null entry for blocks 2171 // we haven't seen before. 2172 if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) { 2173 CatchHandler *Action = cast<CatchHandler>(CatchHandlerMap[BB]); 2174 NextBB = Action->getNextBB(); 2175 return Action; 2176 } 2177 2178 // VisitedBlocks applies only to the current search. We still 2179 // need to consider blocks that we've visited while mapping other 2180 // landing pads. 2181 VisitedBlocks.insert(BB); 2182 2183 BasicBlock *CatchBlock = nullptr; 2184 Constant *Selector = nullptr; 2185 2186 // If this is the first time we've visited this block from any landing pad 2187 // look to see if it is a selector dispatch block. 2188 if (!CatchHandlerMap.count(BB)) { 2189 if (isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) { 2190 CatchHandler *Action = new CatchHandler(BB, Selector, NextBB); 2191 CatchHandlerMap[BB] = Action; 2192 return Action; 2193 } 2194 // If we encounter a block containing an llvm.eh.begincatch before we 2195 // find a selector dispatch block, the handler is assumed to be 2196 // reached unconditionally. This happens for catch-all blocks, but 2197 // it can also happen for other catch handlers that have been combined 2198 // with the catch-all handler during optimization. 2199 if (isCatchBlock(BB)) { 2200 PointerType *Int8PtrTy = Type::getInt8PtrTy(BB->getContext()); 2201 Constant *NullSelector = ConstantPointerNull::get(Int8PtrTy); 2202 CatchHandler *Action = new CatchHandler(BB, NullSelector, nullptr); 2203 CatchHandlerMap[BB] = Action; 2204 return Action; 2205 } 2206 } 2207 2208 // Visit each successor, looking for the dispatch. 2209 // FIXME: We expect to find the dispatch quickly, so this will probably 2210 // work better as a breadth first search. 2211 for (BasicBlock *Succ : successors(BB)) { 2212 if (VisitedBlocks.count(Succ)) 2213 continue; 2214 2215 CatchHandler *Action = findCatchHandler(Succ, NextBB, VisitedBlocks); 2216 if (Action) 2217 return Action; 2218 } 2219 return nullptr; 2220 } 2221 2222 // These are helper functions to combine repeated code from findCleanupHandlers. 2223 static void createCleanupHandler(LandingPadActions &Actions, 2224 CleanupHandlerMapTy &CleanupHandlerMap, 2225 BasicBlock *BB) { 2226 CleanupHandler *Action = new CleanupHandler(BB); 2227 CleanupHandlerMap[BB] = Action; 2228 Actions.insertCleanupHandler(Action); 2229 DEBUG(dbgs() << " Found cleanup code in block " 2230 << Action->getStartBlock()->getName() << "\n"); 2231 } 2232 2233 static CallSite matchOutlinedFinallyCall(BasicBlock *BB, 2234 Instruction *MaybeCall) { 2235 // Look for finally blocks that Clang has already outlined for us. 2236 // %fp = call i8* @llvm.frameaddress(i32 0) 2237 // call void @"fin$parent"(iN 1, i8* %fp) 2238 if (isFrameAddressCall(MaybeCall) && MaybeCall != BB->getTerminator()) 2239 MaybeCall = MaybeCall->getNextNode(); 2240 CallSite FinallyCall(MaybeCall); 2241 if (!FinallyCall || FinallyCall.arg_size() != 2) 2242 return CallSite(); 2243 if (!match(FinallyCall.getArgument(0), m_SpecificInt(1))) 2244 return CallSite(); 2245 if (!isFrameAddressCall(FinallyCall.getArgument(1))) 2246 return CallSite(); 2247 return FinallyCall; 2248 } 2249 2250 static BasicBlock *followSingleUnconditionalBranches(BasicBlock *BB) { 2251 // Skip single ubr blocks. 