1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/ADT/BitVector.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallSet.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/MC/MCInstrItineraries.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetRegisterInfo.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 using namespace llvm; 53 54 #define DEBUG_TYPE "twoaddrinstr" 55 56 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 57 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 58 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 59 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 60 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 61 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 62 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 63 64 // Temporary flag to disable rescheduling. 65 static cl::opt<bool> 66 EnableRescheduling("twoaddr-reschedule", 67 cl::desc("Coalesce copies by rescheduling (default=true)"), 68 cl::init(true), cl::Hidden); 69 70 namespace { 71 class TwoAddressInstructionPass : public MachineFunctionPass { 72 MachineFunction *MF; 73 const TargetInstrInfo *TII; 74 const TargetRegisterInfo *TRI; 75 const InstrItineraryData *InstrItins; 76 MachineRegisterInfo *MRI; 77 LiveVariables *LV; 78 LiveIntervals *LIS; 79 AliasAnalysis *AA; 80 CodeGenOpt::Level OptLevel; 81 82 // The current basic block being processed. 83 MachineBasicBlock *MBB; 84 85 // DistanceMap - Keep track the distance of a MI from the start of the 86 // current basic block. 87 DenseMap<MachineInstr*, unsigned> DistanceMap; 88 89 // Set of already processed instructions in the current block. 90 SmallPtrSet<MachineInstr*, 8> Processed; 91 92 // SrcRegMap - A map from virtual registers to physical registers which are 93 // likely targets to be coalesced to due to copies from physical registers to 94 // virtual registers. e.g. v1024 = move r0. 95 DenseMap<unsigned, unsigned> SrcRegMap; 96 97 // DstRegMap - A map from virtual registers to physical registers which are 98 // likely targets to be coalesced to due to copies to physical registers from 99 // virtual registers. e.g. r1 = move v1024. 100 DenseMap<unsigned, unsigned> DstRegMap; 101 102 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, 103 MachineBasicBlock::iterator OldPos); 104 105 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 106 107 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 108 MachineInstr *MI, unsigned Dist); 109 110 bool commuteInstruction(MachineBasicBlock::iterator &mi, 111 unsigned RegB, unsigned RegC, unsigned Dist); 112 113 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 114 115 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 116 MachineBasicBlock::iterator &nmi, 117 unsigned RegA, unsigned RegB, unsigned Dist); 118 119 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 120 121 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 122 MachineBasicBlock::iterator &nmi, 123 unsigned Reg); 124 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 125 MachineBasicBlock::iterator &nmi, 126 unsigned Reg); 127 128 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 129 MachineBasicBlock::iterator &nmi, 130 unsigned SrcIdx, unsigned DstIdx, 131 unsigned Dist, bool shouldOnlyCommute); 132 133 void scanUses(unsigned DstReg); 134 135 void processCopy(MachineInstr *MI); 136 137 typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList; 138 typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap; 139 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 140 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 141 void eliminateRegSequence(MachineBasicBlock::iterator&); 142 143 public: 144 static char ID; // Pass identification, replacement for typeid 145 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 146 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 147 } 148 149 void getAnalysisUsage(AnalysisUsage &AU) const override { 150 AU.setPreservesCFG(); 151 AU.addRequired<AliasAnalysis>(); 152 AU.addPreserved<LiveVariables>(); 153 AU.addPreserved<SlotIndexes>(); 154 AU.addPreserved<LiveIntervals>(); 155 AU.addPreservedID(MachineLoopInfoID); 156 AU.addPreservedID(MachineDominatorsID); 157 MachineFunctionPass::getAnalysisUsage(AU); 158 } 159 160 /// runOnMachineFunction - Pass entry point. 161 bool runOnMachineFunction(MachineFunction&) override; 162 }; 163 } // end anonymous namespace 164 165 char TwoAddressInstructionPass::ID = 0; 166 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction", 167 "Two-Address instruction pass", false, false) 168 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 169 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction", 170 "Two-Address instruction pass", false, false) 171 172 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 173 174 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 175 176 /// sink3AddrInstruction - A two-address instruction has been converted to a 177 /// three-address instruction to avoid clobbering a register. Try to sink it 178 /// past the instruction that would kill the above mentioned register to reduce 179 /// register pressure. 180 bool TwoAddressInstructionPass:: 181 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, 182 MachineBasicBlock::iterator OldPos) { 183 // FIXME: Shouldn't we be trying to do this before we three-addressify the 184 // instruction? After this transformation is done, we no longer need 185 // the instruction to be in three-address form. 186 187 // Check if it's safe to move this instruction. 188 bool SeenStore = true; // Be conservative. 189 if (!MI->isSafeToMove(TII, AA, SeenStore)) 190 return false; 191 192 unsigned DefReg = 0; 193 SmallSet<unsigned, 4> UseRegs; 194 195 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 196 const MachineOperand &MO = MI->getOperand(i); 197 if (!MO.isReg()) 198 continue; 199 unsigned MOReg = MO.getReg(); 200 if (!MOReg) 201 continue; 202 if (MO.isUse() && MOReg != SavedReg) 203 UseRegs.insert(MO.getReg()); 204 if (!MO.isDef()) 205 continue; 206 if (MO.isImplicit()) 207 // Don't try to move it if it implicitly defines a register. 208 return false; 209 if (DefReg) 210 // For now, don't move any instructions that define multiple registers. 211 return false; 212 DefReg = MO.getReg(); 213 } 214 215 // Find the instruction that kills SavedReg. 216 MachineInstr *KillMI = nullptr; 217 if (LIS) { 218 LiveInterval &LI = LIS->getInterval(SavedReg); 219 assert(LI.end() != LI.begin() && 220 "Reg should not have empty live interval."); 221 222 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 223 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 224 if (I != LI.end() && I->start < MBBEndIdx) 225 return false; 226 227 --I; 228 KillMI = LIS->getInstructionFromIndex(I->end); 229 } 230 if (!KillMI) { 231 for (MachineRegisterInfo::use_nodbg_iterator 232 UI = MRI->use_nodbg_begin(SavedReg), 233 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 234 MachineOperand &UseMO = *UI; 235 if (!UseMO.isKill()) 236 continue; 237 KillMI = UseMO.getParent(); 238 break; 239 } 240 } 241 242 // If we find the instruction that kills SavedReg, and it is in an 243 // appropriate location, we can try to sink the current instruction 244 // past it. 245 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 246 KillMI == OldPos || KillMI->isTerminator()) 247 return false; 248 249 // If any of the definitions are used by another instruction between the 250 // position and the kill use, then it's not safe to sink it. 251 // 252 // FIXME: This can be sped up if there is an easy way to query whether an 253 // instruction is before or after another instruction. Then we can use 254 // MachineRegisterInfo def / use instead. 