1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #define DEBUG_TYPE "twoaddrinstr" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/Function.h" 33 #include "llvm/CodeGen/LiveVariables.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/Analysis/AliasAnalysis.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetOptions.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/ADT/BitVector.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/SmallSet.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/ADT/STLExtras.h" 50 using namespace llvm; 51 52 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 53 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 54 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 55 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 56 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 57 STATISTIC(NumReMats, "Number of instructions re-materialized"); 58 STATISTIC(NumDeletes, "Number of dead instructions deleted"); 59 60 namespace { 61 class TwoAddressInstructionPass : public MachineFunctionPass { 62 const TargetInstrInfo *TII; 63 const TargetRegisterInfo *TRI; 64 MachineRegisterInfo *MRI; 65 LiveVariables *LV; 66 AliasAnalysis *AA; 67 68 // DistanceMap - Keep track the distance of a MI from the start of the 69 // current basic block. 70 DenseMap<MachineInstr*, unsigned> DistanceMap; 71 72 // SrcRegMap - A map from virtual registers to physical registers which 73 // are likely targets to be coalesced to due to copies from physical 74 // registers to virtual registers. e.g. v1024 = move r0. 75 DenseMap<unsigned, unsigned> SrcRegMap; 76 77 // DstRegMap - A map from virtual registers to physical registers which 78 // are likely targets to be coalesced to due to copies to physical 79 // registers from virtual registers. e.g. r1 = move v1024. 80 DenseMap<unsigned, unsigned> DstRegMap; 81 82 /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen 83 /// during the initial walk of the machine function. 84 SmallVector<MachineInstr*, 16> RegSequences; 85 86 bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI, 87 unsigned Reg, 88 MachineBasicBlock::iterator OldPos); 89 90 bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC, 91 MachineInstr *MI, MachineInstr *DefMI, 92 MachineBasicBlock *MBB, unsigned Loc); 93 94 bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist, 95 unsigned &LastDef); 96 97 MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB, 98 unsigned Dist); 99 100 bool isProfitableToCommute(unsigned regB, unsigned regC, 101 MachineInstr *MI, MachineBasicBlock *MBB, 102 unsigned Dist); 103 104 bool CommuteInstruction(MachineBasicBlock::iterator &mi, 105 MachineFunction::iterator &mbbi, 106 unsigned RegB, unsigned RegC, unsigned Dist); 107 108 bool isProfitableToConv3Addr(unsigned RegA); 109 110 bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi, 111 MachineBasicBlock::iterator &nmi, 112 MachineFunction::iterator &mbbi, 113 unsigned RegB, unsigned Dist); 114 115 typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill; 116 bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills, 117 SmallVector<NewKill, 4> &NewKills, 118 MachineBasicBlock *MBB, unsigned Dist); 119 bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi, 120 MachineBasicBlock::iterator &nmi, 121 MachineFunction::iterator &mbbi, unsigned Dist); 122 123 bool TryInstructionTransform(MachineBasicBlock::iterator &mi, 124 MachineBasicBlock::iterator &nmi, 125 MachineFunction::iterator &mbbi, 126 unsigned SrcIdx, unsigned DstIdx, 127 unsigned Dist); 128 129 void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB, 130 SmallPtrSet<MachineInstr*, 8> &Processed); 131 132 void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg); 133 134 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part 135 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as 136 /// sub-register references of the register defined by REG_SEQUENCE. 137 bool EliminateRegSequences(); 138 139 public: 140 static char ID; // Pass identification, replacement for typeid 141 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 142 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 143 } 144 145 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 146 AU.setPreservesCFG(); 147 AU.addRequired<AliasAnalysis>(); 148 AU.addPreserved<LiveVariables>(); 149 AU.addPreservedID(MachineLoopInfoID); 150 AU.addPreservedID(MachineDominatorsID); 151 if (StrongPHIElim) 152 AU.addPreservedID(StrongPHIEliminationID); 153 else 154 AU.addPreservedID(PHIEliminationID); 155 MachineFunctionPass::getAnalysisUsage(AU); 156 } 157 158 /// runOnMachineFunction - Pass entry point. 159 bool runOnMachineFunction(MachineFunction&); 160 }; 161 } 162 163 char TwoAddressInstructionPass::ID = 0; 164 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction", 165 "Two-Address instruction pass", false, false) 166 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 167 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction", 168 "Two-Address instruction pass", false, false) 169 170 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 171 172 /// Sink3AddrInstruction - A two-address instruction has been converted to a 173 /// three-address instruction to avoid clobbering a register. Try to sink it 174 /// past the instruction that would kill the above mentioned register to reduce 175 /// register pressure. 176 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB, 177 MachineInstr *MI, unsigned SavedReg, 178 MachineBasicBlock::iterator OldPos) { 179 // Check if it's safe to move this instruction. 180 bool SeenStore = true; // Be conservative. 181 if (!MI->isSafeToMove(TII, AA, SeenStore)) 182 return false; 183 184 unsigned DefReg = 0; 185 SmallSet<unsigned, 4> UseRegs; 186 187 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 188 const MachineOperand &MO = MI->getOperand(i); 189 if (!MO.isReg()) 190 continue; 191 unsigned MOReg = MO.getReg(); 192 if (!MOReg) 193 continue; 194 if (MO.isUse() && MOReg != SavedReg) 195 UseRegs.insert(MO.getReg()); 196 if (!MO.isDef()) 197 continue; 198 if (MO.isImplicit()) 199 // Don't try to move it if it implicitly defines a register. 200 return false; 201 if (DefReg) 202 // For now, don't move any instructions that define multiple registers. 203 return false; 204 DefReg = MO.getReg(); 205 } 206 207 // Find the instruction that kills SavedReg. 