1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 36 #include "llvm/CodeGen/LiveVariables.h" 37 #include "llvm/CodeGen/MachineFunctionPass.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/Passes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/MC/MCInstrItineraries.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetRegisterInfo.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "twoaddrinstr" 56 57 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 58 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 59 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 60 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 61 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 62 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 63 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 64 65 // Temporary flag to disable rescheduling. 66 static cl::opt<bool> 67 EnableRescheduling("twoaddr-reschedule", 68 cl::desc("Coalesce copies by rescheduling (default=true)"), 69 cl::init(true), cl::Hidden); 70 71 namespace { 72 class TwoAddressInstructionPass : public MachineFunctionPass { 73 MachineFunction *MF; 74 const TargetInstrInfo *TII; 75 const TargetRegisterInfo *TRI; 76 const InstrItineraryData *InstrItins; 77 MachineRegisterInfo *MRI; 78 LiveVariables *LV; 79 LiveIntervals *LIS; 80 AliasAnalysis *AA; 81 CodeGenOpt::Level OptLevel; 82 83 // The current basic block being processed. 84 MachineBasicBlock *MBB; 85 86 // Keep track the distance of a MI from the start of the current basic block. 87 DenseMap<MachineInstr*, unsigned> DistanceMap; 88 89 // Set of already processed instructions in the current block. 90 SmallPtrSet<MachineInstr*, 8> Processed; 91 92 // A map from virtual registers to physical registers which are likely targets 93 // to be coalesced to due to copies from physical registers to virtual 94 // registers. e.g. v1024 = move r0. 95 DenseMap<unsigned, unsigned> SrcRegMap; 96 97 // A map from virtual registers to physical registers which are likely targets 98 // to be coalesced to due to copies to physical registers from virtual 99 // registers. e.g. r1 = move v1024. 100 DenseMap<unsigned, unsigned> DstRegMap; 101 102 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, 103 MachineBasicBlock::iterator OldPos); 104 105 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen); 106 107 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 108 109 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 110 MachineInstr *MI, unsigned Dist); 111 112 bool commuteInstruction(MachineInstr *MI, 113 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 114 115 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 116 117 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 118 MachineBasicBlock::iterator &nmi, 119 unsigned RegA, unsigned RegB, unsigned Dist); 120 121 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 122 123 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 124 MachineBasicBlock::iterator &nmi, 125 unsigned Reg); 126 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 127 MachineBasicBlock::iterator &nmi, 128 unsigned Reg); 129 130 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 131 MachineBasicBlock::iterator &nmi, 132 unsigned SrcIdx, unsigned DstIdx, 133 unsigned Dist, bool shouldOnlyCommute); 134 135 bool tryInstructionCommute(MachineInstr *MI, 136 unsigned DstOpIdx, 137 unsigned BaseOpIdx, 138 bool BaseOpKilled, 139 unsigned Dist); 140 void scanUses(unsigned DstReg); 141 142 void processCopy(MachineInstr *MI); 143 144 typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList; 145 typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap; 146 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 147 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 148 void eliminateRegSequence(MachineBasicBlock::iterator&); 149 150 public: 151 static char ID; // Pass identification, replacement for typeid 152 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 153 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 154 } 155 156 void getAnalysisUsage(AnalysisUsage &AU) const override { 157 AU.setPreservesCFG(); 158 AU.addRequired<AAResultsWrapperPass>(); 159 AU.addPreserved<LiveVariables>(); 160 AU.addPreserved<SlotIndexes>(); 161 AU.addPreserved<LiveIntervals>(); 162 AU.addPreservedID(MachineLoopInfoID); 163 AU.addPreservedID(MachineDominatorsID); 164 MachineFunctionPass::getAnalysisUsage(AU); 165 } 166 167 /// Pass entry point. 168 bool runOnMachineFunction(MachineFunction&) override; 169 }; 170 } // end anonymous namespace 171 172 char TwoAddressInstructionPass::ID = 0; 173 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction", 174 "Two-Address instruction pass", false, false) 175 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 176 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction", 177 "Two-Address instruction pass", false, false) 178 179 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 180 181 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 182 183 /// A two-address instruction has been converted to a three-address instruction 184 /// to avoid clobbering a register. Try to sink it past the instruction that 185 /// would kill the above mentioned register to reduce register pressure. 186 bool TwoAddressInstructionPass:: 187 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, 188 MachineBasicBlock::iterator OldPos) { 189 // FIXME: Shouldn't we be trying to do this before we three-addressify the 190 // instruction? After this transformation is done, we no longer need 191 // the instruction to be in three-address form. 192 193 // Check if it's safe to move this instruction. 194 bool SeenStore = true; // Be conservative. 195 if (!MI->isSafeToMove(AA, SeenStore)) 196 return false; 197 198 unsigned DefReg = 0; 199 SmallSet<unsigned, 4> UseRegs; 200 201 for (const MachineOperand &MO : MI->operands()) { 202 if (!MO.isReg()) 203 continue; 204 unsigned MOReg = MO.getReg(); 205 if (!MOReg) 206 continue; 207 if (MO.isUse() && MOReg != SavedReg) 208 UseRegs.insert(MO.getReg()); 209 if (!MO.isDef()) 210 continue; 211 if (MO.isImplicit()) 212 // Don't try to move it if it implicitly defines a register. 213 return false; 214 if (DefReg) 215 // For now, don't move any instructions that define multiple registers. 216 return false; 217 DefReg = MO.getReg(); 218 } 219 220 // Find the instruction that kills SavedReg. 221 MachineInstr *KillMI = nullptr; 222 if (LIS) { 223 LiveInterval &LI = LIS->getInterval(SavedReg); 224 assert(LI.end() != LI.begin() && 225 "Reg should not have empty live interval."); 226 227 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 228 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 229 if (I != LI.end() && I->start < MBBEndIdx) 230 return false; 231 232 --I; 233 KillMI = LIS->getInstructionFromIndex(I->end); 234 } 235 if (!KillMI) { 236 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) { 237 if (!UseMO.isKill()) 238 continue; 239 KillMI = UseMO.getParent(); 240 break; 241 } 242 } 243 244 // If we find the instruction that kills SavedReg, and it is in an 245 // appropriate location, we can try to sink the current instruction 246 // past it. 247 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 248 KillMI == OldPos || KillMI->isTerminator()) 249 return false; 250 251 // If any of the definitions are used by another instruction between the 252 // position and the kill use, then it's not safe to sink it. 253 // 254 // FIXME: This can be sped up if there is an easy way to query whether an 255 // instruction is before or after another instruction. Then we can use 256 // MachineRegisterInfo def / use instead. 