255 MachineOperand *KillMO = nullptr; 256 MachineBasicBlock::iterator KillPos = KillMI; 257 ++KillPos; 258 259 unsigned NumVisited = 0; 260 for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) { 261 MachineInstr *OtherMI = I; 262 // DBG_VALUE cannot be counted against the limit. 263 if (OtherMI->isDebugValue()) 264 continue; 265 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 266 return false; 267 ++NumVisited; 268 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 269 MachineOperand &MO = OtherMI->getOperand(i); 270 if (!MO.isReg()) 271 continue; 272 unsigned MOReg = MO.getReg(); 273 if (!MOReg) 274 continue; 275 if (DefReg == MOReg) 276 return false; 277 278 if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) { 279 if (OtherMI == KillMI && MOReg == SavedReg) 280 // Save the operand that kills the register. We want to unset the kill 281 // marker if we can sink MI past it. 282 KillMO = &MO; 283 else if (UseRegs.count(MOReg)) 284 // One of the uses is killed before the destination. 285 return false; 286 } 287 } 288 } 289 assert(KillMO && "Didn't find kill"); 290 291 if (!LIS) { 292 // Update kill and LV information. 293 KillMO->setIsKill(false); 294 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 295 KillMO->setIsKill(true); 296 297 if (LV) 298 LV->replaceKillInstruction(SavedReg, KillMI, MI); 299 } 300 301 // Move instruction to its destination. 302 MBB->remove(MI); 303 MBB->insert(KillPos, MI); 304 305 if (LIS) 306 LIS->handleMove(MI); 307 308 ++Num3AddrSunk; 309 return true; 310 } 311 312 /// noUseAfterLastDef - Return true if there are no intervening uses between the 313 /// last instruction in the MBB that defines the specified register and the 314 /// two-address instruction which is being processed. It also returns the last 315 /// def location by reference 316 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 317 unsigned &LastDef) { 318 LastDef = 0; 319 unsigned LastUse = Dist; 320 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 321 MachineInstr *MI = MO.getParent(); 322 if (MI->getParent() != MBB || MI->isDebugValue()) 323 continue; 324 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 325 if (DI == DistanceMap.end()) 326 continue; 327 if (MO.isUse() && DI->second < LastUse) 328 LastUse = DI->second; 329 if (MO.isDef() && DI->second > LastDef) 330 LastDef = DI->second; 331 } 332 333 return !(LastUse > LastDef && LastUse < Dist); 334 } 335 336 /// isCopyToReg - Return true if the specified MI is a copy instruction or 337 /// a extract_subreg instruction. It also returns the source and destination 338 /// registers and whether they are physical registers by reference. 339 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 340 unsigned &SrcReg, unsigned &DstReg, 341 bool &IsSrcPhys, bool &IsDstPhys) { 342 SrcReg = 0; 343 DstReg = 0; 344 if (MI.isCopy()) { 345 DstReg = MI.getOperand(0).getReg(); 346 SrcReg = MI.getOperand(1).getReg(); 347 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 348 DstReg = MI.getOperand(0).getReg(); 349 SrcReg = MI.getOperand(2).getReg(); 350 } else 351 return false; 352 353 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 354 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 355 return true; 356 } 357 358 /// isPLainlyKilled - Test if the given register value, which is used by the 359 // given instruction, is killed by the given instruction. 360 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 361 LiveIntervals *LIS) { 362 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && 363 !LIS->isNotInMIMap(MI)) { 364 // FIXME: Sometimes tryInstructionTransform() will add instructions and 365 // test whether they can be folded before keeping them. In this case it 366 // sets a kill before recursively calling tryInstructionTransform() again. 367 // If there is no interval available, we assume that this instruction is 368 // one of those. A kill flag is manually inserted on the operand so the 369 // check below will handle it. 370 LiveInterval &LI = LIS->getInterval(Reg); 371 // This is to match the kill flag version where undefs don't have kill 372 // flags. 373 if (!LI.hasAtLeastOneValue()) 374 return false; 375 376 SlotIndex useIdx = LIS->getInstructionIndex(MI); 377 LiveInterval::const_iterator I = LI.find(useIdx); 378 assert(I != LI.end() && "Reg must be live-in to use."); 379 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 380 } 381 382 return MI->killsRegister(Reg); 383 } 384 385 /// isKilled - Test if the given register value, which is used by the given 386 /// instruction, is killed by the given instruction. This looks through 387 /// coalescable copies to see if the original value is potentially not killed. 388 /// 389 /// For example, in this code: 390 /// 391 /// %reg1034 = copy %reg1024 392 /// %reg1035 = copy %reg1025<kill> 393 /// %reg1036 = add %reg1034<kill>, %reg1035<kill> 394 /// 395 /// %reg1034 is not considered to be killed, since it is copied from a 396 /// register which is not killed. Treating it as not killed lets the 397 /// normal heuristics commute the (two-address) add, which lets 398 /// coalescing eliminate the extra copy. 399 /// 400 /// If allowFalsePositives is true then likely kills are treated as kills even 401 /// if it can't be proven that they are kills. 402 static bool isKilled(MachineInstr &MI, unsigned Reg, 403 const MachineRegisterInfo *MRI, 404 const TargetInstrInfo *TII, 405 LiveIntervals *LIS, 406 bool allowFalsePositives) { 407 MachineInstr *DefMI = &MI; 408 for (;;) { 409 // All uses of physical registers are likely to be kills. 410 if (TargetRegisterInfo::isPhysicalRegister(Reg) && 411 (allowFalsePositives || MRI->hasOneUse(Reg))) 412 return true; 413 if (!isPlainlyKilled(DefMI, Reg, LIS)) 414 return false; 415 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 416 return true; 417 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 418 // If there are multiple defs, we can't do a simple analysis, so just 419 // go with what the kill flag says. 420 if (std::next(Begin) != MRI->def_end()) 421 return true; 422 DefMI = Begin->getParent(); 423 bool IsSrcPhys, IsDstPhys; 424 unsigned SrcReg, DstReg; 425 // If the def is something other than a copy, then it isn't going to 426 // be coalesced, so follow the kill flag. 427 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 428 return true; 429 Reg = SrcReg; 430 } 431 } 432 433 /// isTwoAddrUse - Return true if the specified MI uses the specified register 434 /// as a two-address use. If so, return the destination register by reference. 