208 MachineInstr *KillMI = NULL; 209 for (MachineRegisterInfo::use_nodbg_iterator 210 UI = MRI->use_nodbg_begin(SavedReg), 211 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 212 MachineOperand &UseMO = UI.getOperand(); 213 if (!UseMO.isKill()) 214 continue; 215 KillMI = UseMO.getParent(); 216 break; 217 } 218 219 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI) 220 return false; 221 222 // If any of the definitions are used by another instruction between the 223 // position and the kill use, then it's not safe to sink it. 224 // 225 // FIXME: This can be sped up if there is an easy way to query whether an 226 // instruction is before or after another instruction. Then we can use 227 // MachineRegisterInfo def / use instead. 228 MachineOperand *KillMO = NULL; 229 MachineBasicBlock::iterator KillPos = KillMI; 230 ++KillPos; 231 232 unsigned NumVisited = 0; 233 for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) { 234 MachineInstr *OtherMI = I; 235 // DBG_VALUE cannot be counted against the limit. 236 if (OtherMI->isDebugValue()) 237 continue; 238 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 239 return false; 240 ++NumVisited; 241 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 242 MachineOperand &MO = OtherMI->getOperand(i); 243 if (!MO.isReg()) 244 continue; 245 unsigned MOReg = MO.getReg(); 246 if (!MOReg) 247 continue; 248 if (DefReg == MOReg) 249 return false; 250 251 if (MO.isKill()) { 252 if (OtherMI == KillMI && MOReg == SavedReg) 253 // Save the operand that kills the register. We want to unset the kill 254 // marker if we can sink MI past it. 255 KillMO = &MO; 256 else if (UseRegs.count(MOReg)) 257 // One of the uses is killed before the destination. 258 return false; 259 } 260 } 261 } 262 263 // Update kill and LV information. 264 KillMO->setIsKill(false); 265 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 266 KillMO->setIsKill(true); 267 268 if (LV) 269 LV->replaceKillInstruction(SavedReg, KillMI, MI); 270 271 // Move instruction to its destination. 272 MBB->remove(MI); 273 MBB->insert(KillPos, MI); 274 275 ++Num3AddrSunk; 276 return true; 277 } 278 279 /// isTwoAddrUse - Return true if the specified MI is using the specified 280 /// register as a two-address operand. 281 static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) { 282 const TargetInstrDesc &TID = UseMI->getDesc(); 283 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) { 284 MachineOperand &MO = UseMI->getOperand(i); 285 if (MO.isReg() && MO.getReg() == Reg && 286 (MO.isDef() || UseMI->isRegTiedToDefOperand(i))) 287 // Earlier use is a two-address one. 288 return true; 289 } 290 return false; 291 } 292 293 /// isProfitableToReMat - Return true if the heuristics determines it is likely 294 /// to be profitable to re-materialize the definition of Reg rather than copy 295 /// the register. 296 bool 297 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg, 298 const TargetRegisterClass *RC, 299 MachineInstr *MI, MachineInstr *DefMI, 300 MachineBasicBlock *MBB, unsigned Loc) { 301 bool OtherUse = false; 302 for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg), 303 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 304 MachineOperand &UseMO = UI.getOperand(); 305 MachineInstr *UseMI = UseMO.getParent(); 306 MachineBasicBlock *UseMBB = UseMI->getParent(); 307 if (UseMBB == MBB) { 308 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 309 if (DI != DistanceMap.end() && DI->second == Loc) 310 continue; // Current use. 311 OtherUse = true; 312 // There is at least one other use in the MBB that will clobber the 313 // register. 314 if (isTwoAddrUse(UseMI, Reg)) 315 return true; 316 } 317 } 318 319 // If other uses in MBB are not two-address uses, then don't remat. 320 if (OtherUse) 321 return false; 322 323 // No other uses in the same block, remat if it's defined in the same 324 // block so it does not unnecessarily extend the live range. 325 return MBB == DefMI->getParent(); 326 } 327 328 /// NoUseAfterLastDef - Return true if there are no intervening uses between the 329 /// last instruction in the MBB that defines the specified register and the 330 /// two-address instruction which is being processed. It also returns the last 331 /// def location by reference 332 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg, 333 MachineBasicBlock *MBB, unsigned Dist, 334 unsigned &LastDef) { 335 LastDef = 0; 336 unsigned LastUse = Dist; 337 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg), 338 E = MRI->reg_end(); I != E; ++I) { 339 MachineOperand &MO = I.getOperand(); 340 MachineInstr *MI = MO.getParent(); 341 if (MI->getParent() != MBB || MI->isDebugValue()) 342 continue; 343 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 344 if (DI == DistanceMap.end()) 345 continue; 346 if (MO.isUse() && DI->second < LastUse) 347 LastUse = DI->second; 348 if (MO.isDef() && DI->second > LastDef) 349 LastDef = DI->second; 350 } 351 352 return !(LastUse > LastDef && LastUse < Dist); 353 } 354 355 MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg, 356 MachineBasicBlock *MBB, 357 unsigned Dist) { 358 unsigned LastUseDist = 0; 359 MachineInstr *LastUse = 0; 360 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg), 361 E = MRI->reg_end(); I != E; ++I) { 362 MachineOperand &MO = I.getOperand(); 363 MachineInstr *MI = MO.getParent(); 364 if (MI->getParent() != MBB || MI->isDebugValue()) 365 continue; 366 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 367 if (DI == DistanceMap.end()) 368 continue; 369 if (DI->second >= Dist) 370 continue; 371 372 if (MO.isUse() && DI->second > LastUseDist) { 373 LastUse = DI->first; 374 LastUseDist = DI->second; 375 } 376 } 377 return LastUse; 378 } 379 380 /// isCopyToReg - Return true if the specified MI is a copy instruction or 381 /// a extract_subreg instruction. It also returns the source and destination 382 /// registers and whether they are physical registers by reference. 383 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 384 unsigned &SrcReg, unsigned &DstReg, 385 bool &IsSrcPhys, bool &IsDstPhys) { 386 SrcReg = 0; 387 DstReg = 0; 388 if (MI.isCopy()) { 389 DstReg = MI.getOperand(0).getReg(); 390 SrcReg = MI.getOperand(1).getReg(); 391 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 392 DstReg = MI.getOperand(0).getReg(); 393 SrcReg = MI.getOperand(2).getReg(); 394 } else 395 return false; 396 397 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 398 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 399 return true; 400 } 401 402 /// isKilled - Test if the given register value, which is used by the given 403 /// instruction, is killed by the given instruction. This looks through 404 /// coalescable copies to see if the original value is potentially not killed. 