1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass lowers LLVM IR exception handling into something closer to what the 11 // backend wants for functions using a personality function from a runtime 12 // provided by MSVC. Functions with other personality functions are left alone 13 // and may be prepared by other passes. In particular, all supported MSVC 14 // personality functions require cleanup code to be outlined, and the C++ 15 // personality requires catch handler code to be outlined. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/TinyPtrVector.h" 26 #include "llvm/Analysis/LibCallSemantics.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/Cloning.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 42 #include <memory> 43 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 #define DEBUG_TYPE "winehprepare" 48 49 namespace { 50 51 // This map is used to model frame variable usage during outlining, to 52 // construct a structure type to hold the frame variables in a frame 53 // allocation block, and to remap the frame variable allocas (including 54 // spill locations as needed) to GEPs that get the variable from the 55 // frame allocation structure. 56 typedef MapVector<Value *, TinyPtrVector<AllocaInst *>> FrameVarInfoMap; 57 58 // TinyPtrVector cannot hold nullptr, so we need our own sentinel that isn't 59 // quite null. 60 AllocaInst *getCatchObjectSentinel() { 61 return static_cast<AllocaInst *>(nullptr) + 1; 62 } 63 64 typedef SmallSet<BasicBlock *, 4> VisitedBlockSet; 65 66 class LandingPadActions; 67 class LandingPadMap; 68 69 typedef DenseMap<const BasicBlock *, CatchHandler *> CatchHandlerMapTy; 70 typedef DenseMap<const BasicBlock *, CleanupHandler *> CleanupHandlerMapTy; 71 72 class WinEHPrepare : public FunctionPass { 73 public: 74 static char ID; // Pass identification, replacement for typeid. 75 WinEHPrepare(const TargetMachine *TM = nullptr) 76 : FunctionPass(ID) { 77 if (TM) 78 TheTriple = Triple(TM->getTargetTriple()); 79 } 80 81 bool runOnFunction(Function &Fn) override; 82 83 bool doFinalization(Module &M) override; 84 85 void getAnalysisUsage(AnalysisUsage &AU) const override; 86 87 const char *getPassName() const override { 88 return "Windows exception handling preparation"; 89 } 90 91 private: 92 bool prepareExceptionHandlers(Function &F, 93 SmallVectorImpl<LandingPadInst *> &LPads); 94 void promoteLandingPadValues(LandingPadInst *LPad); 95 void demoteValuesLiveAcrossHandlers(Function &F, 96 SmallVectorImpl<LandingPadInst *> &LPads); 97 void findSEHEHReturnPoints(Function &F, 98 SetVector<BasicBlock *> &EHReturnBlocks); 99 void findCXXEHReturnPoints(Function &F, 100 SetVector<BasicBlock *> &EHReturnBlocks); 101 void completeNestedLandingPad(Function *ParentFn, 102 LandingPadInst *OutlinedLPad, 103 const LandingPadInst *OriginalLPad, 104 FrameVarInfoMap &VarInfo); 105 Function *createHandlerFunc(Type *RetTy, const Twine &Name, Module *M, 106 Value *&ParentFP); 107 bool outlineHandler(ActionHandler *Action, Function *SrcFn, 108 LandingPadInst *LPad, BasicBlock *StartBB, 109 FrameVarInfoMap &VarInfo); 110 void addStubInvokeToHandlerIfNeeded(Function *Handler, Value *PersonalityFn); 111 112 void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions); 113 CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB, 114 VisitedBlockSet &VisitedBlocks); 115 void findCleanupHandlers(LandingPadActions &Actions, BasicBlock *StartBB, 116 BasicBlock *EndBB); 117 118 void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB); 119 120 Triple TheTriple; 121 122 // All fields are reset by runOnFunction. 123 DominatorTree *DT = nullptr; 124 EHPersonality Personality = EHPersonality::Unknown; 125 CatchHandlerMapTy CatchHandlerMap; 126 CleanupHandlerMapTy CleanupHandlerMap; 127 DenseMap<const LandingPadInst *, LandingPadMap> LPadMaps; 128 129 // This maps landing pad instructions found in outlined handlers to 130 // the landing pad instruction in the parent function from which they 131 // were cloned. The cloned/nested landing pad is used as the key 132 // because the landing pad may be cloned into multiple handlers. 133 // This map will be used to add the llvm.eh.actions call to the nested 134 // landing pads after all handlers have been outlined. 135 DenseMap<LandingPadInst *, const LandingPadInst *> NestedLPtoOriginalLP; 136 137 // This maps blocks in the parent function which are destinations of 138 // catch handlers to cloned blocks in (other) outlined handlers. This 139 // handles the case where a nested landing pads has a catch handler that 140 // returns to a handler function rather than the parent function. 141 // The original block is used as the key here because there should only 142 // ever be one handler function from which the cloned block is not pruned. 143 // The original block will be pruned from the parent function after all 144 // handlers have been outlined. This map will be used to adjust the 145 // return instructions of handlers which return to the block that was 146 // outlined into a handler. This is done after all handlers have been 147 // outlined but before the outlined code is pruned from the parent function. 148 DenseMap<const BasicBlock *, BasicBlock *> LPadTargetBlocks; 149 150 // Map from outlined handler to call to llvm.frameaddress(1). Only used for 151 // 32-bit EH. 152 DenseMap<Function *, Value *> HandlerToParentFP; 153 154 AllocaInst *SEHExceptionCodeSlot = nullptr; 155 }; 156 157 class WinEHFrameVariableMaterializer : public ValueMaterializer { 158 public: 159 WinEHFrameVariableMaterializer(Function *OutlinedFn, Value *ParentFP, 160 FrameVarInfoMap &FrameVarInfo); 161 ~WinEHFrameVariableMaterializer() override {} 162 163 Value *materializeValueFor(Value *V) override; 164 165 void escapeCatchObject(Value *V); 166 167 private: 168 FrameVarInfoMap &FrameVarInfo; 169 IRBuilder<> Builder; 170 }; 171 172 class LandingPadMap { 173 public: 174 LandingPadMap() : OriginLPad(nullptr) {} 175 void mapLandingPad(const LandingPadInst *LPad); 176 177 bool isInitialized() { return OriginLPad != nullptr; } 178 179 bool isOriginLandingPadBlock(const BasicBlock *BB) const; 180 bool isLandingPadSpecificInst(const Instruction *Inst) const; 181 182 void remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue, 183 Value *SelectorValue) const; 184 185 private: 186 const LandingPadInst *OriginLPad; 187 // We will normally only see one of each of these instructions, but 188 // if more than one occurs for some reason we can handle that. 189 TinyPtrVector<const ExtractValueInst *> ExtractedEHPtrs; 190 TinyPtrVector<const ExtractValueInst *> ExtractedSelectors; 191 }; 192 193 class WinEHCloningDirectorBase : public CloningDirector { 194 public: 195 WinEHCloningDirectorBase(Function *HandlerFn, Value *ParentFP, 196 FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap) 197 : Materializer(HandlerFn, ParentFP, VarInfo), 198 SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())), 199 Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())), 200 LPadMap(LPadMap), ParentFP(ParentFP) {} 201 202 CloningAction handleInstruction(ValueToValueMapTy &VMap, 203 const Instruction *Inst, 204 BasicBlock *NewBB) override; 205 206 virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap, 207 const Instruction *Inst, 208 BasicBlock *NewBB) = 0; 209 virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap, 210 const Instruction *Inst, 211 BasicBlock *NewBB) = 0; 212 virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, 213 const Instruction *Inst, 214 BasicBlock *NewBB) = 0; 215 virtual CloningAction handleInvoke(ValueToValueMapTy &VMap, 216 const InvokeInst *Invoke, 217 BasicBlock *NewBB) = 0; 218 virtual CloningAction handleResume(ValueToValueMapTy &VMap, 219 const ResumeInst *Resume, 220 BasicBlock *NewBB) = 0; 221 virtual CloningAction handleCompare(ValueToValueMapTy &VMap, 222 const CmpInst *Compare, 223 BasicBlock *NewBB) = 0; 224 virtual CloningAction handleLandingPad(ValueToValueMapTy &VMap, 225 const LandingPadInst *LPad, 226 BasicBlock *NewBB) = 0; 227 228 ValueMaterializer *getValueMaterializer() override { return &Materializer; } 229 230 protected: 231 WinEHFrameVariableMaterializer Materializer; 232 Type *SelectorIDType; 233 Type *Int8PtrType; 234 LandingPadMap &LPadMap; 235 236 /// The value representing the parent frame pointer. 237 Value *ParentFP; 238 }; 239 240 class WinEHCatchDirector : public WinEHCloningDirectorBase { 241 public: 242 WinEHCatchDirector( 243 Function *CatchFn, Value *ParentFP, Value *Selector, 244 FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap, 245 DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPads) 246 : WinEHCloningDirectorBase(CatchFn, ParentFP, VarInfo, LPadMap), 247 CurrentSelector(Selector->stripPointerCasts()), 248 ExceptionObjectVar(nullptr), NestedLPtoOriginalLP(NestedLPads) {} 249 250 CloningAction handleBeginCatch(ValueToValueMapTy &VMap, 251 const Instruction *Inst, 252 BasicBlock *NewBB) override; 253 CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, 254 BasicBlock *NewBB) override; 255 CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, 256 const Instruction *Inst, 257 BasicBlock *NewBB) override; 258 CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, 259 BasicBlock *NewBB) override; 260 CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, 261 BasicBlock *NewBB) override; 262 CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare, 263 BasicBlock *NewBB) override; 264 CloningAction handleLandingPad(ValueToValueMapTy &VMap, 265 const LandingPadInst *LPad, 266 BasicBlock *NewBB) override; 267 268 Value *getExceptionVar() { return ExceptionObjectVar; } 269 TinyPtrVector<BasicBlock *> &getReturnTargets() { return ReturnTargets; } 270 271 private: 272 Value *CurrentSelector; 273 274 Value *ExceptionObjectVar; 275 TinyPtrVector<BasicBlock *> ReturnTargets; 276 277 // This will be a reference to the field of the same name in the WinEHPrepare 278 // object which instantiates this WinEHCatchDirector object. 279 DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPtoOriginalLP; 280 }; 281 282 class WinEHCleanupDirector : public WinEHCloningDirectorBase { 283 public: 284 WinEHCleanupDirector(Function *CleanupFn, Value *ParentFP, 285 FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap) 286 : WinEHCloningDirectorBase(CleanupFn, ParentFP, VarInfo, 287 LPadMap) {} 288 289 CloningAction handleBeginCatch(ValueToValueMapTy &VMap, 290 const Instruction *Inst, 291 BasicBlock *NewBB) override; 292 CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst, 293 BasicBlock *NewBB) override; 294 CloningAction handleTypeIdFor(ValueToValueMapTy &VMap, 295 const Instruction *Inst, 296 BasicBlock *NewBB) override; 297 CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke, 298 BasicBlock *NewBB) override; 299 CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume, 300 BasicBlock *NewBB) override; 301 CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare, 302 BasicBlock *NewBB) override; 303 CloningAction handleLandingPad(ValueToValueMapTy &VMap, 304 const LandingPadInst *LPad, 305 BasicBlock *NewBB) override; 306 }; 307 308 class LandingPadActions { 309 public: 310 LandingPadActions() : HasCleanupHandlers(false) {} 311 312 void insertCatchHandler(CatchHandler *Action) { Actions.push_back(Action); } 313 void insertCleanupHandler(CleanupHandler *Action) { 314 Actions.push_back(Action); 315 HasCleanupHandlers = true; 316 } 317 318 bool includesCleanup() const { return HasCleanupHandlers; } 319 320 SmallVectorImpl<ActionHandler *> &actions() { return Actions; } 321 SmallVectorImpl<ActionHandler *>::iterator begin() { return Actions.begin(); } 322 SmallVectorImpl<ActionHandler *>::iterator end() { return Actions.end(); } 323 324 private: 325 // Note that this class does not own the ActionHandler objects in this vector. 