2252 while (BB->getFirstNonPHIOrDbg() == BB->getTerminator()) { 2253 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 2254 if (Br && Br->isUnconditional()) 2255 BB = Br->getSuccessor(0); 2256 else 2257 return BB; 2258 } 2259 return BB; 2260 } 2261 2262 // This function searches starting with the input block for the next block that 2263 // contains code that is not part of a catch handler and would not be eliminated 2264 // during handler outlining. 2265 // 2266 void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions, 2267 BasicBlock *StartBB, BasicBlock *EndBB) { 2268 // Here we will skip over the following: 2269 // 2270 // landing pad prolog: 2271 // 2272 // Unconditional branches 2273 // 2274 // Selector dispatch 2275 // 2276 // Resume pattern 2277 // 2278 // Anything else marks the start of an interesting block 2279 2280 BasicBlock *BB = StartBB; 2281 // Anything other than an unconditional branch will kick us out of this loop 2282 // one way or another. 2283 while (BB) { 2284 BB = followSingleUnconditionalBranches(BB); 2285 // If we've already scanned this block, don't scan it again. If it is 2286 // a cleanup block, there will be an action in the CleanupHandlerMap. 2287 // If we've scanned it and it is not a cleanup block, there will be a 2288 // nullptr in the CleanupHandlerMap. If we have not scanned it, there will 2289 // be no entry in the CleanupHandlerMap. We must call count() first to 2290 // avoid creating a null entry for blocks we haven't scanned. 2291 if (CleanupHandlerMap.count(BB)) { 2292 if (auto *Action = CleanupHandlerMap[BB]) { 2293 Actions.insertCleanupHandler(Action); 2294 DEBUG(dbgs() << " Found cleanup code in block " 2295 << Action->getStartBlock()->getName() << "\n"); 2296 // FIXME: This cleanup might chain into another, and we need to discover 2297 // that. 2298 return; 2299 } else { 2300 // Here we handle the case where the cleanup handler map contains a 2301 // value for this block but the value is a nullptr. This means that 2302 // we have previously analyzed the block and determined that it did 2303 // not contain any cleanup code. Based on the earlier analysis, we 2304 // know the block must end in either an unconditional branch, a 2305 // resume or a conditional branch that is predicated on a comparison 2306 // with a selector. Either the resume or the selector dispatch 2307 // would terminate the search for cleanup code, so the unconditional 2308 // branch is the only case for which we might need to continue 2309 // searching. 2310 BasicBlock *SuccBB = followSingleUnconditionalBranches(BB); 2311 if (SuccBB == BB || SuccBB == EndBB) 2312 return; 2313 BB = SuccBB; 2314 continue; 2315 } 2316 } 2317 2318 // Create an entry in the cleanup handler map for this block. Initially 2319 // we create an entry that says this isn't a cleanup block. If we find 2320 // cleanup code, the caller will replace this entry. 2321 CleanupHandlerMap[BB] = nullptr; 2322 2323 TerminatorInst *Terminator = BB->getTerminator(); 2324 2325 // Landing pad blocks have extra instructions we need to accept. 2326 LandingPadMap *LPadMap = nullptr; 2327 if (BB->isLandingPad()) { 2328 LandingPadInst *LPad = BB->getLandingPadInst(); 2329 LPadMap = &LPadMaps[LPad]; 2330 if (!LPadMap->isInitialized()) 2331 LPadMap->mapLandingPad(LPad); 2332 } 2333 2334 // Look for the bare resume pattern: 2335 // %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn, 0 2336 // %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel, 1 2337 // resume { i8*, i32 } %lpad.val2 2338 if (auto *Resume = dyn_cast<ResumeInst>(Terminator)) { 2339 InsertValueInst *Insert1 = nullptr; 2340 InsertValueInst *Insert2 = nullptr; 2341 Value *ResumeVal = Resume->getOperand(0); 2342 // If the resume value isn't a phi or landingpad value, it should be a 2343 // series of insertions. Identify them so we can avoid them when scanning 2344 // for cleanups. 