1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TwoAddress instruction pass which is used 10 // by most register allocators. Two-Address instructions are rewritten 11 // from: 12 // 13 // A = B op C 14 // 15 // to: 16 // 17 // A = B 18 // A op= C 19 // 20 // Note that if a register allocator chooses to use this pass, that it 21 // has to be capable of handling the non-SSA nature of these rewritten 22 // virtual registers. 23 // 24 // It is also worth noting that the duplicate operand of the two 25 // address instruction is removed. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/Passes.h" 47 #include "llvm/CodeGen/SlotIndexes.h" 48 #include "llvm/CodeGen/TargetInstrInfo.h" 49 #include "llvm/CodeGen/TargetOpcodes.h" 50 #include "llvm/CodeGen/TargetRegisterInfo.h" 51 #include "llvm/CodeGen/TargetSubtargetInfo.h" 52 #include "llvm/MC/MCInstrDesc.h" 53 #include "llvm/MC/MCInstrItineraries.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <cassert> 62 #include <iterator> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "twoaddressinstruction" 68 69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 70 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 71 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 73 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 74 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 75 76 // Temporary flag to disable rescheduling. 77 static cl::opt<bool> 78 EnableRescheduling("twoaddr-reschedule", 79 cl::desc("Coalesce copies by rescheduling (default=true)"), 80 cl::init(true), cl::Hidden); 81 82 // Limit the number of dataflow edges to traverse when evaluating the benefit 83 // of commuting operands. 84 static cl::opt<unsigned> MaxDataFlowEdge( 85 "dataflow-edge-limit", cl::Hidden, cl::init(3), 86 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 87 "the benefit of commuting operands")); 88 89 namespace { 90 91 class TwoAddressInstructionPass : public MachineFunctionPass { 92 MachineFunction *MF; 93 const TargetInstrInfo *TII; 94 const TargetRegisterInfo *TRI; 95 const InstrItineraryData *InstrItins; 96 MachineRegisterInfo *MRI; 97 LiveVariables *LV; 98 LiveIntervals *LIS; 99 AliasAnalysis *AA; 100 CodeGenOpt::Level OptLevel; 101 102 // The current basic block being processed. 103 MachineBasicBlock *MBB; 104 105 // Keep track the distance of a MI from the start of the current basic block. 106 DenseMap<MachineInstr*, unsigned> DistanceMap; 107 108 // Set of already processed instructions in the current block. 109 SmallPtrSet<MachineInstr*, 8> Processed; 110 111 // A map from virtual registers to physical registers which are likely targets 112 // to be coalesced to due to copies from physical registers to virtual 113 // registers. e.g. v1024 = move r0. 114 DenseMap<Register, Register> SrcRegMap; 115 116 // A map from virtual registers to physical registers which are likely targets 117 // to be coalesced to due to copies to physical registers from virtual 118 // registers. e.g. r1 = move v1024. 119 DenseMap<Register, Register> DstRegMap; 120 121 void removeClobberedSrcRegMap(MachineInstr *MI); 122 123 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen); 124 125 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef); 126 127 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC, 128 MachineInstr *MI, unsigned Dist); 129 130 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 131 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 132 133 bool isProfitableToConv3Addr(Register RegA, Register RegB); 134 135 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 136 MachineBasicBlock::iterator &nmi, Register RegA, 137 Register RegB, unsigned Dist); 138 139 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI); 140 141 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 142 MachineBasicBlock::iterator &nmi, Register Reg); 143 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 144 MachineBasicBlock::iterator &nmi, Register Reg); 145 146 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 147 MachineBasicBlock::iterator &nmi, 148 unsigned SrcIdx, unsigned DstIdx, 149 unsigned Dist, bool shouldOnlyCommute); 150 151 bool tryInstructionCommute(MachineInstr *MI, 152 unsigned DstOpIdx, 153 unsigned BaseOpIdx, 154 bool BaseOpKilled, 155 unsigned Dist); 156 void scanUses(Register DstReg); 157 158 void processCopy(MachineInstr *MI); 159 160 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 161 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 162 163 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 164 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 165 void eliminateRegSequence(MachineBasicBlock::iterator&); 166 167 public: 168 static char ID; // Pass identification, replacement for typeid 169 170 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 171 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 172 } 173 174 void getAnalysisUsage(AnalysisUsage &AU) const override { 175 AU.setPreservesCFG(); 176 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 177 AU.addUsedIfAvailable<LiveVariables>(); 178 AU.addPreserved<LiveVariables>(); 179 AU.addPreserved<SlotIndexes>(); 180 AU.addPreserved<LiveIntervals>(); 181 AU.addPreservedID(MachineLoopInfoID); 182 AU.addPreservedID(MachineDominatorsID); 183 MachineFunctionPass::getAnalysisUsage(AU); 184 } 185 186 /// Pass entry point. 187 bool runOnMachineFunction(MachineFunction&) override; 188 }; 189 190 } // end anonymous namespace 191 192 char TwoAddressInstructionPass::ID = 0; 193 194 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 195 196 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 197 "Two-Address instruction pass", false, false) 198 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 199 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 200 "Two-Address instruction pass", false, false) 201 202 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS); 203 204 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 205 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB, 206 const MachineRegisterInfo *MRI) { 207 MachineInstr *Ret = nullptr; 208 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 209 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 210 continue; 211 if (!Ret) 212 Ret = &DefMI; 213 else if (Ret != &DefMI) 214 return nullptr; 215 } 216 return Ret; 217 } 218 219 /// Check if there is a reversed copy chain from FromReg to ToReg: 220 /// %Tmp1 = copy %Tmp2; 221 /// %FromReg = copy %Tmp1; 222 /// %ToReg = add %FromReg ... 223 /// %Tmp2 = copy %ToReg; 224 /// MaxLen specifies the maximum length of the copy chain the func 225 /// can walk through. 226 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg, 227 int Maxlen) { 228 Register TmpReg = FromReg; 229 for (int i = 0; i < Maxlen; i++) { 230 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 231 if (!Def || !Def->isCopy()) 232 return false; 233 234 TmpReg = Def->getOperand(1).getReg(); 235 236 if (TmpReg == ToReg) 237 return true; 238 } 239 return false; 240 } 241 242 /// Return true if there are no intervening uses between the last instruction 243 /// in the MBB that defines the specified register and the two-address 244 /// instruction which is being processed. It also returns the last def location 245 /// by reference. 246 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist, 247 unsigned &LastDef) { 248 LastDef = 0; 249 unsigned LastUse = Dist; 250 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 251 MachineInstr *MI = MO.getParent(); 252 if (MI->getParent() != MBB || MI->isDebugValue()) 253 continue; 254 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 255 if (DI == DistanceMap.end()) 256 continue; 257 if (MO.isUse() && DI->second < LastUse) 258 LastUse = DI->second; 259 if (MO.isDef() && DI->second > LastDef) 260 LastDef = DI->second; 261 } 262 263 return !