257 MachineOperand *KillMO = nullptr; 258 MachineBasicBlock::iterator KillPos = KillMI; 259 ++KillPos; 260 261 unsigned NumVisited = 0; 262 for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) { 263 MachineInstr *OtherMI = I; 264 // DBG_VALUE cannot be counted against the limit. 265 if (OtherMI->isDebugValue()) 266 continue; 267 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 268 return false; 269 ++NumVisited; 270 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 271 MachineOperand &MO = OtherMI->getOperand(i); 272 if (!MO.isReg()) 273 continue; 274 unsigned MOReg = MO.getReg(); 275 if (!MOReg) 276 continue; 277 if (DefReg == MOReg) 278 return false; 279 280 if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) { 281 if (OtherMI == KillMI && MOReg == SavedReg) 282 // Save the operand that kills the register. We want to unset the kill 283 // marker if we can sink MI past it. 284 KillMO = &MO; 285 else if (UseRegs.count(MOReg)) 286 // One of the uses is killed before the destination. 287 return false; 288 } 289 } 290 } 291 assert(KillMO && "Didn't find kill"); 292 293 if (!LIS) { 294 // Update kill and LV information. 295 KillMO->setIsKill(false); 296 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 297 KillMO->setIsKill(true); 298 299 if (LV) 300 LV->replaceKillInstruction(SavedReg, KillMI, MI); 301 } 302 303 // Move instruction to its destination. 304 MBB->remove(MI); 305 MBB->insert(KillPos, MI); 306 307 if (LIS) 308 LIS->handleMove(*MI); 309 310 ++Num3AddrSunk; 311 return true; 312 } 313 314 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 315 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB, 316 const MachineRegisterInfo *MRI) { 317 MachineInstr *Ret = nullptr; 318 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 319 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 320 continue; 321 if (!Ret) 322 Ret = &DefMI; 323 else if (Ret != &DefMI) 324 return nullptr; 325 } 326 return Ret; 327 } 328 329 /// Check if there is a reversed copy chain from FromReg to ToReg: 330 /// %Tmp1 = copy %Tmp2; 331 /// %FromReg = copy %Tmp1; 332 /// %ToReg = add %FromReg ... 333 /// %Tmp2 = copy %ToReg; 334 /// MaxLen specifies the maximum length of the copy chain the func 335 /// can walk through. 336 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg, 337 int Maxlen) { 338 unsigned TmpReg = FromReg; 339 for (int i = 0; i < Maxlen; i++) { 340 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 341 if (!Def || !Def->isCopy()) 342 return false; 343 344 TmpReg = Def->getOperand(1).getReg(); 345 346 if (TmpReg == ToReg) 347 return true; 348 } 349 return false; 350 } 351 352 /// Return true if there are no intervening uses between the last instruction 353 /// in the MBB that defines the specified register and the two-address 354 /// instruction which is being processed. It also returns the last def location 355 /// by reference. 356 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 357 unsigned &LastDef) { 358 LastDef = 0; 359 unsigned LastUse = Dist; 360 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 361 MachineInstr *MI = MO.getParent(); 362 if (MI->getParent() != MBB || MI->isDebugValue()) 363 continue; 364 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 365 if (DI == DistanceMap.end()) 366 continue; 367 if (MO.isUse() && DI->second < LastUse) 368 LastUse = DI->second; 369 if (MO.isDef() && DI->second > LastDef) 370 LastDef = DI->second; 371 } 372 373 return !(LastUse > LastDef && LastUse < Dist); 374 } 375 376 /// Return true if the specified MI is a copy instruction or an extract_subreg 377 /// instruction. It also returns the source and destination registers and 378 /// whether they are physical registers by reference. 379 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 380 unsigned &SrcReg, unsigned &DstReg, 381 bool &IsSrcPhys, bool &IsDstPhys) { 382 SrcReg = 0; 383 DstReg = 0; 384 if (MI.isCopy()) { 385 DstReg = MI.getOperand(0).getReg(); 386 SrcReg = MI.getOperand(1).getReg(); 387 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 388 DstReg = MI.getOperand(0).getReg(); 389 SrcReg = MI.getOperand(2).getReg(); 390 } else 391 return false; 392 393 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 394 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 395 return true; 396 } 397 398 /// Test if the given register value, which is used by the 399 /// given instruction, is killed by the given instruction. 400 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 401 LiveIntervals *LIS) { 402 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && 403 !LIS->isNotInMIMap(*MI)) { 404 // FIXME: Sometimes tryInstructionTransform() will add instructions and 405 // test whether they can be folded before keeping them. In this case it 406 // sets a kill before recursively calling tryInstructionTransform() again. 407 // If there is no interval available, we assume that this instruction is 408 // one of those. A kill flag is manually inserted on the operand so the 409 // check below will handle it. 410 LiveInterval &LI = LIS->getInterval(Reg); 411 // This is to match the kill flag version where undefs don't have kill 412 // flags. 413 if (!LI.hasAtLeastOneValue()) 414 return false; 415 416 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 417 LiveInterval::const_iterator I = LI.find(useIdx); 418 assert(I != LI.end() && "Reg must be live-in to use."); 419 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 420 } 421 422 return MI->killsRegister(Reg); 423 } 424 425 /// Test if the given register value, which is used by the given 426 /// instruction, is killed by the given instruction. This looks through 427 /// coalescable copies to see if the original value is potentially not killed. 428 /// 429 /// For example, in this code: 430 /// 431 /// %reg1034 = copy %reg1024 432 /// %reg1035 = copy %reg1025<kill> 433 /// %reg1036 = add %reg1034<kill>, %reg1035<kill> 434 /// 435 /// %reg1034 is not considered to be killed, since it is copied from a 436 /// register which is not killed. Treating it as not killed lets the 437 /// normal heuristics commute the (two-address) add, which lets 438 /// coalescing eliminate the extra copy. 439 /// 440 /// If allowFalsePositives is true then likely kills are treated as kills even 441 /// if it can't be proven that they are kills. 442 static bool isKilled(MachineInstr &MI, unsigned Reg, 443 const MachineRegisterInfo *MRI, 444 const TargetInstrInfo *TII, 445 LiveIntervals *LIS, 446 bool allowFalsePositives) { 447 MachineInstr *DefMI = &MI; 448 for (;;) { 449 // All uses of physical registers are likely to be kills. 450 if (TargetRegisterInfo::isPhysicalRegister(Reg) && 451 (allowFalsePositives || MRI->hasOneUse(Reg))) 452 return true; 453 if (!isPlainlyKilled(DefMI, Reg, LIS)) 454 return false; 455 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 456 return true; 457 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 458 // If there are multiple defs, we can't do a simple analysis, so just 459 // go with what the kill flag says. 460 if (std::next(Begin) != MRI->def_end()) 461 return true; 462 DefMI = Begin->getParent(); 463 bool IsSrcPhys, IsDstPhys; 464 unsigned SrcReg, DstReg; 465 // If the def is something other than a copy, then it isn't going to 466 // be coalesced, so follow the kill flag. 467 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 468 return true; 469 Reg = SrcReg; 470 } 471 } 472 473 /// Return true if the specified MI uses the specified register as a two-address 474 /// use. If so, return the destination register by reference. 