326 // The ActionHandlers are owned by the CatchHandlerMap and CleanupHandlerMap 327 // in the WinEHPrepare class. 328 SmallVector<ActionHandler *, 4> Actions; 329 bool HasCleanupHandlers; 330 }; 331 332 } // end anonymous namespace 333 334 char WinEHPrepare::ID = 0; 335 INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions", 336 false, false) 337 338 FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) { 339 return new WinEHPrepare(TM); 340 } 341 342 bool WinEHPrepare::runOnFunction(Function &Fn) { 343 // No need to prepare outlined handlers. 344 if (Fn.hasFnAttribute("wineh-parent")) 345 return false; 346 347 SmallVector<LandingPadInst *, 4> LPads; 348 SmallVector<ResumeInst *, 4> Resumes; 349 for (BasicBlock &BB : Fn) { 350 if (auto *LP = BB.getLandingPadInst()) 351 LPads.push_back(LP); 352 if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator())) 353 Resumes.push_back(Resume); 354 } 355 356 // No need to prepare functions that lack landing pads. 357 if (LPads.empty()) 358 return false; 359 360 // Classify the personality to see what kind of preparation we need. 361 Personality = classifyEHPersonality(LPads.back()->getPersonalityFn()); 362 363 // Do nothing if this is not an MSVC personality. 364 if (!isMSVCEHPersonality(Personality)) 365 return false; 366 367 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 368 369 // If there were any landing pads, prepareExceptionHandlers will make changes. 370 prepareExceptionHandlers(Fn, LPads); 371 return true; 372 } 373 374 bool WinEHPrepare::doFinalization(Module &M) { return false; } 375 376 void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const { 377 AU.addRequired<DominatorTreeWrapperPass>(); 378 } 379 380 static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler, 381 Constant *&Selector, BasicBlock *&NextBB); 382 383 // Finds blocks reachable from the starting set Worklist. Does not follow unwind 384 // edges or blocks listed in StopPoints. 385 static void findReachableBlocks(SmallPtrSetImpl<BasicBlock *> &ReachableBBs, 386 SetVector<BasicBlock *> &Worklist, 387 const SetVector<BasicBlock *> *StopPoints) { 388 while (!Worklist.empty()) { 389 BasicBlock *BB = Worklist.pop_back_val(); 390 391 // Don't cross blocks that we should stop at. 392 if (StopPoints && StopPoints->count(BB)) 393 continue; 394 395 if (!ReachableBBs.insert(BB).second) 396 continue; // Already visited. 397 398 // Don't follow unwind edges of invokes. 399 if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 400 Worklist.insert(II->getNormalDest()); 401 continue; 402 } 403 404 // Otherwise, follow all successors. 405 Worklist.insert(succ_begin(BB), succ_end(BB)); 406 } 407 } 408 409 // Attempt to find an instruction where a block can be split before 410 // a call to llvm.eh.begincatch and its operands. If the block 411 // begins with the begincatch call or one of its adjacent operands 412 // the block will not be split. 413 static Instruction *findBeginCatchSplitPoint(BasicBlock *BB, 414 IntrinsicInst *II) { 415 // If the begincatch call is already the first instruction in the block, 416 // don't split. 417 Instruction *FirstNonPHI = BB->getFirstNonPHI(); 418 if (II == FirstNonPHI) 419 return nullptr; 420 421 // If either operand is in the same basic block as the instruction and 422 // isn't used by another instruction before the begincatch call, include it 423 // in the split block. 424 auto *Op0 = dyn_cast<Instruction>(II->getOperand(0)); 425 auto *Op1 = dyn_cast<Instruction>(II->getOperand(1)); 426 427 Instruction *I = II->getPrevNode(); 428 Instruction *LastI = II; 429 430 while (I == Op0 || I == Op1) { 431 // If the block begins with one of the operands and there are no other 432 // instructions between the operand and the begincatch call, don't split. 433 if (I == FirstNonPHI) 434 return nullptr; 435 436 LastI = I; 437 I = I->getPrevNode(); 438 } 439 440 // If there is at least one instruction in the block before the begincatch 441 // call and its operands, split the block at either the begincatch or 442 // its operand. 443 return LastI; 444 } 445 446 /// Find all points where exceptional control rejoins normal control flow via 447 /// llvm.eh.endcatch. Add them to the normal bb reachability worklist. 448 void WinEHPrepare::findCXXEHReturnPoints( 449 Function &F, SetVector<BasicBlock *> &EHReturnBlocks) { 450 for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) { 451 BasicBlock *BB = BBI; 452 for (Instruction &I : *BB) { 453 if (match(&I, m_Intrinsic<Intrinsic::eh_begincatch>())) { 454 Instruction *SplitPt = 455 findBeginCatchSplitPoint(BB, cast<IntrinsicInst>(&I)); 456 if (SplitPt) { 457 // Split the block before the llvm.eh.begincatch call to allow 458 // cleanup and catch code to be distinguished later. 459 // Do not update BBI because we still need to process the 460 // portion of the block that we are splitting off. 461 SplitBlock(BB, SplitPt, DT); 462 break; 463 } 464 } 465 if (match(&I, m_Intrinsic<Intrinsic::eh_endcatch>())) { 466 // Split the block after the call to llvm.eh.endcatch if there is 467 // anything other than an unconditional branch, or if the successor 468 // starts with a phi. 469 auto *Br = dyn_cast<BranchInst>(I.getNextNode()); 470 if (!Br || !Br->isUnconditional() || 471 isa<PHINode>(Br->getSuccessor(0)->begin())) { 472 DEBUG(dbgs() << "splitting block " << BB->getName() 473 << " with llvm.eh.endcatch\n"); 474 BBI = SplitBlock(BB, I.getNextNode(), DT); 475 } 476 // The next BB is normal control flow. 477 EHReturnBlocks.insert(BB->getTerminator()->getSuccessor(0)); 478 break; 479 } 480 } 481 } 482 } 483 484 static bool isCatchAllLandingPad(const BasicBlock *BB) { 485 const LandingPadInst *LP = BB->getLandingPadInst(); 486 if (!LP) 487 return false; 488 unsigned N = LP->getNumClauses(); 489 return (N > 0 && LP->isCatch(N - 1) && 490 isa<ConstantPointerNull>(LP->getClause(N - 1))); 491 } 492 493 /// Find all points where exceptions control rejoins normal control flow via 494 /// selector dispatch. 495 void WinEHPrepare::findSEHEHReturnPoints( 496 Function &F, SetVector<BasicBlock *> &EHReturnBlocks) { 497 for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) { 498 BasicBlock *BB = BBI; 499 // If the landingpad is a catch-all, treat the whole lpad as if it is 500 // reachable from normal control flow. 501 // FIXME: This is imprecise. We need a better way of identifying where a 502 // catch-all starts and cleanups stop. As far as LLVM is concerned, there 503 // is no difference. 504 if (isCatchAllLandingPad(BB)) { 505 EHReturnBlocks.insert(BB); 506 continue; 507 } 508 509 BasicBlock *CatchHandler; 510 BasicBlock *NextBB; 511 Constant *Selector; 512 if (isSelectorDispatch(BB, CatchHandler, Selector, NextBB)) { 513 // Split the edge if there is a phi node. Returning from EH to a phi node 514 // is just as impossible as having a phi after an indirectbr. 515 if (isa<PHINode>(CatchHandler->begin())) { 516 DEBUG(dbgs() << "splitting EH return edge from " << BB->getName() 517 << " to " << CatchHandler->getName() << '\n'); 518 BBI = CatchHandler = SplitCriticalEdge( 519 BB, std::find(succ_begin(BB), succ_end(BB), CatchHandler)); 520 } 521 EHReturnBlocks.insert(CatchHandler); 522 } 523 } 524 } 525 526 /// Ensure that all values live into and out of exception handlers are stored 527 /// in memory. 528 /// FIXME: This falls down when values are defined in one handler and live into 529 /// another handler. For example, a cleanup defines a value used only by a 530 /// catch handler. 531 void WinEHPrepare::demoteValuesLiveAcrossHandlers( 532 Function &F, SmallVectorImpl<LandingPadInst *> &LPads) { 533 DEBUG(dbgs() << "Demoting values live across exception handlers in function " 534 << F.getName() << '\n'); 535 536 // Build a set of all non-exceptional blocks and exceptional blocks. 537 // - Non-exceptional blocks are blocks reachable from the entry block while 538 // not following invoke unwind edges. 539 // - Exceptional blocks are blocks reachable from landingpads. Analysis does 540 // not follow llvm.eh.endcatch blocks, which mark a transition from 541 // exceptional to normal control. 542 SmallPtrSet<BasicBlock *, 4> NormalBlocks; 543 SmallPtrSet<BasicBlock *, 4> EHBlocks; 544 SetVector<BasicBlock *> EHReturnBlocks; 545 SetVector<BasicBlock *> Worklist; 546 547 if (Personality == EHPersonality::MSVC_CXX) 548 findCXXEHReturnPoints(F, EHReturnBlocks); 549 else 550 findSEHEHReturnPoints(F, EHReturnBlocks); 551 552 DEBUG({ 553 dbgs() << "identified the following blocks as EH return points:\n"; 554 for (BasicBlock *BB : EHReturnBlocks) 555 dbgs() << " " << BB->getName() << '\n'; 556 }); 557 558 // Join points should not have phis at this point, unless they are a 559 // landingpad, in which case we will demote their phis later. 560 #ifndef NDEBUG 561 for (BasicBlock *BB : EHReturnBlocks) 562 assert((BB->isLandingPad() || !isa<PHINode>(BB->begin())) && 563 "non-lpad EH return block has phi"); 564 #endif 565 566 // Normal blocks are the blocks reachable from the entry block and all EH 567 // return points. 568 Worklist = EHReturnBlocks; 569 Worklist.insert(&F.getEntryBlock()); 570 findReachableBlocks(NormalBlocks, Worklist, nullptr); 571 DEBUG({ 572 dbgs() << "marked the following blocks as normal:\n"; 573 for (BasicBlock *BB : NormalBlocks) 574 dbgs() << " " << BB->getName() << '\n'; 575 }); 576 577 // Exceptional blocks are the blocks reachable from landingpads that don't 578 // cross EH return points. 579 Worklist.clear(); 580 for (auto *LPI : LPads) 581 Worklist.insert(LPI->getParent()); 582 findReachableBlocks(EHBlocks, Worklist, &EHReturnBlocks); 583 DEBUG({ 584 dbgs() << "marked the following blocks as exceptional:\n"; 585 for (BasicBlock *BB : EHBlocks) 586 dbgs() << " " << BB->getName() << '\n'; 587 }); 588 589 SetVector<Argument *> ArgsToDemote; 590 SetVector<Instruction *> InstrsToDemote; 591 for (BasicBlock &BB : F) { 592 bool IsNormalBB = NormalBlocks.count(&BB); 593 bool IsEHBB = EHBlocks.count(&BB); 594 if (!IsNormalBB && !IsEHBB) 595 continue; // Blocks that are neither normal nor EH are unreachable. 596 for (Instruction &I : BB) { 597 for (Value *Op : I.operands()) { 598 // Don't demote static allocas, constants, and labels. 599 if (isa<Constant>(Op) || isa<BasicBlock>(Op) || isa<InlineAsm>(Op)) 600 continue; 601 auto *AI = dyn_cast<AllocaInst>(Op); 602 if (AI && AI->isStaticAlloca()) 603 continue; 604 605 if (auto *Arg = dyn_cast<Argument>(Op)) { 606 if (IsEHBB) { 607 DEBUG(dbgs() << "Demoting argument " << *Arg 608 << " used by EH instr: " << I << "\n"); 609 ArgsToDemote.insert(Arg); 610 } 611 continue; 612 } 613 614 auto *OpI = cast<Instruction>(Op); 615 BasicBlock *OpBB = OpI->getParent(); 616 // If a value is produced and consumed in the same BB, we don't need to 617 // demote it. 618 if (OpBB == &BB) 619 continue; 620 bool IsOpNormalBB = NormalBlocks.count(OpBB); 621 bool IsOpEHBB = EHBlocks.count(OpBB); 622 if (IsNormalBB != IsOpNormalBB || IsEHBB != IsOpEHBB) { 623 DEBUG({ 624 dbgs() << "Demoting instruction live in-out from EH:\n"; 625 dbgs() << "Instr: " << *OpI << '\n'; 626 dbgs() << "User: " << I << '\n'; 627 }); 628 InstrsToDemote.insert(OpI); 629 } 630 } 631 } 632 } 633 634 // Demote values live into and out of handlers. 