(LastUse > LastDef && LastUse < Dist); 264 } 265 266 /// Return true if the specified MI is a copy instruction or an extract_subreg 267 /// instruction. It also returns the source and destination registers and 268 /// whether they are physical registers by reference. 269 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 270 Register &SrcReg, Register &DstReg, bool &IsSrcPhys, 271 bool &IsDstPhys) { 272 SrcReg = 0; 273 DstReg = 0; 274 if (MI.isCopy()) { 275 DstReg = MI.getOperand(0).getReg(); 276 SrcReg = MI.getOperand(1).getReg(); 277 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 278 DstReg = MI.getOperand(0).getReg(); 279 SrcReg = MI.getOperand(2).getReg(); 280 } else { 281 return false; 282 } 283 284 IsSrcPhys = SrcReg.isPhysical(); 285 IsDstPhys = DstReg.isPhysical(); 286 return true; 287 } 288 289 /// Test if the given register value, which is used by the 290 /// given instruction, is killed by the given instruction. 291 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, 292 LiveIntervals *LIS) { 293 if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) { 294 // FIXME: Sometimes tryInstructionTransform() will add instructions and 295 // test whether they can be folded before keeping them. In this case it 296 // sets a kill before recursively calling tryInstructionTransform() again. 297 // If there is no interval available, we assume that this instruction is 298 // one of those. A kill flag is manually inserted on the operand so the 299 // check below will handle it. 300 LiveInterval &LI = LIS->getInterval(Reg); 301 // This is to match the kill flag version where undefs don't have kill 302 // flags. 303 if (!LI.hasAtLeastOneValue()) 304 return false; 305 306 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 307 LiveInterval::const_iterator I = LI.find(useIdx); 308 assert(I != LI.end() && "Reg must be live-in to use."); 309 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 310 } 311 312 return MI->killsRegister(Reg); 313 } 314 315 /// Test if the given register value, which is used by the given 316 /// instruction, is killed by the given instruction. This looks through 317 /// coalescable copies to see if the original value is potentially not killed. 318 /// 319 /// For example, in this code: 320 /// 321 /// %reg1034 = copy %reg1024 322 /// %reg1035 = copy killed %reg1025 323 /// %reg1036 = add killed %reg1034, killed %reg1035 324 /// 325 /// %reg1034 is not considered to be killed, since it is copied from a 326 /// register which is not killed. Treating it as not killed lets the 327 /// normal heuristics commute the (two-address) add, which lets 328 /// coalescing eliminate the extra copy. 329 /// 330 /// If allowFalsePositives is true then likely kills are treated as kills even 331 /// if it can't be proven that they are kills. 332 static bool isKilled(MachineInstr &MI, Register Reg, 333 const MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 334 LiveIntervals *LIS, bool allowFalsePositives) { 335 MachineInstr *DefMI = &MI; 336 while (true) { 337 // All uses of physical registers are likely to be kills. 338 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg))) 339 return true; 340 if (!isPlainlyKilled(DefMI, Reg, LIS)) 341 return false; 342 if (Reg.isPhysical()) 343 return true; 344 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 345 // If there are multiple defs, we can't do a simple analysis, so just 346 // go with what the kill flag says. 347 if (std::next(Begin) != MRI->def_end()) 348 return true; 349 DefMI = Begin->getParent(); 350 bool IsSrcPhys, IsDstPhys; 351 Register SrcReg, DstReg; 352 // If the def is something other than a copy, then it isn't going to 353 // be coalesced, so follow the kill flag. 354 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 355 return true; 356 Reg = SrcReg; 357 } 358 } 359 360 /// Return true if the specified MI uses the specified register as a two-address 361 /// use. If so, return the destination register by reference. 362 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) { 363 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 364 const MachineOperand &MO = MI.getOperand(i); 365 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 366 continue; 367 unsigned ti; 368 if (MI.isRegTiedToDefOperand(i, &ti)) { 369 DstReg = MI.getOperand(ti).getReg(); 370 return true; 371 } 372 } 373 return false; 374 } 375 376 /// Given a register, if has a single in-basic block use, return the use 377 /// instruction if it's a copy or a two-address use. 378 static MachineInstr * 379 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB, 380 MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 381 bool &IsCopy, Register &DstReg, bool &IsDstPhys) { 382 if (!MRI->hasOneNonDBGUse(Reg)) 383 // None or more than one use. 384 return nullptr; 385 MachineOperand &UseOp = *MRI->use_nodbg_begin(Reg); 386 MachineInstr &UseMI = *UseOp.getParent(); 387 if (UseMI.getParent() != MBB) 388 return nullptr; 389 Register SrcReg; 390 bool IsSrcPhys; 391 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 392 IsCopy = true; 393 return &UseMI; 394 } 395 IsDstPhys = false; 396 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 397 IsDstPhys = DstReg.isPhysical(); 398 return &UseMI; 399 } 400 if (UseMI.isCommutable()) { 401 unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex; 402 unsigned Src2 = UseMI.getOperandNo(&UseOp); 403 if (TII->findCommutedOpIndices(UseMI, Src1, Src2)) { 404 MachineOperand &MO = UseMI.getOperand(Src1); 405 if (MO.isReg() && MO.isUse() && 406 isTwoAddrUse(UseMI, MO.getReg(), DstReg)) { 407 IsDstPhys = DstReg.isPhysical(); 408 return &UseMI; 409 } 410 } 411 } 412 return nullptr; 413 } 414 415 /// Return the physical register the specified virtual register might be mapped 416 /// to. 417 static MCRegister getMappedReg(Register Reg, 418 DenseMap<Register, Register> &RegMap) { 419 while (Reg.isVirtual()) { 420 DenseMap<Register, Register>::iterator SI = RegMap.find(Reg); 421 if (SI == RegMap.end()) 422 return 0; 423 Reg = SI->second; 424 } 425 if (Reg.isPhysical()) 426 return Reg; 427 return 0; 428 } 429 430 /// Return true if the two registers are equal or aliased. 431 static bool regsAreCompatible(Register RegA, Register RegB, 432 const TargetRegisterInfo *TRI) { 433 if (RegA == RegB) 434 return true; 435 if (!RegA || !RegB) 436 return false; 437 return TRI->regsOverlap(RegA, RegB); 438 } 439 440 /// From RegMap remove entries mapped to a physical register which overlaps MO. 441 static void removeMapRegEntry(const MachineOperand &MO, 442 DenseMap<Register, Register> &RegMap, 443 const TargetRegisterInfo *TRI) { 444 assert( 445 (MO.isReg() || MO.isRegMask()) && 446 "removeMapRegEntry must be called with a register or regmask operand."); 447 448 SmallVector<Register, 2> Srcs; 449 for (auto SI : RegMap) { 450 Register ToReg = SI.second; 451 if (ToReg.isVirtual()) 452 continue; 453 454 if (MO.isReg()) { 455 Register Reg = MO.getReg(); 456 if (TRI->regsOverlap(ToReg, Reg)) 457 Srcs.push_back(SI.first); 458 } else if (MO.clobbersPhysReg(ToReg)) 459 Srcs.push_back(SI.first); 460 } 461 462 for (auto SrcReg : Srcs) 463 RegMap.erase(SrcReg); 464 } 465 466 /// If a physical register is clobbered, old entries mapped to it should be 467 /// deleted. For example 468 /// 469 /// %2:gr64 = COPY killed $rdx 470 /// MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx 471 /// 472 /// After the MUL instruction, $rdx contains different value than in the COPY 473 /// instruction. So %2 should not map to $rdx after MUL. 474 void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr *MI) { 475 if (MI->isCopy()) { 476 // If a virtual register is copied to its mapped physical register, it 477 // doesn't change the potential coalescing between them, so we don't remove 478 // entries mapped to the physical register. For example 479 // 480 // %100 = COPY $r8 481 // ... 