435 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 436 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 437 const MachineOperand &MO = MI.getOperand(i); 438 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 439 continue; 440 unsigned ti; 441 if (MI.isRegTiedToDefOperand(i, &ti)) { 442 DstReg = MI.getOperand(ti).getReg(); 443 return true; 444 } 445 } 446 return false; 447 } 448 449 /// findOnlyInterestingUse - Given a register, if has a single in-basic block 450 /// use, return the use instruction if it's a copy or a two-address use. 451 static 452 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 453 MachineRegisterInfo *MRI, 454 const TargetInstrInfo *TII, 455 bool &IsCopy, 456 unsigned &DstReg, bool &IsDstPhys) { 457 if (!MRI->hasOneNonDBGUse(Reg)) 458 // None or more than one use. 459 return nullptr; 460 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 461 if (UseMI.getParent() != MBB) 462 return nullptr; 463 unsigned SrcReg; 464 bool IsSrcPhys; 465 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 466 IsCopy = true; 467 return &UseMI; 468 } 469 IsDstPhys = false; 470 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 471 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 472 return &UseMI; 473 } 474 return nullptr; 475 } 476 477 /// getMappedReg - Return the physical register the specified virtual register 478 /// might be mapped to. 479 static unsigned 480 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 481 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 482 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 483 if (SI == RegMap.end()) 484 return 0; 485 Reg = SI->second; 486 } 487 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 488 return Reg; 489 return 0; 490 } 491 492 /// regsAreCompatible - Return true if the two registers are equal or aliased. 493 /// 494 static bool 495 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 496 if (RegA == RegB) 497 return true; 498 if (!RegA || !RegB) 499 return false; 500 return TRI->regsOverlap(RegA, RegB); 501 } 502 503 504 /// isProfitableToCommute - Return true if it's potentially profitable to commute 505 /// the two-address instruction that's being processed. 506 bool 507 TwoAddressInstructionPass:: 508 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 509 MachineInstr *MI, unsigned Dist) { 510 if (OptLevel == CodeGenOpt::None) 511 return false; 512 513 // Determine if it's profitable to commute this two address instruction. In 514 // general, we want no uses between this instruction and the definition of 515 // the two-address register. 516 // e.g. 517 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 518 // %reg1029<def> = MOV8rr %reg1028 519 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 520 // insert => %reg1030<def> = MOV8rr %reg1028 521 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 522 // In this case, it might not be possible to coalesce the second MOV8rr 523 // instruction if the first one is coalesced. So it would be profitable to 524 // commute it: 525 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 526 // %reg1029<def> = MOV8rr %reg1028 527 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 528 // insert => %reg1030<def> = MOV8rr %reg1029 529 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 530 531 if (!isPlainlyKilled(MI, regC, LIS)) 532 return false; 533 534 // Ok, we have something like: 535 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 536 // let's see if it's worth commuting it. 537 538 // Look for situations like this: 539 // %reg1024<def> = MOV r1 540 // %reg1025<def> = MOV r0 541 // %reg1026<def> = ADD %reg1024, %reg1025 542 // r0 = MOV %reg1026 543 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 544 unsigned ToRegA = getMappedReg(regA, DstRegMap); 545 if (ToRegA) { 546 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 547 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 548 bool BComp = !FromRegB || regsAreCompatible(FromRegB, ToRegA, TRI); 549 bool CComp = !FromRegC || regsAreCompatible(FromRegC, ToRegA, TRI); 550 if (BComp != CComp) 551 return !BComp && CComp; 552 } 553 554 // If there is a use of regC between its last def (could be livein) and this 555 // instruction, then bail. 556 unsigned LastDefC = 0; 557 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 558 return false; 559 560 // If there is a use of regB between its last def (could be livein) and this 561 // instruction, then go ahead and make this transformation. 562 unsigned LastDefB = 0; 563 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 564 return true; 565 566 // Since there are no intervening uses for both registers, then commute 567 // if the def of regC is closer. Its live interval is shorter. 568 return LastDefB && LastDefC && LastDefC > LastDefB; 569 } 570 571 /// commuteInstruction - Commute a two-address instruction and update the basic 572 /// block, distance map, and live variables if needed. Return true if it is 573 /// successful. 574 bool TwoAddressInstructionPass:: 575 commuteInstruction(MachineBasicBlock::iterator &mi, 576 unsigned RegB, unsigned RegC, unsigned Dist) { 577 MachineInstr *MI = mi; 578 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 579 MachineInstr *NewMI = TII->commuteInstruction(MI); 580 581 if (NewMI == nullptr) { 582 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 583 return false; 584 } 585 586 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 587 assert(NewMI == MI && 588 "TargetInstrInfo::commuteInstruction() should not return a new " 589 "instruction unless it was requested."); 590 591 // Update source register map. 592 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 593 if (FromRegC) { 594 unsigned RegA = MI->getOperand(0).getReg(); 595 SrcRegMap[RegA] = FromRegC; 596 } 597 598 return true; 599 } 600 601 /// isProfitableToConv3Addr - Return true if it is profitable to convert the 602 /// given 2-address instruction to a 3-address one. 603 bool 604 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 605 // Look for situations like this: 606 // %reg1024<def> = MOV r1 607 // %reg1025<def> = MOV r0 608 // %reg1026<def> = ADD %reg1024, %reg1025 609 // r2 = MOV %reg1026 610 // Turn ADD into a 3-address instruction to avoid a copy. 611 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 612 if (!FromRegB) 613 return false; 614 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 615 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 616 } 617 618 /// convertInstTo3Addr - Convert the specified two-address instruction into a 619 /// three address one. Return true if this transformation was successful. 620 bool 621 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 622 MachineBasicBlock::iterator &nmi, 623 unsigned RegA, unsigned RegB, 624 unsigned Dist) { 625 // FIXME: Why does convertToThreeAddress() need an iterator reference? 626 MachineFunction::iterator MFI = MBB; 627 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV); 628 assert(MBB == MFI && "convertToThreeAddress changed iterator reference"); 629 if (!NewMI) 630 return false; 631 632 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 633 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 634 bool Sunk = false; 635 636 if (LIS) 637 LIS->ReplaceMachineInstrInMaps(mi, NewMI); 638 639 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 640 // FIXME: Temporary workaround. If the new instruction doesn't 641 // uses RegB, convertToThreeAddress must have created more 642 // then one instruction. 