2345 if (!isa<PHINode>(ResumeVal) && !isa<LandingPadInst>(ResumeVal)) { 2346 Insert2 = dyn_cast<InsertValueInst>(ResumeVal); 2347 if (!Insert2) 2348 return createCleanupHandler(Actions, CleanupHandlerMap, BB); 2349 Insert1 = dyn_cast<InsertValueInst>(Insert2->getAggregateOperand()); 2350 if (!Insert1) 2351 return createCleanupHandler(Actions, CleanupHandlerMap, BB); 2352 } 2353 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); 2354 II != IE; ++II) { 2355 Instruction *Inst = II; 2356 if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) 2357 continue; 2358 if (Inst == Insert1 || Inst == Insert2 || Inst == Resume) 2359 continue; 2360 if (!Inst->hasOneUse() || 2361 (Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) { 2362 return createCleanupHandler(Actions, CleanupHandlerMap, BB); 2363 } 2364 } 2365 return; 2366 } 2367 2368 BranchInst *Branch = dyn_cast<BranchInst>(Terminator); 2369 if (Branch && Branch->isConditional()) { 2370 // Look for the selector dispatch. 2371 // %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*)) 2372 // %matches = icmp eq i32 %sel, %2 2373 // br i1 %matches, label %catch14, label %eh.resume 2374 CmpInst *Compare = dyn_cast<CmpInst>(Branch->getCondition()); 2375 if (!Compare || !Compare->isEquality()) 2376 return createCleanupHandler(Actions, CleanupHandlerMap, BB); 2377 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); 2378 II != IE; ++II) { 2379 Instruction *Inst = II; 2380 if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) 2381 continue; 2382 if (Inst == Compare || Inst == Branch) 2383 continue; 2384 if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>())) 2385 continue; 2386 return createCleanupHandler(Actions, CleanupHandlerMap, BB); 2387 } 2388 // The selector dispatch block should always terminate our search. 2389 assert(BB == EndBB); 2390 return; 2391 } 2392 2393 if (isAsynchronousEHPersonality(Personality)) { 2394 // If this is a landingpad block, split the block at the first non-landing 2395 // pad instruction. 2396 Instruction *MaybeCall = BB->getFirstNonPHIOrDbg(); 2397 if (LPadMap) { 2398 while (MaybeCall != BB->getTerminator() && 2399 LPadMap->isLandingPadSpecificInst(MaybeCall)) 2400 MaybeCall = MaybeCall->getNextNode(); 2401 } 2402 2403 // Look for outlined finally calls on x64, since those happen to match the 2404 // prototype provided by the runtime. 2405 if (TheTriple.getArch() == Triple::x86_64) { 2406 if (CallSite FinallyCall = matchOutlinedFinallyCall(BB, MaybeCall)) { 2407 Function *Fin = FinallyCall.getCalledFunction(); 2408 assert(Fin && "outlined finally call should be direct"); 2409 auto *Action = new CleanupHandler(BB); 2410 Action->setHandlerBlockOrFunc(Fin); 2411 Actions.insertCleanupHandler(Action); 2412 CleanupHandlerMap[BB] = Action; 2413 DEBUG(dbgs() << " Found frontend-outlined finally call to " 2414 << Fin->getName() << " in block " 2415 << Action->getStartBlock()->getName() << "\n"); 2416 2417 // Split the block if there were more interesting instructions and 2418 // look for finally calls in the normal successor block. 