482 // $r8 = COPY %100 483 // 484 // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't 485 // destroy the content of $r8, and should not impact SrcRegMap. 486 Register Dst = MI->getOperand(0).getReg(); 487 if (!Dst || Dst.isVirtual()) 488 return; 489 490 Register Src = MI->getOperand(1).getReg(); 491 if (regsAreCompatible(Dst, getMappedReg(Src, SrcRegMap), TRI)) 492 return; 493 } 494 495 for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) { 496 const MachineOperand &MO = MI->getOperand(i); 497 if (MO.isRegMask()) { 498 removeMapRegEntry(MO, SrcRegMap, TRI); 499 continue; 500 } 501 if (!MO.isReg() || !MO.isDef()) 502 continue; 503 Register Reg = MO.getReg(); 504 if (!Reg || Reg.isVirtual()) 505 continue; 506 removeMapRegEntry(MO, SrcRegMap, TRI); 507 } 508 } 509 510 // Returns true if Reg is equal or aliased to at least one register in Set. 511 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg, 512 const TargetRegisterInfo *TRI) { 513 for (unsigned R : Set) 514 if (TRI->regsOverlap(R, Reg)) 515 return true; 516 517 return false; 518 } 519 520 /// Return true if it's potentially profitable to commute the two-address 521 /// instruction that's being processed. 522 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA, 523 Register RegB, 524 Register RegC, 525 MachineInstr *MI, 526 unsigned Dist) { 527 if (OptLevel == CodeGenOpt::None) 528 return false; 529 530 // Determine if it's profitable to commute this two address instruction. In 531 // general, we want no uses between this instruction and the definition of 532 // the two-address register. 533 // e.g. 534 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 535 // %reg1029 = COPY %reg1028 536 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 537 // insert => %reg1030 = COPY %reg1028 538 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 539 // In this case, it might not be possible to coalesce the second COPY 540 // instruction if the first one is coalesced. So it would be profitable to 541 // commute it: 542 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 543 // %reg1029 = COPY %reg1028 544 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 545 // insert => %reg1030 = COPY %reg1029 546 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 547 548 if (!isPlainlyKilled(MI, RegC, LIS)) 549 return false; 550 551 // Ok, we have something like: 552 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 553 // let's see if it's worth commuting it. 554 555 // Look for situations like this: 556 // %reg1024 = MOV r1 557 // %reg1025 = MOV r0 558 // %reg1026 = ADD %reg1024, %reg1025 559 // r0 = MOV %reg1026 560 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 561 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 562 if (ToRegA) { 563 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 564 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 565 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 566 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 567 568 // Compute if any of the following are true: 569 // -RegB is not tied to a register and RegC is compatible with RegA. 570 // -RegB is tied to the wrong physical register, but RegC is. 571 // -RegB is tied to the wrong physical register, and RegC isn't tied. 572 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 573 return true; 574 // Don't compute if any of the following are true: 575 // -RegC is not tied to a register and RegB is compatible with RegA. 576 // -RegC is tied to the wrong physical register, but RegB is. 577 // -RegC is tied to the wrong physical register, and RegB isn't tied. 578 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 579 return false; 580 } 581 582 // If there is a use of RegC between its last def (could be livein) and this 583 // instruction, then bail. 584 unsigned LastDefC = 0; 585 if (!noUseAfterLastDef(RegC, Dist, LastDefC)) 586 return false; 587 588 // If there is a use of RegB between its last def (could be livein) and this 589 // instruction, then go ahead and make this transformation. 590 unsigned LastDefB = 0; 591 if (!noUseAfterLastDef(RegB, Dist, LastDefB)) 592 return true; 593 594 // Look for situation like this: 595 // %reg101 = MOV %reg100 596 // %reg102 = ... 597 // %reg103 = ADD %reg102, %reg101 598 // ... = %reg103 ... 599 // %reg100 = MOV %reg103 600 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 601 // to eliminate an otherwise unavoidable copy. 602 // FIXME: 603 // We can extend the logic further: If an pair of operands in an insn has 604 // been merged, the insn could be regarded as a virtual copy, and the virtual 605 // copy could also be used to construct a copy chain. 606 // To more generally minimize register copies, ideally the logic of two addr 607 // instruction pass should be integrated with register allocation pass where 608 // interference graph is available. 609 if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge)) 610 return true; 611 612 if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge)) 613 return false; 614 615 // Look for other target specific commute preference. 616 bool Commute; 617 if (TII->hasCommutePreference(*MI, Commute)) 618 return Commute; 619 620 // Since there are no intervening uses for both registers, then commute 621 // if the def of RegC is closer. Its live interval is shorter. 622 return LastDefB && LastDefC && LastDefC > LastDefB; 623 } 624 625 /// Commute a two-address instruction and update the basic block, distance map, 626 /// and live variables if needed. Return true if it is successful. 627 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 628 unsigned DstIdx, 629 unsigned RegBIdx, 630 unsigned RegCIdx, 631 unsigned Dist) { 632 Register RegC = MI->getOperand(RegCIdx).getReg(); 633 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 634 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 635 636 if (NewMI == nullptr) { 637 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 638 return false; 639 } 640 641 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 642 assert(NewMI == MI && 643 "TargetInstrInfo::commuteInstruction() should not return a new " 644 "instruction unless it was requested."); 645 646 // Update source register map. 647 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 648 if (FromRegC) { 649 Register RegA = MI->getOperand(DstIdx).getReg(); 650 SrcRegMap[RegA] = FromRegC; 651 } 652 653 return true; 654 } 655 656 /// Return true if it is profitable to convert the given 2-address instruction 657 /// to a 3-address one. 658 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA, 659 Register RegB) { 660 // Look for situations like this: 661 // %reg1024 = MOV r1 662 // %reg1025 = MOV r0 663 // %reg1026 = ADD %reg1024, %reg1025 664 // r2 = MOV %reg1026 665 // Turn ADD into a 3-address instruction to avoid a copy. 666 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 667 if (!FromRegB) 668 return false; 669 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 670 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 671 } 672 673 /// Convert the specified two-address instruction into a three address one. 674 /// Return true if this transformation was successful. 675 bool TwoAddressInstructionPass::convertInstTo3Addr( 676 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 677 Register RegA, Register RegB, unsigned Dist) { 678 MachineInstrSpan MIS(mi, MBB); 679 MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV); 680 if (!NewMI) 681 return false; 682 683 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 684 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 685 686 // If the old instruction is debug value tracked, an update is required. 