1 //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the VirtRegMap class.
10 //
11 // It also contains implementations of the Spiller interface, which, given a
12 // virtual register map and a machine function, eliminates all virtual
13 // references by replacing them with physical register references - adding spill
14 // code as necessary.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/CodeGen/VirtRegMap.h"
19 #include "LiveDebugVariables.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LiveStacks.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/Config/llvm-config.h"
38 #include "llvm/MC/LaneBitmask.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "regalloc"
50 
51 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
52 STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");
53 
54 //===----------------------------------------------------------------------===//
55 //  VirtRegMap implementation
56 //===----------------------------------------------------------------------===//
57 
58 char VirtRegMap::ID = 0;
59 
60 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
61 
62 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
63   MRI = &mf.getRegInfo();
64   TII = mf.getSubtarget().getInstrInfo();
65   TRI = mf.getSubtarget().getRegisterInfo();
66   MF = &mf;
67 
68   Virt2PhysMap.clear();
69   Virt2StackSlotMap.clear();
70   Virt2SplitMap.clear();
71   Virt2ShapeMap.clear();
72 
73   grow();
74   return false;
75 }
76 
77 void VirtRegMap::grow() {
78   unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
79   Virt2PhysMap.resize(NumRegs);
80   Virt2StackSlotMap.resize(NumRegs);
81   Virt2SplitMap.resize(NumRegs);
82 }
83 
84 void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) {
85   assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg));
86   assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG &&
87          "attempt to assign physical register to already mapped "
88          "virtual register");
89   assert(!getRegInfo().isReserved(physReg) &&
90          "Attempt to map virtReg to a reserved physReg");
91   Virt2PhysMap[virtReg.id()] = physReg;
92 }
93 
94 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
95   unsigned Size = TRI->getSpillSize(*RC);
96   Align Alignment = TRI->getSpillAlign(*RC);
97   int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment);
98   ++NumSpillSlots;
99   return SS;
100 }
101 
102 bool VirtRegMap::hasPreferredPhys(Register VirtReg) const {
103   Register Hint = MRI->getSimpleHint(VirtReg);
104   if (!Hint.isValid())
105     return false;
106   if (Hint.isVirtual())
107     Hint = getPhys(Hint);
108   return Register(getPhys(VirtReg)) == Hint;
109 }
110 
111 bool VirtRegMap::hasKnownPreference(Register VirtReg) const {
112   std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
113   if (Register::isPhysicalRegister(Hint.second))
114     return true;
115   if (Register::isVirtualRegister(Hint.second))
116     return hasPhys(Hint.second);
117   return false;
118 }
119 
120 int VirtRegMap::assignVirt2StackSlot(Register virtReg) {
121   assert(virtReg.isVirtual());
122   assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
123          "attempt to assign stack slot to already spilled register");
124   const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
125   return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC);
126 }
127 
128 void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) {
129   assert(virtReg.isVirtual());
130   assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
131          "attempt to assign stack slot to already spilled register");
132   assert((SS >= 0 ||
133           (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
134          "illegal fixed frame index");
135   Virt2StackSlotMap[virtReg.id()] = SS;
136 }
137 
138 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
139   OS << "********** REGISTER MAP **********\n";
140   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
141     unsigned Reg = Register::index2VirtReg(i);
142     if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
143       OS << '[' << printReg(Reg, TRI) << " -> "
144          << printReg(Virt2PhysMap[Reg], TRI) << "] "
145          << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
146     }
147   }
148 
149   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
150     unsigned Reg = Register::index2VirtReg(i);
151     if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
152       OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
153          << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
154     }
155   }
156   OS << '\n';
157 }
158 
159 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
160 LLVM_DUMP_METHOD void VirtRegMap::dump() const {
161   print(dbgs());
162 }
163 #endif
164 
165 //===----------------------------------------------------------------------===//
166 //                              VirtRegRewriter
167 //===----------------------------------------------------------------------===//
168 //
169 // The VirtRegRewriter is the last of the register allocator passes.
170 // It rewrites virtual registers to physical registers as specified in the
171 // VirtRegMap analysis. It also updates live-in information on basic blocks
172 // according to LiveIntervals.