405 /// 406 /// For example, in this code: 407 /// 408 /// %reg1034 = copy %reg1024 409 /// %reg1035 = copy %reg1025<kill> 410 /// %reg1036 = add %reg1034<kill>, %reg1035<kill> 411 /// 412 /// %reg1034 is not considered to be killed, since it is copied from a 413 /// register which is not killed. Treating it as not killed lets the 414 /// normal heuristics commute the (two-address) add, which lets 415 /// coalescing eliminate the extra copy. 416 /// 417 static bool isKilled(MachineInstr &MI, unsigned Reg, 418 const MachineRegisterInfo *MRI, 419 const TargetInstrInfo *TII) { 420 MachineInstr *DefMI = &MI; 421 for (;;) { 422 if (!DefMI->killsRegister(Reg)) 423 return false; 424 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 425 return true; 426 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 427 // If there are multiple defs, we can't do a simple analysis, so just 428 // go with what the kill flag says. 429 if (llvm::next(Begin) != MRI->def_end()) 430 return true; 431 DefMI = &*Begin; 432 bool IsSrcPhys, IsDstPhys; 433 unsigned SrcReg, DstReg; 434 // If the def is something other than a copy, then it isn't going to 435 // be coalesced, so follow the kill flag. 436 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 437 return true; 438 Reg = SrcReg; 439 } 440 } 441 442 /// isTwoAddrUse - Return true if the specified MI uses the specified register 443 /// as a two-address use. If so, return the destination register by reference. 444 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 445 const TargetInstrDesc &TID = MI.getDesc(); 446 unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands(); 447 for (unsigned i = 0; i != NumOps; ++i) { 448 const MachineOperand &MO = MI.getOperand(i); 449 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 450 continue; 451 unsigned ti; 452 if (MI.isRegTiedToDefOperand(i, &ti)) { 453 DstReg = MI.getOperand(ti).getReg(); 454 return true; 455 } 456 } 457 return false; 458 } 459 460 /// findOnlyInterestingUse - Given a register, if has a single in-basic block 461 /// use, return the use instruction if it's a copy or a two-address use. 462 static 463 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 464 MachineRegisterInfo *MRI, 465 const TargetInstrInfo *TII, 466 bool &IsCopy, 467 unsigned &DstReg, bool &IsDstPhys) { 468 if (!MRI->hasOneNonDBGUse(Reg)) 469 // None or more than one use. 470 return 0; 471 MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg); 472 if (UseMI.getParent() != MBB) 473 return 0; 474 unsigned SrcReg; 475 bool IsSrcPhys; 476 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 477 IsCopy = true; 478 return &UseMI; 479 } 480 IsDstPhys = false; 481 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 482 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 483 return &UseMI; 484 } 485 return 0; 486 } 487 488 /// getMappedReg - Return the physical register the specified virtual register 489 /// might be mapped to. 490 static unsigned 491 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 492 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 493 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 494 if (SI == RegMap.end()) 495 return 0; 496 Reg = SI->second; 497 } 498 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 499 return Reg; 500 return 0; 501 } 502 503 /// regsAreCompatible - Return true if the two registers are equal or aliased. 504 /// 505 static bool 506 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 507 if (RegA == RegB) 508 return true; 509 if (!RegA || !RegB) 510 return false; 511 return TRI->regsOverlap(RegA, RegB); 512 } 513 514 515 /// isProfitableToReMat - Return true if it's potentially profitable to commute 516 /// the two-address instruction that's being processed. 517 bool 518 TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC, 519 MachineInstr *MI, MachineBasicBlock *MBB, 520 unsigned Dist) { 521 // Determine if it's profitable to commute this two address instruction. In 522 // general, we want no uses between this instruction and the definition of 523 // the two-address register. 524 // e.g. 525 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 526 // %reg1029<def> = MOV8rr %reg1028 527 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 528 // insert => %reg1030<def> = MOV8rr %reg1028 529 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 530 // In this case, it might not be possible to coalesce the second MOV8rr 531 // instruction if the first one is coalesced. So it would be profitable to 532 // commute it: 533 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 534 // %reg1029<def> = MOV8rr %reg1028 535 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 536 // insert => %reg1030<def> = MOV8rr %reg1029 537 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 538 539 if (!MI->killsRegister(regC)) 540 return false; 541 542 // Ok, we have something like: 543 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 544 // let's see if it's worth commuting it. 545 546 // Look for situations like this: 547 // %reg1024<def> = MOV r1 548 // %reg1025<def> = MOV r0 549 // %reg1026<def> = ADD %reg1024, %reg1025 550 // r0 = MOV %reg1026 551 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 552 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 553 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 554 unsigned ToRegB = getMappedReg(regB, DstRegMap); 555 unsigned ToRegC = getMappedReg(regC, DstRegMap); 556 if (!regsAreCompatible(FromRegB, ToRegB, TRI) && 557 (regsAreCompatible(FromRegB, ToRegC, TRI) || 558 regsAreCompatible(FromRegC, ToRegB, TRI))) 559 return true; 560 561 // If there is a use of regC between its last def (could be livein) and this 562 // instruction, then bail. 563 unsigned LastDefC = 0; 564 if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC)) 565 return false; 566 567 // If there is a use of regB between its last def (could be livein) and this 568 // instruction, then go ahead and make this transformation. 569 unsigned LastDefB = 0; 570 if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB)) 571 return true; 572 573 // Since there are no intervening uses for both registers, then commute 574 // if the def of regC is closer. Its live interval is shorter. 575 return LastDefB && LastDefC && LastDefC > LastDefB; 576 } 577 578 /// CommuteInstruction - Commute a two-address instruction and update the basic 579 /// block, distance map, and live variables if needed. Return true if it is 580 /// successful. 