2419 BasicBlock *SuccBB = BB; 2420 if (FinallyCall.getInstruction() != BB->getTerminator() && 2421 FinallyCall.getInstruction()->getNextNode() != 2422 BB->getTerminator()) { 2423 SuccBB = 2424 SplitBlock(BB, FinallyCall.getInstruction()->getNextNode(), DT); 2425 } else { 2426 if (FinallyCall.isInvoke()) { 2427 SuccBB = cast<InvokeInst>(FinallyCall.getInstruction()) 2428 ->getNormalDest(); 2429 } else { 2430 SuccBB = BB->getUniqueSuccessor(); 2431 assert(SuccBB && 2432 "splitOutlinedFinallyCalls didn't insert a branch"); 2433 } 2434 } 2435 BB = SuccBB; 2436 if (BB == EndBB) 2437 return; 2438 continue; 2439 } 2440 } 2441 } 2442 2443 // Anything else is either a catch block or interesting cleanup code. 2444 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); 2445 II != IE; ++II) { 2446 Instruction *Inst = II; 2447 if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) 2448 continue; 2449 // Unconditional branches fall through to this loop. 2450 if (Inst == Branch) 2451 continue; 2452 // If this is a catch block, there is no cleanup code to be found. 2453 if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>())) 2454 return; 2455 // If this a nested landing pad, it may contain an endcatch call. 2456 if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>())) 2457 return; 2458 // Anything else makes this interesting cleanup code. 2459 return createCleanupHandler(Actions, CleanupHandlerMap, BB); 2460 } 2461 2462 // Only unconditional branches in empty blocks should get this far. 2463 assert(Branch && Branch->isUnconditional()); 2464 if (BB == EndBB) 2465 return; 2466 BB = Branch->getSuccessor(0); 2467 } 2468 } 2469 2470 // This is a public function, declared in WinEHFuncInfo.h and is also 2471 // referenced by WinEHNumbering in FunctionLoweringInfo.cpp. 2472 void llvm::parseEHActions( 2473 const IntrinsicInst *II, 2474 SmallVectorImpl<std::unique_ptr<ActionHandler>> &Actions) { 2475 assert(II->getIntrinsicID() == Intrinsic::eh_actions && 2476 "attempted to parse non eh.actions intrinsic"); 2477 for (unsigned I = 0, E = II->getNumArgOperands(); I != E;) { 2478 uint64_t ActionKind = 2479 cast<ConstantInt>(II->getArgOperand(I))->getZExtValue(); 2480 if (ActionKind == /*catch=*/1) { 2481 auto *Selector = cast<Constant>(II->getArgOperand(I + 1)); 2482 ConstantInt *EHObjIndex = cast<ConstantInt>(II->getArgOperand(I + 2)); 2483 int64_t EHObjIndexVal = EHObjIndex->getSExtValue(); 2484 Constant *Handler = cast<Constant>(II->getArgOperand(I + 3)); 2485 I += 4; 2486 auto CH = make_unique<CatchHandler>(/*BB=*/nullptr, Selector, 2487 /*NextBB=*/nullptr); 2488 CH->setHandlerBlockOrFunc(Handler); 2489 CH->setExceptionVarIndex(EHObjIndexVal); 2490 Actions.push_back(std::move(CH)); 2491 } else if (ActionKind == 0) { 2492 Constant *Handler = cast<Constant>(II->getArgOperand(I + 1)); 2493 I += 2; 2494 auto CH = make_unique<CleanupHandler>(/*BB=*/nullptr); 2495 CH->setHandlerBlockOrFunc(Handler); 2496 Actions.push_back(std::move(CH)); 2497 } else { 2498 llvm_unreachable("Expected either a catch or cleanup handler!"); 2499 } 2500 } 2501 std::reverse(Actions.begin(), Actions.end()); 2502 } 2503 2504 namespace { 2505 struct WinEHNumbering { 2506 WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo), 2507 CurrentBaseState(-1), NextState(0) {} 2508 2509 WinEHFuncInfo &FuncInfo; 2510 int CurrentBaseState; 2511 int NextState; 2512 2513 SmallVector<std::unique_ptr<ActionHandler>, 4> HandlerStack; 2514 SmallPtrSet<const Function *, 4> VisitedHandlers; 2515 2516 int currentEHNumber() const { 2517 return HandlerStack.empty() ? CurrentBaseState : HandlerStack.back()->getEHState(); 2518 } 2519 2520 void createUnwindMapEntry(int