687 if (auto OldInstrNum = mi->peekDebugInstrNum()) { 688 // Sanity check. 689 assert(mi->getNumExplicitDefs() == 1); 690 assert(NewMI->getNumExplicitDefs() == 1); 691 692 // Find the old and new def location. 693 auto OldIt = mi->defs().begin(); 694 auto NewIt = NewMI->defs().begin(); 695 unsigned OldIdx = mi->getOperandNo(OldIt); 696 unsigned NewIdx = NewMI->getOperandNo(NewIt); 697 698 // Record that one def has been replaced by the other. 699 unsigned NewInstrNum = NewMI->getDebugInstrNum(); 700 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx), 701 std::make_pair(NewInstrNum, NewIdx)); 702 } 703 704 // If convertToThreeAddress created a single new instruction, assume it has 705 // exactly the same effect on liveness as the old instruction. This is much 706 // more efficient than calling repairIntervalsInRange. 707 bool SingleInst = std::next(MIS.begin(), 2) == MIS.end(); 708 if (LIS && SingleInst) 709 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); 710 711 SmallVector<Register> OrigRegs; 712 if (LIS && !SingleInst) { 713 for (const MachineOperand &MO : mi->operands()) { 714 if (MO.isReg()) 715 OrigRegs.push_back(MO.getReg()); 716 } 717 718 LIS->RemoveMachineInstrFromMaps(*mi); 719 } 720 721 MBB->erase(mi); // Nuke the old inst. 722 723 if (LIS && !SingleInst) 724 LIS->repairIntervalsInRange(MBB, MIS.begin(), MIS.end(), OrigRegs); 725 726 DistanceMap.insert(std::make_pair(NewMI, Dist)); 727 mi = NewMI; 728 nmi = std::next(mi); 729 730 // Update source and destination register maps. 731 SrcRegMap.erase(RegA); 732 DstRegMap.erase(RegB); 733 return true; 734 } 735 736 /// Scan forward recursively for only uses, update maps if the use is a copy or 737 /// a two-address instruction. 738 void TwoAddressInstructionPass::scanUses(Register DstReg) { 739 SmallVector<Register, 4> VirtRegPairs; 740 bool IsDstPhys; 741 bool IsCopy = false; 742 Register NewReg; 743 Register Reg = DstReg; 744 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 745 NewReg, IsDstPhys)) { 746 if (IsCopy && !Processed.insert(UseMI).second) 747 break; 748 749 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 750 if (DI != DistanceMap.end()) 751 // Earlier in the same MBB.Reached via a back edge. 752 break; 753 754 if (IsDstPhys) { 755 VirtRegPairs.push_back(NewReg); 756 break; 757 } 758 SrcRegMap[NewReg] = Reg; 759 VirtRegPairs.push_back(NewReg); 760 Reg = NewReg; 761 } 762 763 if (!VirtRegPairs.empty()) { 764 unsigned ToReg = VirtRegPairs.back(); 765 VirtRegPairs.pop_back(); 766 while (!VirtRegPairs.empty()) { 767 unsigned FromReg = VirtRegPairs.pop_back_val(); 768 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 769 if (!isNew) 770 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 771 ToReg = FromReg; 772 } 773 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 774 if (!isNew) 775 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 776 } 777 } 778 779 /// If the specified instruction is not yet processed, process it if it's a 780 /// copy. For a copy instruction, we find the physical registers the 781 /// source and destination registers might be mapped to. These are kept in 782 /// point-to maps used to determine future optimizations. e.g. 783 /// v1024 = mov r0 784 /// v1025 = mov r1 785 /// v1026 = add v1024, v1025 786 /// r1 = mov r1026 787 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 788 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 789 /// potentially joined with r1 on the output side. It's worthwhile to commute 790 /// 'add' to eliminate a copy. 791 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 792 if (Processed.count(MI)) 793 return; 794 795 bool IsSrcPhys, IsDstPhys; 796 Register SrcReg, DstReg; 797 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 798 return; 799 800 if (IsDstPhys && !IsSrcPhys) { 801 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 802 } else if (!IsDstPhys && IsSrcPhys) { 803 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 804 if (!isNew) 805 assert(SrcRegMap[DstReg] == SrcReg && 806 "Can't map to two src physical registers!"); 807 808 scanUses(DstReg); 809 } 810 811 Processed.insert(MI); 812 } 813 814 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 815 /// consider moving the instruction below the kill instruction in order to 816 /// eliminate the need for the copy. 817 bool TwoAddressInstructionPass::rescheduleMIBelowKill( 818 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 819 Register Reg) { 820 // Bail immediately if we don't have LV or LIS available. We use them to find 821 // kills efficiently. 822 if (!LV && !LIS) 823 return false; 824 825 MachineInstr *MI = &*mi; 826 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 827 if (DI == DistanceMap.end()) 828 // Must be created from unfolded load. Don't waste time trying this. 829 return false; 830 831 MachineInstr *KillMI = nullptr; 832 if (LIS) { 833 LiveInterval &LI = LIS->getInterval(Reg); 834 assert(LI.end() != LI.begin() && 835 "Reg should not have empty live interval."); 836 837 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 838 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 839 if (I != LI.end() && I->start < MBBEndIdx) 840 return false; 841 842 --I; 843 KillMI = LIS->getInstructionFromIndex(I->end); 844 } else { 845 KillMI = LV->getVarInfo(Reg).findKill(MBB); 846 } 847 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 848 // Don't mess with copies, they may be coalesced later. 849 return false; 850 851 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 852 KillMI->isBranch() || KillMI->isTerminator()) 853 // Don't move pass calls, etc. 854 return false; 855 856 Register DstReg; 857 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 858 return false; 859 860 bool SeenStore = true; 861 if (!MI->isSafeToMove(AA, SeenStore)) 862 return false; 863 864 if (TII->getInstrLatency(InstrItins, *MI) > 1) 865 // FIXME: Needs more sophisticated heuristics. 866 return false; 867 868 SmallVector<Register, 2> Uses; 869 SmallVector<Register, 2> Kills; 870 SmallVector<Register, 2> Defs; 871 for (const MachineOperand &MO : MI->operands()) { 872 if (!MO.isReg()) 873 continue; 874 Register MOReg = MO.getReg(); 875 if (!MOReg) 876 continue; 877 if (MO.isDef()) 878 Defs.push_back(MOReg); 879 else { 880 Uses.push_back(MOReg); 881 if (MOReg != Reg && (MO.isKill() || 882 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 883 Kills.push_back(MOReg); 884 } 885 } 886 887 // Move the copies connected to MI down as well. 888 MachineBasicBlock::iterator Begin = MI; 889 MachineBasicBlock::iterator AfterMI = std::next(Begin); 890 MachineBasicBlock::iterator End = AfterMI; 891 while (End != MBB->end()) { 892 End = skipDebugInstructionsForward(End, MBB->end()); 893 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) 894 Defs.push_back(End->getOperand(0).getReg()); 895 else 896 break; 897 ++End; 898 } 899 900 // Check if the reschedule will not break dependencies. 901 unsigned NumVisited = 0; 902 MachineBasicBlock::iterator KillPos = KillMI; 903 ++KillPos; 904 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 905 // Debug or pseudo instructions cannot be counted against the limit. 906 if (OtherMI.isDebugOrPseudoInstr()) 907 continue; 908 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 909 return false; 910 ++NumVisited; 911 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 912 OtherMI.isBranch() || OtherMI.isTerminator()) 913 // Don't move pass calls, etc. 914 return false; 915 for (const MachineOperand &MO : OtherMI.operands()) { 916 if (!MO.isReg()) 917 continue; 918 Register MOReg = MO.getReg(); 919 if (!MOReg) 920 continue; 921 if (MO.isDef()) { 922 if (regOverlapsSet(Uses, MOReg, TRI)) 923 // Physical register use would be clobbered. 