581 bool 582 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi, 583 MachineFunction::iterator &mbbi, 584 unsigned RegB, unsigned RegC, unsigned Dist) { 585 MachineInstr *MI = mi; 586 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 587 MachineInstr *NewMI = TII->commuteInstruction(MI); 588 589 if (NewMI == 0) { 590 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 591 return false; 592 } 593 594 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 595 // If the instruction changed to commute it, update livevar. 596 if (NewMI != MI) { 597 if (LV) 598 // Update live variables 599 LV->replaceKillInstruction(RegC, MI, NewMI); 600 601 mbbi->insert(mi, NewMI); // Insert the new inst 602 mbbi->erase(mi); // Nuke the old inst. 603 mi = NewMI; 604 DistanceMap.insert(std::make_pair(NewMI, Dist)); 605 } 606 607 // Update source register map. 608 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 609 if (FromRegC) { 610 unsigned RegA = MI->getOperand(0).getReg(); 611 SrcRegMap[RegA] = FromRegC; 612 } 613 614 return true; 615 } 616 617 /// isProfitableToConv3Addr - Return true if it is profitable to convert the 618 /// given 2-address instruction to a 3-address one. 619 bool 620 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) { 621 // Look for situations like this: 622 // %reg1024<def> = MOV r1 623 // %reg1025<def> = MOV r0 624 // %reg1026<def> = ADD %reg1024, %reg1025 625 // r2 = MOV %reg1026 626 // Turn ADD into a 3-address instruction to avoid a copy. 627 unsigned FromRegA = getMappedReg(RegA, SrcRegMap); 628 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 629 return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI)); 630 } 631 632 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a 633 /// three address one. Return true if this transformation was successful. 634 bool 635 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi, 636 MachineBasicBlock::iterator &nmi, 637 MachineFunction::iterator &mbbi, 638 unsigned RegB, unsigned Dist) { 639 MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV); 640 if (NewMI) { 641 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 642 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 643 bool Sunk = false; 644 645 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 646 // FIXME: Temporary workaround. If the new instruction doesn't 647 // uses RegB, convertToThreeAddress must have created more 648 // then one instruction. 649 Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi); 650 651 mbbi->erase(mi); // Nuke the old inst. 652 653 if (!Sunk) { 654 DistanceMap.insert(std::make_pair(NewMI, Dist)); 655 mi = NewMI; 656 nmi = llvm::next(mi); 657 } 658 return true; 659 } 660 661 return false; 662 } 663 664 /// ProcessCopy - If the specified instruction is not yet processed, process it 665 /// if it's a copy. For a copy instruction, we find the physical registers the 666 /// source and destination registers might be mapped to. These are kept in 667 /// point-to maps used to determine future optimizations. e.g. 668 /// v1024 = mov r0 669 /// v1025 = mov r1 670 /// v1026 = add v1024, v1025 671 /// r1 = mov r1026 672 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 673 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 674 /// potentially joined with r1 on the output side. It's worthwhile to commute 675 /// 'add' to eliminate a copy. 676 void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI, 677 MachineBasicBlock *MBB, 678 SmallPtrSet<MachineInstr*, 8> &Processed) { 679 if (Processed.count(MI)) 680 return; 681 682 bool IsSrcPhys, IsDstPhys; 683 unsigned SrcReg, DstReg; 684 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 685 return; 686 687 if (IsDstPhys && !IsSrcPhys) 688 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 689 else if (!IsDstPhys && IsSrcPhys) { 690 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 691 if (!isNew) 692 assert(SrcRegMap[DstReg] == SrcReg && 693 "Can't map to two src physical registers!"); 694 695 SmallVector<unsigned, 4> VirtRegPairs; 696 bool IsCopy = false; 697 unsigned NewReg = 0; 698 while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII, 699 IsCopy, NewReg, IsDstPhys)) { 700 if (IsCopy) { 701 if (!Processed.insert(UseMI)) 702 break; 703 } 704 705 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 706 if (DI != DistanceMap.end()) 707 // Earlier in the same MBB.Reached via a back edge. 708 break; 709 710 if (IsDstPhys) { 711 VirtRegPairs.push_back(NewReg); 712 break; 713 } 714 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second; 715 if (!isNew) 716 assert(SrcRegMap[NewReg] == DstReg && 717 "Can't map to two src physical registers!"); 718 VirtRegPairs.push_back(NewReg); 719 DstReg = NewReg; 720 } 721 722 if (!VirtRegPairs.empty()) { 723 unsigned ToReg = VirtRegPairs.back(); 724 VirtRegPairs.pop_back(); 725 while (!VirtRegPairs.empty()) { 726 unsigned FromReg = VirtRegPairs.back(); 727 VirtRegPairs.pop_back(); 728 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 729 if (!isNew) 730 assert(DstRegMap[FromReg] == ToReg && 731 "Can't map to two dst physical registers!"); 732 ToReg = FromReg; 733 } 734 } 735 } 736 737 Processed.insert(MI); 738 } 739 740 /// isSafeToDelete - If the specified instruction does not produce any side 741 /// effects and all of its defs are dead, then it's safe to delete. 742 static bool isSafeToDelete(MachineInstr *MI, 743 const TargetInstrInfo *TII, 744 SmallVector<unsigned, 4> &Kills) { 745 const TargetInstrDesc &TID = MI->getDesc(); 746 if (TID.mayStore() || TID.isCall()) 747 return false; 748 if (TID.isTerminator() || TID.hasUnmodeledSideEffects()) 749 return false; 750 751 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 752 MachineOperand &MO = MI->getOperand(i); 753 if (!MO.isReg()) 754 continue; 755 if (MO.isDef() && !MO.isDead()) 756 return false; 757 if (MO.isUse() && MO.isKill()) 758 Kills.push_back(MO.getReg()); 759 } 760 return true; 761 } 762 763 /// canUpdateDeletedKills - Check if all the registers listed in Kills are 764 /// killed by instructions in MBB preceding the current instruction at 765 /// position Dist. If so, return true and record information about the 766 /// preceding kills in NewKills. 