1 //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the VirtRegMap class.
10 //
11 // It also contains implementations of the Spiller interface, which, given a
12 // virtual register map and a machine function, eliminates all virtual
13 // references by replacing them with physical register references - adding spill
14 // code as necessary.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/CodeGen/VirtRegMap.h"
19 #include "LiveDebugVariables.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LiveStacks.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/Config/llvm-config.h"
38 #include "llvm/MC/LaneBitmask.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "regalloc"
50 
51 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
52 STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");
53 
54 //===----------------------------------------------------------------------===//
55 //  VirtRegMap implementation
56 //===----------------------------------------------------------------------===//
57 
58 char VirtRegMap::ID = 0;
59 
60 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
61 
62 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
63   MRI = &mf.getRegInfo();
64   TII = mf.getSubtarget().getInstrInfo();
65   TRI = mf.getSubtarget().getRegisterInfo();
66   MF = &mf;
67 
68   Virt2PhysMap.clear();
69   Virt2StackSlotMap.clear();
70   Virt2SplitMap.clear();
71   Virt2ShapeMap.clear();
72 
73   grow();
74   return false;
75 }
76 
77 void VirtRegMap::grow() {
78   unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
79   Virt2PhysMap.resize(NumRegs);
80   Virt2StackSlotMap.resize(NumRegs);
81   Virt2SplitMap.resize(NumRegs);
82 }
83 
84 void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) {
85   assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg));
86   assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG &&
87          "attempt to assign physical register to already mapped "
88          "virtual register");
89   assert(!getRegInfo().isReserved(physReg) &&
90          "Attempt to map virtReg to a reserved physReg");
91   Virt2PhysMap[virtReg.id()] = physReg;
92 }
93 
94 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
95   unsigned Size = TRI->getSpillSize(*RC);
96   Align Alignment = TRI->getSpillAlign(*RC);
97   int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment);
98   ++NumSpillSlots;
99   return SS;
100 }
101 
102 bool VirtRegMap::hasPreferredPhys(Register VirtReg) const {
103   Register Hint = MRI->getSimpleHint(VirtReg);
104   if (!Hint.isValid())
105     return false;
106   if (Hint.isVirtual())
107     Hint = getPhys(Hint);
108   return Register(getPhys(VirtReg)) == Hint;
109 }
110 
111 bool VirtRegMap::hasKnownPreference(Register VirtReg) const {
112   std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
113   if (Register::isPhysicalRegister(Hint.second))
114     return true;
115   if (Register::isVirtualRegister(Hint.second))
116     return hasPhys(Hint.second);
117   return false;
118 }
119 
120 int VirtRegMap::assignVirt2StackSlot(Register virtReg) {
121   assert(virtReg.isVirtual());
122   assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
123          "attempt to assign stack slot to already spilled register");
124   const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
125   return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC);
126 }
127 
128 void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) {
129   assert(virtReg.isVirtual());
130   assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
131          "attempt to assign stack slot to already spilled register");
132   assert((SS >= 0 ||
133           (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
134          "illegal fixed frame index");
135   Virt2StackSlotMap[virtReg.id()] = SS;
136 }
137 
138 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
139   OS << "********** REGISTER MAP **********\n";
140   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
141     unsigned Reg = Register::index2VirtReg(i);
142     if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
143       OS << '[' << printReg(Reg, TRI) << " -> "
144          << printReg(Virt2PhysMap[Reg], TRI) << "] "
145          << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
146     }
147   }
148 
149   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
150     unsigned Reg = Register::index2VirtReg(i);
151     if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
152       OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
153          << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
154     }
155   }
156   OS << '\n';
157 }
158 
159 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
160 LLVM_DUMP_METHOD void VirtRegMap::dump() const {
161   print(dbgs());
162 }
163 #endif
164 
165 //===----------------------------------------------------------------------===//
166 //                              VirtRegRewriter
167 //===----------------------------------------------------------------------===//
168 //
169 // The VirtRegRewriter is the last of the register allocator passes.