ToState, ActionHandler *AH); 2521 void createTryBlockMapEntry(int TryLow, int TryHigh, 2522 ArrayRef<CatchHandler *> Handlers); 2523 void processCallSite(MutableArrayRef<std::unique_ptr<ActionHandler>> Actions, 2524 ImmutableCallSite CS); 2525 void popUnmatchedActions(int FirstMismatch); 2526 void calculateStateNumbers(const Function &F); 2527 void findActionRootLPads(const Function &F); 2528 }; 2529 } 2530 2531 void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) { 2532 WinEHUnwindMapEntry UME; 2533 UME.ToState = ToState; 2534 if (auto *CH = dyn_cast_or_null<CleanupHandler>(AH)) 2535 UME.Cleanup = cast<Function>(CH->getHandlerBlockOrFunc()); 2536 else 2537 UME.Cleanup = nullptr; 2538 FuncInfo.UnwindMap.push_back(UME); 2539 } 2540 2541 void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh, 2542 ArrayRef<CatchHandler *> Handlers) { 2543 // See if we already have an entry for this set of handlers. 2544 // This is using iterators rather than a range-based for loop because 2545 // if we find the entry we're looking for we'll need the iterator to erase it. 2546 int NumHandlers = Handlers.size(); 2547 auto I = FuncInfo.TryBlockMap.begin(); 2548 auto E = FuncInfo.TryBlockMap.end(); 2549 for ( ; I != E; ++I) { 2550 auto &Entry = *I; 2551 if (Entry.HandlerArray.size() != (size_t)NumHandlers) 2552 continue; 2553 int N; 2554 for (N = 0; N < NumHandlers; ++N) { 2555 if (Entry.HandlerArray[N].Handler != Handlers[N]->getHandlerBlockOrFunc()) 2556 break; // breaks out of inner loop 2557 } 2558 // If all the handlers match, this is what we were looking for. 2559 if (N == NumHandlers) { 2560 break; 2561 } 2562 } 2563 2564 // If we found an existing entry for this set of handlers, extend the range 2565 // but move the entry to the end of the map vector. The order of entries 2566 // in the map is critical to the way that the runtime finds handlers. 2567 // FIXME: Depending on what has happened with block ordering, this may 2568 // incorrectly combine entries that should remain separate. 2569 if (I != E) { 2570 // Copy the existing entry. 2571 WinEHTryBlockMapEntry Entry = *I; 2572 Entry.TryLow = std::min(TryLow, Entry.TryLow); 2573 Entry.TryHigh = std::max(TryHigh, Entry.TryHigh); 2574 assert(Entry.TryLow <= Entry.TryHigh); 2575 // Erase the old entry and add this one to the back. 2576 FuncInfo.TryBlockMap.erase(I); 2577 FuncInfo.TryBlockMap.push_back(Entry); 2578 return; 2579 } 2580 2581 // If we didn't find an entry, create a new one. 2582 WinEHTryBlockMapEntry TBME; 2583 TBME.TryLow = TryLow; 2584 TBME.TryHigh = TryHigh; 2585 assert(TBME.TryLow <= TBME.TryHigh); 2586 for (CatchHandler *CH : Handlers) { 2587 WinEHHandlerType HT; 2588 if (CH->getSelector()->isNullValue()) { 2589 HT.Adjectives = 0x40; 2590 HT.TypeDescriptor = nullptr; 2591 } else { 2592 auto *GV = cast<GlobalVariable>(CH->getSelector()->stripPointerCasts()); 2593 // Selectors are always pointers to GlobalVariables with 'struct' type. 2594 // The struct has two fields, adjectives and a type descriptor. 