1 //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the VirtRegMap class. 11 // 12 // It also contains implementations of the Spiller interface, which, given a 13 // virtual register map and a machine function, eliminates all virtual 14 // references by replacing them with physical register references - adding spill 15 // code as necessary. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/VirtRegMap.h" 20 #include "LiveDebugVariables.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 24 #include "llvm/CodeGen/LiveStackAnalysis.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/Support/Compiler.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Target/TargetRegisterInfo.h" 37 #include "llvm/Target/TargetSubtargetInfo.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "regalloc" 42 43 STATISTIC(NumSpillSlots, "Number of spill slots allocated"); 44 STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting"); 45 46 //===----------------------------------------------------------------------===// 47 // VirtRegMap implementation 48 //===----------------------------------------------------------------------===// 49 50 char VirtRegMap::ID = 0; 51 52 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false) 53 54 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) { 55 MRI = &mf.getRegInfo(); 56 TII = mf.getSubtarget().getInstrInfo(); 57 TRI = mf.getSubtarget().getRegisterInfo(); 58 MF = &mf; 59 60 Virt2PhysMap.clear(); 61 Virt2StackSlotMap.clear(); 62 Virt2SplitMap.clear(); 63 64 grow(); 65 return false; 66 } 67 68 void VirtRegMap::grow() { 69 unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); 70 Virt2PhysMap.resize(NumRegs); 71 Virt2StackSlotMap.resize(NumRegs); 72 Virt2SplitMap.resize(NumRegs); 73 } 74 75 void VirtRegMap::assignVirt2Phys(unsigned virtReg, MCPhysReg physReg) { 76 assert(TargetRegisterInfo::isVirtualRegister(virtReg) && 77 TargetRegisterInfo::isPhysicalRegister(physReg)); 78 assert(Virt2PhysMap[virtReg] == NO_PHYS_REG && 79 "attempt to assign physical register to already mapped " 80 "virtual register"); 81 assert(!getRegInfo().isReserved(physReg) && 82 "Attempt to map virtReg to a reserved physReg"); 83 Virt2PhysMap[virtReg] = physReg; 84 } 85 86 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { 87 unsigned Size = TRI->getSpillSize(*RC); 88 unsigned Align = TRI->getSpillAlignment(*RC); 89 int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Align); 90 ++NumSpillSlots; 91 return SS; 92 } 93 94 bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) { 95 unsigned Hint = MRI->getSimpleHint(VirtReg); 96 if (!Hint) 97 return false; 98 if (TargetRegisterInfo::isVirtualRegister(Hint)) 99 Hint = getPhys(Hint); 100 return getPhys(VirtReg) == Hint; 101 } 102 103 bool VirtRegMap::hasKnownPreference(unsigned VirtReg) { 104 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg); 105 if (TargetRegisterInfo::isPhysicalRegister(Hint.second)) 106 return true; 107 if (TargetRegisterInfo::isVirtualRegister(Hint.second)) 108 return hasPhys(Hint.second); 109 return false; 110 } 111 112 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) { 113 assert(TargetRegisterInfo::isVirtualRegister(virtReg)); 114 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && 115 "attempt to assign stack slot to already spilled register"); 116 const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg); 117 return Virt2StackSlotMap[virtReg] = createSpillSlot(RC); 118 } 119 120 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) { 121 assert(TargetRegisterInfo::isVirtualRegister(virtReg)); 122 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && 123 "attempt to assign stack slot to already spilled register"); 124 assert((SS >= 0 || 125 (SS >= MF->getFrameInfo().getObjectIndexBegin())) && 126 "illegal fixed frame index"); 127 Virt2StackSlotMap[virtReg] = SS; 128 } 129 130 void VirtRegMap::print(raw_ostream &OS, const Module*) const { 131 OS << "********** REGISTER MAP **********\n"; 132 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 133 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 134 if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) { 135 OS << '[' << PrintReg(Reg, TRI) << " -> " 136 << PrintReg(Virt2PhysMap[Reg], TRI) << "] " 137 << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; 138 } 139 } 140 141 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 142 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 143 if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { 144 OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] 145 << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; 146 } 147 } 148 OS << '\n'; 149 } 150 151 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 152 LLVM_DUMP_METHOD void VirtRegMap::dump() const { 153 print(dbgs()); 154 } 155 #endif 156 157 //===----------------------------------------------------------------------===// 158 // VirtRegRewriter 159 //===----------------------------------------------------------------------===// 160 // 161 // The VirtRegRewriter is the last of the register allocator passes. 