170 // It rewrites virtual registers to physical registers as specified in the
171 // VirtRegMap analysis. It also updates live-in information on basic blocks
172 // according to LiveIntervals.
173 //
174 namespace {
175 
176 class VirtRegRewriter : public MachineFunctionPass {
177   MachineFunction *MF;
178   const TargetRegisterInfo *TRI;
179   const TargetInstrInfo *TII;
180   MachineRegisterInfo *MRI;
181   SlotIndexes *Indexes;
182   LiveIntervals *LIS;
183   VirtRegMap *VRM;
184   bool ClearVirtRegs;
185 
186   void rewrite();
187   void addMBBLiveIns();
188   bool readsUndefSubreg(const MachineOperand &MO) const;
189   void addLiveInsForSubRanges(const LiveInterval &LI, Register PhysReg) const;
190   void handleIdentityCopy(MachineInstr &MI) const;
191   void expandCopyBundle(MachineInstr &MI) const;
192   bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const;
193 
194 public:
195   static char ID;
196   VirtRegRewriter(bool ClearVirtRegs_ = true) :
197     MachineFunctionPass(ID),
198     ClearVirtRegs(ClearVirtRegs_) {}
199 
200   void getAnalysisUsage(AnalysisUsage &AU) const override;
201 
202   bool runOnMachineFunction(MachineFunction&) override;
203 
204   MachineFunctionProperties getSetProperties() const override {
205     if (ClearVirtRegs) {
206       return MachineFunctionProperties().set(
207         MachineFunctionProperties::Property::NoVRegs);
208     }
209 
210     return MachineFunctionProperties();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char VirtRegRewriter::ID = 0;
217 
218 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
219 
220 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
221                       "Virtual Register Rewriter", false, false)
222 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
223 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
224 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
225 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
226 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
227 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
228                     "Virtual Register Rewriter", false, false)
229 
230 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
231   AU.setPreservesCFG();
232   AU.addRequired<LiveIntervals>();
233   AU.addRequired<SlotIndexes>();
234   AU.addPreserved<SlotIndexes>();
235   AU.addRequired<LiveDebugVariables>();
236   AU.addRequired<LiveStacks>();
237   AU.addPreserved<LiveStacks>();
238   AU.addRequired<VirtRegMap>();
239   MachineFunctionPass::getAnalysisUsage(AU);
240 }
241 
242 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
243   MF = &fn;
244   TRI = MF->getSubtarget().getRegisterInfo();
245   TII = MF->getSubtarget().getInstrInfo();
246   MRI = &MF->getRegInfo();
247   Indexes = &getAnalysis<SlotIndexes>();
248   LIS = &getAnalysis<LiveIntervals>();
249   VRM = &getAnalysis<VirtRegMap>();
250   LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
251                     << "********** Function: " << MF->getName() << '\n');
252   LLVM_DEBUG(VRM->dump());
253 
254   // Add kill flags while we still have virtual registers.
255   LIS->addKillFlags(VRM);
256 
257   // Live-in lists on basic blocks are required for physregs.
258   addMBBLiveIns();
259 
260   // Rewrite virtual registers.
261   rewrite();
262 
263   // Write out new DBG_VALUE instructions.
264   getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
265 
266   if (ClearVirtRegs) {
267     // All machine operands and other references to virtual registers have been
268     // replaced. Remove the virtual registers and release all the transient data.
269     VRM->clearAllVirt();
270     MRI->clearVirtRegs();
271   }
272 
273   return true;
274 }
275 
276 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
277                                              Register PhysReg) const {
278   assert(!LI.empty());
279   assert(LI.hasSubRanges());
280 
281   using SubRangeIteratorPair =
282       std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;
283 
284   SmallVector<SubRangeIteratorPair, 4> SubRanges;
285   SlotIndex First;
286   SlotIndex Last;
287   for (const LiveInterval::SubRange &SR : LI.subranges()) {
288     SubRanges.push_back(std::make_pair(&SR, SR.begin()));
289     if (!First.isValid() || SR.segments.front().start < First)
290       First = SR.segments.front().start;
291     if (!Last.isValid() || SR.segments.back().end > Last)
292       Last = SR.segments.back().end;
293   }
294 
295   // Check all mbb start positions between First and Last while
296   // simulatenously advancing an iterator for each subrange.