924 return false; 925 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 926 // May clobber a physical register def. 927 // FIXME: This may be too conservative. It's ok if the instruction 928 // is sunken completely below the use. 929 return false; 930 } else { 931 if (regOverlapsSet(Defs, MOReg, TRI)) 932 return false; 933 bool isKill = 934 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 935 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 936 regOverlapsSet(Kills, MOReg, TRI))) 937 // Don't want to extend other live ranges and update kills. 938 return false; 939 if (MOReg == Reg && !isKill) 940 // We can't schedule across a use of the register in question. 941 return false; 942 // Ensure that if this is register in question, its the kill we expect. 943 assert((MOReg != Reg || &OtherMI == KillMI) && 944 "Found multiple kills of a register in a basic block"); 945 } 946 } 947 } 948 949 // Move debug info as well. 950 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 951 --Begin; 952 953 nmi = End; 954 MachineBasicBlock::iterator InsertPos = KillPos; 955 if (LIS) { 956 // We have to move the copies first so that the MBB is still well-formed 957 // when calling handleMove(). 958 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 959 auto CopyMI = MBBI++; 960 MBB->splice(InsertPos, MBB, CopyMI); 961 LIS->handleMove(*CopyMI); 962 InsertPos = CopyMI; 963 } 964 End = std::next(MachineBasicBlock::iterator(MI)); 965 } 966 967 // Copies following MI may have been moved as well. 968 MBB->splice(InsertPos, MBB, Begin, End); 969 DistanceMap.erase(DI); 970 971 // Update live variables 972 if (LIS) { 973 LIS->handleMove(*MI); 974 } else { 975 LV->removeVirtualRegisterKilled(Reg, *KillMI); 976 LV->addVirtualRegisterKilled(Reg, *MI); 977 } 978 979 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 980 return true; 981 } 982 983 /// Return true if the re-scheduling will put the given instruction too close 984 /// to the defs of its register dependencies. 985 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist, 986 MachineInstr *MI) { 987 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 988 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 989 continue; 990 if (&DefMI == MI) 991 return true; // MI is defining something KillMI uses 992 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 993 if (DDI == DistanceMap.end()) 994 return true; // Below MI 995 unsigned DefDist = DDI->second; 996 assert(Dist > DefDist && "Visited def already?"); 997 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 998 return true; 999 } 1000 return false; 1001 } 1002 1003 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 1004 /// consider moving the kill instruction above the current two-address 1005 /// instruction in order to eliminate the need for the copy. 1006 bool TwoAddressInstructionPass::rescheduleKillAboveMI( 1007 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 1008 Register Reg) { 1009 // Bail immediately if we don't have LV or LIS available. We use them to find 1010 // kills efficiently. 1011 if (!LV && !LIS) 1012 return false; 1013 1014 MachineInstr *MI = &*mi; 1015 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1016 if (DI == DistanceMap.end()) 1017 // Must be created from unfolded load. Don't waste time trying this. 1018 return false; 1019 1020 MachineInstr *KillMI = nullptr; 1021 if (LIS) { 1022 LiveInterval &LI = LIS->getInterval(Reg); 1023 assert(LI.end() != LI.begin() && 1024 "Reg should not have empty live interval."); 1025 1026 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1027 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1028 if (I != LI.end() && I->start < MBBEndIdx) 1029 return false; 1030 1031 --I; 1032 KillMI = LIS->getInstructionFromIndex(I->end); 1033 } else { 1034 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1035 } 1036 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1037 // Don't mess with copies, they may be coalesced later. 1038 return false; 1039 1040 Register DstReg; 1041 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1042 return false; 1043 1044 bool SeenStore = true; 1045 if (!KillMI->isSafeToMove(AA, SeenStore)) 1046 return false; 1047 1048 SmallVector<Register, 2> Uses; 1049 SmallVector<Register, 2> Kills; 1050 SmallVector<Register, 2> Defs; 1051 SmallVector<Register, 2> LiveDefs; 1052 for (const MachineOperand &MO : KillMI->operands()) { 1053 if (!MO.isReg()) 1054 continue; 1055 Register MOReg = MO.getReg(); 1056 if (MO.isUse()) { 1057 if (!MOReg) 1058 continue; 1059 if (isDefTooClose(MOReg, DI->second, MI)) 1060 return false; 1061 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1062 if (MOReg == Reg && !isKill) 1063 return false; 1064 Uses.push_back(MOReg); 1065 if (isKill && MOReg != Reg) 1066 Kills.push_back(MOReg); 1067 } else if (MOReg.isPhysical()) { 1068 Defs.push_back(MOReg); 1069 if (!MO.isDead()) 1070 LiveDefs.push_back(MOReg); 1071 } 1072 } 1073 1074 // Check if the reschedule will not break depedencies. 1075 unsigned NumVisited = 0; 1076 for (MachineInstr &OtherMI : 1077 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1078 // Debug or pseudo instructions cannot be counted against the limit. 1079 if (OtherMI.isDebugOrPseudoInstr()) 1080 continue; 1081 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1082 return false; 1083 ++NumVisited; 1084 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1085 OtherMI.isBranch() || OtherMI.isTerminator()) 1086 // Don't move pass calls, etc. 1087 return false; 1088 SmallVector<Register, 2> OtherDefs; 1089 for (const MachineOperand &MO : OtherMI.operands()) { 1090 if (!MO.isReg()) 1091 continue; 1092 Register MOReg = MO.getReg(); 1093 if (!MOReg) 1094 continue; 1095 if (MO.isUse()) { 1096 if (regOverlapsSet(Defs, MOReg, TRI)) 1097 // Moving KillMI can clobber the physical register if the def has 1098 // not been seen. 1099 return false; 1100 if (regOverlapsSet(Kills, MOReg, TRI)) 1101 // Don't want to extend other live ranges and update kills. 1102 return false; 1103 if (&OtherMI != MI && MOReg == Reg && 1104 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1105 // We can't schedule across a use of the register in question. 1106 return false; 1107 } else { 1108 OtherDefs.push_back(MOReg); 1109 } 1110 } 1111 1112 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1113 Register MOReg = OtherDefs[i]; 1114 if (regOverlapsSet(Uses, MOReg, TRI)) 1115 return false; 1116 if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI)) 1117 return false; 1118 // Physical register def is seen. 1119 llvm::erase_value(Defs, MOReg); 1120 } 1121 } 1122 1123 // Move the old kill above MI, don't forget to move debug info as well. 1124 MachineBasicBlock::iterator InsertPos = mi; 1125 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1126 --InsertPos; 1127 MachineBasicBlock::iterator From = KillMI; 1128 MachineBasicBlock::iterator To = std::next(From); 1129 while (std::prev(From)->isDebugInstr()) 1130 --From; 1131 MBB->splice(InsertPos, MBB, From, To); 1132 1133 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1134 DistanceMap.erase(DI); 1135 1136 // Update live variables 1137 if (LIS) { 1138 LIS->handleMove(*KillMI); 1139 } else { 1140 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1141 LV->addVirtualRegisterKilled(Reg, *MI); 1142 } 1143 1144 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1145 return true; 1146 } 1147 1148 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1149 /// given machine instruction to improve opportunities for coalescing and 1150 /// elimination of a register to register copy. 1151 /// 1152 /// 'DstOpIdx' specifies the index of MI def operand. 1153 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1154 /// operand is killed by the given instruction. 1155 /// The 'Dist' arguments provides the distance of MI from the start of the 1156 /// current basic block and it is used to determine if it is profitable 1157 /// to commute operands in the instruction. 