173 //
174 namespace {
175 
176 class VirtRegRewriter : public MachineFunctionPass {
177   MachineFunction *MF;
178   const TargetRegisterInfo *TRI;
179   const TargetInstrInfo *TII;
180   MachineRegisterInfo *MRI;
181   SlotIndexes *Indexes;
182   LiveIntervals *LIS;
183   VirtRegMap *VRM;
184   LiveDebugVariables *DebugVars;
185   DenseSet<Register> RewriteRegs;
186   bool ClearVirtRegs;
187 
188   void rewrite();
189   void addMBBLiveIns();
190   bool readsUndefSubreg(const MachineOperand &MO) const;
191   void addLiveInsForSubRanges(const LiveInterval &LI, MCRegister PhysReg) const;
192   void handleIdentityCopy(MachineInstr &MI);
193   void expandCopyBundle(MachineInstr &MI) const;
194   bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const;
195 
196 public:
197   static char ID;
198   VirtRegRewriter(bool ClearVirtRegs_ = true) :
199     MachineFunctionPass(ID),
200     ClearVirtRegs(ClearVirtRegs_) {}
201 
202   void getAnalysisUsage(AnalysisUsage &AU) const override;
203 
204   bool runOnMachineFunction(MachineFunction&) override;
205 
206   MachineFunctionProperties getSetProperties() const override {
207     if (ClearVirtRegs) {
208       return MachineFunctionProperties().set(
209         MachineFunctionProperties::Property::NoVRegs);
210     }
211 
212     return MachineFunctionProperties();
213   }
214 };
215 
216 } // end anonymous namespace
217 
218 char VirtRegRewriter::ID = 0;
219 
220 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
221 
222 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
223                       "Virtual Register Rewriter", false, false)
224 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
225 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
226 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
227 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
228 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
229 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
230                     "Virtual Register Rewriter", false, false)
231 
232 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
233   AU.setPreservesCFG();
234   AU.addRequired<LiveIntervals>();
235   AU.addPreserved<LiveIntervals>();
236   AU.addRequired<SlotIndexes>();
237   AU.addPreserved<SlotIndexes>();
238   AU.addRequired<LiveDebugVariables>();
239   AU.addRequired<LiveStacks>();
240   AU.addPreserved<LiveStacks>();
241   AU.addRequired<VirtRegMap>();
242 
243   if (!ClearVirtRegs)
244     AU.addPreserved<LiveDebugVariables>();
245 
246   MachineFunctionPass::getAnalysisUsage(AU);
247 }
248 
249 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
250   MF = &fn;
251   TRI = MF->getSubtarget().getRegisterInfo();
252   TII = MF->getSubtarget().getInstrInfo();
253   MRI = &MF->getRegInfo();
254   Indexes = &getAnalysis<SlotIndexes>();
255   LIS = &getAnalysis<LiveIntervals>();
256   VRM = &getAnalysis<VirtRegMap>();
257   DebugVars = getAnalysisIfAvailable<LiveDebugVariables>();
258   LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
259                     << "********** Function: " << MF->getName() << '\n');
260   LLVM_DEBUG(VRM->dump());
261 
262   // Add kill flags while we still have virtual registers.
263   LIS->addKillFlags(VRM);
264 
265   // Live-in lists on basic blocks are required for physregs.
266   addMBBLiveIns();
267 
268   // Rewrite virtual registers.
269   rewrite();
270 
271   if (DebugVars && ClearVirtRegs) {
272     // Write out new DBG_VALUE instructions.
273 
274     // We only do this if ClearVirtRegs is specified since this should be the
275     // final run of the pass and we don't want to emit them multiple times.
276     DebugVars->emitDebugValues(VRM);
277 
278     // All machine operands and other references to virtual registers have been
279     // replaced. Remove the virtual registers and release all the transient data.
280     VRM->clearAllVirt();
281     MRI->clearVirtRegs();
282   }
283 
284   return true;
285 }
286 
287 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
288                                              MCRegister PhysReg) const {
289   assert(!LI.empty());
290   assert(LI.hasSubRanges());
291 
292   using SubRangeIteratorPair =
293       std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;
294 
295   SmallVector<SubRangeIteratorPair, 4> SubRanges;
296   SlotIndex First;
297   SlotIndex Last;
298   for (const LiveInterval::SubRange &SR : LI.subranges()) {
299     SubRanges.push_back(std::make_pair(&SR, SR.begin()));
300     if (!First.isValid() || SR.segments.front().start < First)
301       First = SR.segments.front().start;
302     if (!Last.isValid() || SR.segments.back().end > Last)
303       Last = SR.segments.back().end;
304   }
305 
306   // Check all mbb start positions between First and Last while
307   // simulatenously advancing an iterator for each subrange.