297   for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
298        MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
299     SlotIndex MBBBegin = MBBI->first;
300     // Advance all subrange iterators so that their end position is just
301     // behind MBBBegin (or the iterator is at the end).
302     LaneBitmask LaneMask;
303     for (auto &RangeIterPair : SubRanges) {
304       const LiveInterval::SubRange *SR = RangeIterPair.first;
305       LiveInterval::const_iterator &SRI = RangeIterPair.second;
306       while (SRI != SR->end() && SRI->end <= MBBBegin)
307         ++SRI;
308       if (SRI == SR->end())
309         continue;
310       if (SRI->start <= MBBBegin)
311         LaneMask |= SR->LaneMask;
312     }
313     if (LaneMask.none())
314       continue;
315     MachineBasicBlock *MBB = MBBI->second;
316     MBB->addLiveIn(PhysReg, LaneMask);
317   }
318 }
319 
320 // Compute MBB live-in lists from virtual register live ranges and their
321 // assignments.
322 void VirtRegRewriter::addMBBLiveIns() {
323   for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
324     Register VirtReg = Register::index2VirtReg(Idx);
325     if (MRI->reg_nodbg_empty(VirtReg))
326       continue;
327     LiveInterval &LI = LIS->getInterval(VirtReg);
328     if (LI.empty() || LIS->intervalIsInOneMBB(LI))
329       continue;
330     // This is a virtual register that is live across basic blocks. Its
331     // assigned PhysReg must be marked as live-in to those blocks.
332     Register PhysReg = VRM->getPhys(VirtReg);
333     assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
334 
335     if (LI.hasSubRanges()) {
336       addLiveInsForSubRanges(LI, PhysReg);
337     } else {
338       // Go over MBB begin positions and see if we have segments covering them.
339       // The following works because segments and the MBBIndex list are both
340       // sorted by slot indexes.
341       SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
342       for (const auto &Seg : LI) {
343         I = Indexes->advanceMBBIndex(I, Seg.start);
344         for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
345           MachineBasicBlock *MBB = I->second;
346           MBB->addLiveIn(PhysReg);
347         }
348       }
349     }
350   }
351 
352   // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
353   // each MBB's LiveIns set before calling addLiveIn on them.
354   for (MachineBasicBlock &MBB : *MF)
355     MBB.sortUniqueLiveIns();
356 }
357 
358 /// Returns true if the given machine operand \p MO only reads undefined lanes.
359 /// The function only works for use operands with a subregister set.
360 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
361   // Shortcut if the operand is already marked undef.
362   if (MO.isUndef())
363     return true;
364 
365   Register Reg = MO.getReg();
366   const LiveInterval &LI = LIS->getInterval(Reg);
367   const MachineInstr &MI = *MO.getParent();
368   SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
369   // This code is only meant to handle reading undefined subregisters which
370   // we couldn't properly detect before.
371   assert(LI.liveAt(BaseIndex) &&
372          "Reads of completely dead register should be marked undef already");
373   unsigned SubRegIdx = MO.getSubReg();
374   assert(SubRegIdx != 0 && LI.hasSubRanges());
375   LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
376   // See if any of the relevant subregister liveranges is defined at this point.
377   for (const LiveInterval::SubRange &SR : LI.subranges()) {
378     if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
379       return false;
380   }
381   return true;
382 }
383 
384 void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const {
385   if (!MI.isIdentityCopy())
386     return;
387   LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
388   ++NumIdCopies;
389 
390   // Copies like:
391   //    %r0 = COPY undef %r0
392   //    %al = COPY %al, implicit-def %eax
393   // give us additional liveness information: The target (super-)register
394   // must not be valid before this point. Replace the COPY with a KILL
395   // instruction to maintain this information.