475 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 476 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 477 const MachineOperand &MO = MI.getOperand(i); 478 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 479 continue; 480 unsigned ti; 481 if (MI.isRegTiedToDefOperand(i, &ti)) { 482 DstReg = MI.getOperand(ti).getReg(); 483 return true; 484 } 485 } 486 return false; 487 } 488 489 /// Given a register, if has a single in-basic block use, return the use 490 /// instruction if it's a copy or a two-address use. 491 static 492 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 493 MachineRegisterInfo *MRI, 494 const TargetInstrInfo *TII, 495 bool &IsCopy, 496 unsigned &DstReg, bool &IsDstPhys) { 497 if (!MRI->hasOneNonDBGUse(Reg)) 498 // None or more than one use. 499 return nullptr; 500 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 501 if (UseMI.getParent() != MBB) 502 return nullptr; 503 unsigned SrcReg; 504 bool IsSrcPhys; 505 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 506 IsCopy = true; 507 return &UseMI; 508 } 509 IsDstPhys = false; 510 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 511 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 512 return &UseMI; 513 } 514 return nullptr; 515 } 516 517 /// Return the physical register the specified virtual register might be mapped 518 /// to. 519 static unsigned 520 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 521 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 522 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 523 if (SI == RegMap.end()) 524 return 0; 525 Reg = SI->second; 526 } 527 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 528 return Reg; 529 return 0; 530 } 531 532 /// Return true if the two registers are equal or aliased. 533 static bool 534 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 535 if (RegA == RegB) 536 return true; 537 if (!RegA || !RegB) 538 return false; 539 return TRI->regsOverlap(RegA, RegB); 540 } 541 542 /// Return true if it's potentially profitable to commute the two-address 543 /// instruction that's being processed. 544 bool 545 TwoAddressInstructionPass:: 546 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 547 MachineInstr *MI, unsigned Dist) { 548 if (OptLevel == CodeGenOpt::None) 549 return false; 550 551 // Determine if it's profitable to commute this two address instruction. In 552 // general, we want no uses between this instruction and the definition of 553 // the two-address register. 554 // e.g. 555 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 556 // %reg1029<def> = MOV8rr %reg1028 557 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 558 // insert => %reg1030<def> = MOV8rr %reg1028 559 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 560 // In this case, it might not be possible to coalesce the second MOV8rr 561 // instruction if the first one is coalesced. So it would be profitable to 562 // commute it: 563 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 564 // %reg1029<def> = MOV8rr %reg1028 565 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 566 // insert => %reg1030<def> = MOV8rr %reg1029 567 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 568 569 if (!isPlainlyKilled(MI, regC, LIS)) 570 return false; 571 572 // Ok, we have something like: 573 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 574 // let's see if it's worth commuting it. 575 576 // Look for situations like this: 577 // %reg1024<def> = MOV r1 578 // %reg1025<def> = MOV r0 579 // %reg1026<def> = ADD %reg1024, %reg1025 580 // r0 = MOV %reg1026 581 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 582 unsigned ToRegA = getMappedReg(regA, DstRegMap); 583 if (ToRegA) { 584 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 585 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 586 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 587 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 588 589 // Compute if any of the following are true: 590 // -RegB is not tied to a register and RegC is compatible with RegA. 591 // -RegB is tied to the wrong physical register, but RegC is. 592 // -RegB is tied to the wrong physical register, and RegC isn't tied. 593 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 594 return true; 595 // Don't compute if any of the following are true: 596 // -RegC is not tied to a register and RegB is compatible with RegA. 597 // -RegC is tied to the wrong physical register, but RegB is. 598 // -RegC is tied to the wrong physical register, and RegB isn't tied. 599 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 600 return false; 601 } 602 603 // If there is a use of regC between its last def (could be livein) and this 604 // instruction, then bail. 605 unsigned LastDefC = 0; 606 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 607 return false; 608 609 // If there is a use of regB between its last def (could be livein) and this 610 // instruction, then go ahead and make this transformation. 611 unsigned LastDefB = 0; 612 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 613 return true; 614 615 // Look for situation like this: 616 // %reg101 = MOV %reg100 617 // %reg102 = ... 618 // %reg103 = ADD %reg102, %reg101 619 // ... = %reg103 ... 620 // %reg100 = MOV %reg103 621 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 622 // to eliminate an otherwise unavoidable copy. 623 // FIXME: 624 // We can extend the logic further: If an pair of operands in an insn has 625 // been merged, the insn could be regarded as a virtual copy, and the virtual 626 // copy could also be used to construct a copy chain. 627 // To more generally minimize register copies, ideally the logic of two addr 628 // instruction pass should be integrated with register allocation pass where 629 // interference graph is available. 630 if (isRevCopyChain(regC, regA, 3)) 631 return true; 632 633 if (isRevCopyChain(regB, regA, 3)) 634 return false; 635 636 // Since there are no intervening uses for both registers, then commute 637 // if the def of regC is closer. Its live interval is shorter. 638 return LastDefB && LastDefC && LastDefC > LastDefB; 639 } 640 641 /// Commute a two-address instruction and update the basic block, distance map, 642 /// and live variables if needed. Return true if it is successful. 643 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 644 unsigned RegBIdx, 645 unsigned RegCIdx, 646 unsigned Dist) { 647 unsigned RegC = MI->getOperand(RegCIdx).getReg(); 648 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 649 MachineInstr *NewMI = TII->commuteInstruction(MI, false, RegBIdx, RegCIdx); 650 651 if (NewMI == nullptr) { 652 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 653 return false; 654 } 655 656 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 657 assert(NewMI == MI && 658 "TargetInstrInfo::commuteInstruction() should not return a new " 659 "instruction unless it was requested."); 660 661 // Update source register map. 662 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 663 if (FromRegC) { 664 unsigned RegA = MI->getOperand(0).getReg(); 665 SrcRegMap[RegA] = FromRegC; 666 } 667 668 return true; 669 } 670 671 /// Return true if it is profitable to convert the given 2-address instruction 672 /// to a 3-address one. 673 bool 674 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 675 // Look for situations like this: 676 // %reg1024<def> = MOV r1 677 // %reg1025<def> = MOV r0 678 // %reg1026<def> = ADD %reg1024, %reg1025 679 // r2 = MOV %reg1026 680 // Turn ADD into a 3-address instruction to avoid a copy. 681 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 682 if (!FromRegB) 683 return false; 684 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 685 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 686 } 687 688 /// Convert the specified two-address instruction into a three address one. 689 /// Return true if this transformation was successful. 