2595 auto *CS = cast<ConstantStruct>(GV->getInitializer()); 2596 HT.Adjectives = 2597 cast<ConstantInt>(CS->getAggregateElement(0U))->getZExtValue(); 2598 HT.TypeDescriptor = 2599 cast<GlobalVariable>(CS->getAggregateElement(1)->stripPointerCasts()); 2600 } 2601 HT.Handler = cast<Function>(CH->getHandlerBlockOrFunc()); 2602 HT.CatchObjRecoverIdx = CH->getExceptionVarIndex(); 2603 TBME.HandlerArray.push_back(HT); 2604 } 2605 FuncInfo.TryBlockMap.push_back(TBME); 2606 } 2607 2608 static void print_name(const Value *V) { 2609 #ifndef NDEBUG 2610 if (!V) { 2611 DEBUG(dbgs() << "null"); 2612 return; 2613 } 2614 2615 if (const auto *F = dyn_cast<Function>(V)) 2616 DEBUG(dbgs() << F->getName()); 2617 else 2618 DEBUG(V->dump()); 2619 #endif 2620 } 2621 2622 void WinEHNumbering::processCallSite( 2623 MutableArrayRef<std::unique_ptr<ActionHandler>> Actions, 2624 ImmutableCallSite CS) { 2625 DEBUG(dbgs() << "processCallSite (EH state = " << currentEHNumber() 2626 << ") for: "); 2627 print_name(CS ? CS.getCalledValue() : nullptr); 2628 DEBUG(dbgs() << '\n'); 2629 2630 DEBUG(dbgs() << "HandlerStack: \n"); 2631 for (int I = 0, E = HandlerStack.size(); I < E; ++I) { 2632 DEBUG(dbgs() << " "); 2633 print_name(HandlerStack[I]->getHandlerBlockOrFunc()); 2634 DEBUG(dbgs() << '\n'); 2635 } 2636 DEBUG(dbgs() << "Actions: \n"); 2637 for (int I = 0, E = Actions.size(); I < E; ++I) { 2638 DEBUG(dbgs() << " "); 2639 print_name(Actions[I]->getHandlerBlockOrFunc()); 2640 DEBUG(dbgs() << '\n'); 2641 } 2642 int FirstMismatch = 0; 2643 for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E; 2644 ++FirstMismatch) { 2645 if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() != 2646 Actions[FirstMismatch]->getHandlerBlockOrFunc()) 2647 break; 2648 } 2649 2650 // Remove unmatched actions from the stack and process their EH states. 2651 popUnmatchedActions(FirstMismatch); 2652 2653 DEBUG(dbgs() << "Pushing actions for CallSite: "); 2654 print_name(CS ? CS.getCalledValue() : nullptr); 2655 DEBUG(dbgs() << '\n'); 2656 2657 bool LastActionWasCatch = false; 2658 const LandingPadInst *LastRootLPad = nullptr; 2659 for (size_t I = FirstMismatch; I != Actions.size(); ++I) { 2660 // We can reuse eh states when pushing two catches for the same invoke. 2661 bool CurrActionIsCatch = isa<CatchHandler>(Actions[I].get()); 2662 auto *Handler = cast<Function>(Actions[I]->getHandlerBlockOrFunc()); 2663 // Various conditions can lead to a handler being popped from the 2664 // stack and re-pushed later. That shouldn't create a new state. 2665 // FIXME: Can code optimization lead to re-used handlers? 2666 if (FuncInfo.HandlerEnclosedState.count(Handler)) { 2667 // If we already assigned the state enclosed by this handler re-use it. 2668 Actions[I]->setEHState(FuncInfo.HandlerEnclosedState[Handler]); 2669 continue; 2670 } 2671 const LandingPadInst* RootLPad = FuncInfo.RootLPad[Handler]; 2672 if (CurrActionIsCatch && LastActionWasCatch && RootLPad == LastRootLPad) { 2673 DEBUG(dbgs() << "setEHState for handler to " << currentEHNumber() << "\n"); 2674 Actions[I]->setEHState(currentEHNumber()); 2675 } else { 2676 DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber() << ", "); 2677 print_name(Actions[I]->getHandlerBlockOrFunc()); 2678 DEBUG(dbgs() << ") with EH state " << NextState << "\n"); 2679 createUnwindMapEntry(currentEHNumber(), Actions[I].get()); 2680 DEBUG(dbgs() << "setEHState for handler to " << NextState << "\n"); 2681 Actions[I]->setEHState(NextState); 2682 NextState++; 2683 } 2684 HandlerStack.push_back(std::move(Actions[I])); 2685 LastActionWasCatch = CurrActionIsCatch; 2686 LastRootLPad = RootLPad; 2687 } 2688 2689 // This is used to defer numbering states for a handler until after the 2690 // last time it appears in an invoke action list. 2691 if (CS.isInvoke()) { 2692 for (int I = 0, E = HandlerStack.size(); I < E; ++I) { 2693 auto *Handler = cast<Function>(HandlerStack[I]->getHandlerBlockOrFunc()); 2694 if (FuncInfo.LastInvoke[Handler] != cast<InvokeInst>(CS.getInstruction())) 2695 continue; 2696 FuncInfo.LastInvokeVisited[Handler] = true; 2697 DEBUG(dbgs() << "Last invoke of "); 2698 print_name(Handler); 2699 DEBUG(dbgs() << " has been visited.