308   for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
309        MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
310     SlotIndex MBBBegin = MBBI->first;
311     // Advance all subrange iterators so that their end position is just
312     // behind MBBBegin (or the iterator is at the end).
313     LaneBitmask LaneMask;
314     for (auto &RangeIterPair : SubRanges) {
315       const LiveInterval::SubRange *SR = RangeIterPair.first;
316       LiveInterval::const_iterator &SRI = RangeIterPair.second;
317       while (SRI != SR->end() && SRI->end <= MBBBegin)
318         ++SRI;
319       if (SRI == SR->end())
320         continue;
321       if (SRI->start <= MBBBegin)
322         LaneMask |= SR->LaneMask;
323     }
324     if (LaneMask.none())
325       continue;
326     MachineBasicBlock *MBB = MBBI->second;
327     MBB->addLiveIn(PhysReg, LaneMask);
328   }
329 }
330 
331 // Compute MBB live-in lists from virtual register live ranges and their
332 // assignments.
333 void VirtRegRewriter::addMBBLiveIns() {
334   for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
335     Register VirtReg = Register::index2VirtReg(Idx);
336     if (MRI->reg_nodbg_empty(VirtReg))
337       continue;
338     LiveInterval &LI = LIS->getInterval(VirtReg);
339     if (LI.empty() || LIS->intervalIsInOneMBB(LI))
340       continue;
341     // This is a virtual register that is live across basic blocks. Its
342     // assigned PhysReg must be marked as live-in to those blocks.
343     Register PhysReg = VRM->getPhys(VirtReg);
344     if (PhysReg == VirtRegMap::NO_PHYS_REG) {
345       // There may be no physical register assigned if only some register
346       // classes were already allocated.
347       assert(!ClearVirtRegs && "Unmapped virtual register");
348       continue;
349     }
350 
351     if (LI.hasSubRanges()) {
352       addLiveInsForSubRanges(LI, PhysReg);
353     } else {
354       // Go over MBB begin positions and see if we have segments covering them.
355       // The following works because segments and the MBBIndex list are both
356       // sorted by slot indexes.
357       SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
358       for (const auto &Seg : LI) {
359         I = Indexes->advanceMBBIndex(I, Seg.start);
360         for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
361           MachineBasicBlock *MBB = I->second;
362           MBB->addLiveIn(PhysReg);
363         }
364       }
365     }
366   }
367 
368   // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
369   // each MBB's LiveIns set before calling addLiveIn on them.
370   for (MachineBasicBlock &MBB : *MF)
371     MBB.sortUniqueLiveIns();
372 }
373 
374 /// Returns true if the given machine operand \p MO only reads undefined lanes.
375 /// The function only works for use operands with a subregister set.
376 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
377   // Shortcut if the operand is already marked undef.
378   if (MO.isUndef())
379     return true;
380 
381   Register Reg = MO.getReg();
382   const LiveInterval &LI = LIS->getInterval(Reg);
383   const MachineInstr &MI = *MO.getParent();
384   SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
385   // This code is only meant to handle reading undefined subregisters which
386   // we couldn't properly detect before.
387   assert(LI.liveAt(BaseIndex) &&
388          "Reads of completely dead register should be marked undef already");
389   unsigned SubRegIdx = MO.getSubReg();
390   assert(SubRegIdx != 0 && LI.hasSubRanges());
391   LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
392   // See if any of the relevant subregister liveranges is defined at this point.
393   for (const LiveInterval::SubRange &SR : LI.subranges()) {
394     if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
395       return false;
396   }
397   return true;
398 }
399 
400 void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) {
401   if (!MI.isIdentityCopy())
402     return;
403   LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
404   ++NumIdCopies;
405 
406   Register DstReg = MI.getOperand(0).getReg();
407 
408   // We may have deferred allocation of the virtual register, and the rewrite
409   // regs code doesn't handle the liveness update.