690 bool 691 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 692 MachineBasicBlock::iterator &nmi, 693 unsigned RegA, unsigned RegB, 694 unsigned Dist) { 695 // FIXME: Why does convertToThreeAddress() need an iterator reference? 696 MachineFunction::iterator MFI = MBB->getIterator(); 697 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV); 698 assert(MBB->getIterator() == MFI && 699 "convertToThreeAddress changed iterator reference"); 700 if (!NewMI) 701 return false; 702 703 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 704 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 705 bool Sunk = false; 706 707 if (LIS) 708 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); 709 710 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 711 // FIXME: Temporary workaround. If the new instruction doesn't 712 // uses RegB, convertToThreeAddress must have created more 713 // then one instruction. 714 Sunk = sink3AddrInstruction(NewMI, RegB, mi); 715 716 MBB->erase(mi); // Nuke the old inst. 717 718 if (!Sunk) { 719 DistanceMap.insert(std::make_pair(NewMI, Dist)); 720 mi = NewMI; 721 nmi = std::next(mi); 722 } 723 724 // Update source and destination register maps. 725 SrcRegMap.erase(RegA); 726 DstRegMap.erase(RegB); 727 return true; 728 } 729 730 /// Scan forward recursively for only uses, update maps if the use is a copy or 731 /// a two-address instruction. 732 void 733 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 734 SmallVector<unsigned, 4> VirtRegPairs; 735 bool IsDstPhys; 736 bool IsCopy = false; 737 unsigned NewReg = 0; 738 unsigned Reg = DstReg; 739 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 740 NewReg, IsDstPhys)) { 741 if (IsCopy && !Processed.insert(UseMI).second) 742 break; 743 744 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 745 if (DI != DistanceMap.end()) 746 // Earlier in the same MBB.Reached via a back edge. 747 break; 748 749 if (IsDstPhys) { 750 VirtRegPairs.push_back(NewReg); 751 break; 752 } 753 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 754 if (!isNew) 755 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 756 VirtRegPairs.push_back(NewReg); 757 Reg = NewReg; 758 } 759 760 if (!VirtRegPairs.empty()) { 761 unsigned ToReg = VirtRegPairs.back(); 762 VirtRegPairs.pop_back(); 763 while (!VirtRegPairs.empty()) { 764 unsigned FromReg = VirtRegPairs.back(); 765 VirtRegPairs.pop_back(); 766 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 767 if (!isNew) 768 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 769 ToReg = FromReg; 770 } 771 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 772 if (!isNew) 773 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 774 } 775 } 776 777 /// If the specified instruction is not yet processed, process it if it's a 778 /// copy. For a copy instruction, we find the physical registers the 779 /// source and destination registers might be mapped to. These are kept in 780 /// point-to maps used to determine future optimizations. e.g. 781 /// v1024 = mov r0 782 /// v1025 = mov r1 783 /// v1026 = add v1024, v1025 784 /// r1 = mov r1026 785 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 786 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 787 /// potentially joined with r1 on the output side. It's worthwhile to commute 788 /// 'add' to eliminate a copy. 789 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 790 if (Processed.count(MI)) 791 return; 792 793 bool IsSrcPhys, IsDstPhys; 794 unsigned SrcReg, DstReg; 795 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 796 return; 797 798 if (IsDstPhys && !IsSrcPhys) 799 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 800 else if (!IsDstPhys && IsSrcPhys) { 801 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 802 if (!isNew) 803 assert(SrcRegMap[DstReg] == SrcReg && 804 "Can't map to two src physical registers!"); 805 806 scanUses(DstReg); 807 } 808 809 Processed.insert(MI); 810 } 811 812 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 813 /// consider moving the instruction below the kill instruction in order to 814 /// eliminate the need for the copy. 815 bool TwoAddressInstructionPass:: 816 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 817 MachineBasicBlock::iterator &nmi, 818 unsigned Reg) { 819 // Bail immediately if we don't have LV or LIS available. We use them to find 820 // kills efficiently. 821 if (!LV && !LIS) 822 return false; 823 824 MachineInstr *MI = &*mi; 825 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 826 if (DI == DistanceMap.end()) 827 // Must be created from unfolded load. Don't waste time trying this. 828 return false; 829 830 MachineInstr *KillMI = nullptr; 831 if (LIS) { 832 LiveInterval &LI = LIS->getInterval(Reg); 833 assert(LI.end() != LI.begin() && 834 "Reg should not have empty live interval."); 835 836 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 837 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 838 if (I != LI.end() && I->start < MBBEndIdx) 839 return false; 840 841 --I; 842 KillMI = LIS->getInstructionFromIndex(I->end); 843 } else { 844 KillMI = LV->getVarInfo(Reg).findKill(MBB); 845 } 846 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 847 // Don't mess with copies, they may be coalesced later. 848 return false; 849 850 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 851 KillMI->isBranch() || KillMI->isTerminator()) 852 // Don't move pass calls, etc. 853 return false; 854 855 unsigned DstReg; 856 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 857 return false; 858 859 bool SeenStore = true; 860 if (!MI->isSafeToMove(AA, SeenStore)) 861 return false; 862 863 if (TII->getInstrLatency(InstrItins, MI) > 1) 864 // FIXME: Needs more sophisticated heuristics. 865 return false; 866 867 SmallSet<unsigned, 2> Uses; 868 SmallSet<unsigned, 2> Kills; 869 SmallSet<unsigned, 2> Defs; 870 for (const MachineOperand &MO : MI->operands()) { 871 if (!MO.isReg()) 872 continue; 873 unsigned MOReg = MO.getReg(); 874 if (!MOReg) 875 continue; 876 if (MO.isDef()) 877 Defs.insert(MOReg); 878 else { 879 Uses.insert(MOReg); 880 if (MOReg != Reg && (MO.isKill() || 881 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 882 Kills.insert(MOReg); 883 } 884 } 885 886 // Move the copies connected to MI down as well. 887 MachineBasicBlock::iterator Begin = MI; 888 MachineBasicBlock::iterator AfterMI = std::next(Begin); 889 890 MachineBasicBlock::iterator End = AfterMI; 891 while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) { 892 Defs.insert(End->getOperand(0).getReg()); 893 ++End; 894 } 895 896 // Check if the reschedule will not break depedencies. 897 unsigned NumVisited = 0; 898 MachineBasicBlock::iterator KillPos = KillMI; 899 ++KillPos; 900 for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) { 901 MachineInstr *OtherMI = I; 902 // DBG_VALUE cannot be counted against the limit. 903 if (OtherMI->isDebugValue()) 904 continue; 905 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 906 return false; 907 ++NumVisited; 908 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 909 OtherMI->isBranch() || OtherMI->isTerminator()) 910 // Don't move pass calls, etc. 911 return false; 912 for (const MachineOperand &MO : OtherMI->operands()) { 913 if (!MO.isReg()) 914 continue; 915 unsigned MOReg = MO.getReg(); 916 if (!MOReg) 917 continue; 918 if (MO.isDef()) { 919 if (Uses.count(MOReg)) 920 // Physical register use would be clobbered. 