1158 /// 1159 /// Returns true if the transformation happened. Otherwise, returns false. 1160 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1161 unsigned DstOpIdx, 1162 unsigned BaseOpIdx, 1163 bool BaseOpKilled, 1164 unsigned Dist) { 1165 if (!MI->isCommutable()) 1166 return false; 1167 1168 bool MadeChange = false; 1169 Register DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1170 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1171 unsigned OpsNum = MI->getDesc().getNumOperands(); 1172 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1173 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1174 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1175 // and OtherOpIdx are commutable, it does not really search for 1176 // other commutable operands and does not change the values of passed 1177 // variables. 1178 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1179 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1180 continue; 1181 1182 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1183 bool AggressiveCommute = false; 1184 1185 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1186 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1187 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1188 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1189 1190 if (!DoCommute && 1191 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1192 DoCommute = true; 1193 AggressiveCommute = true; 1194 } 1195 1196 // If it's profitable to commute, try to do so. 1197 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1198 Dist)) { 1199 MadeChange = true; 1200 ++NumCommuted; 1201 if (AggressiveCommute) 1202 ++NumAggrCommuted; 1203 1204 // There might be more than two commutable operands, update BaseOp and 1205 // continue scanning. 1206 // FIXME: This assumes that the new instruction's operands are in the 1207 // same positions and were simply swapped. 1208 BaseOpReg = OtherOpReg; 1209 BaseOpKilled = OtherOpKilled; 1210 // Resamples OpsNum in case the number of operands was reduced. This 1211 // happens with X86. 1212 OpsNum = MI->getDesc().getNumOperands(); 1213 } 1214 } 1215 return MadeChange; 1216 } 1217 1218 /// For the case where an instruction has a single pair of tied register 1219 /// operands, attempt some transformations that may either eliminate the tied 1220 /// operands or improve the opportunities for coalescing away the register copy. 1221 /// Returns true if no copy needs to be inserted to untie mi's operands 1222 /// (either because they were untied, or because mi was rescheduled, and will 1223 /// be visited again later). If the shouldOnlyCommute flag is true, only 1224 /// instruction commutation is attempted. 1225 bool TwoAddressInstructionPass:: 1226 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1227 MachineBasicBlock::iterator &nmi, 1228 unsigned SrcIdx, unsigned DstIdx, 1229 unsigned Dist, bool shouldOnlyCommute) { 1230 if (OptLevel == CodeGenOpt::None) 1231 return false; 1232 1233 MachineInstr &MI = *mi; 1234 Register regA = MI.getOperand(DstIdx).getReg(); 1235 Register regB = MI.getOperand(SrcIdx).getReg(); 1236 1237 assert(regB.isVirtual() && "cannot make instruction into two-address form"); 1238 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1239 1240 if (regA.isVirtual()) 1241 scanUses(regA); 1242 1243 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1244 1245 // If the instruction is convertible to 3 Addr, instead 1246 // of returning try 3 Addr transformation aggressively and 1247 // use this variable to check later. Because it might be better. 1248 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1249 // instead of the following code. 1250 // addl %esi, %edi 1251 // movl %edi, %eax 1252 // ret 1253 if (Commuted && !MI.isConvertibleTo3Addr()) 1254 return false; 1255 1256 if (shouldOnlyCommute) 1257 return false; 1258 1259 // If there is one more use of regB later in the same MBB, consider 1260 // re-schedule this MI below it. 1261 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1262 ++NumReSchedDowns; 1263 return true; 1264 } 1265 1266 // If we commuted, regB may have changed so we should re-sample it to avoid 1267 // confusing the three address conversion below. 1268 if (Commuted) { 1269 regB = MI.getOperand(SrcIdx).getReg(); 1270 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1271 } 1272 1273 if (MI.isConvertibleTo3Addr()) { 1274 // This instruction is potentially convertible to a true 1275 // three-address instruction. Check if it is profitable. 1276 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1277 // Try to convert it. 1278 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1279 ++NumConvertedTo3Addr; 1280 return true; // Done with this instruction. 1281 } 1282 } 1283 } 1284 1285 // Return if it is commuted but 3 addr conversion is failed. 1286 if (Commuted) 1287 return false; 1288 1289 // If there is one more use of regB later in the same MBB, consider 1290 // re-schedule it before this MI if it's legal. 1291 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1292 ++NumReSchedUps; 1293 return true; 1294 } 1295 1296 // If this is an instruction with a load folded into it, try unfolding 1297 // the load, e.g. avoid this: 1298 // movq %rdx, %rcx 1299 // addq (%rax), %rcx 1300 // in favor of this: 1301 // movq (%rax), %rcx 1302 // addq %rdx, %rcx 1303 // because it's preferable to schedule a load than a register copy. 1304 if (MI.mayLoad() && !regBKilled) { 1305 // Determine if a load can be unfolded. 1306 unsigned LoadRegIndex; 1307 unsigned NewOpc = 1308 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1309 /*UnfoldLoad=*/true, 1310 /*UnfoldStore=*/false, 1311 &LoadRegIndex); 1312 if (NewOpc != 0) { 1313 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1314 if (UnfoldMCID.getNumDefs() == 1) { 1315 // Unfold the load. 1316 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1317 const TargetRegisterClass *RC = 1318 TRI->getAllocatableClass( 1319 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1320 Register Reg = MRI->createVirtualRegister(RC); 1321 SmallVector<MachineInstr *, 2> NewMIs; 1322 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1323 /*UnfoldLoad=*/true, 1324 /*UnfoldStore=*/false, NewMIs)) { 1325 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1326 return false; 1327 } 1328 assert(NewMIs.size() == 2 && 1329 "Unfolded a load into multiple instructions!"); 1330 // The load was previously folded, so this is the only use. 1331 NewMIs[1]->addRegisterKilled(Reg, TRI); 1332 1333 // Tentatively insert the instructions into the block so that they 1334 // look "normal" to the transformation logic. 1335 MBB->insert(mi, NewMIs[0]); 1336 MBB->insert(mi, NewMIs[1]); 1337 1338 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1339 << "2addr: NEW INST: " << *NewMIs[1]); 1340 1341 // Transform the instruction, now that it no longer has a load. 1342 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1343 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1344 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1345 bool TransformResult = 1346 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1347 (void)TransformResult; 1348 assert(!TransformResult && 1349 "tryInstructionTransform() should return false."); 1350 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1351 // Success, or at least we made an improvement. Keep the unfolded 1352 // instructions and discard the original. 