767 bool TwoAddressInstructionPass:: 768 canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills, 769 SmallVector<NewKill, 4> &NewKills, 770 MachineBasicBlock *MBB, unsigned Dist) { 771 while (!Kills.empty()) { 772 unsigned Kill = Kills.back(); 773 Kills.pop_back(); 774 if (TargetRegisterInfo::isPhysicalRegister(Kill)) 775 return false; 776 777 MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist); 778 if (!LastKill) 779 return false; 780 781 bool isModRef = LastKill->definesRegister(Kill); 782 NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef), 783 LastKill)); 784 } 785 return true; 786 } 787 788 /// DeleteUnusedInstr - If an instruction with a tied register operand can 789 /// be safely deleted, just delete it. 790 bool 791 TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi, 792 MachineBasicBlock::iterator &nmi, 793 MachineFunction::iterator &mbbi, 794 unsigned Dist) { 795 // Check if the instruction has no side effects and if all its defs are dead. 796 SmallVector<unsigned, 4> Kills; 797 if (!isSafeToDelete(mi, TII, Kills)) 798 return false; 799 800 // If this instruction kills some virtual registers, we need to 801 // update the kill information. If it's not possible to do so, 802 // then bail out. 803 SmallVector<NewKill, 4> NewKills; 804 if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist)) 805 return false; 806 807 if (LV) { 808 while (!NewKills.empty()) { 809 MachineInstr *NewKill = NewKills.back().second; 810 unsigned Kill = NewKills.back().first.first; 811 bool isDead = NewKills.back().first.second; 812 NewKills.pop_back(); 813 if (LV->removeVirtualRegisterKilled(Kill, mi)) { 814 if (isDead) 815 LV->addVirtualRegisterDead(Kill, NewKill); 816 else 817 LV->addVirtualRegisterKilled(Kill, NewKill); 818 } 819 } 820 } 821 822 mbbi->erase(mi); // Nuke the old inst. 823 mi = nmi; 824 return true; 825 } 826 827 /// TryInstructionTransform - For the case where an instruction has a single 828 /// pair of tied register operands, attempt some transformations that may 829 /// either eliminate the tied operands or improve the opportunities for 830 /// coalescing away the register copy. Returns true if the tied operands 831 /// are eliminated altogether. 832 bool TwoAddressInstructionPass:: 833 TryInstructionTransform(MachineBasicBlock::iterator &mi, 834 MachineBasicBlock::iterator &nmi, 835 MachineFunction::iterator &mbbi, 836 unsigned SrcIdx, unsigned DstIdx, unsigned Dist) { 837 const TargetInstrDesc &TID = mi->getDesc(); 838 unsigned regA = mi->getOperand(DstIdx).getReg(); 839 unsigned regB = mi->getOperand(SrcIdx).getReg(); 840 841 assert(TargetRegisterInfo::isVirtualRegister(regB) && 842 "cannot make instruction into two-address form"); 843 844 // If regA is dead and the instruction can be deleted, just delete 845 // it so it doesn't clobber regB. 846 bool regBKilled = isKilled(*mi, regB, MRI, TII); 847 if (!regBKilled && mi->getOperand(DstIdx).isDead() && 848 DeleteUnusedInstr(mi, nmi, mbbi, Dist)) { 849 ++NumDeletes; 850 return true; // Done with this instruction. 851 } 852 853 // Check if it is profitable to commute the operands. 854 unsigned SrcOp1, SrcOp2; 855 unsigned regC = 0; 856 unsigned regCIdx = ~0U; 857 bool TryCommute = false; 858 bool AggressiveCommute = false; 859 if (TID.isCommutable() && mi->getNumOperands() >= 3 && 860 TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) { 861 if (SrcIdx == SrcOp1) 862 regCIdx = SrcOp2; 863 else if (SrcIdx == SrcOp2) 864 regCIdx = SrcOp1; 865 866 if (regCIdx != ~0U) { 867 regC = mi->getOperand(regCIdx).getReg(); 868 if (!regBKilled && isKilled(*mi, regC, MRI, TII)) 869 // If C dies but B does not, swap the B and C operands. 870 // This makes the live ranges of A and C joinable. 871 TryCommute = true; 872 else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) { 873 TryCommute = true; 874 AggressiveCommute = true; 875 } 876 } 877 } 878 879 // If it's profitable to commute, try to do so. 880 if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) { 881 ++NumCommuted; 882 if (AggressiveCommute) 883 ++NumAggrCommuted; 884 return false; 885 } 886 887 if (TID.isConvertibleTo3Addr()) { 888 // This instruction is potentially convertible to a true 889 // three-address instruction. Check if it is profitable. 890 if (!regBKilled || isProfitableToConv3Addr(regA)) { 891 // Try to convert it. 892 if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) { 893 ++NumConvertedTo3Addr; 894 return true; // Done with this instruction. 895 } 896 } 897 } 898 899 // If this is an instruction with a load folded into it, try unfolding 900 // the load, e.g. avoid this: 901 // movq %rdx, %rcx 902 // addq (%rax), %rcx 903 // in favor of this: 904 // movq (%rax), %rcx 905 // addq %rdx, %rcx 906 // because it's preferable to schedule a load than a register copy. 907 if (TID.mayLoad() && !regBKilled) { 908 // Determine if a load can be unfolded. 909 unsigned LoadRegIndex; 910 unsigned NewOpc = 911 TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(), 912 /*UnfoldLoad=*/true, 913 /*UnfoldStore=*/false, 914 &LoadRegIndex); 915 if (NewOpc != 0) { 916 const TargetInstrDesc &UnfoldTID = TII->get(NewOpc); 917 if (UnfoldTID.getNumDefs() == 1) { 918 MachineFunction &MF = *mbbi->getParent(); 919 920 // Unfold the load. 921 DEBUG(dbgs() << "2addr: UNFOLDING: " << *mi); 922 const TargetRegisterClass *RC = 923 UnfoldTID.OpInfo[LoadRegIndex].getRegClass(TRI); 924 unsigned Reg = MRI->createVirtualRegister(RC); 925 SmallVector<MachineInstr *, 2> NewMIs; 926 if (!TII->unfoldMemoryOperand(MF, mi, Reg, 927 /*UnfoldLoad=*/true,/*UnfoldStore=*/false, 928 NewMIs)) { 929 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 930 return false; 931 } 932 assert(NewMIs.size() == 2 && 933 "Unfolded a load into multiple instructions!"); 934 // The load was previously folded, so this is the only use. 935 NewMIs[1]->addRegisterKilled(Reg, TRI); 936 937 // Tentatively insert the instructions into the block so that they 938 // look "normal" to the transformation logic. 939 mbbi->insert(mi, NewMIs[0]); 940 mbbi->insert(mi, NewMIs[1]); 941 942 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 943 << "2addr: NEW INST: " << *NewMIs[1]); 944 945 // Transform the instruction, now that it no longer has a load. 946 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 947 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 948 MachineBasicBlock::iterator NewMI = NewMIs[1]; 949 bool TransformSuccess = 950 TryInstructionTransform(NewMI, mi, mbbi, 951 NewSrcIdx, NewDstIdx, Dist); 952 if (TransformSuccess || 953 NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 954 // Success, or at least we made an improvement. Keep the unfolded 955 // instructions and discard the original. 