643 Sunk = sink3AddrInstruction(NewMI, RegB, mi); 644 645 MBB->erase(mi); // Nuke the old inst. 646 647 if (!Sunk) { 648 DistanceMap.insert(std::make_pair(NewMI, Dist)); 649 mi = NewMI; 650 nmi = std::next(mi); 651 } 652 653 // Update source and destination register maps. 654 SrcRegMap.erase(RegA); 655 DstRegMap.erase(RegB); 656 return true; 657 } 658 659 /// scanUses - Scan forward recursively for only uses, update maps if the use 660 /// is a copy or a two-address instruction. 661 void 662 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 663 SmallVector<unsigned, 4> VirtRegPairs; 664 bool IsDstPhys; 665 bool IsCopy = false; 666 unsigned NewReg = 0; 667 unsigned Reg = DstReg; 668 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 669 NewReg, IsDstPhys)) { 670 if (IsCopy && !Processed.insert(UseMI)) 671 break; 672 673 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 674 if (DI != DistanceMap.end()) 675 // Earlier in the same MBB.Reached via a back edge. 676 break; 677 678 if (IsDstPhys) { 679 VirtRegPairs.push_back(NewReg); 680 break; 681 } 682 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 683 if (!isNew) 684 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 685 VirtRegPairs.push_back(NewReg); 686 Reg = NewReg; 687 } 688 689 if (!VirtRegPairs.empty()) { 690 unsigned ToReg = VirtRegPairs.back(); 691 VirtRegPairs.pop_back(); 692 while (!VirtRegPairs.empty()) { 693 unsigned FromReg = VirtRegPairs.back(); 694 VirtRegPairs.pop_back(); 695 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 696 if (!isNew) 697 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 698 ToReg = FromReg; 699 } 700 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 701 if (!isNew) 702 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 703 } 704 } 705 706 /// processCopy - If the specified instruction is not yet processed, process it 707 /// if it's a copy. For a copy instruction, we find the physical registers the 708 /// source and destination registers might be mapped to. These are kept in 709 /// point-to maps used to determine future optimizations. e.g. 710 /// v1024 = mov r0 711 /// v1025 = mov r1 712 /// v1026 = add v1024, v1025 713 /// r1 = mov r1026 714 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 715 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 716 /// potentially joined with r1 on the output side. It's worthwhile to commute 717 /// 'add' to eliminate a copy. 718 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 719 if (Processed.count(MI)) 720 return; 721 722 bool IsSrcPhys, IsDstPhys; 723 unsigned SrcReg, DstReg; 724 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 725 return; 726 727 if (IsDstPhys && !IsSrcPhys) 728 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 729 else if (!IsDstPhys && IsSrcPhys) { 730 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 731 if (!isNew) 732 assert(SrcRegMap[DstReg] == SrcReg && 733 "Can't map to two src physical registers!"); 734 735 scanUses(DstReg); 736 } 737 738 Processed.insert(MI); 739 return; 740 } 741 742 /// rescheduleMIBelowKill - If there is one more local instruction that reads 743 /// 'Reg' and it kills 'Reg, consider moving the instruction below the kill 744 /// instruction in order to eliminate the need for the copy. 745 bool TwoAddressInstructionPass:: 746 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 747 MachineBasicBlock::iterator &nmi, 748 unsigned Reg) { 749 // Bail immediately if we don't have LV or LIS available. We use them to find 750 // kills efficiently. 751 if (!LV && !LIS) 752 return false; 753 754 MachineInstr *MI = &*mi; 755 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 756 if (DI == DistanceMap.end()) 757 // Must be created from unfolded load. Don't waste time trying this. 758 return false; 759 760 MachineInstr *KillMI = nullptr; 761 if (LIS) { 762 LiveInterval &LI = LIS->getInterval(Reg); 763 assert(LI.end() != LI.begin() && 764 "Reg should not have empty live interval."); 765 766 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 767 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 768 if (I != LI.end() && I->start < MBBEndIdx) 769 return false; 770 771 --I; 772 KillMI = LIS->getInstructionFromIndex(I->end); 773 } else { 774 KillMI = LV->getVarInfo(Reg).findKill(MBB); 775 } 776 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 777 // Don't mess with copies, they may be coalesced later. 778 return false; 779 780 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 781 KillMI->isBranch() || KillMI->isTerminator()) 782 // Don't move pass calls, etc. 783 return false; 784 785 unsigned DstReg; 786 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 787 return false; 788 789 bool SeenStore = true; 790 if (!MI->isSafeToMove(TII, AA, SeenStore)) 791 return false; 792 793 if (TII->getInstrLatency(InstrItins, MI) > 1) 794 // FIXME: Needs more sophisticated heuristics. 795 return false; 796 797 SmallSet<unsigned, 2> Uses; 798 SmallSet<unsigned, 2> Kills; 799 SmallSet<unsigned, 2> Defs; 800 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 801 const MachineOperand &MO = MI->getOperand(i); 802 if (!MO.isReg()) 803 continue; 804 unsigned MOReg = MO.getReg(); 805 if (!MOReg) 806 continue; 807 if (MO.isDef()) 808 Defs.insert(MOReg); 809 else { 810 Uses.insert(MOReg); 811 if (MOReg != Reg && (MO.isKill() || 812 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 813 Kills.insert(MOReg); 814 } 815 } 816 817 // Move the copies connected to MI down as well. 818 MachineBasicBlock::iterator Begin = MI; 819 MachineBasicBlock::iterator AfterMI = std::next(Begin); 820 821 MachineBasicBlock::iterator End = AfterMI; 822 while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) { 823 Defs.insert(End->getOperand(0).getReg()); 824 ++End; 825 } 826 827 // Check if the reschedule will not break depedencies. 828 unsigned NumVisited = 0; 829 MachineBasicBlock::iterator KillPos = KillMI; 830 ++KillPos; 831 for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) { 832 MachineInstr *OtherMI = I; 833 // DBG_VALUE cannot be counted against the limit. 834 if (OtherMI->isDebugValue()) 835 continue; 836 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 837 return false; 838 ++NumVisited; 839 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 840 OtherMI->isBranch() || OtherMI->isTerminator()) 841 // Don't move pass calls, etc. 842 return false; 843 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 844 const MachineOperand &MO = OtherMI->getOperand(i); 845 if (!MO.isReg()) 846 continue; 847 unsigned MOReg = MO.getReg(); 848 if (!MOReg) 849 continue; 850 if (MO.isDef()) { 851 if (Uses.count(MOReg)) 852 // Physical register use would be clobbered. 853 return false; 854 if (!MO.isDead() && Defs.count(MOReg)) 855 // May clobber a physical register def. 856 // FIXME: This may be too conservative. It's ok if the instruction 857 // is sunken completely below the use. 858 return false; 859 } else { 860 if (Defs.count(MOReg)) 861 return false; 862 bool isKill = MO.isKill() || 863 (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)); 864 if (MOReg != Reg && 865 ((isKill && Uses.count(MOReg)) || Kills.count(MOReg))) 866 // Don't want to extend other live ranges and update kills. 