1353 if (LV) { 1354 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1355 MachineOperand &MO = MI.getOperand(i); 1356 if (MO.isReg() && MO.getReg().isVirtual()) { 1357 if (MO.isUse()) { 1358 if (MO.isKill()) { 1359 if (NewMIs[0]->killsRegister(MO.getReg())) 1360 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1361 else { 1362 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1363 "Kill missing after load unfold!"); 1364 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1365 } 1366 } 1367 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1368 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1369 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1370 else { 1371 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1372 "Dead flag missing after load unfold!"); 1373 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1374 } 1375 } 1376 } 1377 } 1378 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1379 } 1380 1381 SmallVector<Register, 4> OrigRegs; 1382 if (LIS) { 1383 for (const MachineOperand &MO : MI.operands()) { 1384 if (MO.isReg()) 1385 OrigRegs.push_back(MO.getReg()); 1386 } 1387 1388 LIS->RemoveMachineInstrFromMaps(MI); 1389 } 1390 1391 MI.eraseFromParent(); 1392 1393 // Update LiveIntervals. 1394 if (LIS) { 1395 MachineBasicBlock::iterator Begin(NewMIs[0]); 1396 MachineBasicBlock::iterator End(NewMIs[1]); 1397 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1398 } 1399 1400 mi = NewMIs[1]; 1401 } else { 1402 // Transforming didn't eliminate the tie and didn't lead to an 1403 // improvement. Clean up the unfolded instructions and keep the 1404 // original. 1405 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1406 NewMIs[0]->eraseFromParent(); 1407 NewMIs[1]->eraseFromParent(); 1408 } 1409 } 1410 } 1411 } 1412 1413 return false; 1414 } 1415 1416 // Collect tied operands of MI that need to be handled. 1417 // Rewrite trivial cases immediately. 1418 // Return true if any tied operands where found, including the trivial ones. 1419 bool TwoAddressInstructionPass:: 1420 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1421 bool AnyOps = false; 1422 unsigned NumOps = MI->getNumOperands(); 1423 1424 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1425 unsigned DstIdx = 0; 1426 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1427 continue; 1428 AnyOps = true; 1429 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1430 MachineOperand &DstMO = MI->getOperand(DstIdx); 1431 Register SrcReg = SrcMO.getReg(); 1432 Register DstReg = DstMO.getReg(); 1433 // Tied constraint already satisfied? 1434 if (SrcReg == DstReg) 1435 continue; 1436 1437 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1438 1439 // Deal with undef uses immediately - simply rewrite the src operand. 1440 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1441 // Constrain the DstReg register class if required. 1442 if (DstReg.isVirtual()) { 1443 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 1444 MRI->constrainRegClass(DstReg, RC); 1445 } 1446 SrcMO.setReg(DstReg); 1447 SrcMO.setSubReg(0); 1448 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1449 continue; 1450 } 1451 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1452 } 1453 return AnyOps; 1454 } 1455 1456 // Process a list of tied MI operands that all use the same source register. 1457 // The tied pairs are of the form (SrcIdx, DstIdx). 1458 void 1459 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1460 TiedPairList &TiedPairs, 1461 unsigned &Dist) { 1462 bool IsEarlyClobber = llvm::find_if(TiedPairs, [MI](auto const &TP) { 1463 return MI->getOperand(TP.second).isEarlyClobber(); 1464 }) != TiedPairs.end(); 1465 1466 bool RemovedKillFlag = false; 1467 bool AllUsesCopied = true; 1468 unsigned LastCopiedReg = 0; 1469 SlotIndex LastCopyIdx; 1470 Register RegB = 0; 1471 unsigned SubRegB = 0; 1472 for (auto &TP : TiedPairs) { 1473 unsigned SrcIdx = TP.first; 1474 unsigned DstIdx = TP.second; 1475 1476 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1477 Register RegA = DstMO.getReg(); 1478 1479 // Grab RegB from the instruction because it may have changed if the 1480 // instruction was commuted. 1481 RegB = MI->getOperand(SrcIdx).getReg(); 1482 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1483 1484 if (RegA == RegB) { 1485 // The register is tied to multiple destinations (or else we would 1486 // not have continued this far), but this use of the register 1487 // already matches the tied destination. Leave it. 1488 AllUsesCopied = false; 1489 continue; 1490 } 1491 LastCopiedReg = RegA; 1492 1493 assert(RegB.isVirtual() && "cannot make instruction into two-address form"); 1494 1495 #ifndef NDEBUG 1496 // First, verify that we don't have a use of "a" in the instruction 1497 // (a = b + a for example) because our transformation will not 1498 // work. This should never occur because we are in SSA form. 1499 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1500 assert(i == DstIdx || 1501 !MI->getOperand(i).isReg() || 1502 MI->getOperand(i).getReg() != RegA); 1503 #endif 1504 1505 // Emit a copy. 1506 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1507 TII->get(TargetOpcode::COPY), RegA); 1508 // If this operand is folding a truncation, the truncation now moves to the 1509 // copy so that the register classes remain valid for the operands. 1510 MIB.addReg(RegB, 0, SubRegB); 1511 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1512 if (SubRegB) { 1513 if (RegA.isVirtual()) { 1514 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1515 SubRegB) && 1516 "tied subregister must be a truncation"); 1517 // The superreg class will not be used to constrain the subreg class. 1518 RC = nullptr; 1519 } else { 1520 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1521 && "tied subregister must be a truncation"); 1522 } 1523 } 1524 1525 // Update DistanceMap. 1526 MachineBasicBlock::iterator PrevMI = MI; 1527 --PrevMI; 1528 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1529 DistanceMap[MI] = ++Dist; 1530 1531 if (LIS) { 1532 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1533 1534 if (RegA.isVirtual()) { 1535 LiveInterval &LI = LIS->getInterval(RegA); 1536 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1537 SlotIndex endIdx = 1538 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1539 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1540 for (auto &S : LI.subranges()) { 1541 VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1542 S.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1543 } 1544 } 1545 } 1546 1547 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1548 1549 MachineOperand &MO = MI->getOperand(SrcIdx); 1550 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1551 "inconsistent operand info for 2-reg pass"); 1552 if (MO.isKill()) { 1553 MO.setIsKill(false); 1554 RemovedKillFlag = true; 1555 } 1556 1557 // Make sure regA is a legal regclass for the SrcIdx operand. 1558 if (RegA.isVirtual() && RegB.isVirtual()) 1559 MRI->constrainRegClass(RegA, RC); 1560 MO.setReg(RegA); 1561 // The getMatchingSuper asserts guarantee that the register class projected 1562 // by SubRegB is compatible with RegA with no subregister. So regardless of 1563 // whether the dest oper writes a subreg, the source oper should not. 1564 MO.setSubReg(0); 1565 } 1566 1567 if (AllUsesCopied) { 1568 bool ReplacedAllUntiedUses = false; 1569 if (!IsEarlyClobber) { 1570 // Replace other (un-tied) uses of regB with LastCopiedReg. 1571 ReplacedAllUntiedUses = true; 1572 for (MachineOperand &MO : MI->operands()) { 1573 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1574 if (MO.getSubReg() == SubRegB) { 1575 if (MO.isKill()) { 1576 MO.setIsKill(false); 1577 RemovedKillFlag = true; 1578 } 1579 MO.setReg(LastCopiedReg); 1580 MO.setSubReg(0); 1581 } else { 1582 ReplacedAllUntiedUses = false; 1583 } 1584 } 1585 } 1586 } 1587 1588 // Update live variables for regB. 1589 if (RemovedKillFlag && ReplacedAllUntiedUses && 1590 LV && LV->getVarInfo(RegB).removeKill(*MI)) { 1591 MachineBasicBlock::iterator PrevMI = MI; 1592 --PrevMI; 1593 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1594 } 1595 1596 if (RemovedKillFlag && ReplacedAllUntiedUses) 1597 SrcRegMap[LastCopiedReg] = RegB; 1598 1599 // Update LiveIntervals. 