410   if (DstReg.isVirtual())
411     return;
412 
413   RewriteRegs.insert(DstReg);
414 
415   // Copies like:
416   //    %r0 = COPY undef %r0
417   //    %al = COPY %al, implicit-def %eax
418   // give us additional liveness information: The target (super-)register
419   // must not be valid before this point. Replace the COPY with a KILL
420   // instruction to maintain this information.
421   if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) {
422     MI.setDesc(TII->get(TargetOpcode::KILL));
423     LLVM_DEBUG(dbgs() << "  replace by: " << MI);
424     return;
425   }
426 
427   if (Indexes)
428     Indexes->removeSingleMachineInstrFromMaps(MI);
429   MI.eraseFromBundle();
430   LLVM_DEBUG(dbgs() << "  deleted.\n");
431 }
432 
433 /// The liverange splitting logic sometimes produces bundles of copies when
434 /// subregisters are involved. Expand these into a sequence of copy instructions
435 /// after processing the last in the bundle. Does not update LiveIntervals
436 /// which we shouldn't need for this instruction anymore.
437 void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
438   if (!MI.isCopy() && !MI.isKill())
439     return;
440 
441   if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
442     SmallVector<MachineInstr *, 2> MIs({&MI});
443 
444     // Only do this when the complete bundle is made out of COPYs and KILLs.
445     MachineBasicBlock &MBB = *MI.getParent();
446     for (MachineBasicBlock::reverse_instr_iterator I =
447          std::next(MI.getReverseIterator()), E = MBB.instr_rend();
448          I != E && I->isBundledWithSucc(); ++I) {
449       if (!I->isCopy() && !I->isKill())
450         return;
451       MIs.push_back(&*I);
452     }
453     MachineInstr *FirstMI = MIs.back();
454 
455     auto anyRegsAlias = [](const MachineInstr *Dst,
456                            ArrayRef<MachineInstr *> Srcs,
457                            const TargetRegisterInfo *TRI) {
458       for (const MachineInstr *Src : Srcs)
459         if (Src != Dst)
460           if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
461                                Src->getOperand(1).getReg()))
462             return true;
463       return false;
464     };
465 
466     // If any of the destination registers in the bundle of copies alias any of
467     // the source registers, try to schedule the instructions to avoid any
468     // clobbering.
469     for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
470       for (int I = E; I--; )
471         if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) {
472           if (I + 1 != E)
473             std::swap(MIs[I], MIs[E - 1]);
474           --E;
475         }
476       if (PrevE == E) {
477         MF->getFunction().getContext().emitError(
478             "register rewriting failed: cycle in copy bundle");
479         break;
480       }
481     }
482 
483     MachineInstr *BundleStart = FirstMI;
484     for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
485       // If instruction is in the middle of the bundle, move it before the
486       // bundle starts, otherwise, just unbundle it. When we get to the last
487       // instruction, the bundle will have been completely undone.
488       if (BundledMI != BundleStart) {
489         BundledMI->removeFromBundle();
490         MBB.insert(BundleStart, BundledMI);
491       } else if (BundledMI->isBundledWithSucc()) {
492         BundledMI->unbundleFromSucc();
493         BundleStart = &*std::next(BundledMI->getIterator());
494       }
495 
496       if (Indexes && BundledMI != FirstMI)
497         Indexes->insertMachineInstrInMaps(*BundledMI);
498     }
499   }
500 }
501 
502 /// Check whether (part of) \p SuperPhysReg is live through \p MI.
503 /// \pre \p MI defines a subregister of a virtual register that
504 /// has been assigned to \p SuperPhysReg.
505 bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
506                                         MCRegister SuperPhysReg) const {
507   SlotIndex MIIndex = LIS->getInstructionIndex(MI);
508   SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
509   SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
510   for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) {
511     const LiveRange &UnitRange = LIS->getRegUnit(*Unit);
512     // If the regunit is live both before and after MI,
513     // we assume it is live through.
514     // Generally speaking, this is not true, because something like
515     // "RU = op RU" would match that description.
516     // However, we know that we are trying to assess whether
517     // a def of a virtual reg, vreg, is live at the same time of RU.
