1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TwoAddress instruction pass which is used 10 // by most register allocators. Two-Address instructions are rewritten 11 // from: 12 // 13 // A = B op C 14 // 15 // to: 16 // 17 // A = B 18 // A op= C 19 // 20 // Note that if a register allocator chooses to use this pass, that it 21 // has to be capable of handling the non-SSA nature of these rewritten 22 // virtual registers. 23 // 24 // It is also worth noting that the duplicate operand of the two 25 // address instruction is removed. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/Passes.h" 47 #include "llvm/CodeGen/SlotIndexes.h" 48 #include "llvm/CodeGen/TargetInstrInfo.h" 49 #include "llvm/CodeGen/TargetOpcodes.h" 50 #include "llvm/CodeGen/TargetRegisterInfo.h" 51 #include "llvm/CodeGen/TargetSubtargetInfo.h" 52 #include "llvm/MC/MCInstrDesc.h" 53 #include "llvm/MC/MCInstrItineraries.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <cassert> 62 #include <iterator> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "twoaddressinstruction" 68 69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 70 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 71 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 73 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 74 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 75 76 // Temporary flag to disable rescheduling. 77 static cl::opt<bool> 78 EnableRescheduling("twoaddr-reschedule", 79 cl::desc("Coalesce copies by rescheduling (default=true)"), 80 cl::init(true), cl::Hidden); 81 82 // Limit the number of dataflow edges to traverse when evaluating the benefit 83 // of commuting operands. 84 static cl::opt<unsigned> MaxDataFlowEdge( 85 "dataflow-edge-limit", cl::Hidden, cl::init(3), 86 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 87 "the benefit of commuting operands")); 88 89 namespace { 90 91 class TwoAddressInstructionPass : public MachineFunctionPass { 92 MachineFunction *MF; 93 const TargetInstrInfo *TII; 94 const TargetRegisterInfo *TRI; 95 const InstrItineraryData *InstrItins; 96 MachineRegisterInfo *MRI; 97 LiveVariables *LV; 98 LiveIntervals *LIS; 99 AliasAnalysis *AA; 100 CodeGenOpt::Level OptLevel; 101 102 // The current basic block being processed. 103 MachineBasicBlock *MBB; 104 105 // Keep track the distance of a MI from the start of the current basic block. 106 DenseMap<MachineInstr*, unsigned> DistanceMap; 107 108 // Set of already processed instructions in the current block. 109 SmallPtrSet<MachineInstr*, 8> Processed; 110 111 // A map from virtual registers to physical registers which are likely targets 112 // to be coalesced to due to copies from physical registers to virtual 113 // registers. e.g. v1024 = move r0. 114 DenseMap<Register, Register> SrcRegMap; 115 116 // A map from virtual registers to physical registers which are likely targets 117 // to be coalesced to due to copies to physical registers from virtual 118 // registers. e.g. r1 = move v1024. 119 DenseMap<Register, Register> DstRegMap; 120 121 void removeClobberedSrcRegMap(MachineInstr *MI); 122 123 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen); 124 125 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef); 126 127 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC, 128 MachineInstr *MI, unsigned Dist); 129 130 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 131 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 132 133 bool isProfitableToConv3Addr(Register RegA, Register RegB); 134 135 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 136 MachineBasicBlock::iterator &nmi, Register RegA, 137 Register RegB, unsigned &Dist); 138 139 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI); 140 141 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 142 MachineBasicBlock::iterator &nmi, Register Reg); 143 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 144 MachineBasicBlock::iterator &nmi, Register Reg); 145 146 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 147 MachineBasicBlock::iterator &nmi, 148 unsigned SrcIdx, unsigned DstIdx, 149 unsigned &Dist, bool shouldOnlyCommute); 150 151 bool tryInstructionCommute(MachineInstr *MI, 152 unsigned DstOpIdx, 153 unsigned BaseOpIdx, 154 bool BaseOpKilled, 155 unsigned Dist); 156 void scanUses(Register DstReg); 157 158 void processCopy(MachineInstr *MI); 159 160 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 161 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 162 163 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 164 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 165 void eliminateRegSequence(MachineBasicBlock::iterator&); 166 167 public: 168 static char ID; // Pass identification, replacement for typeid 169 170 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 171 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 172 } 173 174 void getAnalysisUsage(AnalysisUsage &AU) const override { 175 AU.setPreservesCFG(); 176 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 177 AU.addUsedIfAvailable<LiveVariables>(); 178 AU.addPreserved<LiveVariables>(); 179 AU.addPreserved<SlotIndexes>(); 180 AU.addPreserved<LiveIntervals>(); 181 AU.addPreservedID(MachineLoopInfoID); 182 AU.addPreservedID(MachineDominatorsID); 183 MachineFunctionPass::getAnalysisUsage(AU); 184 } 185 186 /// Pass entry point. 187 bool runOnMachineFunction(MachineFunction&) override; 188 }; 189 190 } // end anonymous namespace 191 192 char TwoAddressInstructionPass::ID = 0; 193 194 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 195 196 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 197 "Two-Address instruction pass", false, false) 198 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 199 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 200 "Two-Address instruction pass", false, false) 201 202 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS); 203 204 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 205 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB, 206 const MachineRegisterInfo *MRI) { 207 MachineInstr *Ret = nullptr; 208 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 209 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 210 continue; 211 if (!Ret) 212 Ret = &DefMI; 213 else if (Ret != &DefMI) 214 return nullptr; 215 } 216 return Ret; 217 } 218 219 /// Check if there is a reversed copy chain from FromReg to ToReg: 220 /// %Tmp1 = copy %Tmp2; 221 /// %FromReg = copy %Tmp1; 222 /// %ToReg = add %FromReg ... 223 /// %Tmp2 = copy %ToReg; 224 /// MaxLen specifies the maximum length of the copy chain the func 225 /// can walk through. 226 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg, 227 int Maxlen) { 228 Register TmpReg = FromReg; 229 for (int i = 0; i < Maxlen; i++) { 230 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 231 if (!Def || !Def->isCopy()) 232 return false; 233 234 TmpReg = Def->getOperand(1).getReg(); 235 236 if (TmpReg == ToReg) 237 return true; 238 } 239 return false; 240 } 241 242 /// Return true if there are no intervening uses between the last instruction 243 /// in the MBB that defines the specified register and the two-address 244 /// instruction which is being processed. It also returns the last def location 245 /// by reference. 246 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist, 247 unsigned &LastDef) { 248 LastDef = 0; 249 unsigned LastUse = Dist; 250 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 251 MachineInstr *MI = MO.getParent(); 252 if (MI->getParent() != MBB || MI->isDebugValue()) 253 continue; 254 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 255 if (DI == DistanceMap.end()) 256 continue; 257 if (MO.isUse() && DI->second < LastUse) 258 LastUse = DI->second; 259 if (MO.isDef() && DI->second > LastDef) 260 LastDef = DI->second; 261 } 262 263 return !