867 return false; 868 if (MOReg == Reg && !isKill) 869 // We can't schedule across a use of the register in question. 870 return false; 871 // Ensure that if this is register in question, its the kill we expect. 872 assert((MOReg != Reg || OtherMI == KillMI) && 873 "Found multiple kills of a register in a basic block"); 874 } 875 } 876 } 877 878 // Move debug info as well. 879 while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue()) 880 --Begin; 881 882 nmi = End; 883 MachineBasicBlock::iterator InsertPos = KillPos; 884 if (LIS) { 885 // We have to move the copies first so that the MBB is still well-formed 886 // when calling handleMove(). 887 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 888 MachineInstr *CopyMI = MBBI; 889 ++MBBI; 890 MBB->splice(InsertPos, MBB, CopyMI); 891 LIS->handleMove(CopyMI); 892 InsertPos = CopyMI; 893 } 894 End = std::next(MachineBasicBlock::iterator(MI)); 895 } 896 897 // Copies following MI may have been moved as well. 898 MBB->splice(InsertPos, MBB, Begin, End); 899 DistanceMap.erase(DI); 900 901 // Update live variables 902 if (LIS) { 903 LIS->handleMove(MI); 904 } else { 905 LV->removeVirtualRegisterKilled(Reg, KillMI); 906 LV->addVirtualRegisterKilled(Reg, MI); 907 } 908 909 DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 910 return true; 911 } 912 913 /// isDefTooClose - Return true if the re-scheduling will put the given 914 /// instruction too close to the defs of its register dependencies. 915 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 916 MachineInstr *MI) { 917 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 918 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 919 continue; 920 if (&DefMI == MI) 921 return true; // MI is defining something KillMI uses 922 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 923 if (DDI == DistanceMap.end()) 924 return true; // Below MI 925 unsigned DefDist = DDI->second; 926 assert(Dist > DefDist && "Visited def already?"); 927 if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist)) 928 return true; 929 } 930 return false; 931 } 932 933 /// rescheduleKillAboveMI - If there is one more local instruction that reads 934 /// 'Reg' and it kills 'Reg, consider moving the kill instruction above the 935 /// current two-address instruction in order to eliminate the need for the 936 /// copy. 937 bool TwoAddressInstructionPass:: 938 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 939 MachineBasicBlock::iterator &nmi, 940 unsigned Reg) { 941 // Bail immediately if we don't have LV or LIS available. We use them to find 942 // kills efficiently. 943 if (!LV && !LIS) 944 return false; 945 946 MachineInstr *MI = &*mi; 947 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 948 if (DI == DistanceMap.end()) 949 // Must be created from unfolded load. Don't waste time trying this. 950 return false; 951 952 MachineInstr *KillMI = nullptr; 953 if (LIS) { 954 LiveInterval &LI = LIS->getInterval(Reg); 955 assert(LI.end() != LI.begin() && 956 "Reg should not have empty live interval."); 957 958 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 959 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 960 if (I != LI.end() && I->start < MBBEndIdx) 961 return false; 962 963 --I; 964 KillMI = LIS->getInstructionFromIndex(I->end); 965 } else { 966 KillMI = LV->getVarInfo(Reg).findKill(MBB); 967 } 968 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 969 // Don't mess with copies, they may be coalesced later. 970 return false; 971 972 unsigned DstReg; 973 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 974 return false; 975 976 bool SeenStore = true; 977 if (!KillMI->isSafeToMove(TII, AA, SeenStore)) 978 return false; 979 980 SmallSet<unsigned, 2> Uses; 981 SmallSet<unsigned, 2> Kills; 982 SmallSet<unsigned, 2> Defs; 983 SmallSet<unsigned, 2> LiveDefs; 984 for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) { 985 const MachineOperand &MO = KillMI->getOperand(i); 986 if (!MO.isReg()) 987 continue; 988 unsigned MOReg = MO.getReg(); 989 if (MO.isUse()) { 990 if (!MOReg) 991 continue; 992 if (isDefTooClose(MOReg, DI->second, MI)) 993 return false; 994 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 995 if (MOReg == Reg && !isKill) 996 return false; 997 Uses.insert(MOReg); 998 if (isKill && MOReg != Reg) 999 Kills.insert(MOReg); 1000 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1001 Defs.insert(MOReg); 1002 if (!MO.isDead()) 1003 LiveDefs.insert(MOReg); 1004 } 1005 } 1006 1007 // Check if the reschedule will not break depedencies. 1008 unsigned NumVisited = 0; 1009 MachineBasicBlock::iterator KillPos = KillMI; 1010 for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) { 1011 MachineInstr *OtherMI = I; 1012 // DBG_VALUE cannot be counted against the limit. 1013 if (OtherMI->isDebugValue()) 1014 continue; 1015 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1016 return false; 1017 ++NumVisited; 1018 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 1019 OtherMI->isBranch() || OtherMI->isTerminator()) 1020 // Don't move pass calls, etc. 1021 return false; 1022 SmallVector<unsigned, 2> OtherDefs; 1023 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 1024 const MachineOperand &MO = OtherMI->getOperand(i); 1025 if (!MO.isReg()) 1026 continue; 1027 unsigned MOReg = MO.getReg(); 1028 if (!MOReg) 1029 continue; 1030 if (MO.isUse()) { 1031 if (Defs.count(MOReg)) 1032 // Moving KillMI can clobber the physical register if the def has 1033 // not been seen. 1034 return false; 1035 if (Kills.count(MOReg)) 1036 // Don't want to extend other live ranges and update kills. 1037 return false; 1038 if (OtherMI != MI && MOReg == Reg && 1039 !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)))) 1040 // We can't schedule across a use of the register in question. 1041 return false; 1042 } else { 1043 OtherDefs.push_back(MOReg); 1044 } 1045 } 1046 1047 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1048 unsigned MOReg = OtherDefs[i]; 1049 if (Uses.count(MOReg)) 1050 return false; 1051 if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 1052 LiveDefs.count(MOReg)) 1053 return false; 1054 // Physical register def is seen. 1055 Defs.erase(MOReg); 1056 } 1057 } 1058 1059 // Move the old kill above MI, don't forget to move debug info as well. 1060 MachineBasicBlock::iterator InsertPos = mi; 1061 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue()) 1062 --InsertPos; 1063 MachineBasicBlock::iterator From = KillMI; 1064 MachineBasicBlock::iterator To = std::next(From); 1065 while (std::prev(From)->isDebugValue()) 1066 --From; 1067 MBB->splice(InsertPos, MBB, From, To); 1068 1069 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1070 DistanceMap.erase(DI); 1071 1072 // Update live variables 1073 if (LIS) { 1074 LIS->handleMove(KillMI); 1075 } else { 1076 LV->removeVirtualRegisterKilled(Reg, KillMI); 1077 LV->addVirtualRegisterKilled(Reg, MI); 1078 } 1079 1080 DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1081 return true; 1082 } 1083 1084 /// tryInstructionTransform - For the case where an instruction has a single 1085 /// pair of tied register operands, attempt some transformations that may 1086 /// either eliminate the tied operands or improve the opportunities for 1087 /// coalescing away the register copy. Returns true if no copy needs to be 1088 /// inserted to untie mi's operands (either because they were untied, or 1089 /// because mi was rescheduled, and will be visited again later). If the 1090 /// shouldOnlyCommute flag is true, only instruction commutation is attempted. 