956 if (LV) { 957 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { 958 MachineOperand &MO = mi->getOperand(i); 959 if (MO.isReg() && MO.getReg() != 0 && 960 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 961 if (MO.isUse()) { 962 if (MO.isKill()) { 963 if (NewMIs[0]->killsRegister(MO.getReg())) 964 LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]); 965 else { 966 assert(NewMIs[1]->killsRegister(MO.getReg()) && 967 "Kill missing after load unfold!"); 968 LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]); 969 } 970 } 971 } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) { 972 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 973 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]); 974 else { 975 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 976 "Dead flag missing after load unfold!"); 977 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]); 978 } 979 } 980 } 981 } 982 LV->addVirtualRegisterKilled(Reg, NewMIs[1]); 983 } 984 mi->eraseFromParent(); 985 mi = NewMIs[1]; 986 if (TransformSuccess) 987 return true; 988 } else { 989 // Transforming didn't eliminate the tie and didn't lead to an 990 // improvement. Clean up the unfolded instructions and keep the 991 // original. 992 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 993 NewMIs[0]->eraseFromParent(); 994 NewMIs[1]->eraseFromParent(); 995 } 996 } 997 } 998 } 999 1000 return false; 1001 } 1002 1003 /// runOnMachineFunction - Reduce two-address instructions to two operands. 1004 /// 1005 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) { 1006 DEBUG(dbgs() << "Machine Function\n"); 1007 const TargetMachine &TM = MF.getTarget(); 1008 MRI = &MF.getRegInfo(); 1009 TII = TM.getInstrInfo(); 1010 TRI = TM.getRegisterInfo(); 1011 LV = getAnalysisIfAvailable<LiveVariables>(); 1012 AA = &getAnalysis<AliasAnalysis>(); 1013 1014 bool MadeChange = false; 1015 1016 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1017 DEBUG(dbgs() << "********** Function: " 1018 << MF.getFunction()->getName() << '\n'); 1019 1020 // ReMatRegs - Keep track of the registers whose def's are remat'ed. 1021 BitVector ReMatRegs; 1022 ReMatRegs.resize(MRI->getLastVirtReg()+1); 1023 1024 typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> > 1025 TiedOperandMap; 1026 TiedOperandMap TiedOperands(4); 1027 1028 SmallPtrSet<MachineInstr*, 8> Processed; 1029 for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end(); 1030 mbbi != mbbe; ++mbbi) { 1031 unsigned Dist = 0; 1032 DistanceMap.clear(); 1033 SrcRegMap.clear(); 1034 DstRegMap.clear(); 1035 Processed.clear(); 1036 for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end(); 1037 mi != me; ) { 1038 MachineBasicBlock::iterator nmi = llvm::next(mi); 1039 if (mi->isDebugValue()) { 1040 mi = nmi; 1041 continue; 1042 } 1043 1044 // Remember REG_SEQUENCE instructions, we'll deal with them later. 1045 if (mi->isRegSequence()) 1046 RegSequences.push_back(&*mi); 1047 1048 const TargetInstrDesc &TID = mi->getDesc(); 1049 bool FirstTied = true; 1050 1051 DistanceMap.insert(std::make_pair(mi, ++Dist)); 1052 1053 ProcessCopy(&*mi, &*mbbi, Processed); 1054 1055 // First scan through all the tied register uses in this instruction 1056 // and record a list of pairs of tied operands for each register. 1057 unsigned NumOps = mi->isInlineAsm() 1058 ? mi->getNumOperands() : TID.getNumOperands(); 1059 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1060 unsigned DstIdx = 0; 1061 if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1062 continue; 1063 1064 if (FirstTied) { 1065 FirstTied = false; 1066 ++NumTwoAddressInstrs; 1067 DEBUG(dbgs() << '\t' << *mi); 1068 } 1069 1070 assert(mi->getOperand(SrcIdx).isReg() && 1071 mi->getOperand(SrcIdx).getReg() && 1072 mi->getOperand(SrcIdx).isUse() && 1073 "two address instruction invalid"); 1074 1075 unsigned regB = mi->getOperand(SrcIdx).getReg(); 1076 TiedOperandMap::iterator OI = TiedOperands.find(regB); 1077 if (OI == TiedOperands.end()) { 1078 SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair; 1079 OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first; 1080 } 1081 OI->second.push_back(std::make_pair(SrcIdx, DstIdx)); 1082 } 1083 1084 // Now iterate over the information collected above. 1085 for (TiedOperandMap::iterator OI = TiedOperands.begin(), 1086 OE = TiedOperands.end(); OI != OE; ++OI) { 1087 SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second; 1088 1089 // If the instruction has a single pair of tied operands, try some 1090 // transformations that may either eliminate the tied operands or 1091 // improve the opportunities for coalescing away the register copy. 1092 if (TiedOperands.size() == 1 && TiedPairs.size() == 1) { 1093 unsigned SrcIdx = TiedPairs[0].first; 1094 unsigned DstIdx = TiedPairs[0].second; 1095 1096 // If the registers are already equal, nothing needs to be done. 1097 if (mi->getOperand(SrcIdx).getReg() == 1098 mi->getOperand(DstIdx).getReg()) 1099 break; // Done with this instruction. 1100 1101 if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist)) 1102 break; // The tied operands have been eliminated. 1103 } 1104 1105 bool RemovedKillFlag = false; 1106 bool AllUsesCopied = true; 1107 unsigned LastCopiedReg = 0; 1108 unsigned regB = OI->first; 1109 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1110 unsigned SrcIdx = TiedPairs[tpi].first; 1111 unsigned DstIdx = TiedPairs[tpi].second; 1112 unsigned regA = mi->getOperand(DstIdx).getReg(); 1113 // Grab regB from the instruction because it may have changed if the 1114 // instruction was commuted. 1115 regB = mi->getOperand(SrcIdx).getReg(); 1116 1117 if (regA == regB) { 1118 // The register is tied to multiple destinations (or else we would 1119 // not have continued this far), but this use of the register 1120 // already matches the tied destination. Leave it. 1121 AllUsesCopied = false; 1122 continue; 1123 } 1124 LastCopiedReg = regA; 1125 1126 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1127 "cannot make instruction into two-address form"); 1128 1129 #ifndef NDEBUG 1130 // First, verify that we don't have a use of "a" in the instruction 1131 // (a = b + a for example) because our transformation will not 1132 // work. This should never occur because we are in SSA form. 1133 for (unsigned i = 0; i != mi->getNumOperands(); ++i) 1134 assert(i == DstIdx || 1135 !mi->getOperand(i).isReg() || 1136 mi->getOperand(i).getReg() != regA); 1137 #endif 1138 1139 // Emit a copy or rematerialize the definition. 