162 // It rewrites virtual registers to physical registers as specified in the 163 // VirtRegMap analysis. It also updates live-in information on basic blocks 164 // according to LiveIntervals. 165 // 166 namespace { 167 class VirtRegRewriter : public MachineFunctionPass { 168 MachineFunction *MF; 169 const TargetMachine *TM; 170 const TargetRegisterInfo *TRI; 171 const TargetInstrInfo *TII; 172 MachineRegisterInfo *MRI; 173 SlotIndexes *Indexes; 174 LiveIntervals *LIS; 175 VirtRegMap *VRM; 176 177 void rewrite(); 178 void addMBBLiveIns(); 179 bool readsUndefSubreg(const MachineOperand &MO) const; 180 void addLiveInsForSubRanges(const LiveInterval &LI, unsigned PhysReg) const; 181 void handleIdentityCopy(MachineInstr &MI) const; 182 void expandCopyBundle(MachineInstr &MI) const; 183 bool subRegLiveThrough(const MachineInstr &MI, unsigned SuperPhysReg) const; 184 185 public: 186 static char ID; 187 VirtRegRewriter() : MachineFunctionPass(ID) {} 188 189 void getAnalysisUsage(AnalysisUsage &AU) const override; 190 191 bool runOnMachineFunction(MachineFunction&) override; 192 MachineFunctionProperties getSetProperties() const override { 193 return MachineFunctionProperties().set( 194 MachineFunctionProperties::Property::NoVRegs); 195 } 196 }; 197 } // end anonymous namespace 198 199 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID; 200 201 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter", 202 "Virtual Register Rewriter", false, false) 203 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 204 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 205 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 206 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 207 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 208 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter", 209 "Virtual Register Rewriter", false, false) 210 211 char VirtRegRewriter::ID = 0; 212 213 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const { 214 AU.setPreservesCFG(); 215 AU.addRequired<LiveIntervals>(); 216 AU.addRequired<SlotIndexes>(); 217 AU.addPreserved<SlotIndexes>(); 218 AU.addRequired<LiveDebugVariables>(); 219 AU.addRequired<LiveStacks>(); 220 AU.addPreserved<LiveStacks>(); 221 AU.addRequired<VirtRegMap>(); 222 MachineFunctionPass::getAnalysisUsage(AU); 223 } 224 225 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) { 226 MF = &fn; 227 TM = &MF->getTarget(); 228 TRI = MF->getSubtarget().getRegisterInfo(); 229 TII = MF->getSubtarget().getInstrInfo(); 230 MRI = &MF->getRegInfo(); 231 Indexes = &getAnalysis<SlotIndexes>(); 232 LIS = &getAnalysis<LiveIntervals>(); 233 VRM = &getAnalysis<VirtRegMap>(); 234 DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" 235 << "********** Function: " 236 << MF->getName() << '\n'); 237 DEBUG(VRM->dump()); 238 239 // Add kill flags while we still have virtual registers. 240 LIS->addKillFlags(VRM); 241 242 // Live-in lists on basic blocks are required for physregs. 243 addMBBLiveIns(); 244 245 // Rewrite virtual registers. 246 rewrite(); 247 248 // Write out new DBG_VALUE instructions. 249 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM); 250 251 // All machine operands and other references to virtual registers have been 252 // replaced. Remove the virtual registers and release all the transient data. 253 VRM->clearAllVirt(); 254 MRI->clearVirtRegs(); 255 return true; 256 } 257 258 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI, 259 unsigned PhysReg) const { 260 assert(!LI.empty()); 261 assert(LI.hasSubRanges()); 262 263 typedef std::pair<const LiveInterval::SubRange *, 264 LiveInterval::const_iterator> SubRangeIteratorPair; 265 SmallVector<SubRangeIteratorPair, 4> SubRanges; 266 SlotIndex First; 267 SlotIndex Last; 268 for (const LiveInterval::SubRange &SR : LI.subranges()) { 269 SubRanges.push_back(std::make_pair(&SR, SR.begin())); 270 if (!First.isValid() || SR.segments.front().start < First) 271 First = SR.segments.front().start; 272 if (!Last.isValid() || SR.segments.back().end > Last) 273 Last = SR.segments.back().end; 274 } 275 276 // Check all mbb start positions between First and Last while 277 // simulatenously advancing an iterator for each subrange. 278 for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First); 279 MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) { 280 SlotIndex MBBBegin = MBBI->first; 281 // Advance all subrange iterators so that their end position is just 282 // behind MBBBegin (or the iterator is at the end). 