1091 bool TwoAddressInstructionPass:: 1092 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1093 MachineBasicBlock::iterator &nmi, 1094 unsigned SrcIdx, unsigned DstIdx, 1095 unsigned Dist, bool shouldOnlyCommute) { 1096 if (OptLevel == CodeGenOpt::None) 1097 return false; 1098 1099 MachineInstr &MI = *mi; 1100 unsigned regA = MI.getOperand(DstIdx).getReg(); 1101 unsigned regB = MI.getOperand(SrcIdx).getReg(); 1102 1103 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1104 "cannot make instruction into two-address form"); 1105 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1106 1107 if (TargetRegisterInfo::isVirtualRegister(regA)) 1108 scanUses(regA); 1109 1110 // Check if it is profitable to commute the operands. 1111 unsigned SrcOp1, SrcOp2; 1112 unsigned regC = 0; 1113 unsigned regCIdx = ~0U; 1114 bool TryCommute = false; 1115 bool AggressiveCommute = false; 1116 if (MI.isCommutable() && MI.getNumOperands() >= 3 && 1117 TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) { 1118 if (SrcIdx == SrcOp1) 1119 regCIdx = SrcOp2; 1120 else if (SrcIdx == SrcOp2) 1121 regCIdx = SrcOp1; 1122 1123 if (regCIdx != ~0U) { 1124 regC = MI.getOperand(regCIdx).getReg(); 1125 if (!regBKilled && isKilled(MI, regC, MRI, TII, LIS, false)) 1126 // If C dies but B does not, swap the B and C operands. 1127 // This makes the live ranges of A and C joinable. 1128 TryCommute = true; 1129 else if (isProfitableToCommute(regA, regB, regC, &MI, Dist)) { 1130 TryCommute = true; 1131 AggressiveCommute = true; 1132 } 1133 } 1134 } 1135 1136 // If it's profitable to commute, try to do so. 1137 if (TryCommute && commuteInstruction(mi, regB, regC, Dist)) { 1138 ++NumCommuted; 1139 if (AggressiveCommute) 1140 ++NumAggrCommuted; 1141 return false; 1142 } 1143 1144 if (shouldOnlyCommute) 1145 return false; 1146 1147 // If there is one more use of regB later in the same MBB, consider 1148 // re-schedule this MI below it. 1149 if (EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1150 ++NumReSchedDowns; 1151 return true; 1152 } 1153 1154 if (MI.isConvertibleTo3Addr()) { 1155 // This instruction is potentially convertible to a true 1156 // three-address instruction. Check if it is profitable. 1157 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1158 // Try to convert it. 1159 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1160 ++NumConvertedTo3Addr; 1161 return true; // Done with this instruction. 1162 } 1163 } 1164 } 1165 1166 // If there is one more use of regB later in the same MBB, consider 1167 // re-schedule it before this MI if it's legal. 1168 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1169 ++NumReSchedUps; 1170 return true; 1171 } 1172 1173 // If this is an instruction with a load folded into it, try unfolding 1174 // the load, e.g. avoid this: 1175 // movq %rdx, %rcx 1176 // addq (%rax), %rcx 1177 // in favor of this: 1178 // movq (%rax), %rcx 1179 // addq %rdx, %rcx 1180 // because it's preferable to schedule a load than a register copy. 1181 if (MI.mayLoad() && !regBKilled) { 1182 // Determine if a load can be unfolded. 1183 unsigned LoadRegIndex; 1184 unsigned NewOpc = 1185 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1186 /*UnfoldLoad=*/true, 1187 /*UnfoldStore=*/false, 1188 &LoadRegIndex); 1189 if (NewOpc != 0) { 1190 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1191 if (UnfoldMCID.getNumDefs() == 1) { 1192 // Unfold the load. 1193 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1194 const TargetRegisterClass *RC = 1195 TRI->getAllocatableClass( 1196 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1197 unsigned Reg = MRI->createVirtualRegister(RC); 1198 SmallVector<MachineInstr *, 2> NewMIs; 1199 if (!TII->unfoldMemoryOperand(*MF, &MI, Reg, 1200 /*UnfoldLoad=*/true,/*UnfoldStore=*/false, 1201 NewMIs)) { 1202 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1203 return false; 1204 } 1205 assert(NewMIs.size() == 2 && 1206 "Unfolded a load into multiple instructions!"); 1207 // The load was previously folded, so this is the only use. 1208 NewMIs[1]->addRegisterKilled(Reg, TRI); 1209 1210 // Tentatively insert the instructions into the block so that they 1211 // look "normal" to the transformation logic. 1212 MBB->insert(mi, NewMIs[0]); 1213 MBB->insert(mi, NewMIs[1]); 1214 1215 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1216 << "2addr: NEW INST: " << *NewMIs[1]); 1217 1218 // Transform the instruction, now that it no longer has a load. 1219 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1220 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1221 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1222 bool TransformResult = 1223 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1224 (void)TransformResult; 1225 assert(!TransformResult && 1226 "tryInstructionTransform() should return false."); 1227 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1228 // Success, or at least we made an improvement. Keep the unfolded 1229 // instructions and discard the original. 1230 if (LV) { 1231 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1232 MachineOperand &MO = MI.getOperand(i); 1233 if (MO.isReg() && 1234 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 1235 if (MO.isUse()) { 1236 if (MO.isKill()) { 1237 if (NewMIs[0]->killsRegister(MO.getReg())) 1238 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]); 1239 else { 1240 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1241 "Kill missing after load unfold!"); 1242 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]); 1243 } 1244 } 1245 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) { 1246 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1247 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]); 1248 else { 1249 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1250 "Dead flag missing after load unfold!"); 1251 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]); 1252 } 1253 } 1254 } 1255 } 1256 LV->addVirtualRegisterKilled(Reg, NewMIs[1]); 1257 } 1258 1259 SmallVector<unsigned, 4> OrigRegs; 1260 if (LIS) { 1261 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(), 1262 MOE = MI.operands_end(); MOI != MOE; ++MOI) { 1263 if (MOI->isReg()) 1264 OrigRegs.push_back(MOI->getReg()); 1265 } 1266 } 1267 1268 MI.eraseFromParent(); 1269 1270 // Update LiveIntervals. 1271 if (LIS) { 1272 MachineBasicBlock::iterator Begin(NewMIs[0]); 1273 MachineBasicBlock::iterator End(NewMIs[1]); 1274 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1275 } 1276 1277 mi = NewMIs[1]; 1278 } else { 1279 // Transforming didn't eliminate the tie and didn't lead to an 1280 // improvement. Clean up the unfolded instructions and keep the 1281 // original. 