(LastUse > LastDef && LastUse < Dist); 264 } 265 266 /// Return true if the specified MI is a copy instruction or an extract_subreg 267 /// instruction. It also returns the source and destination registers and 268 /// whether they are physical registers by reference. 269 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 270 Register &SrcReg, Register &DstReg, bool &IsSrcPhys, 271 bool &IsDstPhys) { 272 SrcReg = 0; 273 DstReg = 0; 274 if (MI.isCopy()) { 275 DstReg = MI.getOperand(0).getReg(); 276 SrcReg = MI.getOperand(1).getReg(); 277 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 278 DstReg = MI.getOperand(0).getReg(); 279 SrcReg = MI.getOperand(2).getReg(); 280 } else { 281 return false; 282 } 283 284 IsSrcPhys = SrcReg.isPhysical(); 285 IsDstPhys = DstReg.isPhysical(); 286 return true; 287 } 288 289 /// Test if the given register value, which is used by the 290 /// given instruction, is killed by the given instruction. 291 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, 292 LiveIntervals *LIS) { 293 if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) { 294 // FIXME: Sometimes tryInstructionTransform() will add instructions and 295 // test whether they can be folded before keeping them. In this case it 296 // sets a kill before recursively calling tryInstructionTransform() again. 297 // If there is no interval available, we assume that this instruction is 298 // one of those. A kill flag is manually inserted on the operand so the 299 // check below will handle it. 300 LiveInterval &LI = LIS->getInterval(Reg); 301 // This is to match the kill flag version where undefs don't have kill 302 // flags. 303 if (!LI.hasAtLeastOneValue()) 304 return false; 305 306 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 307 LiveInterval::const_iterator I = LI.find(useIdx); 308 assert(I != LI.end() && "Reg must be live-in to use."); 309 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 310 } 311 312 return MI->killsRegister(Reg); 313 } 314 315 /// Test if the given register value, which is used by the given 316 /// instruction, is killed by the given instruction. This looks through 317 /// coalescable copies to see if the original value is potentially not killed. 318 /// 319 /// For example, in this code: 320 /// 321 /// %reg1034 = copy %reg1024 322 /// %reg1035 = copy killed %reg1025 323 /// %reg1036 = add killed %reg1034, killed %reg1035 324 /// 325 /// %reg1034 is not considered to be killed, since it is copied from a 326 /// register which is not killed. Treating it as not killed lets the 327 /// normal heuristics commute the (two-address) add, which lets 328 /// coalescing eliminate the extra copy. 329 /// 330 /// If allowFalsePositives is true then likely kills are treated as kills even 331 /// if it can't be proven that they are kills. 332 static bool isKilled(MachineInstr &MI, Register Reg, 333 const MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 334 LiveIntervals *LIS, bool allowFalsePositives) { 335 MachineInstr *DefMI = &MI; 336 while (true) { 337 // All uses of physical registers are likely to be kills. 338 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg))) 339 return true; 340 if (!isPlainlyKilled(DefMI, Reg, LIS)) 341 return false; 342 if (Reg.isPhysical()) 343 return true; 344 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 345 // If there are multiple defs, we can't do a simple analysis, so just 346 // go with what the kill flag says. 347 if (std::next(Begin) != MRI->def_end()) 348 return true; 349 DefMI = Begin->getParent(); 350 bool IsSrcPhys, IsDstPhys; 351 Register SrcReg, DstReg; 352 // If the def is something other than a copy, then it isn't going to 353 // be coalesced, so follow the kill flag. 354 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 355 return true; 356 Reg = SrcReg; 357 } 358 } 359 360 /// Return true if the specified MI uses the specified register as a two-address 361 /// use. If so, return the destination register by reference. 362 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) { 363 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 364 const MachineOperand &MO = MI.getOperand(i); 365 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 366 continue; 367 unsigned ti; 368 if (MI.isRegTiedToDefOperand(i, &ti)) { 369 DstReg = MI.getOperand(ti).getReg(); 370 return true; 371 } 372 } 373 return false; 374 } 375 376 /// Given a register, if has a single in-basic block use, return the use 377 /// instruction if it's a copy or a two-address use. 378 static MachineInstr * 379 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB, 380 MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 381 bool &IsCopy, Register &DstReg, bool &IsDstPhys) { 382 if (!MRI->hasOneNonDBGUse(Reg)) 383 // None or more than one use. 384 return nullptr; 385 MachineOperand &UseOp = *MRI->use_nodbg_begin(Reg); 386 MachineInstr &UseMI = *UseOp.getParent(); 387 if (UseMI.getParent() != MBB) 388 return nullptr; 389 Register SrcReg; 390 bool IsSrcPhys; 391 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 392 IsCopy = true; 393 return &UseMI; 394 } 395 IsDstPhys = false; 396 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 397 IsDstPhys = DstReg.isPhysical(); 398 return &UseMI; 399 } 400 if (UseMI.isCommutable()) { 401 unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex; 402 unsigned Src2 = UseMI.getOperandNo(&UseOp); 403 if (TII->findCommutedOpIndices(UseMI, Src1, Src2)) { 404 MachineOperand &MO = UseMI.getOperand(Src1); 405 if (MO.isReg() && MO.isUse() && 406 isTwoAddrUse(UseMI, MO.getReg(), DstReg)) { 407 IsDstPhys = DstReg.isPhysical(); 408 return &UseMI; 409 } 410 } 411 } 412 return nullptr; 413 } 414 415 /// Return the physical register the specified virtual register might be mapped 416 /// to. 417 static MCRegister getMappedReg(Register Reg, 418 DenseMap<Register, Register> &RegMap) { 419 while (Reg.isVirtual()) { 420 DenseMap<Register, Register>::iterator SI = RegMap.find(Reg); 421 if (SI == RegMap.end()) 422 return 0; 423 Reg = SI->second; 424 } 425 if (Reg.isPhysical()) 426 return Reg; 427 return 0; 428 } 429 430 /// Return true if the two registers are equal or aliased. 431 static bool regsAreCompatible(Register RegA, Register RegB, 432 const TargetRegisterInfo *TRI) { 433 if (RegA == RegB) 434 return true; 435 if (!RegA || !RegB) 436 return false; 437 return TRI->regsOverlap(RegA, RegB); 438 } 439 440 /// From RegMap remove entries mapped to a physical register which overlaps MO. 441 static void removeMapRegEntry(const MachineOperand &MO, 442 DenseMap<Register, Register> &RegMap, 443 const TargetRegisterInfo *TRI) { 444 assert( 445 (MO.isReg() || MO.isRegMask()) && 446 "removeMapRegEntry must be called with a register or regmask operand."); 447 448 SmallVector<Register, 2> Srcs; 449 for (auto SI : RegMap) { 450 Register ToReg = SI.second; 451 if (ToReg.isVirtual()) 452 continue; 453 454 if (MO.isReg()) { 455 Register Reg = MO.getReg(); 456 if (TRI->regsOverlap(ToReg, Reg)) 457 Srcs.push_back(SI.first); 458 } else if (MO.clobbersPhysReg(ToReg)) 459 Srcs.push_back(SI.first); 460 } 461 462 for (auto SrcReg : Srcs) 463 RegMap.erase(SrcReg); 464 } 465 466 /// If a physical register is clobbered, old entries mapped to it should be 467 /// deleted. For example 468 /// 469 /// %2:gr64 = COPY killed $rdx 470 /// MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx 471 /// 472 /// After the MUL instruction, $rdx contains different value than in the COPY 473 /// instruction. So %2 should not map to $rdx after MUL. 474 void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr *MI) { 475 if (MI->isCopy()) { 476 // If a virtual register is copied to its mapped physical register, it 477 // doesn't change the potential coalescing between them, so we don't remove 478 // entries mapped to the physical register. For example 479 // 480 // %100 = COPY $r8 481 // ... 482 // $r8 = COPY %100 483 // 484 // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't 485 // destroy the content of $r8, and should not impact SrcRegMap. 