635 // FIXME: This demotion is inefficient. We should insert spills at the point 636 // of definition, insert one reload in each handler that uses the value, and 637 // insert reloads in the BB used to rejoin normal control flow. 638 Instruction *AllocaInsertPt = F.getEntryBlock().getFirstInsertionPt(); 639 for (Instruction *I : InstrsToDemote) 640 DemoteRegToStack(*I, false, AllocaInsertPt); 641 642 // Demote arguments separately, and only for uses in EH blocks. 643 for (Argument *Arg : ArgsToDemote) { 644 auto *Slot = new AllocaInst(Arg->getType(), nullptr, 645 Arg->getName() + ".reg2mem", AllocaInsertPt); 646 SmallVector<User *, 4> Users(Arg->user_begin(), Arg->user_end()); 647 for (User *U : Users) { 648 auto *I = dyn_cast<Instruction>(U); 649 if (I && EHBlocks.count(I->getParent())) { 650 auto *Reload = new LoadInst(Slot, Arg->getName() + ".reload", false, I); 651 U->replaceUsesOfWith(Arg, Reload); 652 } 653 } 654 new StoreInst(Arg, Slot, AllocaInsertPt); 655 } 656 657 // Demote landingpad phis, as the landingpad will be removed from the machine 658 // CFG. 659 for (LandingPadInst *LPI : LPads) { 660 BasicBlock *BB = LPI->getParent(); 661 while (auto *Phi = dyn_cast<PHINode>(BB->begin())) 662 DemotePHIToStack(Phi, AllocaInsertPt); 663 } 664 665 DEBUG(dbgs() << "Demoted " << InstrsToDemote.size() << " instructions and " 666 << ArgsToDemote.size() << " arguments for WinEHPrepare\n\n"); 667 } 668 669 bool WinEHPrepare::prepareExceptionHandlers( 670 Function &F, SmallVectorImpl<LandingPadInst *> &LPads) { 671 // Don't run on functions that are already prepared. 672 for (LandingPadInst *LPad : LPads) { 673 BasicBlock *LPadBB = LPad->getParent(); 674 for (Instruction &Inst : *LPadBB) 675 if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>())) 676 return false; 677 } 678 679 demoteValuesLiveAcrossHandlers(F, LPads); 680 681 // These containers are used to re-map frame variables that are used in 682 // outlined catch and cleanup handlers. They will be populated as the 683 // handlers are outlined. 684 FrameVarInfoMap FrameVarInfo; 685 686 bool HandlersOutlined = false; 687 688 Module *M = F.getParent(); 689 LLVMContext &Context = M->getContext(); 690 691 // Create a new function to receive the handler contents. 692 PointerType *Int8PtrType = Type::getInt8PtrTy(Context); 693 Type *Int32Type = Type::getInt32Ty(Context); 694 Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions); 695 696 if (isAsynchronousEHPersonality(Personality)) { 697 // FIXME: Switch the ehptr type to i32 and then switch this. 698 SEHExceptionCodeSlot = 699 new AllocaInst(Int8PtrType, nullptr, "seh_exception_code", 700 F.getEntryBlock().getFirstInsertionPt()); 701 } 702 703 for (LandingPadInst *LPad : LPads) { 704 // Look for evidence that this landingpad has already been processed. 705 bool LPadHasActionList = false; 706 BasicBlock *LPadBB = LPad->getParent(); 707 for (Instruction &Inst : *LPadBB) { 708 if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>())) { 709 LPadHasActionList = true; 710 break; 711 } 712 } 713 714 // If we've already outlined the handlers for this landingpad, 715 // there's nothing more to do here. 716 if (LPadHasActionList) 717 continue; 718 719 // If either of the values in the aggregate returned by the landing pad is 720 // extracted and stored to memory, promote the stored value to a register. 721 promoteLandingPadValues(LPad); 722 723 LandingPadActions Actions; 724 mapLandingPadBlocks(LPad, Actions); 725 726 HandlersOutlined |= !Actions.actions().empty(); 727 for (ActionHandler *Action : Actions) { 728 if (Action->hasBeenProcessed()) 729 continue; 730 BasicBlock *StartBB = Action->getStartBlock(); 731 732 // SEH doesn't do any outlining for catches. Instead, pass the handler 733 // basic block addr to llvm.eh.actions and list the block as a return 734 // target. 735 if (isAsynchronousEHPersonality(Personality)) { 736 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) { 737 processSEHCatchHandler(CatchAction, StartBB); 738 continue; 739 } 740 } 741 742 outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo); 743 } 744 745 // Split the block after the landingpad instruction so that it is just a 746 // call to llvm.eh.actions followed by indirectbr. 747 assert(!isa<PHINode>(LPadBB->begin()) && "lpad phi not removed"); 748 SplitBlock(LPadBB, LPad->getNextNode(), DT); 749 // Erase the branch inserted by the split so we can insert indirectbr. 750 LPadBB->getTerminator()->eraseFromParent(); 751 752 // Replace all extracted values with undef and ultimately replace the 753 // landingpad with undef. 754 SmallVector<Instruction *, 4> SEHCodeUses; 755 SmallVector<Instruction *, 4> EHUndefs; 756 for (User *U : LPad->users()) { 757 auto *E = dyn_cast<ExtractValueInst>(U); 758 if (!E) 759 continue; 760 assert(E->getNumIndices() == 1 && 761 "Unexpected operation: extracting both landing pad values"); 762 unsigned Idx = *E->idx_begin(); 763 assert((Idx == 0 || Idx == 1) && "unexpected index"); 764 if (Idx == 0 && isAsynchronousEHPersonality(Personality)) 765 SEHCodeUses.push_back(E); 766 else 767 EHUndefs.push_back(E); 768 } 769 for (Instruction *E : EHUndefs) { 770 E->replaceAllUsesWith(UndefValue::get(E->getType())); 771 E->eraseFromParent(); 772 } 773 LPad->replaceAllUsesWith(UndefValue::get(LPad->getType())); 774 775 // Rewrite uses of the exception pointer to loads of an alloca. 776 for (Instruction *E : SEHCodeUses) { 777 SmallVector<Use *, 4> Uses; 778 for (Use &U : E->uses()) 779 Uses.push_back(&U); 780 for (Use *U : Uses) { 781 auto *I = cast<Instruction>(U->getUser()); 782 if (isa<ResumeInst>(I)) 783 continue; 784 LoadInst *LI; 785 if (auto *Phi = dyn_cast<PHINode>(I)) 786 LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false, 787 Phi->getIncomingBlock(*U)); 788 else 789 LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false, I); 790 U->set(LI); 791 } 792 E->replaceAllUsesWith(UndefValue::get(E->getType())); 793 E->eraseFromParent(); 794 } 795 796 // Add a call to describe the actions for this landing pad. 797 std::vector<Value *> ActionArgs; 798 for (ActionHandler *Action : Actions) { 799 // Action codes from docs are: 0 cleanup, 1 catch. 800 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) { 801 ActionArgs.push_back(ConstantInt::get(Int32Type, 1)); 802 ActionArgs.push_back(CatchAction->getSelector()); 803 // Find the frame escape index of the exception object alloca in the 804 // parent. 805 int FrameEscapeIdx = -1; 806 Value *EHObj = const_cast<Value *>(CatchAction->getExceptionVar()); 807 if (EHObj && !isa<ConstantPointerNull>(EHObj)) { 808 auto I = FrameVarInfo.find(EHObj); 809 assert(I != FrameVarInfo.end() && 810 "failed to map llvm.eh.begincatch var"); 811 FrameEscapeIdx = std::distance(FrameVarInfo.begin(), I); 812 } 813 ActionArgs.push_back(ConstantInt::get(Int32Type, FrameEscapeIdx)); 814 } else { 815 ActionArgs.push_back(ConstantInt::get(Int32Type, 0)); 816 } 817 ActionArgs.push_back(Action->getHandlerBlockOrFunc()); 818 } 819 CallInst *Recover = 820 CallInst::Create(ActionIntrin, ActionArgs, "recover", LPadBB); 821 822 // Add an indirect branch listing possible successors of the catch handlers. 823 SetVector<BasicBlock *> ReturnTargets; 824 for (ActionHandler *Action : Actions) { 825 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) { 826 const auto &CatchTargets = CatchAction->getReturnTargets(); 827 ReturnTargets.insert(CatchTargets.begin(), CatchTargets.end()); 828 } 829 } 830 IndirectBrInst *Branch = 831 IndirectBrInst::Create(Recover, ReturnTargets.size(), LPadBB); 832 for (BasicBlock *Target : ReturnTargets) 833 Branch->addDestination(Target); 834 } // End for each landingpad 835 836 // If nothing got outlined, there is no more processing to be done. 837 if (!HandlersOutlined) 838 return false; 839 840 // Replace any nested landing pad stubs with the correct action handler. 841 // This must be done before we remove unreachable blocks because it 842 // cleans up references to outlined blocks that will be deleted. 843 for (auto &LPadPair : NestedLPtoOriginalLP) 844 completeNestedLandingPad(&F, LPadPair.first, LPadPair.second, FrameVarInfo); 845 NestedLPtoOriginalLP.clear(); 846 847 F.addFnAttr("wineh-parent", F.getName()); 848 849 // Delete any blocks that were only used by handlers that were outlined above. 850 removeUnreachableBlocks(F); 851 852 BasicBlock *Entry = &F.getEntryBlock(); 853 IRBuilder<> Builder(F.getParent()->getContext()); 854 Builder.SetInsertPoint(Entry->getFirstInsertionPt()); 855 856 Function *FrameEscapeFn = 857 Intrinsic::getDeclaration(M, Intrinsic::frameescape); 858 Function *RecoverFrameFn = 859 Intrinsic::getDeclaration(M, Intrinsic::framerecover); 860 SmallVector<Value *, 8> AllocasToEscape; 861 862 // Scan the entry block for an existing call to llvm.frameescape. We need to 863 // keep escaping those objects. 864 for (Instruction &I : F.front()) { 865 auto *II = dyn_cast<IntrinsicInst>(&I); 866 if (II && II->getIntrinsicID() == Intrinsic::frameescape) { 867 auto Args = II->arg_operands(); 868 AllocasToEscape.append(Args.begin(), Args.end()); 869 II->eraseFromParent(); 870 break; 871 } 872 } 873 874 // Finally, replace all of the temporary allocas for frame variables used in 875 // the outlined handlers with calls to llvm.framerecover. 876 for (auto &VarInfoEntry : FrameVarInfo) { 877 Value *ParentVal = VarInfoEntry.first; 878 TinyPtrVector<AllocaInst *> &Allocas = VarInfoEntry.second; 879 AllocaInst *ParentAlloca = cast<AllocaInst>(ParentVal); 880 881 // FIXME: We should try to sink unescaped allocas from the parent frame into 882 // the child frame. If the alloca is escaped, we have to use the lifetime 883 // markers to ensure that the alloca is only live within the child frame. 884 885 // Add this alloca to the list of things to escape. 886 AllocasToEscape.push_back(ParentAlloca); 887 888 // Next replace all outlined allocas that are mapped to it. 889 for (AllocaInst *TempAlloca : Allocas) { 890 if (TempAlloca == getCatchObjectSentinel()) 891 continue; // Skip catch parameter sentinels. 892 Function *HandlerFn = TempAlloca->getParent()->getParent(); 893 llvm::Value *FP = HandlerToParentFP[HandlerFn]; 894 assert(FP); 895 896 // FIXME: Sink this framerecover into the blocks where it is used. 897 Builder.SetInsertPoint(TempAlloca); 898 Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc()); 899 Value *RecoverArgs[] = { 900 Builder.CreateBitCast(&F, Int8PtrType, ""), FP, 901 llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)}; 902 Instruction *RecoveredAlloca = 903 Builder.CreateCall(RecoverFrameFn, RecoverArgs); 904 905 // Add a pointer bitcast if the alloca wasn't an i8. 906 if (RecoveredAlloca->getType() != TempAlloca->getType()) { 907 RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8"); 908 RecoveredAlloca = cast<Instruction>( 909 Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType())); 910 } 911 TempAlloca->replaceAllUsesWith(RecoveredAlloca); 912 TempAlloca->removeFromParent(); 913 RecoveredAlloca->takeName(TempAlloca); 914 delete TempAlloca; 915 } 916 } // End for each FrameVarInfo entry. 