283 LaneBitmask LaneMask; 284 for (auto &RangeIterPair : SubRanges) { 285 const LiveInterval::SubRange *SR = RangeIterPair.first; 286 LiveInterval::const_iterator &SRI = RangeIterPair.second; 287 while (SRI != SR->end() && SRI->end <= MBBBegin) 288 ++SRI; 289 if (SRI == SR->end()) 290 continue; 291 if (SRI->start <= MBBBegin) 292 LaneMask |= SR->LaneMask; 293 } 294 if (LaneMask.none()) 295 continue; 296 MachineBasicBlock *MBB = MBBI->second; 297 MBB->addLiveIn(PhysReg, LaneMask); 298 } 299 } 300 301 // Compute MBB live-in lists from virtual register live ranges and their 302 // assignments. 303 void VirtRegRewriter::addMBBLiveIns() { 304 for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) { 305 unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx); 306 if (MRI->reg_nodbg_empty(VirtReg)) 307 continue; 308 LiveInterval &LI = LIS->getInterval(VirtReg); 309 if (LI.empty() || LIS->intervalIsInOneMBB(LI)) 310 continue; 311 // This is a virtual register that is live across basic blocks. Its 312 // assigned PhysReg must be marked as live-in to those blocks. 313 unsigned PhysReg = VRM->getPhys(VirtReg); 314 assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register."); 315 316 if (LI.hasSubRanges()) { 317 addLiveInsForSubRanges(LI, PhysReg); 318 } else { 319 // Go over MBB begin positions and see if we have segments covering them. 320 // The following works because segments and the MBBIndex list are both 321 // sorted by slot indexes. 322 SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(); 323 for (const auto &Seg : LI) { 324 I = Indexes->advanceMBBIndex(I, Seg.start); 325 for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) { 326 MachineBasicBlock *MBB = I->second; 327 MBB->addLiveIn(PhysReg); 328 } 329 } 330 } 331 } 332 333 // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in 334 // each MBB's LiveIns set before calling addLiveIn on them. 335 for (MachineBasicBlock &MBB : *MF) 336 MBB.sortUniqueLiveIns(); 337 } 338 339 /// Returns true if the given machine operand \p MO only reads undefined lanes. 340 /// The function only works for use operands with a subregister set. 341 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const { 342 // Shortcut if the operand is already marked undef. 343 if (MO.isUndef()) 344 return true; 345 346 unsigned Reg = MO.getReg(); 347 const LiveInterval &LI = LIS->getInterval(Reg); 348 const MachineInstr &MI = *MO.getParent(); 349 SlotIndex BaseIndex = LIS->getInstructionIndex(MI); 350 // This code is only meant to handle reading undefined subregisters which 351 // we couldn't properly detect before. 352 assert(LI.liveAt(BaseIndex) && 353 "Reads of completely dead register should be marked undef already"); 354 unsigned SubRegIdx = MO.getSubReg(); 355 assert(SubRegIdx != 0 && LI.hasSubRanges()); 356 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx); 357 // See if any of the relevant subregister liveranges is defined at this point. 358 for (const LiveInterval::SubRange &SR : LI.subranges()) { 359 if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex)) 360 return false; 361 } 362 return true; 363 } 364 365 void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const { 366 if (!MI.isIdentityCopy()) 367 return; 368 DEBUG(dbgs() << "Identity copy: " << MI); 369 ++NumIdCopies; 370 371 // Copies like: 372 // %R0 = COPY %R0<undef> 373 // %AL = COPY %AL, %EAX<imp-def> 374 // give us additional liveness information: The target (super-)register 375 // must not be valid before this point. Replace the COPY with a KILL 376 // instruction to maintain this information. 377 if (MI.getOperand(0).isUndef() || MI.getNumOperands() > 2) { 378 MI.setDesc(TII->get(TargetOpcode::KILL)); 379 DEBUG(dbgs() << " replace by: " << MI); 380 return; 381 } 382 383 if (Indexes) 384 Indexes->removeSingleMachineInstrFromMaps(MI); 385 MI.eraseFromBundle(); 386 DEBUG(dbgs() << " deleted.\n"); 387 } 388 389 /// The liverange splitting logic sometimes produces bundles of copies when 390 /// subregisters are involved. Expand these into a sequence of copy instructions 391 /// after processing the last in the bundle. Does not update LiveIntervals 392 /// which we shouldn't need for this instruction anymore. 393 void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const { 394 if (!MI.isCopy()) 395 return; 396 397 if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) { 398 // Only do this when the complete bundle is made out of COPYs. 399 MachineBasicBlock &MBB = *MI.getParent(); 400 for (MachineBasicBlock::reverse_instr_iterator I = 401 std::next(MI.getReverseIterator()), E = MBB.instr_rend(); 402 I != E && I->isBundledWithSucc(); ++I) { 403 if (!I->isCopy()) 404 return; 405 } 406 407 for (MachineBasicBlock::reverse_instr_iterator I = MI.getReverseIterator(); 408 I->isBundledWithPred(); ) { 409 MachineInstr &MI = *I; 410 ++I; 411 412 MI.unbundleFromPred(); 413 if (Indexes) 414 Indexes->insertMachineInstrInMaps(MI); 415 } 416 } 417 } 418 419 /// Check whether (part of) \p SuperPhysReg is live through \p MI. 420 /// \pre \p MI defines a subregister of a virtual register that 421 /// has been assigned to \p SuperPhysReg. 