1 //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the VirtRegMap class. 11 // 12 // It also contains implementations of the Spiller interface, which, given a 13 // virtual register map and a machine function, eliminates all virtual 14 // references by replacing them with physical register references - adding spill 15 // code as necessary. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/VirtRegMap.h" 20 #include "LiveDebugVariables.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SparseSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 25 #include "llvm/CodeGen/LiveStackAnalysis.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Compiler.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetSubtargetInfo.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 #define DEBUG_TYPE "regalloc" 44 45 STATISTIC(NumSpillSlots, "Number of spill slots allocated"); 46 STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting"); 47 48 //===----------------------------------------------------------------------===// 49 // VirtRegMap implementation 50 //===----------------------------------------------------------------------===// 51 52 char VirtRegMap::ID = 0; 53 54 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false) 55 56 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) { 57 MRI = &mf.getRegInfo(); 58 TII = mf.getSubtarget().getInstrInfo(); 59 TRI = mf.getSubtarget().getRegisterInfo(); 60 MF = &mf; 61 62 Virt2PhysMap.clear(); 63 Virt2StackSlotMap.clear(); 64 Virt2SplitMap.clear(); 65 66 grow(); 67 return false; 68 } 69 70 void VirtRegMap::grow() { 71 unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); 72 Virt2PhysMap.resize(NumRegs); 73 Virt2StackSlotMap.resize(NumRegs); 74 Virt2SplitMap.resize(NumRegs); 75 } 76 77 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { 78 int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), 79 RC->getAlignment()); 80 ++NumSpillSlots; 81 return SS; 82 } 83 84 bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) { 85 unsigned Hint = MRI->getSimpleHint(VirtReg); 86 if (!Hint) 87 return 0; 88 if (TargetRegisterInfo::isVirtualRegister(Hint)) 89 Hint = getPhys(Hint); 90 return getPhys(VirtReg) == Hint; 91 } 92 93 bool VirtRegMap::hasKnownPreference(unsigned VirtReg) { 94 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg); 95 if (TargetRegisterInfo::isPhysicalRegister(Hint.second)) 96 return true; 97 if (TargetRegisterInfo::isVirtualRegister(Hint.second)) 98 return hasPhys(Hint.second); 99 return false; 100 } 101 102 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) { 103 assert(TargetRegisterInfo::isVirtualRegister(virtReg)); 104 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && 105 "attempt to assign stack slot to already spilled register"); 106 const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg); 107 return Virt2StackSlotMap[virtReg] = createSpillSlot(RC); 108 } 109 110 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) { 111 assert(TargetRegisterInfo::isVirtualRegister(virtReg)); 112 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && 113 "attempt to assign stack slot to already spilled register"); 114 assert((SS >= 0 || 115 (SS >= MF->getFrameInfo()->getObjectIndexBegin())) && 116 "illegal fixed frame index"); 117 Virt2StackSlotMap[virtReg] = SS; 118 } 119 120 void VirtRegMap::print(raw_ostream &OS, const Module*) const { 121 OS << "********** REGISTER MAP **********\n"; 122 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 123 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 124 if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) { 125 OS << '[' << PrintReg(Reg, TRI) << " -> " 126 << PrintReg(Virt2PhysMap[Reg], TRI) << "] " 127 << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; 128 } 129 } 130 131 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 132 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 133 if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { 134 OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] 135 << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; 136 } 137 } 138 OS << '\n'; 139 } 140 141 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 142 void VirtRegMap::dump() const { 143 print(dbgs()); 144 } 145 #endif 146 147 //===----------------------------------------------------------------------===// 148 // VirtRegRewriter 149 //===----------------------------------------------------------------------===// 150 // 151 // The VirtRegRewriter is the last of the register allocator passes. 