486 Register Dst = MI->getOperand(0).getReg(); 487 if (!Dst || Dst.isVirtual()) 488 return; 489 490 Register Src = MI->getOperand(1).getReg(); 491 if (regsAreCompatible(Dst, getMappedReg(Src, SrcRegMap), TRI)) 492 return; 493 } 494 495 for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) { 496 const MachineOperand &MO = MI->getOperand(i); 497 if (MO.isRegMask()) { 498 removeMapRegEntry(MO, SrcRegMap, TRI); 499 continue; 500 } 501 if (!MO.isReg() || !MO.isDef()) 502 continue; 503 Register Reg = MO.getReg(); 504 if (!Reg || Reg.isVirtual()) 505 continue; 506 removeMapRegEntry(MO, SrcRegMap, TRI); 507 } 508 } 509 510 // Returns true if Reg is equal or aliased to at least one register in Set. 511 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg, 512 const TargetRegisterInfo *TRI) { 513 for (unsigned R : Set) 514 if (TRI->regsOverlap(R, Reg)) 515 return true; 516 517 return false; 518 } 519 520 /// Return true if it's potentially profitable to commute the two-address 521 /// instruction that's being processed. 522 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA, 523 Register RegB, 524 Register RegC, 525 MachineInstr *MI, 526 unsigned Dist) { 527 if (OptLevel == CodeGenOpt::None) 528 return false; 529 530 // Determine if it's profitable to commute this two address instruction. In 531 // general, we want no uses between this instruction and the definition of 532 // the two-address register. 533 // e.g. 534 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 535 // %reg1029 = COPY %reg1028 536 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 537 // insert => %reg1030 = COPY %reg1028 538 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 539 // In this case, it might not be possible to coalesce the second COPY 540 // instruction if the first one is coalesced. So it would be profitable to 541 // commute it: 542 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 543 // %reg1029 = COPY %reg1028 544 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 545 // insert => %reg1030 = COPY %reg1029 546 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 547 548 if (!isPlainlyKilled(MI, RegC, LIS)) 549 return false; 550 551 // Ok, we have something like: 552 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 553 // let's see if it's worth commuting it. 554 555 // Look for situations like this: 556 // %reg1024 = MOV r1 557 // %reg1025 = MOV r0 558 // %reg1026 = ADD %reg1024, %reg1025 559 // r0 = MOV %reg1026 560 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 561 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 562 if (ToRegA) { 563 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 564 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 565 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 566 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 567 568 // Compute if any of the following are true: 569 // -RegB is not tied to a register and RegC is compatible with RegA. 570 // -RegB is tied to the wrong physical register, but RegC is. 571 // -RegB is tied to the wrong physical register, and RegC isn't tied. 572 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 573 return true; 574 // Don't compute if any of the following are true: 575 // -RegC is not tied to a register and RegB is compatible with RegA. 576 // -RegC is tied to the wrong physical register, but RegB is. 577 // -RegC is tied to the wrong physical register, and RegB isn't tied. 578 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 579 return false; 580 } 581 582 // If there is a use of RegC between its last def (could be livein) and this 583 // instruction, then bail. 584 unsigned LastDefC = 0; 585 if (!noUseAfterLastDef(RegC, Dist, LastDefC)) 586 return false; 587 588 // If there is a use of RegB between its last def (could be livein) and this 589 // instruction, then go ahead and make this transformation. 590 unsigned LastDefB = 0; 591 if (!noUseAfterLastDef(RegB, Dist, LastDefB)) 592 return true; 593 594 // Look for situation like this: 595 // %reg101 = MOV %reg100 596 // %reg102 = ... 597 // %reg103 = ADD %reg102, %reg101 598 // ... = %reg103 ... 599 // %reg100 = MOV %reg103 600 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 601 // to eliminate an otherwise unavoidable copy. 602 // FIXME: 603 // We can extend the logic further: If an pair of operands in an insn has 604 // been merged, the insn could be regarded as a virtual copy, and the virtual 605 // copy could also be used to construct a copy chain. 606 // To more generally minimize register copies, ideally the logic of two addr 607 // instruction pass should be integrated with register allocation pass where 608 // interference graph is available. 609 if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge)) 610 return true; 611 612 if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge)) 613 return false; 614 615 // Look for other target specific commute preference. 616 bool Commute; 617 if (TII->hasCommutePreference(*MI, Commute)) 618 return Commute; 619 620 // Since there are no intervening uses for both registers, then commute 621 // if the def of RegC is closer. Its live interval is shorter. 622 return LastDefB && LastDefC && LastDefC > LastDefB; 623 } 624 625 /// Commute a two-address instruction and update the basic block, distance map, 626 /// and live variables if needed. Return true if it is successful. 627 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 628 unsigned DstIdx, 629 unsigned RegBIdx, 630 unsigned RegCIdx, 631 unsigned Dist) { 632 Register RegC = MI->getOperand(RegCIdx).getReg(); 633 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 634 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 635 636 if (NewMI == nullptr) { 637 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 638 return false; 639 } 640 641 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 642 assert(NewMI == MI && 643 "TargetInstrInfo::commuteInstruction() should not return a new " 644 "instruction unless it was requested."); 645 646 // Update source register map. 647 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 648 if (FromRegC) { 649 Register RegA = MI->getOperand(DstIdx).getReg(); 650 SrcRegMap[RegA] = FromRegC; 651 } 652 653 return true; 654 } 655 656 /// Return true if it is profitable to convert the given 2-address instruction 657 /// to a 3-address one. 658 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA, 659 Register RegB) { 660 // Look for situations like this: 661 // %reg1024 = MOV r1 662 // %reg1025 = MOV r0 663 // %reg1026 = ADD %reg1024, %reg1025 664 // r2 = MOV %reg1026 665 // Turn ADD into a 3-address instruction to avoid a copy. 666 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 667 if (!FromRegB) 668 return false; 669 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 670 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 671 } 672 673 /// Convert the specified two-address instruction into a three address one. 674 /// Return true if this transformation was successful. 675 bool TwoAddressInstructionPass::convertInstTo3Addr( 676 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 677 Register RegA, Register RegB, unsigned &Dist) { 678 MachineInstrSpan MIS(mi, MBB); 679 MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV); 680 if (!NewMI) 681 return false; 682 683 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 684 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 685 686 // If the old instruction is debug value tracked, an update is required. 687 if (auto OldInstrNum = mi->peekDebugInstrNum()) { 688 // Sanity check. 689 assert(mi->getNumExplicitDefs() == 1); 690 assert(NewMI->getNumExplicitDefs() == 1); 691 692 // Find the old and new def location. 693 auto OldIt = mi->defs().begin(); 694 auto NewIt = NewMI->defs().begin(); 695 unsigned OldIdx = mi->getOperandNo(OldIt); 696 unsigned NewIdx = NewMI->getOperandNo(NewIt); 697 698 // Record that one def has been replaced by the other. 