917 918 // Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry 919 // block. 920 Builder.SetInsertPoint(&F.getEntryBlock().back()); 921 Builder.CreateCall(FrameEscapeFn, AllocasToEscape); 922 923 if (SEHExceptionCodeSlot) { 924 if (SEHExceptionCodeSlot->hasNUses(0)) 925 SEHExceptionCodeSlot->eraseFromParent(); 926 else if (isAllocaPromotable(SEHExceptionCodeSlot)) 927 PromoteMemToReg(SEHExceptionCodeSlot, *DT); 928 } 929 930 // Clean up the handler action maps we created for this function 931 DeleteContainerSeconds(CatchHandlerMap); 932 CatchHandlerMap.clear(); 933 DeleteContainerSeconds(CleanupHandlerMap); 934 CleanupHandlerMap.clear(); 935 HandlerToParentFP.clear(); 936 DT = nullptr; 937 SEHExceptionCodeSlot = nullptr; 938 939 return HandlersOutlined; 940 } 941 942 void WinEHPrepare::promoteLandingPadValues(LandingPadInst *LPad) { 943 // If the return values of the landing pad instruction are extracted and 944 // stored to memory, we want to promote the store locations to reg values. 945 SmallVector<AllocaInst *, 2> EHAllocas; 946 947 // The landingpad instruction returns an aggregate value. Typically, its 948 // value will be passed to a pair of extract value instructions and the 949 // results of those extracts are often passed to store instructions. 950 // In unoptimized code the stored value will often be loaded and then stored 951 // again. 952 for (auto *U : LPad->users()) { 953 ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U); 954 if (!Extract) 955 continue; 956 957 for (auto *EU : Extract->users()) { 958 if (auto *Store = dyn_cast<StoreInst>(EU)) { 959 auto *AV = cast<AllocaInst>(Store->getPointerOperand()); 960 EHAllocas.push_back(AV); 961 } 962 } 963 } 964 965 // We can't do this without a dominator tree. 966 assert(DT); 967 968 if (!EHAllocas.empty()) { 969 PromoteMemToReg(EHAllocas, *DT); 970 EHAllocas.clear(); 971 } 972 973 // After promotion, some extracts may be trivially dead. Remove them. 974 SmallVector<Value *, 4> Users(LPad->user_begin(), LPad->user_end()); 975 for (auto *U : Users) 976 RecursivelyDeleteTriviallyDeadInstructions(U); 977 } 978 979 void WinEHPrepare::completeNestedLandingPad(Function *ParentFn, 980 LandingPadInst *OutlinedLPad, 981 const LandingPadInst *OriginalLPad, 982 FrameVarInfoMap &FrameVarInfo) { 983 // Get the nested block and erase the unreachable instruction that was 984 // temporarily inserted as its terminator. 985 LLVMContext &Context = ParentFn->getContext(); 986 BasicBlock *OutlinedBB = OutlinedLPad->getParent(); 987 assert(isa<UnreachableInst>(OutlinedBB->getTerminator())); 988 OutlinedBB->getTerminator()->eraseFromParent(); 989 // That should leave OutlinedLPad as the last instruction in its block. 990 assert(&OutlinedBB->back() == OutlinedLPad); 991 992 // The original landing pad will have already had its action intrinsic 993 // built by the outlining loop. We need to clone that into the outlined 994 // location. It may also be necessary to add references to the exception 995 // variables to the outlined handler in which this landing pad is nested 996 // and remap return instructions in the nested handlers that should return 997 // to an address in the outlined handler. 998 Function *OutlinedHandlerFn = OutlinedBB->getParent(); 999 BasicBlock::const_iterator II = OriginalLPad; 1000 ++II; 1001 // The instruction after the landing pad should now be a call to eh.actions. 1002 const Instruction *Recover = II; 1003 assert(match(Recover, m_Intrinsic<Intrinsic::eh_actions>())); 1004 IntrinsicInst *EHActions = cast<IntrinsicInst>(Recover->clone()); 1005 1006 // Remap the exception variables into the outlined function. 1007 SmallVector<BlockAddress *, 4> ActionTargets; 1008 SmallVector<ActionHandler *, 4> ActionList; 1009 parseEHActions(EHActions, ActionList); 1010 for (auto *Action : ActionList) { 1011 auto *Catch = dyn_cast<CatchHandler>(Action); 1012 if (!Catch) 1013 continue; 1014 // The dyn_cast to function here selects C++ catch handlers and skips 1015 // SEH catch handlers. 1016 auto *Handler = dyn_cast<Function>(Catch->getHandlerBlockOrFunc()); 1017 if (!Handler) 1018 continue; 1019 // Visit all the return instructions, looking for places that return 1020 // to a location within OutlinedHandlerFn. 1021 for (BasicBlock &NestedHandlerBB : *Handler) { 1022 auto *Ret = dyn_cast<ReturnInst>(NestedHandlerBB.getTerminator()); 1023 if (!Ret) 1024 continue; 1025 1026 // Handler functions must always return a block address. 1027 BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue()); 1028 // The original target will have been in the main parent function, 1029 // but if it is the address of a block that has been outlined, it 1030 // should be a block that was outlined into OutlinedHandlerFn. 1031 assert(BA->getFunction() == ParentFn); 1032 1033 // Ignore targets that aren't part of OutlinedHandlerFn. 1034 if (!LPadTargetBlocks.count(BA->getBasicBlock())) 1035 continue; 1036 1037 // If the return value is the address ofF a block that we 1038 // previously outlined into the parent handler function, replace 1039 // the return instruction and add the mapped target to the list 1040 // of possible return addresses. 1041 BasicBlock *MappedBB = LPadTargetBlocks[BA->getBasicBlock()]; 1042 assert(MappedBB->getParent() == OutlinedHandlerFn); 1043 BlockAddress *NewBA = BlockAddress::get(OutlinedHandlerFn, MappedBB); 1044 Ret->eraseFromParent(); 1045 ReturnInst::Create(Context, NewBA, &NestedHandlerBB); 1046 ActionTargets.push_back(NewBA); 1047 } 1048 } 1049 DeleteContainerPointers(ActionList); 1050 ActionList.clear(); 1051 OutlinedBB->getInstList().push_back(EHActions); 1052 1053 // Insert an indirect branch into the outlined landing pad BB. 1054 IndirectBrInst *IBr = IndirectBrInst::Create(EHActions, 0, OutlinedBB); 1055 // Add the previously collected action targets. 1056 for (auto *Target : ActionTargets) 1057 IBr->addDestination(Target->getBasicBlock()); 1058 } 1059 1060 // This function examines a block to determine whether the block ends with a 1061 // conditional branch to a catch handler based on a selector comparison. 1062 // This function is used both by the WinEHPrepare::findSelectorComparison() and 1063 // WinEHCleanupDirector::handleTypeIdFor(). 1064 static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler, 1065 Constant *&Selector, BasicBlock *&NextBB) { 1066 ICmpInst::Predicate Pred; 1067 BasicBlock *TBB, *FBB; 1068 Value *LHS, *RHS; 1069 1070 if (!match(BB->getTerminator(), 1071 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TBB, FBB))) 1072 return false; 1073 1074 if (!match(LHS, 1075 m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))) && 1076 !match(RHS, m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector)))) 1077 return false; 1078 1079 if (Pred == CmpInst::ICMP_EQ) { 1080 CatchHandler = TBB; 1081 NextBB = FBB; 1082 return true; 1083 } 1084 1085 if (Pred == CmpInst::ICMP_NE) { 1086 CatchHandler = FBB; 1087 NextBB = TBB; 1088 return true; 1089 } 1090 1091 return false; 1092 } 1093 1094 static bool isCatchBlock(BasicBlock *BB) { 1095 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); 1096 II != IE; ++II) { 1097 if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_begincatch>())) 1098 return true; 1099 } 1100 return false; 1101 } 1102 1103 static BasicBlock *createStubLandingPad(Function *Handler, 1104 Value *PersonalityFn) { 1105 // FIXME: Finish this! 1106 LLVMContext &Context = Handler->getContext(); 1107 BasicBlock *StubBB = BasicBlock::Create(Context, "stub"); 1108 Handler->getBasicBlockList().push_back(StubBB); 1109 IRBuilder<> Builder(StubBB); 1110 LandingPadInst *LPad = Builder.CreateLandingPad( 1111 llvm::StructType::get(Type::getInt8PtrTy(Context), 1112 Type::getInt32Ty(Context), nullptr), 1113 PersonalityFn, 0); 1114 // Insert a call to llvm.eh.actions so that we don't try to outline this lpad. 1115 Function *ActionIntrin = 1116 Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::eh_actions); 1117 Builder.CreateCall(ActionIntrin, "recover"); 1118 LPad->setCleanup(true); 1119 Builder.CreateUnreachable(); 1120 return StubBB; 1121 } 1122 1123 // Cycles through the blocks in an outlined handler function looking for an 1124 // invoke instruction and inserts an invoke of llvm.donothing with an empty 1125 // landing pad if none is found. The code that generates the .xdata tables for 1126 // the handler needs at least one landing pad to identify the parent function's 1127 // personality. 1128 void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler, 1129 Value *PersonalityFn) { 1130 ReturnInst *Ret = nullptr; 1131 UnreachableInst *Unreached = nullptr; 1132 for (BasicBlock &BB : *Handler) { 1133 TerminatorInst *Terminator = BB.getTerminator(); 1134 // If we find an invoke, there is nothing to be done. 1135 auto *II = dyn_cast<InvokeInst>(Terminator); 1136 if (II) 1137 return; 1138 // If we've already recorded a return instruction, keep looking for invokes. 1139 if (!Ret) 1140 Ret = dyn_cast<ReturnInst>(Terminator); 1141 // If we haven't recorded an unreachable instruction, try this terminator. 1142 if (!Unreached) 1143 Unreached = dyn_cast<UnreachableInst>(Terminator); 1144 } 1145 1146 // If we got this far, the handler contains no invokes. We should have seen 1147 // at least one return or unreachable instruction. We'll insert an invoke of 1148 // llvm.donothing ahead of that instruction. 1149 assert(Ret || Unreached); 1150 TerminatorInst *Term; 1151 if (Ret) 1152 Term = Ret; 1153 else 1154 Term = Unreached; 1155 BasicBlock *OldRetBB = Term->getParent(); 1156 BasicBlock *NewRetBB = SplitBlock(OldRetBB, Term, DT); 1157 // SplitBlock adds an unconditional branch instruction at the end of the 1158 // parent block. We want to replace that with an invoke call, so we can 1159 // erase it now. 1160 OldRetBB->getTerminator()->eraseFromParent(); 1161 BasicBlock *StubLandingPad = createStubLandingPad(Handler, PersonalityFn); 1162 Function *F = 1163 Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::donothing); 1164 InvokeInst::Create(F, NewRetBB, StubLandingPad, None, "", OldRetBB); 1165 } 1166 1167 // FIXME: Consider sinking this into lib/Target/X86 somehow. TargetLowering 1168 // usually doesn't build LLVM IR, so that's probably the wrong place. 1169 Function *WinEHPrepare::createHandlerFunc(Type *RetTy, const Twine &Name, 1170 Module *M, Value *&ParentFP) { 1171 // x64 uses a two-argument prototype where the parent FP is the second 1172 // argument. x86 uses no arguments, just the incoming EBP value. 1173 LLVMContext &Context = M->getContext(); 1174 FunctionType *FnType; 1175 if (TheTriple.getArch() == Triple::x86_64) { 1176 Type *Int8PtrType = Type::getInt8PtrTy(Context); 1177 Type *ArgTys[2] = {Int8PtrType, Int8PtrType}; 1178 FnType = FunctionType::get(RetTy, ArgTys, false); 1179 } else { 1180 FnType = FunctionType::get(RetTy, None, false); 1181 } 1182 1183 Function *Handler = 1184 Function::Create(FnType, GlobalVariable::InternalLinkage, Name, M); 1185 BasicBlock *Entry = BasicBlock::Create(Context, "entry"); 1186 Handler->getBasicBlockList().push_front(Entry); 1187 if (TheTriple.getArch() == Triple::x86_64) { 1188 ParentFP = &(Handler->getArgumentList().back()); 1189 } else { 1190 assert(M); 1191 Function *FrameAddressFn = 1192 Intrinsic::getDeclaration(M, Intrinsic::frameaddress); 1193 Value *Args[1] = {ConstantInt::get(Type::getInt32Ty(Context), 1)}; 1194 ParentFP = CallInst::Create(FrameAddressFn, Args, "parent_fp", 1195 &Handler->getEntryBlock()); 1196 } 1197 return Handler; 1198 } 1199 1200 bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn, 1201 LandingPadInst *LPad, BasicBlock *StartBB, 1202 FrameVarInfoMap &VarInfo) { 1203 Module *M = SrcFn->getParent(); 1204 LLVMContext &Context = M->getContext(); 1205 Type *Int8PtrType = Type::getInt8PtrTy(Context); 1206 1207 // Create a new function to receive the handler contents. 