152 // It rewrites virtual registers to physical registers as specified in the 153 // VirtRegMap analysis. It also updates live-in information on basic blocks 154 // according to LiveIntervals. 155 // 156 namespace { 157 class VirtRegRewriter : public MachineFunctionPass { 158 MachineFunction *MF; 159 const TargetMachine *TM; 160 const TargetRegisterInfo *TRI; 161 const TargetInstrInfo *TII; 162 MachineRegisterInfo *MRI; 163 SlotIndexes *Indexes; 164 LiveIntervals *LIS; 165 VirtRegMap *VRM; 166 SparseSet<unsigned> PhysRegs; 167 168 void rewrite(); 169 void addMBBLiveIns(); 170 bool readsUndefSubreg(const MachineOperand &MO) const; 171 public: 172 static char ID; 173 VirtRegRewriter() : MachineFunctionPass(ID) {} 174 175 void getAnalysisUsage(AnalysisUsage &AU) const override; 176 177 bool runOnMachineFunction(MachineFunction&) override; 178 }; 179 } // end anonymous namespace 180 181 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID; 182 183 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter", 184 "Virtual Register Rewriter", false, false) 185 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 186 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 187 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 188 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 189 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 190 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter", 191 "Virtual Register Rewriter", false, false) 192 193 char VirtRegRewriter::ID = 0; 194 195 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const { 196 AU.setPreservesCFG(); 197 AU.addRequired<LiveIntervals>(); 198 AU.addRequired<SlotIndexes>(); 199 AU.addPreserved<SlotIndexes>(); 200 AU.addRequired<LiveDebugVariables>(); 201 AU.addRequired<LiveStacks>(); 202 AU.addPreserved<LiveStacks>(); 203 AU.addRequired<VirtRegMap>(); 204 MachineFunctionPass::getAnalysisUsage(AU); 205 } 206 207 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) { 208 MF = &fn; 209 TM = &MF->getTarget(); 210 TRI = MF->getSubtarget().getRegisterInfo(); 211 TII = MF->getSubtarget().getInstrInfo(); 212 MRI = &MF->getRegInfo(); 213 Indexes = &getAnalysis<SlotIndexes>(); 214 LIS = &getAnalysis<LiveIntervals>(); 215 VRM = &getAnalysis<VirtRegMap>(); 216 DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" 217 << "********** Function: " 218 << MF->getName() << '\n'); 219 DEBUG(VRM->dump()); 220 221 // Add kill flags while we still have virtual registers. 222 LIS->addKillFlags(VRM); 223 224 // Live-in lists on basic blocks are required for physregs. 225 addMBBLiveIns(); 226 227 // Rewrite virtual registers. 228 rewrite(); 229 230 // Write out new DBG_VALUE instructions. 231 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM); 232 233 // All machine operands and other references to virtual registers have been 234 // replaced. Remove the virtual registers and release all the transient data. 235 VRM->clearAllVirt(); 236 MRI->clearVirtRegs(); 237 return true; 238 } 239 240 // Compute MBB live-in lists from virtual register live ranges and their 241 // assignments. 242 void VirtRegRewriter::addMBBLiveIns() { 243 SmallVector<MachineBasicBlock*, 16> LiveIn; 244 for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) { 245 unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx); 246 if (MRI->reg_nodbg_empty(VirtReg)) 247 continue; 248 LiveInterval &LI = LIS->getInterval(VirtReg); 249 if (LI.empty() || LIS->intervalIsInOneMBB(LI)) 250 continue; 251 // This is a virtual register that is live across basic blocks. Its 252 // assigned PhysReg must be marked as live-in to those blocks. 