1140 const TargetRegisterClass *rc = MRI->getRegClass(regB); 1141 MachineInstr *DefMI = MRI->getVRegDef(regB); 1142 // If it's safe and profitable, remat the definition instead of 1143 // copying it. 1144 if (DefMI && 1145 DefMI->getDesc().isAsCheapAsAMove() && 1146 DefMI->isSafeToReMat(TII, AA, regB) && 1147 isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){ 1148 DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n"); 1149 unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg(); 1150 TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI); 1151 ReMatRegs.set(regB); 1152 ++NumReMats; 1153 } else { 1154 BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY), 1155 regA).addReg(regB); 1156 } 1157 1158 MachineBasicBlock::iterator prevMI = prior(mi); 1159 // Update DistanceMap. 1160 DistanceMap.insert(std::make_pair(prevMI, Dist)); 1161 DistanceMap[mi] = ++Dist; 1162 1163 DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI); 1164 1165 MachineOperand &MO = mi->getOperand(SrcIdx); 1166 assert(MO.isReg() && MO.getReg() == regB && MO.isUse() && 1167 "inconsistent operand info for 2-reg pass"); 1168 if (MO.isKill()) { 1169 MO.setIsKill(false); 1170 RemovedKillFlag = true; 1171 } 1172 MO.setReg(regA); 1173 } 1174 1175 if (AllUsesCopied) { 1176 // Replace other (un-tied) uses of regB with LastCopiedReg. 1177 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { 1178 MachineOperand &MO = mi->getOperand(i); 1179 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) { 1180 if (MO.isKill()) { 1181 MO.setIsKill(false); 1182 RemovedKillFlag = true; 1183 } 1184 MO.setReg(LastCopiedReg); 1185 } 1186 } 1187 1188 // Update live variables for regB. 1189 if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi)) 1190 LV->addVirtualRegisterKilled(regB, prior(mi)); 1191 1192 } else if (RemovedKillFlag) { 1193 // Some tied uses of regB matched their destination registers, so 1194 // regB is still used in this instruction, but a kill flag was 1195 // removed from a different tied use of regB, so now we need to add 1196 // a kill flag to one of the remaining uses of regB. 1197 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { 1198 MachineOperand &MO = mi->getOperand(i); 1199 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) { 1200 MO.setIsKill(true); 1201 break; 1202 } 1203 } 1204 } 1205 1206 // Schedule the source copy / remat inserted to form two-address 1207 // instruction. FIXME: Does it matter the distance map may not be 1208 // accurate after it's scheduled? 1209 TII->scheduleTwoAddrSource(prior(mi), mi, *TRI); 1210 1211 MadeChange = true; 1212 1213 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1214 } 1215 1216 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1217 if (mi->isInsertSubreg()) { 1218 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1219 // To %reg:subidx = COPY %subreg 1220 unsigned SubIdx = mi->getOperand(3).getImm(); 1221 mi->RemoveOperand(3); 1222 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1223 mi->getOperand(0).setSubReg(SubIdx); 1224 mi->RemoveOperand(1); 1225 mi->setDesc(TII->get(TargetOpcode::COPY)); 1226 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1227 } 1228 1229 // Clear TiedOperands here instead of at the top of the loop 1230 // since most instructions do not have tied operands. 1231 TiedOperands.clear(); 1232 mi = nmi; 1233 } 1234 } 1235 1236 // Some remat'ed instructions are dead. 1237 int VReg = ReMatRegs.find_first(); 1238 while (VReg != -1) { 1239 if (MRI->use_nodbg_empty(VReg)) { 1240 MachineInstr *DefMI = MRI->getVRegDef(VReg); 1241 DefMI->eraseFromParent(); 1242 } 1243 VReg = ReMatRegs.find_next(VReg); 1244 } 1245 1246 // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve 1247 // SSA form. It's now safe to de-SSA. 1248 MadeChange |= EliminateRegSequences(); 1249 1250 return MadeChange; 1251 } 1252 1253 static void UpdateRegSequenceSrcs(unsigned SrcReg, 1254 unsigned DstReg, unsigned SubIdx, 1255 MachineRegisterInfo *MRI, 1256 const TargetRegisterInfo &TRI) { 1257 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg), 1258 RE = MRI->reg_end(); RI != RE; ) { 1259 MachineOperand &MO = RI.getOperand(); 1260 ++RI; 1261 MO.substVirtReg(DstReg, SubIdx, TRI); 1262 } 1263 } 1264 1265 /// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are 1266 /// EXTRACT_SUBREG from the same register and to the same virtual register 1267 /// with different sub-register indices, attempt to combine the 1268 /// EXTRACT_SUBREGs and pre-coalesce them. e.g. 1269 /// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0 1270 /// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6 1271 /// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5 1272 /// Since D subregs 5, 6 can combine to a Q register, we can coalesce 1273 /// reg1026 to reg1029. 1274 void 1275 TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, 1276 unsigned DstReg) { 1277 SmallSet<unsigned, 4> Seen; 1278 for (unsigned i = 0, e = Srcs.size(); i != e; ++i) { 1279 unsigned SrcReg = Srcs[i]; 1280 if (!Seen.insert(SrcReg)) 1281 continue; 1282 1283 // Check that the instructions are all in the same basic block. 1284 MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg); 1285 MachineInstr *DstDefMI = MRI->getVRegDef(DstReg); 1286 if (SrcDefMI->getParent() != DstDefMI->getParent()) 1287 continue; 1288 1289 // If there are no other uses than copies which feed into 1290 // the reg_sequence, then we might be able to coalesce them. 1291 bool CanCoalesce = true; 1292 SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices; 1293 for (MachineRegisterInfo::use_nodbg_iterator 1294 UI = MRI->use_nodbg_begin(SrcReg), 1295 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 1296 MachineInstr *UseMI = &*UI; 1297 if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) { 1298 CanCoalesce = false; 1299 break; 1300 } 1301 SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg()); 1302 DstSubIndices.push_back(UseMI->getOperand(0).getSubReg()); 1303 } 1304 1305 if (!CanCoalesce || SrcSubIndices.size() < 2) 1306 continue; 1307 1308 // Check that the source subregisters can be combined. 1309 std::sort(SrcSubIndices.begin(), SrcSubIndices.end()); 1310 unsigned NewSrcSubIdx = 0; 1311 if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices, 1312 NewSrcSubIdx)) 1313 continue; 1314 1315 // Check that the destination subregisters can also be combined. 1316 std::sort(DstSubIndices.begin(), DstSubIndices.end()); 1317 unsigned NewDstSubIdx = 0; 1318 if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices, 1319 NewDstSubIdx)) 1320 continue; 1321 1322 // If neither source nor destination can be combined to the full register, 1323 // just give up. This could be improved if it ever matters. 