699 unsigned NewInstrNum = NewMI->getDebugInstrNum(); 700 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx), 701 std::make_pair(NewInstrNum, NewIdx)); 702 } 703 704 // If convertToThreeAddress created a single new instruction, assume it has 705 // exactly the same effect on liveness as the old instruction. This is much 706 // more efficient than calling repairIntervalsInRange. 707 bool SingleInst = std::next(MIS.begin(), 2) == MIS.end(); 708 if (LIS && SingleInst) 709 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); 710 711 SmallVector<Register> OrigRegs; 712 if (LIS && !SingleInst) { 713 for (const MachineOperand &MO : mi->operands()) { 714 if (MO.isReg()) 715 OrigRegs.push_back(MO.getReg()); 716 } 717 718 LIS->RemoveMachineInstrFromMaps(*mi); 719 } 720 721 MBB->erase(mi); // Nuke the old inst. 722 723 if (LIS && !SingleInst) 724 LIS->repairIntervalsInRange(MBB, MIS.begin(), MIS.end(), OrigRegs); 725 726 for (MachineInstr &MI : MIS) 727 DistanceMap.insert(std::make_pair(&MI, Dist++)); 728 Dist--; 729 mi = NewMI; 730 nmi = std::next(mi); 731 732 // Update source and destination register maps. 733 SrcRegMap.erase(RegA); 734 DstRegMap.erase(RegB); 735 return true; 736 } 737 738 /// Scan forward recursively for only uses, update maps if the use is a copy or 739 /// a two-address instruction. 740 void TwoAddressInstructionPass::scanUses(Register DstReg) { 741 SmallVector<Register, 4> VirtRegPairs; 742 bool IsDstPhys; 743 bool IsCopy = false; 744 Register NewReg; 745 Register Reg = DstReg; 746 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 747 NewReg, IsDstPhys)) { 748 if (IsCopy && !Processed.insert(UseMI).second) 749 break; 750 751 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 752 if (DI != DistanceMap.end()) 753 // Earlier in the same MBB.Reached via a back edge. 754 break; 755 756 if (IsDstPhys) { 757 VirtRegPairs.push_back(NewReg); 758 break; 759 } 760 SrcRegMap[NewReg] = Reg; 761 VirtRegPairs.push_back(NewReg); 762 Reg = NewReg; 763 } 764 765 if (!VirtRegPairs.empty()) { 766 unsigned ToReg = VirtRegPairs.back(); 767 VirtRegPairs.pop_back(); 768 while (!VirtRegPairs.empty()) { 769 unsigned FromReg = VirtRegPairs.pop_back_val(); 770 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 771 if (!isNew) 772 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 773 ToReg = FromReg; 774 } 775 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 776 if (!isNew) 777 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 778 } 779 } 780 781 /// If the specified instruction is not yet processed, process it if it's a 782 /// copy. For a copy instruction, we find the physical registers the 783 /// source and destination registers might be mapped to. These are kept in 784 /// point-to maps used to determine future optimizations. e.g. 785 /// v1024 = mov r0 786 /// v1025 = mov r1 787 /// v1026 = add v1024, v1025 788 /// r1 = mov r1026 789 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 790 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 791 /// potentially joined with r1 on the output side. It's worthwhile to commute 792 /// 'add' to eliminate a copy. 793 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 794 if (Processed.count(MI)) 795 return; 796 797 bool IsSrcPhys, IsDstPhys; 798 Register SrcReg, DstReg; 799 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 800 return; 801 802 if (IsDstPhys && !IsSrcPhys) { 803 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 804 } else if (!IsDstPhys && IsSrcPhys) { 805 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 806 if (!isNew) 807 assert(SrcRegMap[DstReg] == SrcReg && 808 "Can't map to two src physical registers!"); 809 810 scanUses(DstReg); 811 } 812 813 Processed.insert(MI); 814 } 815 816 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 817 /// consider moving the instruction below the kill instruction in order to 818 /// eliminate the need for the copy. 819 bool TwoAddressInstructionPass::rescheduleMIBelowKill( 820 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 821 Register Reg) { 822 // Bail immediately if we don't have LV or LIS available. We use them to find 823 // kills efficiently. 824 if (!LV && !LIS) 825 return false; 826 827 MachineInstr *MI = &*mi; 828 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 829 if (DI == DistanceMap.end()) 830 // Must be created from unfolded load. Don't waste time trying this. 831 return false; 832 833 MachineInstr *KillMI = nullptr; 834 if (LIS) { 835 LiveInterval &LI = LIS->getInterval(Reg); 836 assert(LI.end() != LI.begin() && 837 "Reg should not have empty live interval."); 838 839 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 840 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 841 if (I != LI.end() && I->start < MBBEndIdx) 842 return false; 843 844 --I; 845 KillMI = LIS->getInstructionFromIndex(I->end); 846 } else { 847 KillMI = LV->getVarInfo(Reg).findKill(MBB); 848 } 849 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 850 // Don't mess with copies, they may be coalesced later. 851 return false; 852 853 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 854 KillMI->isBranch() || KillMI->isTerminator()) 855 // Don't move pass calls, etc. 856 return false; 857 858 Register DstReg; 859 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 860 return false; 861 862 bool SeenStore = true; 863 if (!MI->isSafeToMove(AA, SeenStore)) 864 return false; 865 866 if (TII->getInstrLatency(InstrItins, *MI) > 1) 867 // FIXME: Needs more sophisticated heuristics. 868 return false; 869 870 SmallVector<Register, 2> Uses; 871 SmallVector<Register, 2> Kills; 872 SmallVector<Register, 2> Defs; 873 for (const MachineOperand &MO : MI->operands()) { 874 if (!MO.isReg()) 875 continue; 876 Register MOReg = MO.getReg(); 877 if (!MOReg) 878 continue; 879 if (MO.isDef()) 880 Defs.push_back(MOReg); 881 else { 882 Uses.push_back(MOReg); 883 if (MOReg != Reg && (MO.isKill() || 884 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 885 Kills.push_back(MOReg); 886 } 887 } 888 889 // Move the copies connected to MI down as well. 890 MachineBasicBlock::iterator Begin = MI; 891 MachineBasicBlock::iterator AfterMI = std::next(Begin); 892 MachineBasicBlock::iterator End = AfterMI; 893 while (End != MBB->end()) { 894 End = skipDebugInstructionsForward(End, MBB->end()); 895 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) 896 Defs.push_back(End->getOperand(0).getReg()); 897 else 898 break; 899 ++End; 900 } 901 902 // Check if the reschedule will not break dependencies. 903 unsigned NumVisited = 0; 904 MachineBasicBlock::iterator KillPos = KillMI; 905 ++KillPos; 906 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 907 // Debug or pseudo instructions cannot be counted against the limit. 908 if (OtherMI.isDebugOrPseudoInstr()) 909 continue; 910 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 911 return false; 912 ++NumVisited; 913 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 914 OtherMI.isBranch() || OtherMI.isTerminator()) 915 // Don't move pass calls, etc. 916 return false; 917 for (const MachineOperand &MO : OtherMI.operands()) { 918 if (!MO.isReg()) 919 continue; 920 Register MOReg = MO.getReg(); 921 if (!MOReg) 922 continue; 923 if (MO.isDef()) { 924 if (regOverlapsSet(Uses, MOReg, TRI)) 925 // Physical register use would be clobbered. 926 return false; 927 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 928 // May clobber a physical register def. 929 // FIXME: This may be too conservative. It's ok if the instruction 930 // is sunken completely below the use. 931 return false; 932 } else { 933 if (regOverlapsSet(Defs, MOReg, TRI)) 934 return false; 935 bool isKill = 936 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 937 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 938 regOverlapsSet(Kills, MOReg, TRI))) 939 // Don't want to extend other live ranges and update kills. 