253 unsigned PhysReg = VRM->getPhys(VirtReg); 254 assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register."); 255 256 if (LI.hasSubRanges()) { 257 for (LiveInterval::SubRange &S : LI.subranges()) { 258 for (const auto &Seg : S.segments) { 259 if (!Indexes->findLiveInMBBs(Seg.start, Seg.end, LiveIn)) 260 continue; 261 for (MCSubRegIndexIterator SR(PhysReg, TRI); SR.isValid(); ++SR) { 262 unsigned SubReg = SR.getSubReg(); 263 unsigned SubRegIndex = SR.getSubRegIndex(); 264 unsigned SubRegLaneMask = TRI->getSubRegIndexLaneMask(SubRegIndex); 265 if ((SubRegLaneMask & S.LaneMask) == 0) 266 continue; 267 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { 268 LiveIn[i]->addLiveIn(SubReg); 269 } 270 } 271 LiveIn.clear(); 272 } 273 } 274 } else { 275 // Scan the segments of LI. 276 for (const auto &Seg : LI.segments) { 277 if (!Indexes->findLiveInMBBs(Seg.start, Seg.end, LiveIn)) 278 continue; 279 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) 280 LiveIn[i]->addLiveIn(PhysReg); 281 LiveIn.clear(); 282 } 283 } 284 } 285 286 // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in 287 // each MBB's LiveIns set before calling addLiveIn on them. 288 for (MachineBasicBlock &MBB : *MF) 289 MBB.sortUniqueLiveIns(); 290 } 291 292 /// Returns true if the given machine operand \p MO only reads undefined lanes. 293 /// The function only works for use operands with a subregister set. 294 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const { 295 // Shortcut if the operand is already marked undef. 296 if (MO.isUndef()) 297 return true; 298 299 unsigned Reg = MO.getReg(); 300 const LiveInterval &LI = LIS->getInterval(Reg); 301 const MachineInstr &MI = *MO.getParent(); 302 SlotIndex BaseIndex = LIS->getInstructionIndex(&MI); 303 // This code is only meant to handle reading undefined subregisters which 304 // we couldn't properly detect before. 305 assert(LI.liveAt(BaseIndex) && 306 "Reads of completely dead register should be marked undef already"); 307 unsigned SubRegIdx = MO.getSubReg(); 308 unsigned UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx); 309 // See if any of the relevant subregister liveranges is defined at this point. 310 for (const LiveInterval::SubRange &SR : LI.subranges()) { 311 if ((SR.LaneMask & UseMask) != 0 && SR.liveAt(BaseIndex)) 312 return false; 313 } 314 return true; 315 } 316 317 void VirtRegRewriter::rewrite() { 318 bool NoSubRegLiveness = !MRI->subRegLivenessEnabled(); 319 SmallVector<unsigned, 8> SuperDeads; 320 SmallVector<unsigned, 8> SuperDefs; 321 SmallVector<unsigned, 8> SuperKills; 322 SmallPtrSet<const MachineInstr *, 4> NoReturnInsts; 323 324 // Here we have a SparseSet to hold which PhysRegs are actually encountered 325 // in the MF we are about to iterate over so that later when we call 326 // setPhysRegUsed, we are only doing it for physRegs that were actually found 327 // in the program and not for all of the possible physRegs for the given 328 // target architecture. If the target has a lot of physRegs, then for a small 329 // program there will be a significant compile time reduction here. 330 PhysRegs.clear(); 331 PhysRegs.setUniverse(TRI->getNumRegs()); 332 333 // The function with uwtable should guarantee that the stack unwinder 334 // can unwind the stack to the previous frame. Thus, we can't apply the 335 // noreturn optimization if the caller function has uwtable attribute. 336 bool HasUWTable = MF->getFunction()->hasFnAttribute(Attribute::UWTable); 337 338 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 339 MBBI != MBBE; ++MBBI) { 340 DEBUG(MBBI->print(dbgs(), Indexes)); 341 bool IsExitBB = MBBI->succ_empty(); 342 for (MachineBasicBlock::instr_iterator 343 MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) { 344 MachineInstr *MI = MII; 345 ++MII; 346 347 // Check if this instruction is a call to a noreturn function. If this 348 // is a call to noreturn function and we don't need the stack unwinding 349 // functionality (i.e. this function does not have uwtable attribute and 350 // the callee function has the nounwind attribute), then we can ignore 351 // the definitions set by this instruction. 352 if (!HasUWTable && IsExitBB && MI->isCall()) { 353 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 354 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 355 MachineOperand &MO = *MOI; 356 if (!MO.isGlobal()) 357 continue; 358 const Function *Func = dyn_cast<Function>(MO.getGlobal()); 359 if (!Func || !Func->hasFnAttribute(Attribute::NoReturn) || 360 // We need to keep correct unwind information 361 // even if the function will not return, since the 362 // runtime may need it. 363 !Func->hasFnAttribute(Attribute::NoUnwind)) 364 continue; 365 NoReturnInsts.insert(MI); 366 break; 367 } 368 } 369 370 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 371 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 372 MachineOperand &MO = *MOI; 373 374 // Make sure MRI knows about registers clobbered by regmasks. 