518     // If we are in the "RU = op RU" situation, that means that vreg
519     // is defined at the same time as RU (i.e., "vreg, RU = op RU").
520     // Thus, vreg and RU interferes and vreg cannot be assigned to
521     // SuperPhysReg. Therefore, this situation cannot happen.
522     if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
523       return true;
524   }
525   return false;
526 }
527 
528 void VirtRegRewriter::rewrite() {
529   bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
530   SmallVector<Register, 8> SuperDeads;
531   SmallVector<Register, 8> SuperDefs;
532   SmallVector<Register, 8> SuperKills;
533 
534   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
535        MBBI != MBBE; ++MBBI) {
536     LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
537     for (MachineBasicBlock::instr_iterator
538            MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
539       MachineInstr *MI = &*MII;
540       ++MII;
541 
542       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
543            MOE = MI->operands_end(); MOI != MOE; ++MOI) {
544         MachineOperand &MO = *MOI;
545 
546         // Make sure MRI knows about registers clobbered by regmasks.
547         if (MO.isRegMask())
548           MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
549 
550         if (!MO.isReg() || !MO.getReg().isVirtual())
551           continue;
552         Register VirtReg = MO.getReg();
553         MCRegister PhysReg = VRM->getPhys(VirtReg);
554         if (PhysReg == VirtRegMap::NO_PHYS_REG)
555           continue;
556 
557         assert(Register(PhysReg).isPhysical());
558 
559         RewriteRegs.insert(PhysReg);
560         assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
561 
562         // Preserve semantics of sub-register operands.
563         unsigned SubReg = MO.getSubReg();
564         if (SubReg != 0) {
565           if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
566             // A virtual register kill refers to the whole register, so we may
567             // have to add implicit killed operands for the super-register.  A
568             // partial redef always kills and redefines the super-register.
569             if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
570                 (MO.isDef() && subRegLiveThrough(*MI, PhysReg)))
571               SuperKills.push_back(PhysReg);
572 
573             if (MO.isDef()) {
574               // Also add implicit defs for the super-register.
575               if (MO.isDead())
576                 SuperDeads.push_back(PhysReg);
577               else
578                 SuperDefs.push_back(PhysReg);
579             }
580           } else {
581             if (MO.isUse()) {
582               if (readsUndefSubreg(MO))
583                 // We need to add an <undef> flag if the subregister is
584                 // completely undefined (and we are not adding super-register
585                 // defs).
586                 MO.setIsUndef(true);
587             } else if (!MO.isDead()) {
588               assert(MO.isDef());
589             }
590           }
591 
592           // The def undef and def internal flags only make sense for
593           // sub-register defs, and we are substituting a full physreg.  An
594           // implicit killed operand from the SuperKills list will represent the
595           // partial read of the super-register.
596           if (MO.isDef()) {
597             MO.setIsUndef(false);
598             MO.setIsInternalRead(false);
599           }
600 
601           // PhysReg operands cannot have subregister indexes.
602           PhysReg = TRI->getSubReg(PhysReg, SubReg);
603           assert(PhysReg.isValid() && "Invalid SubReg for physical register");
604           MO.setSubReg(0);
605         }
606         // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
607         // we need the inlining here.
608         MO.setReg(PhysReg);
609         MO.setIsRenamable(true);
610       }
611 
612       // Add any missing super-register kills after rewriting the whole
613       // instruction.
614       while (!SuperKills.empty())
615         MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
616 
617       while (!SuperDeads.empty())
618         MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
619 
620       while (!SuperDefs.empty())
621         MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
622 
623       LLVM_DEBUG(dbgs() << "> " << *MI);
624 
625       expandCopyBundle(*MI);
626 
627       // We can remove identity copies right now.
628       handleIdentityCopy(*MI);
629     }
630   }
631 
632   if (LIS) {
633     // Don't bother maintaining accurate LiveIntervals for registers which were
634     // already allocated.
635     for (Register PhysReg : RewriteRegs) {
636       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid();
637            ++Units) {
638         LIS->removeRegUnit(*Units);
639       }
640     }
641   }
642 
643   RewriteRegs.clear();
644 }
645 
646 FunctionPass *llvm::createVirtRegRewriter(bool ClearVirtRegs) {
647   return new VirtRegRewriter(ClearVirtRegs);
648 }
649