1208 Value *ParentFP; 1209 Function *Handler; 1210 if (Action->getType() == Catch) { 1211 Handler = createHandlerFunc(Int8PtrType, SrcFn->getName() + ".catch", M, 1212 ParentFP); 1213 } else { 1214 Handler = createHandlerFunc(Type::getVoidTy(Context), 1215 SrcFn->getName() + ".cleanup", M, ParentFP); 1216 } 1217 HandlerToParentFP[Handler] = ParentFP; 1218 Handler->addFnAttr("wineh-parent", SrcFn->getName()); 1219 BasicBlock *Entry = &Handler->getEntryBlock(); 1220 1221 // Generate a standard prolog to setup the frame recovery structure. 1222 IRBuilder<> Builder(Context); 1223 Builder.SetInsertPoint(Entry); 1224 Builder.SetCurrentDebugLocation(LPad->getDebugLoc()); 1225 1226 std::unique_ptr<WinEHCloningDirectorBase> Director; 1227 1228 ValueToValueMapTy VMap; 1229 1230 LandingPadMap &LPadMap = LPadMaps[LPad]; 1231 if (!LPadMap.isInitialized()) 1232 LPadMap.mapLandingPad(LPad); 1233 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) { 1234 Constant *Sel = CatchAction->getSelector(); 1235 Director.reset(new WinEHCatchDirector(Handler, ParentFP, Sel, 1236 VarInfo, LPadMap, 1237 NestedLPtoOriginalLP)); 1238 LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType), 1239 ConstantInt::get(Type::getInt32Ty(Context), 1)); 1240 } else { 1241 Director.reset( 1242 new WinEHCleanupDirector(Handler, ParentFP, VarInfo, LPadMap)); 1243 LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType), 1244 UndefValue::get(Type::getInt32Ty(Context))); 1245 } 1246 1247 SmallVector<ReturnInst *, 8> Returns; 1248 ClonedCodeInfo OutlinedFunctionInfo; 1249 1250 // If the start block contains PHI nodes, we need to map them. 1251 BasicBlock::iterator II = StartBB->begin(); 1252 while (auto *PN = dyn_cast<PHINode>(II)) { 1253 bool Mapped = false; 1254 // Look for PHI values that we have already mapped (such as the selector). 1255 for (Value *Val : PN->incoming_values()) { 1256 if (VMap.count(Val)) { 1257 VMap[PN] = VMap[Val]; 1258 Mapped = true; 1259 } 1260 } 1261 // If we didn't find a match for this value, map it as an undef. 1262 if (!Mapped) { 1263 VMap[PN] = UndefValue::get(PN->getType()); 1264 } 1265 ++II; 1266 } 1267 1268 // The landing pad value may be used by PHI nodes. It will ultimately be 1269 // eliminated, but we need it in the map for intermediate handling. 1270 VMap[LPad] = UndefValue::get(LPad->getType()); 1271 1272 // Skip over PHIs and, if applicable, landingpad instructions. 1273 II = StartBB->getFirstInsertionPt(); 1274 1275 CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap, 1276 /*ModuleLevelChanges=*/false, Returns, "", 1277 &OutlinedFunctionInfo, Director.get()); 1278 1279 // Move all the instructions in the cloned "entry" block into our entry block. 1280 // Depending on how the parent function was laid out, the block that will 1281 // correspond to the outlined entry block may not be the first block in the 1282 // list. We can recognize it, however, as the cloned block which has no 1283 // predecessors. Any other block wouldn't have been cloned if it didn't 1284 // have a predecessor which was also cloned. 1285 Function::iterator ClonedIt = std::next(Function::iterator(Entry)); 1286 while (!pred_empty(ClonedIt)) 1287 ++ClonedIt; 1288 BasicBlock *ClonedEntryBB = ClonedIt; 1289 assert(ClonedEntryBB); 1290 Entry->getInstList().splice(Entry->end(), ClonedEntryBB->getInstList()); 1291 ClonedEntryBB->eraseFromParent(); 1292 1293 // Make sure we can identify the handler's personality later. 1294 addStubInvokeToHandlerIfNeeded(Handler, LPad->getPersonalityFn()); 1295 1296 if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) { 1297 WinEHCatchDirector *CatchDirector = 1298 reinterpret_cast<WinEHCatchDirector *>(Director.get()); 1299 CatchAction->setExceptionVar(CatchDirector->getExceptionVar()); 1300 CatchAction->setReturnTargets(CatchDirector->getReturnTargets()); 1301 1302 // Look for blocks that are not part of the landing pad that we just 1303 // outlined but terminate with a call to llvm.eh.endcatch and a 1304 // branch to a block that is in the handler we just outlined. 1305 // These blocks will be part of a nested landing pad that intends to 1306 // return to an address in this handler. This case is best handled 1307 // after both landing pads have been outlined, so for now we'll just 1308 // save the association of the blocks in LPadTargetBlocks. The 1309 // return instructions which are created from these branches will be 1310 // replaced after all landing pads have been outlined. 1311 for (const auto MapEntry : VMap) { 1312 // VMap maps all values and blocks that were just cloned, but dead 1313 // blocks which were pruned will map to nullptr. 1314 if (!isa<BasicBlock>(MapEntry.first) || MapEntry.second == nullptr) 1315 continue; 1316 const BasicBlock *MappedBB = cast<BasicBlock>(MapEntry.first); 1317 for (auto *Pred : predecessors(const_cast<BasicBlock *>(MappedBB))) { 1318 auto *Branch = dyn_cast<BranchInst>(Pred->getTerminator()); 1319 if (!Branch || !Branch->isUnconditional() || Pred->size() <= 1) 1320 continue; 1321 BasicBlock::iterator II = const_cast<BranchInst *>(Branch); 1322 --II; 1323 if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_endcatch>())) { 1324 // This would indicate that a nested landing pad wants to return 1325 // to a block that is outlined into two different handlers. 1326 assert(!LPadTargetBlocks.count(MappedBB)); 1327 LPadTargetBlocks[MappedBB] = cast<BasicBlock>(MapEntry.second); 1328 } 1329 } 1330 } 1331 } // End if (CatchAction) 1332 1333 Action->setHandlerBlockOrFunc(Handler); 1334 1335 return true; 1336 } 1337 1338 /// This BB must end in a selector dispatch. All we need to do is pass the 1339 /// handler block to llvm.eh.actions and list it as a possible indirectbr 1340 /// target. 1341 void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction, 1342 BasicBlock *StartBB) { 1343 BasicBlock *HandlerBB; 1344 BasicBlock *NextBB; 1345 Constant *Selector; 1346 bool Res = isSelectorDispatch(StartBB, HandlerBB, Selector, NextBB); 1347 if (Res) { 1348 // If this was EH dispatch, this must be a conditional branch to the handler 1349 // block. 1350 // FIXME: Handle instructions in the dispatch block. Currently we drop them, 1351 // leading to crashes if some optimization hoists stuff here. 1352 assert(CatchAction->getSelector() && HandlerBB && 1353 "expected catch EH dispatch"); 1354 } else { 1355 // This must be a catch-all. Split the block after the landingpad. 1356 assert(CatchAction->getSelector()->isNullValue() && "expected catch-all"); 1357 HandlerBB = SplitBlock(StartBB, StartBB->getFirstInsertionPt(), DT); 1358 } 1359 IRBuilder<> Builder(HandlerBB->getFirstInsertionPt()); 1360 Function *EHCodeFn = Intrinsic::getDeclaration( 1361 StartBB->getParent()->getParent(), Intrinsic::eh_exceptioncode); 1362 Value *Code = Builder.CreateCall(EHCodeFn, "sehcode"); 1363 Code = Builder.CreateIntToPtr(Code, SEHExceptionCodeSlot->getAllocatedType()); 1364 Builder.CreateStore(Code, SEHExceptionCodeSlot); 1365 CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB)); 1366 TinyPtrVector<BasicBlock *> Targets(HandlerBB); 1367 CatchAction->setReturnTargets(Targets); 1368 } 1369 1370 void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) { 1371 // Each instance of this class should only ever be used to map a single 1372 // landing pad. 1373 assert(OriginLPad == nullptr || OriginLPad == LPad); 1374 1375 // If the landing pad has already been mapped, there's nothing more to do. 1376 if (OriginLPad == LPad) 1377 return; 1378 1379 OriginLPad = LPad; 1380 1381 // The landingpad instruction returns an aggregate value. Typically, its 1382 // value will be passed to a pair of extract value instructions and the 1383 // results of those extracts will have been promoted to reg values before 1384 // this routine is called. 1385 for (auto *U : LPad->users()) { 1386 const ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U); 1387 if (!Extract) 1388 continue; 1389 assert(Extract->getNumIndices() == 1 && 1390 "Unexpected operation: extracting both landing pad values"); 1391 unsigned int Idx = *(Extract->idx_begin()); 1392 assert((Idx == 0 || Idx == 1) && 1393 "Unexpected operation: extracting an unknown landing pad element"); 1394 if (Idx == 0) { 1395 ExtractedEHPtrs.push_back(Extract); 1396 } else if (Idx == 1) { 1397 ExtractedSelectors.push_back(Extract); 1398 } 1399 } 1400 } 1401 1402 bool LandingPadMap::isOriginLandingPadBlock(const BasicBlock *BB) const { 1403 return BB->getLandingPadInst() == OriginLPad; 1404 } 1405 1406 bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const { 1407 if (Inst == OriginLPad) 1408 return true; 1409 for (auto *Extract : ExtractedEHPtrs) { 1410 if (Inst == Extract) 1411 return true; 1412 } 1413 for (auto *Extract : ExtractedSelectors) { 1414 if (Inst == Extract) 1415 return true; 1416 } 1417 return false; 1418 } 1419 1420 void LandingPadMap::remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue, 1421 Value *SelectorValue) const { 1422 // Remap all landing pad extract instructions to the specified values. 1423 for (auto *Extract : ExtractedEHPtrs) 1424 VMap[Extract] = EHPtrValue; 1425 for (auto *Extract : ExtractedSelectors) 1426 VMap[Extract] = SelectorValue; 1427 } 1428 1429 static bool isFrameAddressCall(const Value *V) { 1430 return match(const_cast<Value *>(V), 1431 m_Intrinsic<Intrinsic::frameaddress>(m_SpecificInt(0))); 1432 } 1433 1434 CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction( 1435 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { 1436 // If this is one of the boilerplate landing pad instructions, skip it. 1437 // The instruction will have already been remapped in VMap. 1438 if (LPadMap.isLandingPadSpecificInst(Inst)) 1439 return CloningDirector::SkipInstruction; 1440 1441 // Nested landing pads will be cloned as stubs, with just the 1442 // landingpad instruction and an unreachable instruction. When 1443 // all landingpads have been outlined, we'll replace this with the 1444 // llvm.eh.actions call and indirect branch created when the 1445 // landing pad was outlined. 1446 if (auto *LPad = dyn_cast<LandingPadInst>(Inst)) { 1447 return handleLandingPad(VMap, LPad, NewBB); 1448 } 1449 1450 if (auto *Invoke = dyn_cast<InvokeInst>(Inst)) 1451 return handleInvoke(VMap, Invoke, NewBB); 1452 1453 if (auto *Resume = dyn_cast<ResumeInst>(Inst)) 1454 return handleResume(VMap, Resume, NewBB); 1455 1456 if (auto *Cmp = dyn_cast<CmpInst>(Inst)) 1457 return handleCompare(VMap, Cmp, NewBB); 1458 1459 if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>())) 1460 return handleBeginCatch(VMap, Inst, NewBB); 1461 if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>())) 1462 return handleEndCatch(VMap, Inst, NewBB); 1463 if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>())) 1464 return handleTypeIdFor(VMap, Inst, NewBB); 1465 1466 // When outlining llvm.frameaddress(i32 0), remap that to the second argument, 1467 // which is the FP of the parent. 