375 if (MO.isRegMask()) 376 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 377 378 // If we encounter a VirtReg or PhysReg then get at the PhysReg and add 379 // it to the physreg bitset. Later we use only the PhysRegs that were 380 // actually encountered in the MF to populate the MRI's used physregs. 381 if (MO.isReg() && MO.getReg()) 382 PhysRegs.insert( 383 TargetRegisterInfo::isVirtualRegister(MO.getReg()) ? 384 VRM->getPhys(MO.getReg()) : 385 MO.getReg()); 386 387 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 388 continue; 389 unsigned VirtReg = MO.getReg(); 390 unsigned PhysReg = VRM->getPhys(VirtReg); 391 assert(PhysReg != VirtRegMap::NO_PHYS_REG && 392 "Instruction uses unmapped VirtReg"); 393 assert(!MRI->isReserved(PhysReg) && "Reserved register assignment"); 394 395 // Preserve semantics of sub-register operands. 396 unsigned SubReg = MO.getSubReg(); 397 if (SubReg != 0) { 398 if (NoSubRegLiveness) { 399 // A virtual register kill refers to the whole register, so we may 400 // have to add <imp-use,kill> operands for the super-register. A 401 // partial redef always kills and redefines the super-register. 402 if (MO.readsReg() && (MO.isDef() || MO.isKill())) 403 SuperKills.push_back(PhysReg); 404 405 if (MO.isDef()) { 406 // Also add implicit defs for the super-register. 407 if (MO.isDead()) 408 SuperDeads.push_back(PhysReg); 409 else 410 SuperDefs.push_back(PhysReg); 411 } 412 } else { 413 if (MO.isUse()) { 414 if (readsUndefSubreg(MO)) 415 // We need to add an <undef> flag if the subregister is 416 // completely undefined (and we are not adding super-register 417 // defs). 418 MO.setIsUndef(true); 419 } else if (!MO.isDead()) { 420 assert(MO.isDef()); 421 // Things get tricky when we ran out of lane mask bits and 422 // merged multiple lanes into the overflow bit: In this case 423 // our subregister liveness tracking isn't precise and we can't 424 // know what subregister parts are undefined, fall back to the 425 // implicit super-register def then. 426 unsigned LaneMask = TRI->getSubRegIndexLaneMask(SubReg); 427 if (TargetRegisterInfo::isImpreciseLaneMask(LaneMask)) 428 SuperDefs.push_back(PhysReg); 429 } 430 } 431 432 // The <def,undef> flag only makes sense for sub-register defs, and 433 // we are substituting a full physreg. An <imp-use,kill> operand 434 // from the SuperKills list will represent the partial read of the 435 // super-register. 436 if (MO.isDef()) 437 MO.setIsUndef(false); 438 439 // PhysReg operands cannot have subregister indexes. 440 PhysReg = TRI->getSubReg(PhysReg, SubReg); 441 assert(PhysReg && "Invalid SubReg for physical register"); 442 MO.setSubReg(0); 443 } 444 // Rewrite. Note we could have used MachineOperand::substPhysReg(), but 445 // we need the inlining here. 446 MO.setReg(PhysReg); 447 } 448 449 // Add any missing super-register kills after rewriting the whole 450 // instruction. 451 while (!SuperKills.empty()) 452 MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true); 453 454 while (!SuperDeads.empty()) 455 MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true); 456 457 while (!SuperDefs.empty()) 458 MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI); 459 460 DEBUG(dbgs() << "> " << *MI); 461 462 // Finally, remove any identity copies. 463 if (MI->isIdentityCopy()) { 464 ++NumIdCopies; 465 DEBUG(dbgs() << "Deleting identity copy.\n"); 466 if (Indexes) 467 Indexes->removeMachineInstrFromMaps(MI); 468 // It's safe to erase MI because MII has already been incremented. 469 MI->eraseFromParent(); 470 } 471 } 472 } 473 474 // Tell MRI about physical registers in use. 475 if (NoReturnInsts.empty()) { 476 for (SparseSet<unsigned>::iterator 477 RegI = PhysRegs.begin(), E = PhysRegs.end(); RegI != E; ++RegI) 478 if (!MRI->reg_nodbg_empty(*RegI)) 479 MRI->setPhysRegUsed(*RegI); 480 } else { 481 for (SparseSet<unsigned>::iterator 482 I = PhysRegs.begin(), E = PhysRegs.end(); I != E; ++I) { 483 unsigned Reg = *I; 484 if (MRI->reg_nodbg_empty(Reg)) 485 continue; 486 // Check if this register has a use that will impact the rest of the 487 // code. Uses in debug and noreturn instructions do not impact the 488 // generated code. 489 for (MachineInstr &It : MRI->reg_nodbg_instructions(Reg)) { 490 if (!NoReturnInsts.count(&It)) { 491 MRI->setPhysRegUsed(Reg); 492 break; 493 } 494 } 495 } 496 } 497 } 498 499