\n"); 2700 } 2701 } 2702 2703 DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: "); 2704 print_name(CS ? CS.getCalledValue() : nullptr); 2705 DEBUG(dbgs() << '\n'); 2706 } 2707 2708 void WinEHNumbering::popUnmatchedActions(int FirstMismatch) { 2709 // Don't recurse while we are looping over the handler stack. Instead, defer 2710 // the numbering of the catch handlers until we are done popping. 2711 SmallVector<CatchHandler *, 4> PoppedCatches; 2712 for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) { 2713 std::unique_ptr<ActionHandler> Handler = HandlerStack.pop_back_val(); 2714 if (isa<CatchHandler>(Handler.get())) 2715 PoppedCatches.push_back(cast<CatchHandler>(Handler.release())); 2716 } 2717 2718 int TryHigh = NextState - 1; 2719 int LastTryLowIdx = 0; 2720 for (int I = 0, E = PoppedCatches.size(); I != E; ++I) { 2721 CatchHandler *CH = PoppedCatches[I]; 2722 DEBUG(dbgs() << "Popped handler with state " << CH->getEHState() << "\n"); 2723 if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) { 2724 int TryLow = CH->getEHState(); 2725 auto Handlers = 2726 makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1); 2727 DEBUG(dbgs() << "createTryBlockMapEntry(" << TryLow << ", " << TryHigh); 2728 for (size_t J = 0; J < Handlers.size(); ++J) { 2729 DEBUG(dbgs() << ", "); 2730 print_name(Handlers[J]->getHandlerBlockOrFunc()); 2731 } 2732 DEBUG(dbgs() << ")\n"); 2733 createTryBlockMapEntry(TryLow, TryHigh, Handlers); 2734 LastTryLowIdx = I + 1; 2735 } 2736 } 2737 2738 for (CatchHandler *CH : PoppedCatches) { 2739 if (auto *F = dyn_cast<Function>(CH->getHandlerBlockOrFunc())) { 2740 if (FuncInfo.LastInvokeVisited[F]) { 2741 DEBUG(dbgs() << "Assigning base state " << NextState << " to "); 2742 print_name(F); 2743 DEBUG(dbgs() << '\n'); 2744 FuncInfo.HandlerBaseState[F] = NextState; 2745 DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber() 2746 << ", null)\n"); 2747 createUnwindMapEntry(currentEHNumber(), nullptr); 2748 ++NextState; 2749 calculateStateNumbers(*F); 2750 } 2751 else { 2752 DEBUG(dbgs() << "Deferring handling of "); 2753 print_name(F); 2754 DEBUG(dbgs() << " until last invoke visited.\n"); 2755 } 2756 } 2757 delete CH; 2758 } 2759 } 2760 2761 void WinEHNumbering::calculateStateNumbers(const Function &F) { 2762 auto I = VisitedHandlers.insert(&F); 2763 if (!I.second) 2764 return; // We've already visited this handler, don't renumber it. 2765 2766 int OldBaseState = CurrentBaseState; 2767 if (FuncInfo.HandlerBaseState.count(&F)) { 2768 CurrentBaseState = FuncInfo.HandlerBaseState[&F]; 2769 } 2770 2771 size_t SavedHandlerStackSize = HandlerStack.size(); 2772 2773 DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n'); 2774 SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList; 2775 for (const BasicBlock &BB : F) { 2776 for (const Instruction &I : BB) { 2777 const auto *CI = dyn_cast<CallInst>(&I); 2778 if (!CI || CI->doesNotThrow()) 2779 continue; 2780 processCallSite(None, CI); 2781 } 2782 const auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 2783 if (!II) 2784 continue; 2785 const LandingPadInst *LPI = II->getLandingPadInst(); 2786 auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode()); 2787 if (!ActionsCall) 2788 continue; 2789 parseEHActions(ActionsCall, ActionList); 2790 if (ActionList.empty()) 2791 continue; 2792 processCallSite(ActionList, II); 2793 ActionList.clear(); 2794 FuncInfo.LandingPadStateMap[LPI] = currentEHNumber(); 2795 DEBUG(dbgs() << "Assigning state " << currentEHNumber() 2796 << " to landing pad at " << LPI->getParent()->getName() 2797 << '\n'); 2798 } 2799 2800 // Pop any actions that were pushed on the stack for this function. 