1468 if (isFrameAddressCall(Inst)) { 1469 VMap[Inst] = ParentFP; 1470 return CloningDirector::SkipInstruction; 1471 } 1472 1473 // Continue with the default cloning behavior. 1474 return CloningDirector::CloneInstruction; 1475 } 1476 1477 CloningDirector::CloningAction WinEHCatchDirector::handleLandingPad( 1478 ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) { 1479 Instruction *NewInst = LPad->clone(); 1480 if (LPad->hasName()) 1481 NewInst->setName(LPad->getName()); 1482 // Save this correlation for later processing. 1483 NestedLPtoOriginalLP[cast<LandingPadInst>(NewInst)] = LPad; 1484 VMap[LPad] = NewInst; 1485 BasicBlock::InstListType &InstList = NewBB->getInstList(); 1486 InstList.push_back(NewInst); 1487 InstList.push_back(new UnreachableInst(NewBB->getContext())); 1488 return CloningDirector::StopCloningBB; 1489 } 1490 1491 CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch( 1492 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { 1493 // The argument to the call is some form of the first element of the 1494 // landingpad aggregate value, but that doesn't matter. It isn't used 1495 // here. 1496 // The second argument is an outparameter where the exception object will be 1497 // stored. Typically the exception object is a scalar, but it can be an 1498 // aggregate when catching by value. 1499 // FIXME: Leave something behind to indicate where the exception object lives 1500 // for this handler. Should it be part of llvm.eh.actions? 1501 assert(ExceptionObjectVar == nullptr && "Multiple calls to " 1502 "llvm.eh.begincatch found while " 1503 "outlining catch handler."); 1504 ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts(); 1505 if (isa<ConstantPointerNull>(ExceptionObjectVar)) 1506 return CloningDirector::SkipInstruction; 1507 assert(cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca() && 1508 "catch parameter is not static alloca"); 1509 Materializer.escapeCatchObject(ExceptionObjectVar); 1510 return CloningDirector::SkipInstruction; 1511 } 1512 1513 CloningDirector::CloningAction 1514 WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap, 1515 const Instruction *Inst, BasicBlock *NewBB) { 1516 auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst); 1517 // It might be interesting to track whether or not we are inside a catch 1518 // function, but that might make the algorithm more brittle than it needs 1519 // to be. 1520 1521 // The end catch call can occur in one of two places: either in a 1522 // landingpad block that is part of the catch handlers exception mechanism, 1523 // or at the end of the catch block. However, a catch-all handler may call 1524 // end catch from the original landing pad. If the call occurs in a nested 1525 // landing pad block, we must skip it and continue so that the landing pad 1526 // gets cloned. 1527 auto *ParentBB = IntrinCall->getParent(); 1528 if (ParentBB->isLandingPad() && !LPadMap.isOriginLandingPadBlock(ParentBB)) 1529 return CloningDirector::SkipInstruction; 1530 1531 // If an end catch occurs anywhere else we want to terminate the handler 1532 // with a return to the code that follows the endcatch call. If the 1533 // next instruction is not an unconditional branch, we need to split the 1534 // block to provide a clear target for the return instruction. 1535 BasicBlock *ContinueBB; 1536 auto Next = std::next(BasicBlock::const_iterator(IntrinCall)); 1537 const BranchInst *Branch = dyn_cast<BranchInst>(Next); 1538 if (!Branch || !Branch->isUnconditional()) { 1539 // We're interrupting the cloning process at this location, so the 1540 // const_cast we're doing here will not cause a problem. 1541 ContinueBB = SplitBlock(const_cast<BasicBlock *>(ParentBB), 1542 const_cast<Instruction *>(cast<Instruction>(Next))); 1543 } else { 1544 ContinueBB = Branch->getSuccessor(0); 1545 } 1546 1547 ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueBB), NewBB); 1548 ReturnTargets.push_back(ContinueBB); 1549 1550 // We just added a terminator to the cloned block. 1551 // Tell the caller to stop processing the current basic block so that 1552 // the branch instruction will be skipped. 1553 return CloningDirector::StopCloningBB; 1554 } 1555 1556 CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor( 1557 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { 1558 auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst); 1559 Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts(); 1560 // This causes a replacement that will collapse the landing pad CFG based 1561 // on the filter function we intend to match. 1562 if (Selector == CurrentSelector) 1563 VMap[Inst] = ConstantInt::get(SelectorIDType, 1); 1564 else 1565 VMap[Inst] = ConstantInt::get(SelectorIDType, 0); 1566 // Tell the caller not to clone this instruction. 1567 return CloningDirector::SkipInstruction; 1568 } 1569 1570 CloningDirector::CloningAction 1571 WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap, 1572 const InvokeInst *Invoke, BasicBlock *NewBB) { 1573 return CloningDirector::CloneInstruction; 1574 } 1575 1576 CloningDirector::CloningAction 1577 WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap, 1578 const ResumeInst *Resume, BasicBlock *NewBB) { 1579 // Resume instructions shouldn't be reachable from catch handlers. 1580 // We still need to handle it, but it will be pruned. 1581 BasicBlock::InstListType &InstList = NewBB->getInstList(); 1582 InstList.push_back(new UnreachableInst(NewBB->getContext())); 1583 return CloningDirector::StopCloningBB; 1584 } 1585 1586 CloningDirector::CloningAction 1587 WinEHCatchDirector::handleCompare(ValueToValueMapTy &VMap, 1588 const CmpInst *Compare, BasicBlock *NewBB) { 1589 const IntrinsicInst *IntrinCall = nullptr; 1590 if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>())) { 1591 IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(0)); 1592 } else if (match(Compare->getOperand(1), 1593 m_Intrinsic<Intrinsic::eh_typeid_for>())) { 1594 IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(1)); 1595 } 1596 if (IntrinCall) { 1597 Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts(); 1598 // This causes a replacement that will collapse the landing pad CFG based 1599 // on the filter function we intend to match. 1600 if (Selector == CurrentSelector->stripPointerCasts()) { 1601 VMap[Compare] = ConstantInt::get(SelectorIDType, 1); 1602 } else { 1603 VMap[Compare] = ConstantInt::get(SelectorIDType, 0); 1604 } 1605 return CloningDirector::SkipInstruction; 1606 } 1607 return CloningDirector::CloneInstruction; 1608 } 1609 1610 CloningDirector::CloningAction WinEHCleanupDirector::handleLandingPad( 1611 ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) { 1612 // The MS runtime will terminate the process if an exception occurs in a 1613 // cleanup handler, so we shouldn't encounter landing pads in the actual 1614 // cleanup code, but they may appear in catch blocks. Depending on where 1615 // we started cloning we may see one, but it will get dropped during dead 1616 // block pruning. 1617 Instruction *NewInst = new UnreachableInst(NewBB->getContext()); 1618 VMap[LPad] = NewInst; 1619 BasicBlock::InstListType &InstList = NewBB->getInstList(); 1620 InstList.push_back(NewInst); 1621 return CloningDirector::StopCloningBB; 1622 } 1623 1624 CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch( 1625 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { 1626 // Cleanup code may flow into catch blocks or the catch block may be part 1627 // of a branch that will be optimized away. We'll insert a return 1628 // instruction now, but it may be pruned before the cloning process is 1629 // complete. 1630 ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); 1631 return CloningDirector::StopCloningBB; 1632 } 1633 1634 CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch( 1635 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { 1636 // Cleanup handlers nested within catch handlers may begin with a call to 1637 // eh.endcatch. We can just ignore that instruction. 1638 return CloningDirector::SkipInstruction; 1639 } 1640 1641 CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor( 1642 ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) { 1643 // If we encounter a selector comparison while cloning a cleanup handler, 1644 // we want to stop cloning immediately. Anything after the dispatch 1645 // will be outlined into a different handler. 1646 BasicBlock *CatchHandler; 1647 Constant *Selector; 1648 BasicBlock *NextBB; 1649 if (isSelectorDispatch(const_cast<BasicBlock *>(Inst->getParent()), 1650 CatchHandler, Selector, NextBB)) { 1651 ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); 1652 return CloningDirector::StopCloningBB; 1653 } 1654 // If eg.typeid.for is called for any other reason, it can be ignored. 1655 VMap[Inst] = ConstantInt::get(SelectorIDType, 0); 1656 return CloningDirector::SkipInstruction; 1657 } 1658 1659 CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke( 1660 ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) { 1661 // All invokes in cleanup handlers can be replaced with calls. 1662 SmallVector<Value *, 16> CallArgs(Invoke->op_begin(), Invoke->op_end() - 3); 1663 // Insert a normal call instruction... 1664 CallInst *NewCall = 1665 CallInst::Create(const_cast<Value *>(Invoke->getCalledValue()), CallArgs, 1666 Invoke->getName(), NewBB); 1667 NewCall->setCallingConv(Invoke->getCallingConv()); 1668 NewCall->setAttributes(Invoke->getAttributes()); 1669 NewCall->setDebugLoc(Invoke->getDebugLoc()); 1670 VMap[Invoke] = NewCall; 1671 1672 // Remap the operands. 1673 llvm::RemapInstruction(NewCall, VMap, RF_None, nullptr, &Materializer); 1674 1675 // Insert an unconditional branch to the normal destination. 1676 BranchInst::Create(Invoke->getNormalDest(), NewBB); 1677 1678 // The unwind destination won't be cloned into the new function, so 1679 // we don't need to clean up its phi nodes. 1680 1681 // We just added a terminator to the cloned block. 1682 // Tell the caller to stop processing the current basic block. 1683 return CloningDirector::CloneSuccessors; 1684 } 1685 1686 CloningDirector::CloningAction WinEHCleanupDirector::handleResume( 1687 ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) { 1688 ReturnInst::Create(NewBB->getContext(), nullptr, NewBB); 1689 1690 // We just added a terminator to the cloned block. 1691 // Tell the caller to stop processing the current basic block so that 1692 // the branch instruction will be skipped. 1693 return CloningDirector::StopCloningBB; 1694 } 1695 1696 CloningDirector::CloningAction 1697 WinEHCleanupDirector::handleCompare(ValueToValueMapTy &VMap, 1698 const CmpInst *Compare, BasicBlock *NewBB) { 1699 if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>()) || 1700 match(Compare->getOperand(1), m_Intrinsic<Intrinsic::eh_typeid_for>())) { 1701 VMap[Compare] = ConstantInt::get(SelectorIDType, 1); 1702 return CloningDirector::SkipInstruction; 1703 } 1704 return CloningDirector::CloneInstruction; 1705 } 1706 1707 WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer( 1708 Function *OutlinedFn, Value *ParentFP, FrameVarInfoMap &FrameVarInfo) 1709 : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) { 1710 BasicBlock *EntryBB = &OutlinedFn->getEntryBlock(); 1711 1712 // New allocas should be inserted in the entry block, but after the parent FP 1713 // is established if it is an instruction. 