940 return false; 941 if (MOReg == Reg && !isKill) 942 // We can't schedule across a use of the register in question. 943 return false; 944 // Ensure that if this is register in question, its the kill we expect. 945 assert((MOReg != Reg || &OtherMI == KillMI) && 946 "Found multiple kills of a register in a basic block"); 947 } 948 } 949 } 950 951 // Move debug info as well. 952 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 953 --Begin; 954 955 nmi = End; 956 MachineBasicBlock::iterator InsertPos = KillPos; 957 if (LIS) { 958 // We have to move the copies first so that the MBB is still well-formed 959 // when calling handleMove(). 960 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 961 auto CopyMI = MBBI++; 962 MBB->splice(InsertPos, MBB, CopyMI); 963 LIS->handleMove(*CopyMI); 964 InsertPos = CopyMI; 965 } 966 End = std::next(MachineBasicBlock::iterator(MI)); 967 } 968 969 // Copies following MI may have been moved as well. 970 MBB->splice(InsertPos, MBB, Begin, End); 971 DistanceMap.erase(DI); 972 973 // Update live variables 974 if (LIS) { 975 LIS->handleMove(*MI); 976 } else { 977 LV->removeVirtualRegisterKilled(Reg, *KillMI); 978 LV->addVirtualRegisterKilled(Reg, *MI); 979 } 980 981 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 982 return true; 983 } 984 985 /// Return true if the re-scheduling will put the given instruction too close 986 /// to the defs of its register dependencies. 987 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist, 988 MachineInstr *MI) { 989 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 990 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 991 continue; 992 if (&DefMI == MI) 993 return true; // MI is defining something KillMI uses 994 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 995 if (DDI == DistanceMap.end()) 996 return true; // Below MI 997 unsigned DefDist = DDI->second; 998 assert(Dist > DefDist && "Visited def already?"); 999 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 1000 return true; 1001 } 1002 return false; 1003 } 1004 1005 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 1006 /// consider moving the kill instruction above the current two-address 1007 /// instruction in order to eliminate the need for the copy. 1008 bool TwoAddressInstructionPass::rescheduleKillAboveMI( 1009 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 1010 Register Reg) { 1011 // Bail immediately if we don't have LV or LIS available. We use them to find 1012 // kills efficiently. 1013 if (!LV && !LIS) 1014 return false; 1015 1016 MachineInstr *MI = &*mi; 1017 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1018 if (DI == DistanceMap.end()) 1019 // Must be created from unfolded load. Don't waste time trying this. 1020 return false; 1021 1022 MachineInstr *KillMI = nullptr; 1023 if (LIS) { 1024 LiveInterval &LI = LIS->getInterval(Reg); 1025 assert(LI.end() != LI.begin() && 1026 "Reg should not have empty live interval."); 1027 1028 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1029 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1030 if (I != LI.end() && I->start < MBBEndIdx) 1031 return false; 1032 1033 --I; 1034 KillMI = LIS->getInstructionFromIndex(I->end); 1035 } else { 1036 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1037 } 1038 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1039 // Don't mess with copies, they may be coalesced later. 1040 return false; 1041 1042 Register DstReg; 1043 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1044 return false; 1045 1046 bool SeenStore = true; 1047 if (!KillMI->isSafeToMove(AA, SeenStore)) 1048 return false; 1049 1050 SmallVector<Register, 2> Uses; 1051 SmallVector<Register, 2> Kills; 1052 SmallVector<Register, 2> Defs; 1053 SmallVector<Register, 2> LiveDefs; 1054 for (const MachineOperand &MO : KillMI->operands()) { 1055 if (!MO.isReg()) 1056 continue; 1057 Register MOReg = MO.getReg(); 1058 if (MO.isUse()) { 1059 if (!MOReg) 1060 continue; 1061 if (isDefTooClose(MOReg, DI->second, MI)) 1062 return false; 1063 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1064 if (MOReg == Reg && !isKill) 1065 return false; 1066 Uses.push_back(MOReg); 1067 if (isKill && MOReg != Reg) 1068 Kills.push_back(MOReg); 1069 } else if (MOReg.isPhysical()) { 1070 Defs.push_back(MOReg); 1071 if (!MO.isDead()) 1072 LiveDefs.push_back(MOReg); 1073 } 1074 } 1075 1076 // Check if the reschedule will not break depedencies. 1077 unsigned NumVisited = 0; 1078 for (MachineInstr &OtherMI : 1079 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1080 // Debug or pseudo instructions cannot be counted against the limit. 1081 if (OtherMI.isDebugOrPseudoInstr()) 1082 continue; 1083 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1084 return false; 1085 ++NumVisited; 1086 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1087 OtherMI.isBranch() || OtherMI.isTerminator()) 1088 // Don't move pass calls, etc. 1089 return false; 1090 SmallVector<Register, 2> OtherDefs; 1091 for (const MachineOperand &MO : OtherMI.operands()) { 1092 if (!MO.isReg()) 1093 continue; 1094 Register MOReg = MO.getReg(); 1095 if (!MOReg) 1096 continue; 1097 if (MO.isUse()) { 1098 if (regOverlapsSet(Defs, MOReg, TRI)) 1099 // Moving KillMI can clobber the physical register if the def has 1100 // not been seen. 1101 return false; 1102 if (regOverlapsSet(Kills, MOReg, TRI)) 1103 // Don't want to extend other live ranges and update kills. 1104 return false; 1105 if (&OtherMI != MI && MOReg == Reg && 1106 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1107 // We can't schedule across a use of the register in question. 1108 return false; 1109 } else { 1110 OtherDefs.push_back(MOReg); 1111 } 1112 } 1113 1114 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1115 Register MOReg = OtherDefs[i]; 1116 if (regOverlapsSet(Uses, MOReg, TRI)) 1117 return false; 1118 if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI)) 1119 return false; 1120 // Physical register def is seen. 1121 llvm::erase_value(Defs, MOReg); 1122 } 1123 } 1124 1125 // Move the old kill above MI, don't forget to move debug info as well. 1126 MachineBasicBlock::iterator InsertPos = mi; 1127 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1128 --InsertPos; 1129 MachineBasicBlock::iterator From = KillMI; 1130 MachineBasicBlock::iterator To = std::next(From); 1131 while (std::prev(From)->isDebugInstr()) 1132 --From; 1133 MBB->splice(InsertPos, MBB, From, To); 1134 1135 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1136 DistanceMap.erase(DI); 1137 1138 // Update live variables 1139 if (LIS) { 1140 LIS->handleMove(*KillMI); 1141 } else { 1142 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1143 LV->addVirtualRegisterKilled(Reg, *MI); 1144 } 1145 1146 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1147 return true; 1148 } 1149 1150 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1151 /// given machine instruction to improve opportunities for coalescing and 1152 /// elimination of a register to register copy. 1153 /// 1154 /// 'DstOpIdx' specifies the index of MI def operand. 1155 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1156 /// operand is killed by the given instruction. 1157 /// The 'Dist' arguments provides the distance of MI from the start of the 1158 /// current basic block and it is used to determine if it is profitable 1159 /// to commute operands in the instruction. 1160 /// 1161 /// Returns true if the transformation happened. Otherwise, returns false. 1162 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1163 unsigned DstOpIdx, 1164 unsigned BaseOpIdx, 1165 bool BaseOpKilled, 1166 unsigned Dist) { 1167 if (!MI->isCommutable()) 1168 return false; 1169 1170 bool MadeChange = false; 1171 Register DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1172 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1173 unsigned OpsNum = MI->getDesc().getNumOperands(); 1174 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1175 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1176 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1177 // and OtherOpIdx are commutable, it does not really search for 1178 // other commutable operands and does not change the values of passed 1179 // variables. 