921 return false; 922 if (!MO.isDead() && Defs.count(MOReg)) 923 // May clobber a physical register def. 924 // FIXME: This may be too conservative. It's ok if the instruction 925 // is sunken completely below the use. 926 return false; 927 } else { 928 if (Defs.count(MOReg)) 929 return false; 930 bool isKill = MO.isKill() || 931 (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)); 932 if (MOReg != Reg && 933 ((isKill && Uses.count(MOReg)) || Kills.count(MOReg))) 934 // Don't want to extend other live ranges and update kills. 935 return false; 936 if (MOReg == Reg && !isKill) 937 // We can't schedule across a use of the register in question. 938 return false; 939 // Ensure that if this is register in question, its the kill we expect. 940 assert((MOReg != Reg || OtherMI == KillMI) && 941 "Found multiple kills of a register in a basic block"); 942 } 943 } 944 } 945 946 // Move debug info as well. 947 while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue()) 948 --Begin; 949 950 nmi = End; 951 MachineBasicBlock::iterator InsertPos = KillPos; 952 if (LIS) { 953 // We have to move the copies first so that the MBB is still well-formed 954 // when calling handleMove(). 955 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 956 MachineInstr *CopyMI = MBBI; 957 ++MBBI; 958 MBB->splice(InsertPos, MBB, CopyMI); 959 LIS->handleMove(*CopyMI); 960 InsertPos = CopyMI; 961 } 962 End = std::next(MachineBasicBlock::iterator(MI)); 963 } 964 965 // Copies following MI may have been moved as well. 966 MBB->splice(InsertPos, MBB, Begin, End); 967 DistanceMap.erase(DI); 968 969 // Update live variables 970 if (LIS) { 971 LIS->handleMove(*MI); 972 } else { 973 LV->removeVirtualRegisterKilled(Reg, KillMI); 974 LV->addVirtualRegisterKilled(Reg, MI); 975 } 976 977 DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 978 return true; 979 } 980 981 /// Return true if the re-scheduling will put the given instruction too close 982 /// to the defs of its register dependencies. 983 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 984 MachineInstr *MI) { 985 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 986 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 987 continue; 988 if (&DefMI == MI) 989 return true; // MI is defining something KillMI uses 990 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 991 if (DDI == DistanceMap.end()) 992 return true; // Below MI 993 unsigned DefDist = DDI->second; 994 assert(Dist > DefDist && "Visited def already?"); 995 if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist)) 996 return true; 997 } 998 return false; 999 } 1000 1001 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 1002 /// consider moving the kill instruction above the current two-address 1003 /// instruction in order to eliminate the need for the copy. 1004 bool TwoAddressInstructionPass:: 1005 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 1006 MachineBasicBlock::iterator &nmi, 1007 unsigned Reg) { 1008 // Bail immediately if we don't have LV or LIS available. We use them to find 1009 // kills efficiently. 1010 if (!LV && !LIS) 1011 return false; 1012 1013 MachineInstr *MI = &*mi; 1014 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1015 if (DI == DistanceMap.end()) 1016 // Must be created from unfolded load. Don't waste time trying this. 1017 return false; 1018 1019 MachineInstr *KillMI = nullptr; 1020 if (LIS) { 1021 LiveInterval &LI = LIS->getInterval(Reg); 1022 assert(LI.end() != LI.begin() && 1023 "Reg should not have empty live interval."); 1024 1025 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1026 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1027 if (I != LI.end() && I->start < MBBEndIdx) 1028 return false; 1029 1030 --I; 1031 KillMI = LIS->getInstructionFromIndex(I->end); 1032 } else { 1033 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1034 } 1035 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1036 // Don't mess with copies, they may be coalesced later. 1037 return false; 1038 1039 unsigned DstReg; 1040 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1041 return false; 1042 1043 bool SeenStore = true; 1044 if (!KillMI->isSafeToMove(AA, SeenStore)) 1045 return false; 1046 1047 SmallSet<unsigned, 2> Uses; 1048 SmallSet<unsigned, 2> Kills; 1049 SmallSet<unsigned, 2> Defs; 1050 SmallSet<unsigned, 2> LiveDefs; 1051 for (const MachineOperand &MO : KillMI->operands()) { 1052 if (!MO.isReg()) 1053 continue; 1054 unsigned MOReg = MO.getReg(); 1055 if (MO.isUse()) { 1056 if (!MOReg) 1057 continue; 1058 if (isDefTooClose(MOReg, DI->second, MI)) 1059 return false; 1060 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1061 if (MOReg == Reg && !isKill) 1062 return false; 1063 Uses.insert(MOReg); 1064 if (isKill && MOReg != Reg) 1065 Kills.insert(MOReg); 1066 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1067 Defs.insert(MOReg); 1068 if (!MO.isDead()) 1069 LiveDefs.insert(MOReg); 1070 } 1071 } 1072 1073 // Check if the reschedule will not break depedencies. 1074 unsigned NumVisited = 0; 1075 MachineBasicBlock::iterator KillPos = KillMI; 1076 for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) { 1077 MachineInstr *OtherMI = I; 1078 // DBG_VALUE cannot be counted against the limit. 1079 if (OtherMI->isDebugValue()) 1080 continue; 1081 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1082 return false; 1083 ++NumVisited; 1084 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 1085 OtherMI->isBranch() || OtherMI->isTerminator()) 1086 // Don't move pass calls, etc. 1087 return false; 1088 SmallVector<unsigned, 2> OtherDefs; 1089 for (const MachineOperand &MO : OtherMI->operands()) { 1090 if (!MO.isReg()) 1091 continue; 1092 unsigned MOReg = MO.getReg(); 1093 if (!MOReg) 1094 continue; 1095 if (MO.isUse()) { 1096 if (Defs.count(MOReg)) 1097 // Moving KillMI can clobber the physical register if the def has 1098 // not been seen. 1099 return false; 1100 if (Kills.count(MOReg)) 1101 // Don't want to extend other live ranges and update kills. 1102 return false; 1103 if (OtherMI != MI && MOReg == Reg && 1104 !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)))) 1105 // We can't schedule across a use of the register in question. 1106 return false; 1107 } else { 1108 OtherDefs.push_back(MOReg); 1109 } 1110 } 1111 1112 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1113 unsigned MOReg = OtherDefs[i]; 1114 if (Uses.count(MOReg)) 1115 return false; 1116 if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 1117 LiveDefs.count(MOReg)) 1118 return false; 1119 // Physical register def is seen. 1120 Defs.erase(MOReg); 1121 } 1122 } 1123 1124 // Move the old kill above MI, don't forget to move debug info as well. 1125 MachineBasicBlock::iterator InsertPos = mi; 1126 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue()) 1127 --InsertPos; 1128 MachineBasicBlock::iterator From = KillMI; 1129 MachineBasicBlock::iterator To = std::next(From); 1130 while (std::prev(From)->isDebugValue()) 1131 --From; 1132 MBB->splice(InsertPos, MBB, From, To); 1133 1134 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1135 DistanceMap.erase(DI); 1136 1137 // Update live variables 1138 if (LIS) { 1139 LIS->handleMove(*KillMI); 1140 } else { 1141 LV->removeVirtualRegisterKilled(Reg, KillMI); 1142 LV->addVirtualRegisterKilled(Reg, MI); 1143 } 1144 1145 DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1146 return true; 1147 } 1148 1149 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1150 /// given machine instruction to improve opportunities for coalescing and 1151 /// elimination of a register to register copy. 1152 /// 1153 /// 'DstOpIdx' specifies the index of MI def operand. 1154 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1155 /// operand is killed by the given instruction. 