1714 Instruction *InsertPoint = EntryBB->getFirstInsertionPt(); 1715 if (auto *FPInst = dyn_cast<Instruction>(ParentFP)) 1716 InsertPoint = FPInst->getNextNode(); 1717 Builder.SetInsertPoint(EntryBB, InsertPoint); 1718 } 1719 1720 Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) { 1721 // If we're asked to materialize a static alloca, we temporarily create an 1722 // alloca in the outlined function and add this to the FrameVarInfo map. When 1723 // all the outlining is complete, we'll replace these temporary allocas with 1724 // calls to llvm.framerecover. 1725 if (auto *AV = dyn_cast<AllocaInst>(V)) { 1726 assert(AV->isStaticAlloca() && 1727 "cannot materialize un-demoted dynamic alloca"); 1728 AllocaInst *NewAlloca = dyn_cast<AllocaInst>(AV->clone()); 1729 Builder.Insert(NewAlloca, AV->getName()); 1730 FrameVarInfo[AV].push_back(NewAlloca); 1731 return NewAlloca; 1732 } 1733 1734 if (isa<Instruction>(V) || isa<Argument>(V)) { 1735 Function *Parent = isa<Instruction>(V) 1736 ? cast<Instruction>(V)->getParent()->getParent() 1737 : cast<Argument>(V)->getParent(); 1738 errs() 1739 << "Failed to demote instruction used in exception handler of function " 1740 << GlobalValue::getRealLinkageName(Parent->getName()) << ":\n"; 1741 errs() << " " << *V << '\n'; 1742 report_fatal_error("WinEHPrepare failed to demote instruction"); 1743 } 1744 1745 // Don't materialize other values. 1746 return nullptr; 1747 } 1748 1749 void WinEHFrameVariableMaterializer::escapeCatchObject(Value *V) { 1750 // Catch parameter objects have to live in the parent frame. When we see a use 1751 // of a catch parameter, add a sentinel to the multimap to indicate that it's 1752 // used from another handler. This will prevent us from trying to sink the 1753 // alloca into the handler and ensure that the catch parameter is present in 1754 // the call to llvm.frameescape. 1755 FrameVarInfo[V].push_back(getCatchObjectSentinel()); 1756 } 1757 1758 // This function maps the catch and cleanup handlers that are reachable from the 1759 // specified landing pad. The landing pad sequence will have this basic shape: 1760 // 1761 // <cleanup handler> 1762 // <selector comparison> 1763 // <catch handler> 1764 // <cleanup handler> 1765 // <selector comparison> 1766 // <catch handler> 1767 // <cleanup handler> 1768 // ... 1769 // 1770 // Any of the cleanup slots may be absent. The cleanup slots may be occupied by 1771 // any arbitrary control flow, but all paths through the cleanup code must 1772 // eventually reach the next selector comparison and no path can skip to a 1773 // different selector comparisons, though some paths may terminate abnormally. 1774 // Therefore, we will use a depth first search from the start of any given 1775 // cleanup block and stop searching when we find the next selector comparison. 1776 // 1777 // If the landingpad instruction does not have a catch clause, we will assume 1778 // that any instructions other than selector comparisons and catch handlers can 1779 // be ignored. In practice, these will only be the boilerplate instructions. 1780 // 1781 // The catch handlers may also have any control structure, but we are only 1782 // interested in the start of the catch handlers, so we don't need to actually 1783 // follow the flow of the catch handlers. The start of the catch handlers can 1784 // be located from the compare instructions, but they can be skipped in the 1785 // flow by following the contrary branch. 1786 void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad, 1787 LandingPadActions &Actions) { 1788 unsigned int NumClauses = LPad->getNumClauses(); 1789 unsigned int HandlersFound = 0; 1790 BasicBlock *BB = LPad->getParent(); 1791 1792 DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n"); 1793 1794 if (NumClauses == 0) { 1795 findCleanupHandlers(Actions, BB, nullptr); 1796 return; 1797 } 1798 1799 VisitedBlockSet VisitedBlocks; 1800 1801 while (HandlersFound != NumClauses) { 1802 BasicBlock *NextBB = nullptr; 1803 1804 // Skip over filter clauses. 1805 if (LPad->isFilter(HandlersFound)) { 1806 ++HandlersFound; 1807 continue; 1808 } 1809 1810 // See if the clause we're looking for is a catch-all. 1811 // If so, the catch begins immediately. 1812 Constant *ExpectedSelector = 1813 LPad->getClause(HandlersFound)->stripPointerCasts(); 1814 if (isa<ConstantPointerNull>(ExpectedSelector)) { 1815 // The catch all must occur last. 1816 assert(HandlersFound == NumClauses - 1); 1817 1818 // There can be additional selector dispatches in the call chain that we 1819 // need to ignore. 1820 BasicBlock *CatchBlock = nullptr; 1821 Constant *Selector; 1822 while (BB && isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) { 1823 DEBUG(dbgs() << " Found extra catch dispatch in block " 1824 << CatchBlock->getName() << "\n"); 1825 BB = NextBB; 1826 } 1827 1828 // Add the catch handler to the action list. 1829 CatchHandler *Action = nullptr; 1830 if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) { 1831 // If the CatchHandlerMap already has an entry for this BB, re-use it. 1832 Action = CatchHandlerMap[BB]; 1833 assert(Action->getSelector() == ExpectedSelector); 1834 } else { 1835 // We don't expect a selector dispatch, but there may be a call to 1836 // llvm.eh.begincatch, which separates catch handling code from 1837 // cleanup code in the same control flow. This call looks for the 1838 // begincatch intrinsic. 1839 Action = findCatchHandler(BB, NextBB, VisitedBlocks); 1840 if (Action) { 1841 // For C++ EH, check if there is any interesting cleanup code before 1842 // we begin the catch. This is important because cleanups cannot 1843 // rethrow exceptions but code called from catches can. For SEH, it 1844 // isn't important if some finally code before a catch-all is executed 1845 // out of line or after recovering from the exception. 1846 if (Personality == EHPersonality::MSVC_CXX) 1847 findCleanupHandlers(Actions, BB, BB); 1848 } else { 1849 // If an action was not found, it means that the control flows 1850 // directly into the catch-all handler and there is no cleanup code. 1851 // That's an expected situation and we must create a catch action. 1852 // Since this is a catch-all handler, the selector won't actually 1853 // appear in the code anywhere. ExpectedSelector here is the constant 1854 // null ptr that we got from the landing pad instruction. 1855 Action = new CatchHandler(BB, ExpectedSelector, nullptr); 1856 CatchHandlerMap[BB] = Action; 1857 } 1858 } 1859 Actions.insertCatchHandler(Action); 1860 DEBUG(dbgs() << " Catch all handler at block " << BB->getName() << "\n"); 1861 ++HandlersFound; 1862 1863 // Once we reach a catch-all, don't expect to hit a resume instruction. 1864 BB = nullptr; 1865 break; 1866 } 1867 1868 CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks); 1869 assert(CatchAction); 1870 1871 // See if there is any interesting code executed before the dispatch. 1872 findCleanupHandlers(Actions, BB, CatchAction->getStartBlock()); 1873 1874 // When the source program contains multiple nested try blocks the catch 1875 // handlers can get strung together in such a way that we can encounter 1876 // a dispatch for a selector that we've already had a handler for. 1877 if (CatchAction->getSelector()->stripPointerCasts() == ExpectedSelector) { 1878 ++HandlersFound; 1879 1880 // Add the catch handler to the action list. 1881 DEBUG(dbgs() << " Found catch dispatch in block " 1882 << CatchAction->getStartBlock()->getName() << "\n"); 1883 Actions.insertCatchHandler(CatchAction); 1884 } else { 1885 // Under some circumstances optimized IR will flow unconditionally into a 1886 // handler block without checking the selector. This can only happen if 1887 // the landing pad has a catch-all handler and the handler for the 1888 // preceeding catch clause is identical to the catch-call handler 1889 // (typically an empty catch). In this case, the handler must be shared 1890 // by all remaining clauses. 1891 if (isa<ConstantPointerNull>( 1892 CatchAction->getSelector()->stripPointerCasts())) { 1893 DEBUG(dbgs() << " Applying early catch-all handler in block " 1894 << CatchAction->getStartBlock()->getName() 1895 << " to all remaining clauses.\n"); 1896 Actions.insertCatchHandler(CatchAction); 1897 return; 1898 } 1899 1900 DEBUG(dbgs() << " Found extra catch dispatch in block " 1901 << CatchAction->getStartBlock()->getName() << "\n"); 1902 } 1903 1904 // Move on to the block after the catch handler. 1905 BB = NextBB; 1906 } 1907 1908 // If we didn't wind up in a catch-all, see if there is any interesting code 1909 // executed before the resume. 1910 findCleanupHandlers(Actions, BB, BB); 1911 1912 // It's possible that some optimization moved code into a landingpad that 1913 // wasn't 1914 // previously being used for cleanup. If that happens, we need to execute 1915 // that 1916 // extra code from a cleanup handler. 1917 if (Actions.includesCleanup() && !LPad->isCleanup()) 1918 LPad->setCleanup(true); 1919 } 1920 1921 // This function searches starting with the input block for the next 1922 // block that terminates with a branch whose condition is based on a selector 1923 // comparison. This may be the input block. See the mapLandingPadBlocks 1924 // comments for a discussion of control flow assumptions. 1925 // 1926 CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB, 1927 BasicBlock *&NextBB, 1928 VisitedBlockSet &VisitedBlocks) { 1929 // See if we've already found a catch handler use it. 1930 // Call count() first to avoid creating a null entry for blocks 1931 // we haven't seen before. 1932 if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) { 1933 CatchHandler *Action = cast<CatchHandler>(CatchHandlerMap[BB]); 1934 NextBB = Action->getNextBB(); 1935 return Action; 1936 } 1937 1938 // VisitedBlocks applies only to the current search. We still 1939 // need to consider blocks that we've visited while mapping other 1940 // landing pads. 1941 VisitedBlocks.insert(BB); 1942 1943 BasicBlock *CatchBlock = nullptr; 1944 Constant *Selector = nullptr; 1945 1946 // If this is the first time we've visited this block from any landing pad 1947 // look to see if it is a selector dispatch block. 1948 if (!CatchHandlerMap.count(BB)) { 1949 if (isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) { 1950 CatchHandler *Action = new CatchHandler(BB, Selector, NextBB); 1951 CatchHandlerMap[BB] = Action; 1952 return Action; 1953 } 1954 // If we encounter a block containing an llvm.eh.begincatch before we 1955 // find a selector dispatch block, the handler is assumed to be 1956 // reached unconditionally. This happens for catch-all blocks, but 1957 // it can also happen for other catch handlers that have been combined 1958 // with the catch-all handler during optimization. 1959 if (isCatchBlock(BB)) { 1960 PointerType *Int8PtrTy = Type::getInt8PtrTy(BB->getContext()); 1961 Constant *NullSelector = ConstantPointerNull::get(Int8PtrTy); 1962 CatchHandler *Action = new CatchHandler(BB, NullSelector, nullptr); 1963 CatchHandlerMap[BB] = Action; 1964 return Action; 1965 } 1966 } 1967 1968 // Visit each successor, looking for the dispatch. 1969 // FIXME: We expect to find the dispatch quickly, so this will probably 1970 // work better as a breadth first search. 