1180 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1181 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1182 continue; 1183 1184 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1185 bool AggressiveCommute = false; 1186 1187 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1188 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1189 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1190 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1191 1192 if (!DoCommute && 1193 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1194 DoCommute = true; 1195 AggressiveCommute = true; 1196 } 1197 1198 // If it's profitable to commute, try to do so. 1199 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1200 Dist)) { 1201 MadeChange = true; 1202 ++NumCommuted; 1203 if (AggressiveCommute) 1204 ++NumAggrCommuted; 1205 1206 // There might be more than two commutable operands, update BaseOp and 1207 // continue scanning. 1208 // FIXME: This assumes that the new instruction's operands are in the 1209 // same positions and were simply swapped. 1210 BaseOpReg = OtherOpReg; 1211 BaseOpKilled = OtherOpKilled; 1212 // Resamples OpsNum in case the number of operands was reduced. This 1213 // happens with X86. 1214 OpsNum = MI->getDesc().getNumOperands(); 1215 } 1216 } 1217 return MadeChange; 1218 } 1219 1220 /// For the case where an instruction has a single pair of tied register 1221 /// operands, attempt some transformations that may either eliminate the tied 1222 /// operands or improve the opportunities for coalescing away the register copy. 1223 /// Returns true if no copy needs to be inserted to untie mi's operands 1224 /// (either because they were untied, or because mi was rescheduled, and will 1225 /// be visited again later). If the shouldOnlyCommute flag is true, only 1226 /// instruction commutation is attempted. 1227 bool TwoAddressInstructionPass:: 1228 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1229 MachineBasicBlock::iterator &nmi, 1230 unsigned SrcIdx, unsigned DstIdx, 1231 unsigned &Dist, bool shouldOnlyCommute) { 1232 if (OptLevel == CodeGenOpt::None) 1233 return false; 1234 1235 MachineInstr &MI = *mi; 1236 Register regA = MI.getOperand(DstIdx).getReg(); 1237 Register regB = MI.getOperand(SrcIdx).getReg(); 1238 1239 assert(regB.isVirtual() && "cannot make instruction into two-address form"); 1240 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1241 1242 if (regA.isVirtual()) 1243 scanUses(regA); 1244 1245 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1246 1247 // If the instruction is convertible to 3 Addr, instead 1248 // of returning try 3 Addr transformation aggressively and 1249 // use this variable to check later. Because it might be better. 1250 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1251 // instead of the following code. 1252 // addl %esi, %edi 1253 // movl %edi, %eax 1254 // ret 1255 if (Commuted && !MI.isConvertibleTo3Addr()) 1256 return false; 1257 1258 if (shouldOnlyCommute) 1259 return false; 1260 1261 // If there is one more use of regB later in the same MBB, consider 1262 // re-schedule this MI below it. 1263 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1264 ++NumReSchedDowns; 1265 return true; 1266 } 1267 1268 // If we commuted, regB may have changed so we should re-sample it to avoid 1269 // confusing the three address conversion below. 1270 if (Commuted) { 1271 regB = MI.getOperand(SrcIdx).getReg(); 1272 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1273 } 1274 1275 if (MI.isConvertibleTo3Addr()) { 1276 // This instruction is potentially convertible to a true 1277 // three-address instruction. Check if it is profitable. 1278 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1279 // Try to convert it. 1280 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1281 ++NumConvertedTo3Addr; 1282 return true; // Done with this instruction. 1283 } 1284 } 1285 } 1286 1287 // Return if it is commuted but 3 addr conversion is failed. 1288 if (Commuted) 1289 return false; 1290 1291 // If there is one more use of regB later in the same MBB, consider 1292 // re-schedule it before this MI if it's legal. 1293 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1294 ++NumReSchedUps; 1295 return true; 1296 } 1297 1298 // If this is an instruction with a load folded into it, try unfolding 1299 // the load, e.g. avoid this: 1300 // movq %rdx, %rcx 1301 // addq (%rax), %rcx 1302 // in favor of this: 1303 // movq (%rax), %rcx 1304 // addq %rdx, %rcx 1305 // because it's preferable to schedule a load than a register copy. 1306 if (MI.mayLoad() && !regBKilled) { 1307 // Determine if a load can be unfolded. 1308 unsigned LoadRegIndex; 1309 unsigned NewOpc = 1310 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1311 /*UnfoldLoad=*/true, 1312 /*UnfoldStore=*/false, 1313 &LoadRegIndex); 1314 if (NewOpc != 0) { 1315 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1316 if (UnfoldMCID.getNumDefs() == 1) { 1317 // Unfold the load. 1318 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1319 const TargetRegisterClass *RC = 1320 TRI->getAllocatableClass( 1321 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1322 Register Reg = MRI->createVirtualRegister(RC); 1323 SmallVector<MachineInstr *, 2> NewMIs; 1324 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1325 /*UnfoldLoad=*/true, 1326 /*UnfoldStore=*/false, NewMIs)) { 1327 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1328 return false; 1329 } 1330 assert(NewMIs.size() == 2 && 1331 "Unfolded a load into multiple instructions!"); 1332 // The load was previously folded, so this is the only use. 1333 NewMIs[1]->addRegisterKilled(Reg, TRI); 1334 1335 // Tentatively insert the instructions into the block so that they 1336 // look "normal" to the transformation logic. 1337 MBB->insert(mi, NewMIs[0]); 1338 MBB->insert(mi, NewMIs[1]); 1339 DistanceMap.insert(std::make_pair(NewMIs[0], Dist++)); 1340 DistanceMap.insert(std::make_pair(NewMIs[1], Dist)); 1341 1342 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1343 << "2addr: NEW INST: " << *NewMIs[1]); 1344 1345 // Transform the instruction, now that it no longer has a load. 1346 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1347 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1348 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1349 bool TransformResult = 1350 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1351 (void)TransformResult; 1352 assert(!TransformResult && 1353 "tryInstructionTransform() should return false."); 1354 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1355 // Success, or at least we made an improvement. Keep the unfolded 1356 // instructions and discard the original. 1357 if (LV) { 1358 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1359 MachineOperand &MO = MI.getOperand(i); 1360 if (MO.isReg() && MO.getReg().isVirtual()) { 1361 if (MO.isUse()) { 1362 if (MO.isKill()) { 1363 if (NewMIs[0]->killsRegister(MO.getReg())) 1364 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1365 else { 1366 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1367 "Kill missing after load unfold!"); 1368 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1369 } 1370 } 1371 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1372 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1373 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1374 else { 1375 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1376 "Dead flag missing after load unfold!"); 1377 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1378 } 1379 } 1380 } 1381 } 1382 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1383 } 1384 1385 SmallVector<Register, 4> OrigRegs; 1386 if (LIS) { 1387 for (const MachineOperand &MO : MI.operands()) { 1388 if (MO.isReg()) 1389 OrigRegs.push_back(MO.getReg()); 1390 } 1391 1392 LIS->RemoveMachineInstrFromMaps(MI); 1393 } 1394 1395 MI.eraseFromParent(); 1396 DistanceMap.erase(&MI); 1397 1398 // Update LiveIntervals. 