1156 /// The 'Dist' arguments provides the distance of MI from the start of the 1157 /// current basic block and it is used to determine if it is profitable 1158 /// to commute operands in the instruction. 1159 /// 1160 /// Returns true if the transformation happened. Otherwise, returns false. 1161 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1162 unsigned DstOpIdx, 1163 unsigned BaseOpIdx, 1164 bool BaseOpKilled, 1165 unsigned Dist) { 1166 unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1167 unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1168 unsigned OpsNum = MI->getDesc().getNumOperands(); 1169 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1170 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1171 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1172 // and OtherOpIdx are commutable, it does not really search for 1173 // other commutable operands and does not change the values of passed 1174 // variables. 1175 if (OtherOpIdx == BaseOpIdx || 1176 !TII->findCommutedOpIndices(MI, BaseOpIdx, OtherOpIdx)) 1177 continue; 1178 1179 unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1180 bool AggressiveCommute = false; 1181 1182 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1183 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1184 bool DoCommute = 1185 !BaseOpKilled && isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1186 1187 if (!DoCommute && 1188 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1189 DoCommute = true; 1190 AggressiveCommute = true; 1191 } 1192 1193 // If it's profitable to commute, try to do so. 1194 if (DoCommute && commuteInstruction(MI, BaseOpIdx, OtherOpIdx, Dist)) { 1195 ++NumCommuted; 1196 if (AggressiveCommute) 1197 ++NumAggrCommuted; 1198 return true; 1199 } 1200 } 1201 return false; 1202 } 1203 1204 /// For the case where an instruction has a single pair of tied register 1205 /// operands, attempt some transformations that may either eliminate the tied 1206 /// operands or improve the opportunities for coalescing away the register copy. 1207 /// Returns true if no copy needs to be inserted to untie mi's operands 1208 /// (either because they were untied, or because mi was rescheduled, and will 1209 /// be visited again later). If the shouldOnlyCommute flag is true, only 1210 /// instruction commutation is attempted. 1211 bool TwoAddressInstructionPass:: 1212 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1213 MachineBasicBlock::iterator &nmi, 1214 unsigned SrcIdx, unsigned DstIdx, 1215 unsigned Dist, bool shouldOnlyCommute) { 1216 if (OptLevel == CodeGenOpt::None) 1217 return false; 1218 1219 MachineInstr &MI = *mi; 1220 unsigned regA = MI.getOperand(DstIdx).getReg(); 1221 unsigned regB = MI.getOperand(SrcIdx).getReg(); 1222 1223 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1224 "cannot make instruction into two-address form"); 1225 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1226 1227 if (TargetRegisterInfo::isVirtualRegister(regA)) 1228 scanUses(regA); 1229 1230 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1231 1232 // If the instruction is convertible to 3 Addr, instead 1233 // of returning try 3 Addr transformation aggresively and 1234 // use this variable to check later. Because it might be better. 1235 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1236 // instead of the following code. 1237 // addl %esi, %edi 1238 // movl %edi, %eax 1239 // ret 1240 if (Commuted && !MI.isConvertibleTo3Addr()) 1241 return false; 1242 1243 if (shouldOnlyCommute) 1244 return false; 1245 1246 // If there is one more use of regB later in the same MBB, consider 1247 // re-schedule this MI below it. 1248 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1249 ++NumReSchedDowns; 1250 return true; 1251 } 1252 1253 // If we commuted, regB may have changed so we should re-sample it to avoid 1254 // confusing the three address conversion below. 1255 if (Commuted) { 1256 regB = MI.getOperand(SrcIdx).getReg(); 1257 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1258 } 1259 1260 if (MI.isConvertibleTo3Addr()) { 1261 // This instruction is potentially convertible to a true 1262 // three-address instruction. Check if it is profitable. 1263 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1264 // Try to convert it. 1265 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1266 ++NumConvertedTo3Addr; 1267 return true; // Done with this instruction. 1268 } 1269 } 1270 } 1271 1272 // Return if it is commuted but 3 addr conversion is failed. 1273 if (Commuted) 1274 return false; 1275 1276 // If there is one more use of regB later in the same MBB, consider 1277 // re-schedule it before this MI if it's legal. 1278 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1279 ++NumReSchedUps; 1280 return true; 1281 } 1282 1283 // If this is an instruction with a load folded into it, try unfolding 1284 // the load, e.g. avoid this: 1285 // movq %rdx, %rcx 1286 // addq (%rax), %rcx 1287 // in favor of this: 1288 // movq (%rax), %rcx 1289 // addq %rdx, %rcx 1290 // because it's preferable to schedule a load than a register copy. 1291 if (MI.mayLoad() && !regBKilled) { 1292 // Determine if a load can be unfolded. 1293 unsigned LoadRegIndex; 1294 unsigned NewOpc = 1295 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1296 /*UnfoldLoad=*/true, 1297 /*UnfoldStore=*/false, 1298 &LoadRegIndex); 1299 if (NewOpc != 0) { 1300 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1301 if (UnfoldMCID.getNumDefs() == 1) { 1302 // Unfold the load. 1303 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1304 const TargetRegisterClass *RC = 1305 TRI->getAllocatableClass( 1306 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1307 unsigned Reg = MRI->createVirtualRegister(RC); 1308 SmallVector<MachineInstr *, 2> NewMIs; 1309 if (!TII->unfoldMemoryOperand(*MF, &MI, Reg, 1310 /*UnfoldLoad=*/true,/*UnfoldStore=*/false, 1311 NewMIs)) { 1312 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1313 return false; 1314 } 1315 assert(NewMIs.size() == 2 && 1316 "Unfolded a load into multiple instructions!"); 1317 // The load was previously folded, so this is the only use. 1318 NewMIs[1]->addRegisterKilled(Reg, TRI); 1319 1320 // Tentatively insert the instructions into the block so that they 1321 // look "normal" to the transformation logic. 1322 MBB->insert(mi, NewMIs[0]); 1323 MBB->insert(mi, NewMIs[1]); 1324 1325 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1326 << "2addr: NEW INST: " << *NewMIs[1]); 1327 1328 // Transform the instruction, now that it no longer has a load. 1329 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1330 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1331 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1332 bool TransformResult = 1333 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1334 (void)TransformResult; 1335 assert(!TransformResult && 1336 "tryInstructionTransform() should return false."); 1337 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1338 // Success, or at least we made an improvement. Keep the unfolded 1339 // instructions and discard the original. 