1324 if (NewSrcSubIdx != 0 && NewDstSubIdx != 0) 1325 continue; 1326 1327 // Now that we know that all the uses are extract_subregs and that those 1328 // subregs can somehow be combined, scan all the extract_subregs again to 1329 // make sure the subregs are in the right order and can be composed. 1330 MachineInstr *SomeMI = 0; 1331 CanCoalesce = true; 1332 for (MachineRegisterInfo::use_nodbg_iterator 1333 UI = MRI->use_nodbg_begin(SrcReg), 1334 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 1335 MachineInstr *UseMI = &*UI; 1336 assert(UseMI->isCopy()); 1337 unsigned DstSubIdx = UseMI->getOperand(0).getSubReg(); 1338 unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg(); 1339 assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination"); 1340 if ((NewDstSubIdx == 0 && 1341 TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) || 1342 (NewSrcSubIdx == 0 && 1343 TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) { 1344 CanCoalesce = false; 1345 break; 1346 } 1347 // Keep track of one of the uses. 1348 SomeMI = UseMI; 1349 } 1350 if (!CanCoalesce) 1351 continue; 1352 1353 // Insert a copy to replace the original. 1354 MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI, 1355 SomeMI->getDebugLoc(), 1356 TII->get(TargetOpcode::COPY)) 1357 .addReg(DstReg, RegState::Define, NewDstSubIdx) 1358 .addReg(SrcReg, 0, NewSrcSubIdx); 1359 1360 // Remove all the old extract instructions. 1361 for (MachineRegisterInfo::use_nodbg_iterator 1362 UI = MRI->use_nodbg_begin(SrcReg), 1363 UE = MRI->use_nodbg_end(); UI != UE; ) { 1364 MachineInstr *UseMI = &*UI; 1365 ++UI; 1366 if (UseMI == CopyMI) 1367 continue; 1368 assert(UseMI->isCopy()); 1369 // Move any kills to the new copy or extract instruction. 1370 if (UseMI->getOperand(1).isKill()) { 1371 CopyMI->getOperand(1).setIsKill(); 1372 if (LV) 1373 // Update live variables 1374 LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI); 1375 } 1376 UseMI->eraseFromParent(); 1377 } 1378 } 1379 } 1380 1381 static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq, 1382 MachineRegisterInfo *MRI) { 1383 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg), 1384 UE = MRI->use_end(); UI != UE; ++UI) { 1385 MachineInstr *UseMI = &*UI; 1386 if (UseMI != RegSeq && UseMI->isRegSequence()) 1387 return true; 1388 } 1389 return false; 1390 } 1391 1392 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part 1393 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as 1394 /// sub-register references of the register defined by REG_SEQUENCE. e.g. 1395 /// 1396 /// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ... 1397 /// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6 1398 /// => 1399 /// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ... 1400 bool TwoAddressInstructionPass::EliminateRegSequences() { 1401 if (RegSequences.empty()) 1402 return false; 1403 1404 for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) { 1405 MachineInstr *MI = RegSequences[i]; 1406 unsigned DstReg = MI->getOperand(0).getReg(); 1407 if (MI->getOperand(0).getSubReg() || 1408 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1409 !(MI->getNumOperands() & 1)) { 1410 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); 1411 llvm_unreachable(0); 1412 } 1413 1414 bool IsImpDef = true; 1415 SmallVector<unsigned, 4> RealSrcs; 1416 SmallSet<unsigned, 4> Seen; 1417 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 1418 unsigned SrcReg = MI->getOperand(i).getReg(); 1419 if (MI->getOperand(i).getSubReg() || 1420 TargetRegisterInfo::isPhysicalRegister(SrcReg)) { 1421 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); 1422 llvm_unreachable(0); 1423 } 1424 1425 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 1426 if (DefMI->isImplicitDef()) { 1427 DefMI->eraseFromParent(); 1428 continue; 1429 } 1430 IsImpDef = false; 1431 1432 // Remember COPY sources. These might be candidate for coalescing. 1433 if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg()) 1434 RealSrcs.push_back(DefMI->getOperand(1).getReg()); 1435 1436 bool isKill = MI->getOperand(i).isKill(); 1437 if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() || 1438 !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI)) { 1439 // REG_SEQUENCE cannot have duplicated operands, add a copy. 1440 // Also add an copy if the source is live-in the block. We don't want 1441 // to end up with a partial-redef of a livein, e.g. 1442 // BB0: 1443 // reg1051:10<def> = 1444 // ... 1445 // BB1: 1446 // ... = reg1051:10 1447 // BB2: 1448 // reg1051:9<def> = 1449 // LiveIntervalAnalysis won't like it. 1450 // 1451 // If the REG_SEQUENCE doesn't kill its source, keeping live variables 1452 // correctly up to date becomes very difficult. Insert a copy. 1453 1454 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1455 // might insert a COPY that uses SrcReg after is was killed. 1456 if (isKill) 1457 for (unsigned j = i + 2; j < e; j += 2) 1458 if (MI->getOperand(j).getReg() == SrcReg) { 1459 MI->getOperand(j).setIsKill(); 1460 isKill = false; 1461 break; 1462 } 1463 1464 MachineBasicBlock::iterator InsertLoc = MI; 1465 MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc, 1466 MI->getDebugLoc(), TII->get(TargetOpcode::COPY)) 1467 .addReg(DstReg, RegState::Define, MI->getOperand(i+1).getImm()) 1468 .addReg(SrcReg, getKillRegState(isKill)); 1469 MI->getOperand(i).setReg(0); 1470 if (LV && isKill) 1471 LV->replaceKillInstruction(SrcReg, MI, CopyMI); 1472 DEBUG(dbgs() << "Inserted: " << *CopyMI); 1473 } 1474 } 1475 1476 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 1477 unsigned SrcReg = MI->getOperand(i).getReg(); 1478 if (!SrcReg) continue; 1479 unsigned SubIdx = MI->getOperand(i+1).getImm(); 1480 UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI); 1481 } 1482 1483 if (IsImpDef) { 1484 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF"); 1485 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1486 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j) 1487 MI->RemoveOperand(j); 1488 } else { 1489 DEBUG(dbgs() << "Eliminated: " << *MI); 1490 MI->eraseFromParent(); 1491 } 1492 1493 // Try coalescing some EXTRACT_SUBREG instructions. This can create 1494 // INSERT_SUBREG instructions that must have <undef> flags added by 1495 // LiveIntervalAnalysis, so only run it when LiveVariables is available. 1496 if (LV) 1497 CoalesceExtSubRegs(RealSrcs, DstReg); 1498 } 1499 1500 RegSequences.clear(); 1501 return true; 1502 } 1503