422 bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI, 423 unsigned SuperPhysReg) const { 424 SlotIndex MIIndex = LIS->getInstructionIndex(MI); 425 SlotIndex BeforeMIUses = MIIndex.getBaseIndex(); 426 SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex(); 427 for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) { 428 const LiveRange &UnitRange = LIS->getRegUnit(*Unit); 429 // If the regunit is live both before and after MI, 430 // we assume it is live through. 431 // Generally speaking, this is not true, because something like 432 // "RU = op RU" would match that description. 433 // However, we know that we are trying to assess whether 434 // a def of a virtual reg, vreg, is live at the same time of RU. 435 // If we are in the "RU = op RU" situation, that means that vreg 436 // is defined at the same time as RU (i.e., "vreg, RU = op RU"). 437 // Thus, vreg and RU interferes and vreg cannot be assigned to 438 // SuperPhysReg. Therefore, this situation cannot happen. 439 if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses)) 440 return true; 441 } 442 return false; 443 } 444 445 void VirtRegRewriter::rewrite() { 446 bool NoSubRegLiveness = !MRI->subRegLivenessEnabled(); 447 SmallVector<unsigned, 8> SuperDeads; 448 SmallVector<unsigned, 8> SuperDefs; 449 SmallVector<unsigned, 8> SuperKills; 450 451 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 452 MBBI != MBBE; ++MBBI) { 453 DEBUG(MBBI->print(dbgs(), Indexes)); 454 for (MachineBasicBlock::instr_iterator 455 MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) { 456 MachineInstr *MI = &*MII; 457 ++MII; 458 459 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 460 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 461 MachineOperand &MO = *MOI; 462 463 // Make sure MRI knows about registers clobbered by regmasks. 464 if (MO.isRegMask()) 465 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 466 467 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 468 continue; 469 unsigned VirtReg = MO.getReg(); 470 unsigned PhysReg = VRM->getPhys(VirtReg); 471 assert(PhysReg != VirtRegMap::NO_PHYS_REG && 472 "Instruction uses unmapped VirtReg"); 473 assert(!MRI->isReserved(PhysReg) && "Reserved register assignment"); 474 475 // Preserve semantics of sub-register operands. 476 unsigned SubReg = MO.getSubReg(); 477 if (SubReg != 0) { 478 if (NoSubRegLiveness) { 479 // A virtual register kill refers to the whole register, so we may 480 // have to add <imp-use,kill> operands for the super-register. A 481 // partial redef always kills and redefines the super-register. 482 if ((MO.readsReg() && (MO.isDef() || MO.isKill())) || 483 (MO.isDef() && subRegLiveThrough(*MI, PhysReg))) 484 SuperKills.push_back(PhysReg); 485 486 if (MO.isDef()) { 487 // Also add implicit defs for the super-register. 488 if (MO.isDead()) 489 SuperDeads.push_back(PhysReg); 490 else 491 SuperDefs.push_back(PhysReg); 492 } 493 } else { 494 if (MO.isUse()) { 495 if (readsUndefSubreg(MO)) 496 // We need to add an <undef> flag if the subregister is 497 // completely undefined (and we are not adding super-register 498 // defs). 499 MO.setIsUndef(true); 500 } else if (!MO.isDead()) { 501 assert(MO.isDef()); 502 } 503 } 504 505 // The <def,undef> and <def,internal> flags only make sense for 506 // sub-register defs, and we are substituting a full physreg. An 507 // <imp-use,kill> operand from the SuperKills list will represent the 508 // partial read of the super-register. 509 if (MO.isDef()) { 510 MO.setIsUndef(false); 511 MO.setIsInternalRead(false); 512 } 513 514 // PhysReg operands cannot have subregister indexes. 515 PhysReg = TRI->getSubReg(PhysReg, SubReg); 516 assert(PhysReg && "Invalid SubReg for physical register"); 517 MO.setSubReg(0); 518 } 519 // Rewrite. Note we could have used MachineOperand::substPhysReg(), but 520 // we need the inlining here. 521 MO.setReg(PhysReg); 522 } 523 524 // Add any missing super-register kills after rewriting the whole 525 // instruction. 526 while (!SuperKills.empty()) 527 MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true); 528 529 while (!SuperDeads.empty()) 530 MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true); 531 532 while (!SuperDefs.empty()) 533 MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI); 534 535 DEBUG(dbgs() << "> " << *MI); 536 537 expandCopyBundle(*MI); 538 539 // We can remove identity copies right now. 540 handleIdentityCopy(*MI); 541 } 542 } 543 } 544