1971 for (BasicBlock *Succ : successors(BB)) { 1972 if (VisitedBlocks.count(Succ)) 1973 continue; 1974 1975 CatchHandler *Action = findCatchHandler(Succ, NextBB, VisitedBlocks); 1976 if (Action) 1977 return Action; 1978 } 1979 return nullptr; 1980 } 1981 1982 // These are helper functions to combine repeated code from findCleanupHandlers. 1983 static void createCleanupHandler(LandingPadActions &Actions, 1984 CleanupHandlerMapTy &CleanupHandlerMap, 1985 BasicBlock *BB) { 1986 CleanupHandler *Action = new CleanupHandler(BB); 1987 CleanupHandlerMap[BB] = Action; 1988 Actions.insertCleanupHandler(Action); 1989 DEBUG(dbgs() << " Found cleanup code in block " 1990 << Action->getStartBlock()->getName() << "\n"); 1991 } 1992 1993 static CallSite matchOutlinedFinallyCall(BasicBlock *BB, 1994 Instruction *MaybeCall) { 1995 // Look for finally blocks that Clang has already outlined for us. 1996 // %fp = call i8* @llvm.frameaddress(i32 0) 1997 // call void @"fin$parent"(iN 1, i8* %fp) 1998 if (isFrameAddressCall(MaybeCall) && MaybeCall != BB->getTerminator()) 1999 MaybeCall = MaybeCall->getNextNode(); 2000 CallSite FinallyCall(MaybeCall); 2001 if (!FinallyCall || FinallyCall.arg_size() != 2) 2002 return CallSite(); 2003 if (!match(FinallyCall.getArgument(0), m_SpecificInt(1))) 2004 return CallSite(); 2005 if (!isFrameAddressCall(FinallyCall.getArgument(1))) 2006 return CallSite(); 2007 return FinallyCall; 2008 } 2009 2010 static BasicBlock *followSingleUnconditionalBranches(BasicBlock *BB) { 2011 // Skip single ubr blocks. 2012 while (BB->getFirstNonPHIOrDbg() == BB->getTerminator()) { 2013 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 2014 if (Br && Br->isUnconditional()) 2015 BB = Br->getSuccessor(0); 2016 else 2017 return BB; 2018 } 2019 return BB; 2020 } 2021 2022 // This function searches starting with the input block for the next block that 2023 // contains code that is not part of a catch handler and would not be eliminated 2024 // during handler outlining. 2025 // 2026 void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions, 2027 BasicBlock *StartBB, BasicBlock *EndBB) { 2028 // Here we will skip over the following: 2029 // 2030 // landing pad prolog: 2031 // 2032 // Unconditional branches 2033 // 2034 // Selector dispatch 2035 // 2036 // Resume pattern 2037 // 2038 // Anything else marks the start of an interesting block 2039 2040 BasicBlock *BB = StartBB; 2041 // Anything other than an unconditional branch will kick us out of this loop 2042 // one way or another. 2043 while (BB) { 2044 BB = followSingleUnconditionalBranches(BB); 2045 // If we've already scanned this block, don't scan it again. If it is 2046 // a cleanup block, there will be an action in the CleanupHandlerMap. 2047 // If we've scanned it and it is not a cleanup block, there will be a 2048 // nullptr in the CleanupHandlerMap. If we have not scanned it, there will 2049 // be no entry in the CleanupHandlerMap. We must call count() first to 2050 // avoid creating a null entry for blocks we haven't scanned. 2051 if (CleanupHandlerMap.count(BB)) { 2052 if (auto *Action = CleanupHandlerMap[BB]) { 2053 Actions.insertCleanupHandler(Action); 2054 DEBUG(dbgs() << " Found cleanup code in block " 2055 << Action->getStartBlock()->getName() << "\n"); 2056 // FIXME: This cleanup might chain into another, and we need to discover 2057 // that. 2058 return; 2059 } else { 2060 // Here we handle the case where the cleanup handler map contains a 2061 // value for this block but the value is a nullptr. This means that 2062 // we have previously analyzed the block and determined that it did 2063 // not contain any cleanup code. Based on the earlier analysis, we 2064 // know the the block must end in either an unconditional branch, a 2065 // resume or a conditional branch that is predicated on a comparison 2066 // with a selector. Either the resume or the selector dispatch 2067 // would terminate the search for cleanup code, so the unconditional 2068 // branch is the only case for which we might need to continue 2069 // searching. 2070 BasicBlock *SuccBB = followSingleUnconditionalBranches(BB); 2071 if (SuccBB == BB || SuccBB == EndBB) 2072 return; 2073 BB = SuccBB; 2074 continue; 2075 } 2076 } 2077 2078 // Create an entry in the cleanup handler map for this block. Initially 2079 // we create an entry that says this isn't a cleanup block. If we find 2080 // cleanup code, the caller will replace this entry. 2081 CleanupHandlerMap[BB] = nullptr; 2082 2083 TerminatorInst *Terminator = BB->getTerminator(); 2084 2085 // Landing pad blocks have extra instructions we need to accept. 2086 LandingPadMap *LPadMap = nullptr; 2087 if (BB->isLandingPad()) { 2088 LandingPadInst *LPad = BB->getLandingPadInst(); 2089 LPadMap = &LPadMaps[LPad]; 2090 if (!LPadMap->isInitialized()) 2091 LPadMap->mapLandingPad(LPad); 2092 } 2093 2094 // Look for the bare resume pattern: 2095 // %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn, 0 2096 // %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel, 1 2097 // resume { i8*, i32 } %lpad.val2 2098 if (auto *Resume = dyn_cast<ResumeInst>(Terminator)) { 2099 InsertValueInst *Insert1 = nullptr; 2100 InsertValueInst *Insert2 = nullptr; 2101 Value *ResumeVal = Resume->getOperand(0); 2102 // If the resume value isn't a phi or landingpad value, it should be a 2103 // series of insertions. Identify them so we can avoid them when scanning 2104 // for cleanups. 2105 if (!isa<PHINode>(ResumeVal) && !isa<LandingPadInst>(ResumeVal)) { 2106 Insert2 = dyn_cast<InsertValueInst>(ResumeVal); 2107 if (!Insert2) 2108 return createCleanupHandler(Actions, CleanupHandlerMap, BB); 2109 Insert1 = dyn_cast<InsertValueInst>(Insert2->getAggregateOperand()); 2110 if (!Insert1) 2111 return createCleanupHandler(Actions, CleanupHandlerMap, BB); 2112 } 2113 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); 2114 II != IE; ++II) { 2115 Instruction *Inst = II; 2116 if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) 2117 continue; 2118 if (Inst == Insert1 || Inst == Insert2 || Inst == Resume) 2119 continue; 2120 if (!Inst->hasOneUse() || 2121 (Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) { 2122 return createCleanupHandler(Actions, CleanupHandlerMap, BB); 2123 } 2124 } 2125 return; 2126 } 2127 2128 BranchInst *Branch = dyn_cast<BranchInst>(Terminator); 2129 if (Branch && Branch->isConditional()) { 2130 // Look for the selector dispatch. 2131 // %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*)) 2132 // %matches = icmp eq i32 %sel, %2 2133 // br i1 %matches, label %catch14, label %eh.resume 2134 CmpInst *Compare = dyn_cast<CmpInst>(Branch->getCondition()); 2135 if (!Compare || !Compare->isEquality()) 2136 return createCleanupHandler(Actions, CleanupHandlerMap, BB); 2137 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); 2138 II != IE; ++II) { 2139 Instruction *Inst = II; 2140 if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) 2141 continue; 2142 if (Inst == Compare || Inst == Branch) 2143 continue; 2144 if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>())) 2145 continue; 2146 return createCleanupHandler(Actions, CleanupHandlerMap, BB); 2147 } 2148 // The selector dispatch block should always terminate our search. 2149 assert(BB == EndBB); 2150 return; 2151 } 2152 2153 if (isAsynchronousEHPersonality(Personality)) { 2154 // If this is a landingpad block, split the block at the first non-landing 2155 // pad instruction. 2156 Instruction *MaybeCall = BB->getFirstNonPHIOrDbg(); 2157 if (LPadMap) { 2158 while (MaybeCall != BB->getTerminator() && 2159 LPadMap->isLandingPadSpecificInst(MaybeCall)) 2160 MaybeCall = MaybeCall->getNextNode(); 2161 } 2162 2163 // Look for outlined finally calls. 2164 if (CallSite FinallyCall = matchOutlinedFinallyCall(BB, MaybeCall)) { 2165 Function *Fin = FinallyCall.getCalledFunction(); 2166 assert(Fin && "outlined finally call should be direct"); 2167 auto *Action = new CleanupHandler(BB); 2168 Action->setHandlerBlockOrFunc(Fin); 2169 Actions.insertCleanupHandler(Action); 2170 CleanupHandlerMap[BB] = Action; 2171 DEBUG(dbgs() << " Found frontend-outlined finally call to " 2172 << Fin->getName() << " in block " 2173 << Action->getStartBlock()->getName() << "\n"); 2174 2175 // Split the block if there were more interesting instructions and look 2176 // for finally calls in the normal successor block. 2177 BasicBlock *SuccBB = BB; 2178 if (FinallyCall.getInstruction() != BB->getTerminator() && 2179 FinallyCall.getInstruction()->getNextNode() != 2180 BB->getTerminator()) { 2181 SuccBB = 2182 SplitBlock(BB, FinallyCall.getInstruction()->getNextNode(), DT); 2183 } else { 2184 if (FinallyCall.isInvoke()) { 2185 SuccBB = 2186 cast<InvokeInst>(FinallyCall.getInstruction())->getNormalDest(); 2187 } else { 2188 SuccBB = BB->getUniqueSuccessor(); 2189 assert(SuccBB && 2190 "splitOutlinedFinallyCalls didn't insert a branch"); 2191 } 2192 } 2193 BB = SuccBB; 2194 if (BB == EndBB) 2195 return; 2196 continue; 2197 } 2198 } 2199 2200 // Anything else is either a catch block or interesting cleanup code. 2201 for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end(); 2202 II != IE; ++II) { 2203 Instruction *Inst = II; 2204 if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst)) 2205 continue; 2206 // Unconditional branches fall through to this loop. 2207 if (Inst == Branch) 2208 continue; 2209 // If this is a catch block, there is no cleanup code to be found. 2210 if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>())) 2211 return; 2212 // If this a nested landing pad, it may contain an endcatch call. 2213 if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>())) 2214 return; 2215 // Anything else makes this interesting cleanup code. 2216 return createCleanupHandler(Actions, CleanupHandlerMap, BB); 2217 } 2218 2219 // Only unconditional branches in empty blocks should get this far. 2220 assert(Branch && Branch->isUnconditional()); 2221 if (BB == EndBB) 2222 return; 2223 BB = Branch->getSuccessor(0); 2224 } 2225 } 2226 2227 // This is a public function, declared in WinEHFuncInfo.h and is also 2228 // referenced by WinEHNumbering in FunctionLoweringInfo.cpp. 2229 void llvm::parseEHActions(const IntrinsicInst *II, 2230 SmallVectorImpl<ActionHandler *> &Actions) { 2231 for (unsigned I = 0, E = II->getNumArgOperands(); I != E;) { 2232 uint64_t ActionKind = 2233 cast<ConstantInt>(II->getArgOperand(I))->getZExtValue(); 2234 if (ActionKind == /*catch=*/1) { 2235 auto *Selector = cast<Constant>(II->getArgOperand(I + 1)); 2236 ConstantInt *EHObjIndex = cast<ConstantInt>(II->getArgOperand(I + 2)); 2237 int64_t EHObjIndexVal = EHObjIndex->getSExtValue(); 2238 Constant *Handler = cast<Constant>(II->getArgOperand(I + 3)); 2239 I += 4; 2240 auto *CH = new CatchHandler(/*BB=*/nullptr, Selector, /*NextBB=*/nullptr); 2241 CH->setHandlerBlockOrFunc(Handler); 2242 CH->setExceptionVarIndex(EHObjIndexVal); 2243 Actions.push_back(CH); 2244 } else if (ActionKind == 0) { 2245 Constant *Handler = cast<Constant>(II->getArgOperand(I + 1)); 2246 I += 2; 2247 auto *CH = new CleanupHandler(/*BB=*/nullptr); 2248 CH->setHandlerBlockOrFunc(Handler); 2249 Actions.push_back(CH); 2250 } else { 2251 llvm_unreachable("Expected either a catch or cleanup handler!"); 2252 } 2253 } 2254 std::reverse(Actions.begin(), Actions.end()); 2255 } 2256