1282 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1283 NewMIs[0]->eraseFromParent(); 1284 NewMIs[1]->eraseFromParent(); 1285 } 1286 } 1287 } 1288 } 1289 1290 return false; 1291 } 1292 1293 // Collect tied operands of MI that need to be handled. 1294 // Rewrite trivial cases immediately. 1295 // Return true if any tied operands where found, including the trivial ones. 1296 bool TwoAddressInstructionPass:: 1297 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1298 const MCInstrDesc &MCID = MI->getDesc(); 1299 bool AnyOps = false; 1300 unsigned NumOps = MI->getNumOperands(); 1301 1302 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1303 unsigned DstIdx = 0; 1304 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1305 continue; 1306 AnyOps = true; 1307 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1308 MachineOperand &DstMO = MI->getOperand(DstIdx); 1309 unsigned SrcReg = SrcMO.getReg(); 1310 unsigned DstReg = DstMO.getReg(); 1311 // Tied constraint already satisfied? 1312 if (SrcReg == DstReg) 1313 continue; 1314 1315 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1316 1317 // Deal with <undef> uses immediately - simply rewrite the src operand. 1318 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1319 // Constrain the DstReg register class if required. 1320 if (TargetRegisterInfo::isVirtualRegister(DstReg)) 1321 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1322 TRI, *MF)) 1323 MRI->constrainRegClass(DstReg, RC); 1324 SrcMO.setReg(DstReg); 1325 SrcMO.setSubReg(0); 1326 DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1327 continue; 1328 } 1329 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1330 } 1331 return AnyOps; 1332 } 1333 1334 // Process a list of tied MI operands that all use the same source register. 1335 // The tied pairs are of the form (SrcIdx, DstIdx). 1336 void 1337 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1338 TiedPairList &TiedPairs, 1339 unsigned &Dist) { 1340 bool IsEarlyClobber = false; 1341 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1342 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1343 IsEarlyClobber |= DstMO.isEarlyClobber(); 1344 } 1345 1346 bool RemovedKillFlag = false; 1347 bool AllUsesCopied = true; 1348 unsigned LastCopiedReg = 0; 1349 SlotIndex LastCopyIdx; 1350 unsigned RegB = 0; 1351 unsigned SubRegB = 0; 1352 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1353 unsigned SrcIdx = TiedPairs[tpi].first; 1354 unsigned DstIdx = TiedPairs[tpi].second; 1355 1356 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1357 unsigned RegA = DstMO.getReg(); 1358 1359 // Grab RegB from the instruction because it may have changed if the 1360 // instruction was commuted. 1361 RegB = MI->getOperand(SrcIdx).getReg(); 1362 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1363 1364 if (RegA == RegB) { 1365 // The register is tied to multiple destinations (or else we would 1366 // not have continued this far), but this use of the register 1367 // already matches the tied destination. Leave it. 1368 AllUsesCopied = false; 1369 continue; 1370 } 1371 LastCopiedReg = RegA; 1372 1373 assert(TargetRegisterInfo::isVirtualRegister(RegB) && 1374 "cannot make instruction into two-address form"); 1375 1376 #ifndef NDEBUG 1377 // First, verify that we don't have a use of "a" in the instruction 1378 // (a = b + a for example) because our transformation will not 1379 // work. This should never occur because we are in SSA form. 1380 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1381 assert(i == DstIdx || 1382 !MI->getOperand(i).isReg() || 1383 MI->getOperand(i).getReg() != RegA); 1384 #endif 1385 1386 // Emit a copy. 1387 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1388 TII->get(TargetOpcode::COPY), RegA); 1389 // If this operand is folding a truncation, the truncation now moves to the 1390 // copy so that the register classes remain valid for the operands. 1391 MIB.addReg(RegB, 0, SubRegB); 1392 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1393 if (SubRegB) { 1394 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1395 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1396 SubRegB) && 1397 "tied subregister must be a truncation"); 1398 // The superreg class will not be used to constrain the subreg class. 1399 RC = nullptr; 1400 } 1401 else { 1402 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1403 && "tied subregister must be a truncation"); 1404 } 1405 } 1406 1407 // Update DistanceMap. 1408 MachineBasicBlock::iterator PrevMI = MI; 1409 --PrevMI; 1410 DistanceMap.insert(std::make_pair(PrevMI, Dist)); 1411 DistanceMap[MI] = ++Dist; 1412 1413 if (LIS) { 1414 LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot(); 1415 1416 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1417 LiveInterval &LI = LIS->getInterval(RegA); 1418 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1419 SlotIndex endIdx = 1420 LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber); 1421 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1422 } 1423 } 1424 1425 DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1426 1427 MachineOperand &MO = MI->getOperand(SrcIdx); 1428 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1429 "inconsistent operand info for 2-reg pass"); 1430 if (MO.isKill()) { 1431 MO.setIsKill(false); 1432 RemovedKillFlag = true; 1433 } 1434 1435 // Make sure regA is a legal regclass for the SrcIdx operand. 1436 if (TargetRegisterInfo::isVirtualRegister(RegA) && 1437 TargetRegisterInfo::isVirtualRegister(RegB)) 1438 MRI->constrainRegClass(RegA, RC); 1439 MO.setReg(RegA); 1440 // The getMatchingSuper asserts guarantee that the register class projected 1441 // by SubRegB is compatible with RegA with no subregister. So regardless of 1442 // whether the dest oper writes a subreg, the source oper should not. 1443 MO.setSubReg(0); 1444 1445 // Propagate SrcRegMap. 1446 SrcRegMap[RegA] = RegB; 1447 } 1448 1449 1450 if (AllUsesCopied) { 1451 if (!IsEarlyClobber) { 1452 // Replace other (un-tied) uses of regB with LastCopiedReg. 1453 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1454 MachineOperand &MO = MI->getOperand(i); 1455 if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB && 1456 MO.isUse()) { 1457 if (MO.isKill()) { 1458 MO.setIsKill(false); 1459 RemovedKillFlag = true; 1460 } 1461 MO.setReg(LastCopiedReg); 1462 MO.setSubReg(0); 1463 } 1464 } 1465 } 1466 1467 // Update live variables for regB. 1468 if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) { 1469 MachineBasicBlock::iterator PrevMI = MI; 1470 --PrevMI; 1471 LV->addVirtualRegisterKilled(RegB, PrevMI); 1472 } 1473 1474 // Update LiveIntervals. 1475 if (LIS) { 1476 LiveInterval &LI = LIS->getInterval(RegB); 1477 SlotIndex MIIdx = LIS->getInstructionIndex(MI); 1478 LiveInterval::const_iterator I = LI.find(MIIdx); 1479 assert(I != LI.end() && "RegB must be live-in to use."); 1480 1481 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1482 if (I->end == UseIdx) 1483 LI.removeSegment(LastCopyIdx, UseIdx); 1484 } 1485 1486 } else if (RemovedKillFlag) { 1487 // Some tied uses of regB matched their destination registers, so 1488 // regB is still used in this instruction, but a kill flag was 1489 // removed from a different tied use of regB, so now we need to add 1490 // a kill flag to one of the remaining uses of regB. 1491 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1492 MachineOperand &MO = MI->getOperand(i); 1493 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1494 MO.setIsKill(true); 1495 break; 1496 } 1497 } 1498 } 1499 } 1500 1501 /// runOnMachineFunction - Reduce two-address instructions to two operands. 