1340 if (LV) { 1341 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1342 MachineOperand &MO = MI.getOperand(i); 1343 if (MO.isReg() && 1344 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 1345 if (MO.isUse()) { 1346 if (MO.isKill()) { 1347 if (NewMIs[0]->killsRegister(MO.getReg())) 1348 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]); 1349 else { 1350 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1351 "Kill missing after load unfold!"); 1352 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]); 1353 } 1354 } 1355 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) { 1356 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1357 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]); 1358 else { 1359 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1360 "Dead flag missing after load unfold!"); 1361 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]); 1362 } 1363 } 1364 } 1365 } 1366 LV->addVirtualRegisterKilled(Reg, NewMIs[1]); 1367 } 1368 1369 SmallVector<unsigned, 4> OrigRegs; 1370 if (LIS) { 1371 for (const MachineOperand &MO : MI.operands()) { 1372 if (MO.isReg()) 1373 OrigRegs.push_back(MO.getReg()); 1374 } 1375 } 1376 1377 MI.eraseFromParent(); 1378 1379 // Update LiveIntervals. 1380 if (LIS) { 1381 MachineBasicBlock::iterator Begin(NewMIs[0]); 1382 MachineBasicBlock::iterator End(NewMIs[1]); 1383 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1384 } 1385 1386 mi = NewMIs[1]; 1387 } else { 1388 // Transforming didn't eliminate the tie and didn't lead to an 1389 // improvement. Clean up the unfolded instructions and keep the 1390 // original. 1391 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1392 NewMIs[0]->eraseFromParent(); 1393 NewMIs[1]->eraseFromParent(); 1394 } 1395 } 1396 } 1397 } 1398 1399 return false; 1400 } 1401 1402 // Collect tied operands of MI that need to be handled. 1403 // Rewrite trivial cases immediately. 1404 // Return true if any tied operands where found, including the trivial ones. 1405 bool TwoAddressInstructionPass:: 1406 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1407 const MCInstrDesc &MCID = MI->getDesc(); 1408 bool AnyOps = false; 1409 unsigned NumOps = MI->getNumOperands(); 1410 1411 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1412 unsigned DstIdx = 0; 1413 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1414 continue; 1415 AnyOps = true; 1416 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1417 MachineOperand &DstMO = MI->getOperand(DstIdx); 1418 unsigned SrcReg = SrcMO.getReg(); 1419 unsigned DstReg = DstMO.getReg(); 1420 // Tied constraint already satisfied? 1421 if (SrcReg == DstReg) 1422 continue; 1423 1424 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1425 1426 // Deal with <undef> uses immediately - simply rewrite the src operand. 1427 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1428 // Constrain the DstReg register class if required. 1429 if (TargetRegisterInfo::isVirtualRegister(DstReg)) 1430 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1431 TRI, *MF)) 1432 MRI->constrainRegClass(DstReg, RC); 1433 SrcMO.setReg(DstReg); 1434 SrcMO.setSubReg(0); 1435 DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1436 continue; 1437 } 1438 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1439 } 1440 return AnyOps; 1441 } 1442 1443 // Process a list of tied MI operands that all use the same source register. 1444 // The tied pairs are of the form (SrcIdx, DstIdx). 1445 void 1446 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1447 TiedPairList &TiedPairs, 1448 unsigned &Dist) { 1449 bool IsEarlyClobber = false; 1450 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1451 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1452 IsEarlyClobber |= DstMO.isEarlyClobber(); 1453 } 1454 1455 bool RemovedKillFlag = false; 1456 bool AllUsesCopied = true; 1457 unsigned LastCopiedReg = 0; 1458 SlotIndex LastCopyIdx; 1459 unsigned RegB = 0; 1460 unsigned SubRegB = 0; 1461 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1462 unsigned SrcIdx = TiedPairs[tpi].first; 1463 unsigned DstIdx = TiedPairs[tpi].second; 1464 1465 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1466 unsigned RegA = DstMO.getReg(); 1467 1468 // Grab RegB from the instruction because it may have changed if the 1469 // instruction was commuted. 1470 RegB = MI->getOperand(SrcIdx).getReg(); 1471 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1472 1473 if (RegA == RegB) { 1474 // The register is tied to multiple destinations (or else we would 1475 // not have continued this far), but this use of the register 1476 // already matches the tied destination. Leave it. 1477 AllUsesCopied = false; 1478 continue; 1479 } 1480 LastCopiedReg = RegA; 1481 1482 assert(TargetRegisterInfo::isVirtualRegister(RegB) && 1483 "cannot make instruction into two-address form"); 1484 1485 #ifndef NDEBUG 1486 // First, verify that we don't have a use of "a" in the instruction 1487 // (a = b + a for example) because our transformation will not 1488 // work. This should never occur because we are in SSA form. 1489 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1490 assert(i == DstIdx || 1491 !MI->getOperand(i).isReg() || 1492 MI->getOperand(i).getReg() != RegA); 1493 #endif 1494 1495 // Emit a copy. 1496 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1497 TII->get(TargetOpcode::COPY), RegA); 1498 // If this operand is folding a truncation, the truncation now moves to the 1499 // copy so that the register classes remain valid for the operands. 1500 MIB.addReg(RegB, 0, SubRegB); 1501 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1502 if (SubRegB) { 1503 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1504 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1505 SubRegB) && 1506 "tied subregister must be a truncation"); 1507 // The superreg class will not be used to constrain the subreg class. 1508 RC = nullptr; 1509 } 1510 else { 1511 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1512 && "tied subregister must be a truncation"); 1513 } 1514 } 1515 1516 // Update DistanceMap. 1517 MachineBasicBlock::iterator PrevMI = MI; 1518 --PrevMI; 1519 DistanceMap.insert(std::make_pair(PrevMI, Dist)); 1520 DistanceMap[MI] = ++Dist; 1521 1522 if (LIS) { 1523 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1524 1525 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1526 LiveInterval &LI = LIS->getInterval(RegA); 1527 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1528 SlotIndex endIdx = 1529 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1530 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1531 } 1532 } 1533 1534 DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1535 1536 MachineOperand &MO = MI->getOperand(SrcIdx); 1537 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1538 "inconsistent operand info for 2-reg pass"); 1539 if (MO.isKill()) { 1540 MO.setIsKill(false); 1541 RemovedKillFlag = true; 1542 } 1543 1544 // Make sure regA is a legal regclass for the SrcIdx operand. 1545 if (TargetRegisterInfo::isVirtualRegister(RegA) && 1546 TargetRegisterInfo::isVirtualRegister(RegB)) 1547 MRI->constrainRegClass(RegA, RC); 1548 MO.setReg(RegA); 1549 // The getMatchingSuper asserts guarantee that the register class projected 1550 // by SubRegB is compatible with RegA with no subregister. So regardless of 1551 // whether the dest oper writes a subreg, the source oper should not. 1552 MO.setSubReg(0); 1553 1554 // Propagate SrcRegMap. 1555 SrcRegMap[RegA] = RegB; 1556 } 1557 1558 if (AllUsesCopied) { 1559 if (!IsEarlyClobber) { 1560 // Replace other (un-tied) uses of regB with LastCopiedReg. 1561 for (MachineOperand &MO : MI->operands()) { 1562 if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB && 1563 MO.isUse()) { 1564 if (MO.isKill()) { 1565 MO.setIsKill(false); 1566 RemovedKillFlag = true; 1567 } 1568 MO.setReg(LastCopiedReg); 1569 MO.setSubReg(0); 1570 } 1571 } 1572 } 1573 1574 // Update live variables for regB. 1575 if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) { 1576 MachineBasicBlock::iterator PrevMI = MI; 1577 --PrevMI; 1578 LV->addVirtualRegisterKilled(RegB, PrevMI); 1579 } 1580 1581 // Update LiveIntervals. 