1399 if (LIS) { 1400 MachineBasicBlock::iterator Begin(NewMIs[0]); 1401 MachineBasicBlock::iterator End(NewMIs[1]); 1402 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1403 } 1404 1405 mi = NewMIs[1]; 1406 } else { 1407 // Transforming didn't eliminate the tie and didn't lead to an 1408 // improvement. Clean up the unfolded instructions and keep the 1409 // original. 1410 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1411 NewMIs[0]->eraseFromParent(); 1412 NewMIs[1]->eraseFromParent(); 1413 DistanceMap.erase(NewMIs[0]); 1414 DistanceMap.erase(NewMIs[1]); 1415 Dist--; 1416 } 1417 } 1418 } 1419 } 1420 1421 return false; 1422 } 1423 1424 // Collect tied operands of MI that need to be handled. 1425 // Rewrite trivial cases immediately. 1426 // Return true if any tied operands where found, including the trivial ones. 1427 bool TwoAddressInstructionPass:: 1428 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1429 bool AnyOps = false; 1430 unsigned NumOps = MI->getNumOperands(); 1431 1432 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1433 unsigned DstIdx = 0; 1434 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1435 continue; 1436 AnyOps = true; 1437 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1438 MachineOperand &DstMO = MI->getOperand(DstIdx); 1439 Register SrcReg = SrcMO.getReg(); 1440 Register DstReg = DstMO.getReg(); 1441 // Tied constraint already satisfied? 1442 if (SrcReg == DstReg) 1443 continue; 1444 1445 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1446 1447 // Deal with undef uses immediately - simply rewrite the src operand. 1448 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1449 // Constrain the DstReg register class if required. 1450 if (DstReg.isVirtual()) { 1451 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 1452 MRI->constrainRegClass(DstReg, RC); 1453 } 1454 SrcMO.setReg(DstReg); 1455 SrcMO.setSubReg(0); 1456 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1457 continue; 1458 } 1459 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1460 } 1461 return AnyOps; 1462 } 1463 1464 // Process a list of tied MI operands that all use the same source register. 1465 // The tied pairs are of the form (SrcIdx, DstIdx). 1466 void 1467 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1468 TiedPairList &TiedPairs, 1469 unsigned &Dist) { 1470 bool IsEarlyClobber = llvm::find_if(TiedPairs, [MI](auto const &TP) { 1471 return MI->getOperand(TP.second).isEarlyClobber(); 1472 }) != TiedPairs.end(); 1473 1474 bool RemovedKillFlag = false; 1475 bool AllUsesCopied = true; 1476 unsigned LastCopiedReg = 0; 1477 SlotIndex LastCopyIdx; 1478 Register RegB = 0; 1479 unsigned SubRegB = 0; 1480 for (auto &TP : TiedPairs) { 1481 unsigned SrcIdx = TP.first; 1482 unsigned DstIdx = TP.second; 1483 1484 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1485 Register RegA = DstMO.getReg(); 1486 1487 // Grab RegB from the instruction because it may have changed if the 1488 // instruction was commuted. 1489 RegB = MI->getOperand(SrcIdx).getReg(); 1490 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1491 1492 if (RegA == RegB) { 1493 // The register is tied to multiple destinations (or else we would 1494 // not have continued this far), but this use of the register 1495 // already matches the tied destination. Leave it. 1496 AllUsesCopied = false; 1497 continue; 1498 } 1499 LastCopiedReg = RegA; 1500 1501 assert(RegB.isVirtual() && "cannot make instruction into two-address form"); 1502 1503 #ifndef NDEBUG 1504 // First, verify that we don't have a use of "a" in the instruction 1505 // (a = b + a for example) because our transformation will not 1506 // work. This should never occur because we are in SSA form. 1507 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1508 assert(i == DstIdx || 1509 !MI->getOperand(i).isReg() || 1510 MI->getOperand(i).getReg() != RegA); 1511 #endif 1512 1513 // Emit a copy. 1514 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1515 TII->get(TargetOpcode::COPY), RegA); 1516 // If this operand is folding a truncation, the truncation now moves to the 1517 // copy so that the register classes remain valid for the operands. 1518 MIB.addReg(RegB, 0, SubRegB); 1519 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1520 if (SubRegB) { 1521 if (RegA.isVirtual()) { 1522 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1523 SubRegB) && 1524 "tied subregister must be a truncation"); 1525 // The superreg class will not be used to constrain the subreg class. 1526 RC = nullptr; 1527 } else { 1528 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1529 && "tied subregister must be a truncation"); 1530 } 1531 } 1532 1533 // Update DistanceMap. 1534 MachineBasicBlock::iterator PrevMI = MI; 1535 --PrevMI; 1536 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1537 DistanceMap[MI] = ++Dist; 1538 1539 if (LIS) { 1540 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1541 1542 SlotIndex endIdx = 1543 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1544 if (RegA.isVirtual()) { 1545 LiveInterval &LI = LIS->getInterval(RegA); 1546 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1547 LI.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1548 for (auto &S : LI.subranges()) { 1549 VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1550 S.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1551 } 1552 } else { 1553 for (MCRegUnitIterator Unit(RegA, TRI); Unit.isValid(); ++Unit) { 1554 if (LiveRange *LR = LIS->getCachedRegUnit(*Unit)) { 1555 VNInfo *VNI = 1556 LR->getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1557 LR->addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1558 } 1559 } 1560 } 1561 } 1562 1563 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1564 1565 MachineOperand &MO = MI->getOperand(SrcIdx); 1566 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1567 "inconsistent operand info for 2-reg pass"); 1568 if (MO.isKill()) { 1569 MO.setIsKill(false); 1570 RemovedKillFlag = true; 1571 } 1572 1573 // Make sure regA is a legal regclass for the SrcIdx operand. 1574 if (RegA.isVirtual() && RegB.isVirtual()) 1575 MRI->constrainRegClass(RegA, RC); 1576 MO.setReg(RegA); 1577 // The getMatchingSuper asserts guarantee that the register class projected 1578 // by SubRegB is compatible with RegA with no subregister. So regardless of 1579 // whether the dest oper writes a subreg, the source oper should not. 1580 MO.setSubReg(0); 1581 } 1582 1583 if (AllUsesCopied) { 1584 bool ReplacedAllUntiedUses = false; 1585 if (!IsEarlyClobber) { 1586 // Replace other (un-tied) uses of regB with LastCopiedReg. 1587 ReplacedAllUntiedUses = true; 1588 for (MachineOperand &MO : MI->operands()) { 1589 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1590 if (MO.getSubReg() == SubRegB) { 1591 if (MO.isKill()) { 1592 MO.setIsKill(false); 1593 RemovedKillFlag = true; 1594 } 1595 MO.setReg(LastCopiedReg); 1596 MO.setSubReg(0); 1597 } else { 1598 ReplacedAllUntiedUses = false; 1599 } 1600 } 1601 } 1602 } 1603 1604 // Update live variables for regB. 1605 if (RemovedKillFlag && ReplacedAllUntiedUses && 1606 LV && LV->getVarInfo(RegB).removeKill(*MI)) { 1607 MachineBasicBlock::iterator PrevMI = MI; 1608 --PrevMI; 1609 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1610 } 1611 1612 if (RemovedKillFlag && ReplacedAllUntiedUses) 1613 SrcRegMap[LastCopiedReg] = RegB; 1614 1615 // Update LiveIntervals. 