396   if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) {
397     MI.setDesc(TII->get(TargetOpcode::KILL));
398     LLVM_DEBUG(dbgs() << "  replace by: " << MI);
399     return;
400   }
401 
402   if (Indexes)
403     Indexes->removeSingleMachineInstrFromMaps(MI);
404   MI.eraseFromBundle();
405   LLVM_DEBUG(dbgs() << "  deleted.\n");
406 }
407 
408 /// The liverange splitting logic sometimes produces bundles of copies when
409 /// subregisters are involved. Expand these into a sequence of copy instructions
410 /// after processing the last in the bundle. Does not update LiveIntervals
411 /// which we shouldn't need for this instruction anymore.
412 void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
413   if (!MI.isCopy() && !MI.isKill())
414     return;
415 
416   if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
417     SmallVector<MachineInstr *, 2> MIs({&MI});
418 
419     // Only do this when the complete bundle is made out of COPYs and KILLs.
420     MachineBasicBlock &MBB = *MI.getParent();
421     for (MachineBasicBlock::reverse_instr_iterator I =
422          std::next(MI.getReverseIterator()), E = MBB.instr_rend();
423          I != E && I->isBundledWithSucc(); ++I) {
424       if (!I->isCopy() && !I->isKill())
425         return;
426       MIs.push_back(&*I);
427     }
428     MachineInstr *FirstMI = MIs.back();
429 
430     auto anyRegsAlias = [](const MachineInstr *Dst,
431                            ArrayRef<MachineInstr *> Srcs,
432                            const TargetRegisterInfo *TRI) {
433       for (const MachineInstr *Src : Srcs)
434         if (Src != Dst)
435           if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
436                                Src->getOperand(1).getReg()))
437             return true;
438       return false;
439     };
440 
441     // If any of the destination registers in the bundle of copies alias any of
442     // the source registers, try to schedule the instructions to avoid any
443     // clobbering.
444     for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
445       for (int I = E; I--; )
446         if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) {
447           if (I + 1 != E)
448             std::swap(MIs[I], MIs[E - 1]);
449           --E;
450         }
451       if (PrevE == E) {
452         MF->getFunction().getContext().emitError(
453             "register rewriting failed: cycle in copy bundle");
454         break;
455       }
456     }
457 
458     MachineInstr *BundleStart = FirstMI;
459     for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
460       // If instruction is in the middle of the bundle, move it before the
461       // bundle starts, otherwise, just unbundle it. When we get to the last
462       // instruction, the bundle will have been completely undone.
463       if (BundledMI != BundleStart) {
464         BundledMI->removeFromBundle();
465         MBB.insert(BundleStart, BundledMI);
466       } else if (BundledMI->isBundledWithSucc()) {
467         BundledMI->unbundleFromSucc();
468         BundleStart = &*std::next(BundledMI->getIterator());
469       }
470 
471       if (Indexes && BundledMI != FirstMI)
472         Indexes->insertMachineInstrInMaps(*BundledMI);
473     }
474   }
475 }
476 
477 /// Check whether (part of) \p SuperPhysReg is live through \p MI.
478 /// \pre \p MI defines a subregister of a virtual register that
479 /// has been assigned to \p SuperPhysReg.
480 bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
481                                         MCRegister SuperPhysReg) const {
482   SlotIndex MIIndex = LIS->getInstructionIndex(MI);
483   SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
484   SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
485   for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) {
486     const LiveRange &UnitRange = LIS->getRegUnit(*Unit);
487     // If the regunit is live both before and after MI,
488     // we assume it is live through.
489     // Generally speaking, this is not true, because something like
490     // "RU = op RU" would match that description.