2801 popUnmatchedActions(SavedHandlerStackSize); 2802 2803 DEBUG(dbgs() << "Assigning max state " << NextState - 1 2804 << " to " << F.getName() << '\n'); 2805 FuncInfo.CatchHandlerMaxState[&F] = NextState - 1; 2806 2807 CurrentBaseState = OldBaseState; 2808 } 2809 2810 // This function follows the same basic traversal as calculateStateNumbers 2811 // but it is necessary to identify the root landing pad associated 2812 // with each action before we start assigning state numbers. 2813 void WinEHNumbering::findActionRootLPads(const Function &F) { 2814 auto I = VisitedHandlers.insert(&F); 2815 if (!I.second) 2816 return; // We've already visited this handler, don't revisit it. 2817 2818 SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList; 2819 for (const BasicBlock &BB : F) { 2820 const auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 2821 if (!II) 2822 continue; 2823 const LandingPadInst *LPI = II->getLandingPadInst(); 2824 auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode()); 2825 if (!ActionsCall) 2826 continue; 2827 2828 assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions); 2829 parseEHActions(ActionsCall, ActionList); 2830 if (ActionList.empty()) 2831 continue; 2832 for (int I = 0, E = ActionList.size(); I < E; ++I) { 2833 if (auto *Handler 2834 = dyn_cast<Function>(ActionList[I]->getHandlerBlockOrFunc())) { 2835 FuncInfo.LastInvoke[Handler] = II; 2836 // Don't replace the root landing pad if we previously saw this 2837 // handler in a different function. 2838 if (FuncInfo.RootLPad.count(Handler) && 2839 FuncInfo.RootLPad[Handler]->getParent()->getParent() != &F) 2840 continue; 2841 DEBUG(dbgs() << "Setting root lpad for "); 2842 print_name(Handler); 2843 DEBUG(dbgs() << " to " << LPI->getParent()->getName() << '\n'); 2844 FuncInfo.RootLPad[Handler] = LPI; 2845 } 2846 } 2847 // Walk the actions again and look for nested handlers. This has to 2848 // happen after all of the actions have been processed in the current 2849 // function. 2850 for (int I = 0, E = ActionList.size(); I < E; ++I) 2851 if (auto *Handler 2852 = dyn_cast<Function>(ActionList[I]->getHandlerBlockOrFunc())) 2853 findActionRootLPads(*Handler); 2854 ActionList.clear(); 2855 } 2856 } 2857 2858 void llvm::calculateWinCXXEHStateNumbers(const Function *ParentFn, 2859 WinEHFuncInfo &FuncInfo) { 2860 // Return if it's already been done. 2861 if (!FuncInfo.LandingPadStateMap.empty()) 2862 return; 2863 2864 WinEHNumbering Num(FuncInfo); 2865 Num.findActionRootLPads(*ParentFn); 2866 // The VisitedHandlers list is used by both findActionRootLPads and 2867 // calculateStateNumbers, but both functions need to visit all handlers. 2868 Num.VisitedHandlers.clear(); 2869 Num.calculateStateNumbers(*ParentFn); 2870 // Pop everything on the handler stack. 2871 // It may be necessary to call this more than once because a handler can 2872 // be pushed on the stack as a result of clearing the stack. 2873 while (!Num.HandlerStack.empty()) 2874 Num.processCallSite(None, ImmutableCallSite()); 2875 } 2876