1616 if (LIS) { 1617 LiveInterval &LI = LIS->getInterval(RegB); 1618 SlotIndex MIIdx = LIS->getInstructionIndex(*MI); 1619 LiveInterval::const_iterator I = LI.find(MIIdx); 1620 assert(I != LI.end() && "RegB must be live-in to use."); 1621 1622 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1623 if (I->end == UseIdx) 1624 LI.removeSegment(LastCopyIdx, UseIdx); 1625 } 1626 } else if (RemovedKillFlag) { 1627 // Some tied uses of regB matched their destination registers, so 1628 // regB is still used in this instruction, but a kill flag was 1629 // removed from a different tied use of regB, so now we need to add 1630 // a kill flag to one of the remaining uses of regB. 1631 for (MachineOperand &MO : MI->operands()) { 1632 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1633 MO.setIsKill(true); 1634 break; 1635 } 1636 } 1637 } 1638 } 1639 1640 /// Reduce two-address instructions to two operands. 1641 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1642 MF = &Func; 1643 const TargetMachine &TM = MF->getTarget(); 1644 MRI = &MF->getRegInfo(); 1645 TII = MF->getSubtarget().getInstrInfo(); 1646 TRI = MF->getSubtarget().getRegisterInfo(); 1647 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1648 LV = getAnalysisIfAvailable<LiveVariables>(); 1649 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1650 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1651 AA = &AAPass->getAAResults(); 1652 else 1653 AA = nullptr; 1654 OptLevel = TM.getOptLevel(); 1655 // Disable optimizations if requested. We cannot skip the whole pass as some 1656 // fixups are necessary for correctness. 1657 if (skipFunction(Func.getFunction())) 1658 OptLevel = CodeGenOpt::None; 1659 1660 bool MadeChange = false; 1661 1662 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1663 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1664 1665 // This pass takes the function out of SSA form. 1666 MRI->leaveSSA(); 1667 1668 // This pass will rewrite the tied-def to meet the RegConstraint. 1669 MF->getProperties() 1670 .set(MachineFunctionProperties::Property::TiedOpsRewritten); 1671 1672 TiedOperandMap TiedOperands; 1673 for (MachineBasicBlock &MBBI : *MF) { 1674 MBB = &MBBI; 1675 unsigned Dist = 0; 1676 DistanceMap.clear(); 1677 SrcRegMap.clear(); 1678 DstRegMap.clear(); 1679 Processed.clear(); 1680 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1681 mi != me; ) { 1682 MachineBasicBlock::iterator nmi = std::next(mi); 1683 // Skip debug instructions. 1684 if (mi->isDebugInstr()) { 1685 mi = nmi; 1686 continue; 1687 } 1688 1689 // Expand REG_SEQUENCE instructions. This will position mi at the first 1690 // expanded instruction. 1691 if (mi->isRegSequence()) 1692 eliminateRegSequence(mi); 1693 1694 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1695 1696 processCopy(&*mi); 1697 1698 // First scan through all the tied register uses in this instruction 1699 // and record a list of pairs of tied operands for each register. 1700 if (!collectTiedOperands(&*mi, TiedOperands)) { 1701 removeClobberedSrcRegMap(&*mi); 1702 mi = nmi; 1703 continue; 1704 } 1705 1706 ++NumTwoAddressInstrs; 1707 MadeChange = true; 1708 LLVM_DEBUG(dbgs() << '\t' << *mi); 1709 1710 // If the instruction has a single pair of tied operands, try some 1711 // transformations that may either eliminate the tied operands or 1712 // improve the opportunities for coalescing away the register copy. 1713 if (TiedOperands.size() == 1) { 1714 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1715 = TiedOperands.begin()->second; 1716 if (TiedPairs.size() == 1) { 1717 unsigned SrcIdx = TiedPairs[0].first; 1718 unsigned DstIdx = TiedPairs[0].second; 1719 Register SrcReg = mi->getOperand(SrcIdx).getReg(); 1720 Register DstReg = mi->getOperand(DstIdx).getReg(); 1721 if (SrcReg != DstReg && 1722 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1723 // The tied operands have been eliminated or shifted further down 1724 // the block to ease elimination. Continue processing with 'nmi'. 1725 TiedOperands.clear(); 1726 removeClobberedSrcRegMap(&*mi); 1727 mi = nmi; 1728 continue; 1729 } 1730 } 1731 } 1732 1733 // Now iterate over the information collected above. 1734 for (auto &TO : TiedOperands) { 1735 processTiedPairs(&*mi, TO.second, Dist); 1736 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1737 } 1738 1739 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1740 if (mi->isInsertSubreg()) { 1741 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1742 // To %reg:subidx = COPY %subreg 1743 unsigned SubIdx = mi->getOperand(3).getImm(); 1744 mi->RemoveOperand(3); 1745 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1746 mi->getOperand(0).setSubReg(SubIdx); 1747 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1748 mi->RemoveOperand(1); 1749 mi->setDesc(TII->get(TargetOpcode::COPY)); 1750 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1751 } 1752 1753 // Clear TiedOperands here instead of at the top of the loop 1754 // since most instructions do not have tied operands. 1755 TiedOperands.clear(); 1756 removeClobberedSrcRegMap(&*mi); 1757 mi = nmi; 1758 } 1759 } 1760 1761 return MadeChange; 1762 } 1763 1764 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1765 /// 1766 /// The instruction is turned into a sequence of sub-register copies: 1767 /// 1768 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1769 /// 1770 /// Becomes: 1771 /// 1772 /// undef %dst:ssub0 = COPY %v1 1773 /// %dst:ssub1 = COPY %v2 1774 void TwoAddressInstructionPass:: 1775 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1776 MachineInstr &MI = *MBBI; 1777 Register DstReg = MI.getOperand(0).getReg(); 1778 if (MI.getOperand(0).getSubReg() || DstReg.isPhysical() || 1779 !(MI.getNumOperands() & 1)) { 1780 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1781 llvm_unreachable(nullptr); 1782 } 1783 1784 SmallVector<Register, 4> OrigRegs; 1785 if (LIS) { 1786 OrigRegs.push_back(MI.getOperand(0).getReg()); 1787 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1788 OrigRegs.push_back(MI.getOperand(i).getReg()); 1789 } 1790 1791 bool DefEmitted = false; 1792 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1793 MachineOperand &UseMO = MI.getOperand(i); 1794 Register SrcReg = UseMO.getReg(); 1795 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1796 // Nothing needs to be inserted for undef operands. 1797 if (UseMO.isUndef()) 1798 continue; 1799 1800 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1801 // might insert a COPY that uses SrcReg after is was killed. 1802 bool isKill = UseMO.isKill(); 1803 if (isKill) 1804 for (unsigned j = i + 2; j < e; j += 2) 1805 if (MI.getOperand(j).getReg() == SrcReg) { 1806 MI.getOperand(j).setIsKill(); 1807 UseMO.setIsKill(false); 1808 isKill = false; 1809 break; 1810 } 1811 1812 // Insert the sub-register copy. 1813 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1814 TII->get(TargetOpcode::COPY)) 1815 .addReg(DstReg, RegState::Define, SubIdx) 1816 .add(UseMO); 1817 1818 // The first def needs an undef flag because there is no live register 1819 // before it. 1820 if (!DefEmitted) { 1821 CopyMI->getOperand(0).setIsUndef(true); 1822 // Return an iterator pointing to the first inserted instr. 1823 MBBI = CopyMI; 1824 } 1825 DefEmitted = true; 1826 1827 // Update LiveVariables' kill info. 1828 if (LV && isKill && !SrcReg.isPhysical()) 1829 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1830 1831 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1832 } 1833 1834 MachineBasicBlock::iterator EndMBBI = 1835 std::next(MachineBasicBlock::iterator(MI)); 1836 1837 if (!DefEmitted) { 1838 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1839 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1840 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1841 MI.RemoveOperand(j); 1842 } else { 1843 if (LIS) 1844 LIS->RemoveMachineInstrFromMaps(MI); 1845 1846 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1847 MI.eraseFromParent(); 1848 } 1849 1850 // Udpate LiveIntervals. 1851 if (LIS) 1852 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1853 } 1854