491     // However, we know that we are trying to assess whether
492     // a def of a virtual reg, vreg, is live at the same time of RU.
493     // If we are in the "RU = op RU" situation, that means that vreg
494     // is defined at the same time as RU (i.e., "vreg, RU = op RU").
495     // Thus, vreg and RU interferes and vreg cannot be assigned to
496     // SuperPhysReg. Therefore, this situation cannot happen.
497     if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
498       return true;
499   }
500   return false;
501 }
502 
503 void VirtRegRewriter::rewrite() {
504   bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
505   SmallVector<Register, 8> SuperDeads;
506   SmallVector<Register, 8> SuperDefs;
507   SmallVector<Register, 8> SuperKills;
508 
509   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
510        MBBI != MBBE; ++MBBI) {
511     LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
512     for (MachineBasicBlock::instr_iterator
513            MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
514       MachineInstr *MI = &*MII;
515       ++MII;
516 
517       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
518            MOE = MI->operands_end(); MOI != MOE; ++MOI) {
519         MachineOperand &MO = *MOI;
520 
521         // Make sure MRI knows about registers clobbered by regmasks.
522         if (MO.isRegMask())
523           MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
524 
525         if (!MO.isReg() || !MO.getReg().isVirtual())
526           continue;
527         Register VirtReg = MO.getReg();
528         MCRegister PhysReg = VRM->getPhys(VirtReg);
529         assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
530                "Instruction uses unmapped VirtReg");
531         assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
532 
533         // Preserve semantics of sub-register operands.
534         unsigned SubReg = MO.getSubReg();
535         if (SubReg != 0) {
536           if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
537             // A virtual register kill refers to the whole register, so we may
538             // have to add implicit killed operands for the super-register.  A
539             // partial redef always kills and redefines the super-register.
540             if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
541                 (MO.isDef() && subRegLiveThrough(*MI, PhysReg)))
542               SuperKills.push_back(PhysReg);
543 
544             if (MO.isDef()) {
545               // Also add implicit defs for the super-register.
546               if (MO.isDead())
547                 SuperDeads.push_back(PhysReg);
548               else
549                 SuperDefs.push_back(PhysReg);
550             }
551           } else {
552             if (MO.isUse()) {
553               if (readsUndefSubreg(MO))
554                 // We need to add an <undef> flag if the subregister is
555                 // completely undefined (and we are not adding super-register
556                 // defs).
557                 MO.setIsUndef(true);
558             } else if (!MO.isDead()) {
559               assert(MO.isDef());
560             }
561           }
562 
563           // The def undef and def internal flags only make sense for
564           // sub-register defs, and we are substituting a full physreg.  An
565           // implicit killed operand from the SuperKills list will represent the
566           // partial read of the super-register.
567           if (MO.isDef()) {
568             MO.setIsUndef(false);
569             MO.setIsInternalRead(false);
570           }
571 
572           // PhysReg operands cannot have subregister indexes.
573           PhysReg = TRI->getSubReg(PhysReg, SubReg);
574           assert(PhysReg.isValid() && "Invalid SubReg for physical register");
575           MO.setSubReg(0);
576         }
577         // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
578         // we need the inlining here.
579         MO.setReg(PhysReg);
580         MO.setIsRenamable(true);
581       }
582 
583       // Add any missing super-register kills after rewriting the whole
584       // instruction.
585       while (!SuperKills.empty())
586         MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
587 
588       while (!SuperDeads.empty())
589         MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
590 
591       while (!SuperDefs.empty())
592         MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
593 
594       LLVM_DEBUG(dbgs() << "> " << *MI);
595 
596       expandCopyBundle(*MI);
597 
598       // We can remove identity copies right now.
599       handleIdentityCopy(*MI);
600     }
601   }
602 }
603 
604 FunctionPass *llvm::createVirtRegRewriter(bool ClearVirtRegs) {
605   return new VirtRegRewriter(ClearVirtRegs);
606 }
607