1502 /// 1503 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1504 MF = &Func; 1505 const TargetMachine &TM = MF->getTarget(); 1506 MRI = &MF->getRegInfo(); 1507 TII = TM.getSubtargetImpl()->getInstrInfo(); 1508 TRI = TM.getSubtargetImpl()->getRegisterInfo(); 1509 InstrItins = TM.getSubtargetImpl()->getInstrItineraryData(); 1510 LV = getAnalysisIfAvailable<LiveVariables>(); 1511 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1512 AA = &getAnalysis<AliasAnalysis>(); 1513 OptLevel = TM.getOptLevel(); 1514 1515 bool MadeChange = false; 1516 1517 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1518 DEBUG(dbgs() << "********** Function: " 1519 << MF->getName() << '\n'); 1520 1521 // This pass takes the function out of SSA form. 1522 MRI->leaveSSA(); 1523 1524 TiedOperandMap TiedOperands; 1525 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1526 MBBI != MBBE; ++MBBI) { 1527 MBB = MBBI; 1528 unsigned Dist = 0; 1529 DistanceMap.clear(); 1530 SrcRegMap.clear(); 1531 DstRegMap.clear(); 1532 Processed.clear(); 1533 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1534 mi != me; ) { 1535 MachineBasicBlock::iterator nmi = std::next(mi); 1536 if (mi->isDebugValue()) { 1537 mi = nmi; 1538 continue; 1539 } 1540 1541 // Expand REG_SEQUENCE instructions. This will position mi at the first 1542 // expanded instruction. 1543 if (mi->isRegSequence()) 1544 eliminateRegSequence(mi); 1545 1546 DistanceMap.insert(std::make_pair(mi, ++Dist)); 1547 1548 processCopy(&*mi); 1549 1550 // First scan through all the tied register uses in this instruction 1551 // and record a list of pairs of tied operands for each register. 1552 if (!collectTiedOperands(mi, TiedOperands)) { 1553 mi = nmi; 1554 continue; 1555 } 1556 1557 ++NumTwoAddressInstrs; 1558 MadeChange = true; 1559 DEBUG(dbgs() << '\t' << *mi); 1560 1561 // If the instruction has a single pair of tied operands, try some 1562 // transformations that may either eliminate the tied operands or 1563 // improve the opportunities for coalescing away the register copy. 1564 if (TiedOperands.size() == 1) { 1565 SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs 1566 = TiedOperands.begin()->second; 1567 if (TiedPairs.size() == 1) { 1568 unsigned SrcIdx = TiedPairs[0].first; 1569 unsigned DstIdx = TiedPairs[0].second; 1570 unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); 1571 unsigned DstReg = mi->getOperand(DstIdx).getReg(); 1572 if (SrcReg != DstReg && 1573 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1574 // The tied operands have been eliminated or shifted further down the 1575 // block to ease elimination. Continue processing with 'nmi'. 1576 TiedOperands.clear(); 1577 mi = nmi; 1578 continue; 1579 } 1580 } 1581 } 1582 1583 // Now iterate over the information collected above. 1584 for (TiedOperandMap::iterator OI = TiedOperands.begin(), 1585 OE = TiedOperands.end(); OI != OE; ++OI) { 1586 processTiedPairs(mi, OI->second, Dist); 1587 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1588 } 1589 1590 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1591 if (mi->isInsertSubreg()) { 1592 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1593 // To %reg:subidx = COPY %subreg 1594 unsigned SubIdx = mi->getOperand(3).getImm(); 1595 mi->RemoveOperand(3); 1596 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1597 mi->getOperand(0).setSubReg(SubIdx); 1598 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1599 mi->RemoveOperand(1); 1600 mi->setDesc(TII->get(TargetOpcode::COPY)); 1601 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1602 } 1603 1604 // Clear TiedOperands here instead of at the top of the loop 1605 // since most instructions do not have tied operands. 1606 TiedOperands.clear(); 1607 mi = nmi; 1608 } 1609 } 1610 1611 if (LIS) 1612 MF->verify(this, "After two-address instruction pass"); 1613 1614 return MadeChange; 1615 } 1616 1617 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1618 /// 1619 /// The instruction is turned into a sequence of sub-register copies: 1620 /// 1621 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1622 /// 1623 /// Becomes: 1624 /// 1625 /// %dst:ssub0<def,undef> = COPY %v1 1626 /// %dst:ssub1<def> = COPY %v2 1627 /// 1628 void TwoAddressInstructionPass:: 1629 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1630 MachineInstr *MI = MBBI; 1631 unsigned DstReg = MI->getOperand(0).getReg(); 1632 if (MI->getOperand(0).getSubReg() || 1633 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1634 !(MI->getNumOperands() & 1)) { 1635 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); 1636 llvm_unreachable(nullptr); 1637 } 1638 1639 SmallVector<unsigned, 4> OrigRegs; 1640 if (LIS) { 1641 OrigRegs.push_back(MI->getOperand(0).getReg()); 1642 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) 1643 OrigRegs.push_back(MI->getOperand(i).getReg()); 1644 } 1645 1646 bool DefEmitted = false; 1647 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 1648 MachineOperand &UseMO = MI->getOperand(i); 1649 unsigned SrcReg = UseMO.getReg(); 1650 unsigned SubIdx = MI->getOperand(i+1).getImm(); 1651 // Nothing needs to be inserted for <undef> operands. 1652 if (UseMO.isUndef()) 1653 continue; 1654 1655 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1656 // might insert a COPY that uses SrcReg after is was killed. 1657 bool isKill = UseMO.isKill(); 1658 if (isKill) 1659 for (unsigned j = i + 2; j < e; j += 2) 1660 if (MI->getOperand(j).getReg() == SrcReg) { 1661 MI->getOperand(j).setIsKill(); 1662 UseMO.setIsKill(false); 1663 isKill = false; 1664 break; 1665 } 1666 1667 // Insert the sub-register copy. 1668 MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1669 TII->get(TargetOpcode::COPY)) 1670 .addReg(DstReg, RegState::Define, SubIdx) 1671 .addOperand(UseMO); 1672 1673 // The first def needs an <undef> flag because there is no live register 1674 // before it. 1675 if (!DefEmitted) { 1676 CopyMI->getOperand(0).setIsUndef(true); 1677 // Return an iterator pointing to the first inserted instr. 1678 MBBI = CopyMI; 1679 } 1680 DefEmitted = true; 1681 1682 // Update LiveVariables' kill info. 1683 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1684 LV->replaceKillInstruction(SrcReg, MI, CopyMI); 1685 1686 DEBUG(dbgs() << "Inserted: " << *CopyMI); 1687 } 1688 1689 MachineBasicBlock::iterator EndMBBI = 1690 std::next(MachineBasicBlock::iterator(MI)); 1691 1692 if (!DefEmitted) { 1693 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF"); 1694 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1695 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j) 1696 MI->RemoveOperand(j); 1697 } else { 1698 DEBUG(dbgs() << "Eliminated: " << *MI); 1699 MI->eraseFromParent(); 1700 } 1701 1702 // Udpate LiveIntervals. 1703 if (LIS) 1704 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1705 } 1706