1582 if (LIS) { 1583 LiveInterval &LI = LIS->getInterval(RegB); 1584 SlotIndex MIIdx = LIS->getInstructionIndex(*MI); 1585 LiveInterval::const_iterator I = LI.find(MIIdx); 1586 assert(I != LI.end() && "RegB must be live-in to use."); 1587 1588 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1589 if (I->end == UseIdx) 1590 LI.removeSegment(LastCopyIdx, UseIdx); 1591 } 1592 1593 } else if (RemovedKillFlag) { 1594 // Some tied uses of regB matched their destination registers, so 1595 // regB is still used in this instruction, but a kill flag was 1596 // removed from a different tied use of regB, so now we need to add 1597 // a kill flag to one of the remaining uses of regB. 1598 for (MachineOperand &MO : MI->operands()) { 1599 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1600 MO.setIsKill(true); 1601 break; 1602 } 1603 } 1604 } 1605 } 1606 1607 /// Reduce two-address instructions to two operands. 1608 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1609 MF = &Func; 1610 const TargetMachine &TM = MF->getTarget(); 1611 MRI = &MF->getRegInfo(); 1612 TII = MF->getSubtarget().getInstrInfo(); 1613 TRI = MF->getSubtarget().getRegisterInfo(); 1614 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1615 LV = getAnalysisIfAvailable<LiveVariables>(); 1616 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1617 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1618 OptLevel = TM.getOptLevel(); 1619 1620 bool MadeChange = false; 1621 1622 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1623 DEBUG(dbgs() << "********** Function: " 1624 << MF->getName() << '\n'); 1625 1626 // This pass takes the function out of SSA form. 1627 MRI->leaveSSA(); 1628 1629 TiedOperandMap TiedOperands; 1630 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1631 MBBI != MBBE; ++MBBI) { 1632 MBB = &*MBBI; 1633 unsigned Dist = 0; 1634 DistanceMap.clear(); 1635 SrcRegMap.clear(); 1636 DstRegMap.clear(); 1637 Processed.clear(); 1638 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1639 mi != me; ) { 1640 MachineBasicBlock::iterator nmi = std::next(mi); 1641 if (mi->isDebugValue()) { 1642 mi = nmi; 1643 continue; 1644 } 1645 1646 // Expand REG_SEQUENCE instructions. This will position mi at the first 1647 // expanded instruction. 1648 if (mi->isRegSequence()) 1649 eliminateRegSequence(mi); 1650 1651 DistanceMap.insert(std::make_pair(mi, ++Dist)); 1652 1653 processCopy(&*mi); 1654 1655 // First scan through all the tied register uses in this instruction 1656 // and record a list of pairs of tied operands for each register. 1657 if (!collectTiedOperands(mi, TiedOperands)) { 1658 mi = nmi; 1659 continue; 1660 } 1661 1662 ++NumTwoAddressInstrs; 1663 MadeChange = true; 1664 DEBUG(dbgs() << '\t' << *mi); 1665 1666 // If the instruction has a single pair of tied operands, try some 1667 // transformations that may either eliminate the tied operands or 1668 // improve the opportunities for coalescing away the register copy. 1669 if (TiedOperands.size() == 1) { 1670 SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs 1671 = TiedOperands.begin()->second; 1672 if (TiedPairs.size() == 1) { 1673 unsigned SrcIdx = TiedPairs[0].first; 1674 unsigned DstIdx = TiedPairs[0].second; 1675 unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); 1676 unsigned DstReg = mi->getOperand(DstIdx).getReg(); 1677 if (SrcReg != DstReg && 1678 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1679 // The tied operands have been eliminated or shifted further down 1680 // the block to ease elimination. Continue processing with 'nmi'. 1681 TiedOperands.clear(); 1682 mi = nmi; 1683 continue; 1684 } 1685 } 1686 } 1687 1688 // Now iterate over the information collected above. 1689 for (auto &TO : TiedOperands) { 1690 processTiedPairs(mi, TO.second, Dist); 1691 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1692 } 1693 1694 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1695 if (mi->isInsertSubreg()) { 1696 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1697 // To %reg:subidx = COPY %subreg 1698 unsigned SubIdx = mi->getOperand(3).getImm(); 1699 mi->RemoveOperand(3); 1700 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1701 mi->getOperand(0).setSubReg(SubIdx); 1702 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1703 mi->RemoveOperand(1); 1704 mi->setDesc(TII->get(TargetOpcode::COPY)); 1705 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1706 } 1707 1708 // Clear TiedOperands here instead of at the top of the loop 1709 // since most instructions do not have tied operands. 1710 TiedOperands.clear(); 1711 mi = nmi; 1712 } 1713 } 1714 1715 if (LIS) 1716 MF->verify(this, "After two-address instruction pass"); 1717 1718 return MadeChange; 1719 } 1720 1721 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1722 /// 1723 /// The instruction is turned into a sequence of sub-register copies: 1724 /// 1725 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1726 /// 1727 /// Becomes: 1728 /// 1729 /// %dst:ssub0<def,undef> = COPY %v1 1730 /// %dst:ssub1<def> = COPY %v2 1731 /// 1732 void TwoAddressInstructionPass:: 1733 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1734 MachineInstr *MI = MBBI; 1735 unsigned DstReg = MI->getOperand(0).getReg(); 1736 if (MI->getOperand(0).getSubReg() || 1737 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1738 !(MI->getNumOperands() & 1)) { 1739 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); 1740 llvm_unreachable(nullptr); 1741 } 1742 1743 SmallVector<unsigned, 4> OrigRegs; 1744 if (LIS) { 1745 OrigRegs.push_back(MI->getOperand(0).getReg()); 1746 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) 1747 OrigRegs.push_back(MI->getOperand(i).getReg()); 1748 } 1749 1750 bool DefEmitted = false; 1751 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 1752 MachineOperand &UseMO = MI->getOperand(i); 1753 unsigned SrcReg = UseMO.getReg(); 1754 unsigned SubIdx = MI->getOperand(i+1).getImm(); 1755 // Nothing needs to be inserted for <undef> operands. 1756 if (UseMO.isUndef()) 1757 continue; 1758 1759 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1760 // might insert a COPY that uses SrcReg after is was killed. 1761 bool isKill = UseMO.isKill(); 1762 if (isKill) 1763 for (unsigned j = i + 2; j < e; j += 2) 1764 if (MI->getOperand(j).getReg() == SrcReg) { 1765 MI->getOperand(j).setIsKill(); 1766 UseMO.setIsKill(false); 1767 isKill = false; 1768 break; 1769 } 1770 1771 // Insert the sub-register copy. 1772 MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1773 TII->get(TargetOpcode::COPY)) 1774 .addReg(DstReg, RegState::Define, SubIdx) 1775 .addOperand(UseMO); 1776 1777 // The first def needs an <undef> flag because there is no live register 1778 // before it. 1779 if (!DefEmitted) { 1780 CopyMI->getOperand(0).setIsUndef(true); 1781 // Return an iterator pointing to the first inserted instr. 1782 MBBI = CopyMI; 1783 } 1784 DefEmitted = true; 1785 1786 // Update LiveVariables' kill info. 1787 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1788 LV->replaceKillInstruction(SrcReg, MI, CopyMI); 1789 1790 DEBUG(dbgs() << "Inserted: " << *CopyMI); 1791 } 1792 1793 MachineBasicBlock::iterator EndMBBI = 1794 std::next(MachineBasicBlock::iterator(MI)); 1795 1796 if (!DefEmitted) { 1797 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF"); 1798 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1799 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j) 1800 MI->RemoveOperand(j); 1801 } else { 1802 DEBUG(dbgs() << "Eliminated: " << *MI); 1803 MI->eraseFromParent(); 1804 } 1805 1806 // Udpate LiveIntervals. 1807 if (LIS) 1808 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1809 } 1810