1600 if (LIS) { 1601 LiveInterval &LI = LIS->getInterval(RegB); 1602 SlotIndex MIIdx = LIS->getInstructionIndex(*MI); 1603 LiveInterval::const_iterator I = LI.find(MIIdx); 1604 assert(I != LI.end() && "RegB must be live-in to use."); 1605 1606 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1607 if (I->end == UseIdx) 1608 LI.removeSegment(LastCopyIdx, UseIdx); 1609 } 1610 } else if (RemovedKillFlag) { 1611 // Some tied uses of regB matched their destination registers, so 1612 // regB is still used in this instruction, but a kill flag was 1613 // removed from a different tied use of regB, so now we need to add 1614 // a kill flag to one of the remaining uses of regB. 1615 for (MachineOperand &MO : MI->operands()) { 1616 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1617 MO.setIsKill(true); 1618 break; 1619 } 1620 } 1621 } 1622 } 1623 1624 /// Reduce two-address instructions to two operands. 1625 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1626 MF = &Func; 1627 const TargetMachine &TM = MF->getTarget(); 1628 MRI = &MF->getRegInfo(); 1629 TII = MF->getSubtarget().getInstrInfo(); 1630 TRI = MF->getSubtarget().getRegisterInfo(); 1631 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1632 LV = getAnalysisIfAvailable<LiveVariables>(); 1633 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1634 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1635 AA = &AAPass->getAAResults(); 1636 else 1637 AA = nullptr; 1638 OptLevel = TM.getOptLevel(); 1639 // Disable optimizations if requested. We cannot skip the whole pass as some 1640 // fixups are necessary for correctness. 1641 if (skipFunction(Func.getFunction())) 1642 OptLevel = CodeGenOpt::None; 1643 1644 bool MadeChange = false; 1645 1646 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1647 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1648 1649 // This pass takes the function out of SSA form. 1650 MRI->leaveSSA(); 1651 1652 // This pass will rewrite the tied-def to meet the RegConstraint. 1653 MF->getProperties() 1654 .set(MachineFunctionProperties::Property::TiedOpsRewritten); 1655 1656 TiedOperandMap TiedOperands; 1657 for (MachineBasicBlock &MBBI : *MF) { 1658 MBB = &MBBI; 1659 unsigned Dist = 0; 1660 DistanceMap.clear(); 1661 SrcRegMap.clear(); 1662 DstRegMap.clear(); 1663 Processed.clear(); 1664 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1665 mi != me; ) { 1666 MachineBasicBlock::iterator nmi = std::next(mi); 1667 // Skip debug instructions. 1668 if (mi->isDebugInstr()) { 1669 mi = nmi; 1670 continue; 1671 } 1672 1673 // Expand REG_SEQUENCE instructions. This will position mi at the first 1674 // expanded instruction. 1675 if (mi->isRegSequence()) 1676 eliminateRegSequence(mi); 1677 1678 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1679 1680 processCopy(&*mi); 1681 1682 // First scan through all the tied register uses in this instruction 1683 // and record a list of pairs of tied operands for each register. 1684 if (!collectTiedOperands(&*mi, TiedOperands)) { 1685 removeClobberedSrcRegMap(&*mi); 1686 mi = nmi; 1687 continue; 1688 } 1689 1690 ++NumTwoAddressInstrs; 1691 MadeChange = true; 1692 LLVM_DEBUG(dbgs() << '\t' << *mi); 1693 1694 // If the instruction has a single pair of tied operands, try some 1695 // transformations that may either eliminate the tied operands or 1696 // improve the opportunities for coalescing away the register copy. 1697 if (TiedOperands.size() == 1) { 1698 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1699 = TiedOperands.begin()->second; 1700 if (TiedPairs.size() == 1) { 1701 unsigned SrcIdx = TiedPairs[0].first; 1702 unsigned DstIdx = TiedPairs[0].second; 1703 Register SrcReg = mi->getOperand(SrcIdx).getReg(); 1704 Register DstReg = mi->getOperand(DstIdx).getReg(); 1705 if (SrcReg != DstReg && 1706 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1707 // The tied operands have been eliminated or shifted further down 1708 // the block to ease elimination. Continue processing with 'nmi'. 1709 TiedOperands.clear(); 1710 removeClobberedSrcRegMap(&*mi); 1711 mi = nmi; 1712 continue; 1713 } 1714 } 1715 } 1716 1717 // Now iterate over the information collected above. 1718 for (auto &TO : TiedOperands) { 1719 processTiedPairs(&*mi, TO.second, Dist); 1720 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1721 } 1722 1723 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1724 if (mi->isInsertSubreg()) { 1725 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1726 // To %reg:subidx = COPY %subreg 1727 unsigned SubIdx = mi->getOperand(3).getImm(); 1728 mi->RemoveOperand(3); 1729 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1730 mi->getOperand(0).setSubReg(SubIdx); 1731 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1732 mi->RemoveOperand(1); 1733 mi->setDesc(TII->get(TargetOpcode::COPY)); 1734 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1735 } 1736 1737 // Clear TiedOperands here instead of at the top of the loop 1738 // since most instructions do not have tied operands. 1739 TiedOperands.clear(); 1740 removeClobberedSrcRegMap(&*mi); 1741 mi = nmi; 1742 } 1743 } 1744 1745 return MadeChange; 1746 } 1747 1748 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1749 /// 1750 /// The instruction is turned into a sequence of sub-register copies: 1751 /// 1752 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1753 /// 1754 /// Becomes: 1755 /// 1756 /// undef %dst:ssub0 = COPY %v1 1757 /// %dst:ssub1 = COPY %v2 1758 void TwoAddressInstructionPass:: 1759 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1760 MachineInstr &MI = *MBBI; 1761 Register DstReg = MI.getOperand(0).getReg(); 1762 if (MI.getOperand(0).getSubReg() || DstReg.isPhysical() || 1763 !(MI.getNumOperands() & 1)) { 1764 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1765 llvm_unreachable(nullptr); 1766 } 1767 1768 SmallVector<Register, 4> OrigRegs; 1769 if (LIS) { 1770 OrigRegs.push_back(MI.getOperand(0).getReg()); 1771 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1772 OrigRegs.push_back(MI.getOperand(i).getReg()); 1773 } 1774 1775 bool DefEmitted = false; 1776 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1777 MachineOperand &UseMO = MI.getOperand(i); 1778 Register SrcReg = UseMO.getReg(); 1779 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1780 // Nothing needs to be inserted for undef operands. 1781 if (UseMO.isUndef()) 1782 continue; 1783 1784 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1785 // might insert a COPY that uses SrcReg after is was killed. 1786 bool isKill = UseMO.isKill(); 1787 if (isKill) 1788 for (unsigned j = i + 2; j < e; j += 2) 1789 if (MI.getOperand(j).getReg() == SrcReg) { 1790 MI.getOperand(j).setIsKill(); 1791 UseMO.setIsKill(false); 1792 isKill = false; 1793 break; 1794 } 1795 1796 // Insert the sub-register copy. 1797 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1798 TII->get(TargetOpcode::COPY)) 1799 .addReg(DstReg, RegState::Define, SubIdx) 1800 .add(UseMO); 1801 1802 // The first def needs an undef flag because there is no live register 1803 // before it. 1804 if (!DefEmitted) { 1805 CopyMI->getOperand(0).setIsUndef(true); 1806 // Return an iterator pointing to the first inserted instr. 1807 MBBI = CopyMI; 1808 } 1809 DefEmitted = true; 1810 1811 // Update LiveVariables' kill info. 1812 if (LV && isKill && !SrcReg.isPhysical()) 1813 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1814 1815 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1816 } 1817 1818 MachineBasicBlock::iterator EndMBBI = 1819 std::next(MachineBasicBlock::iterator(MI)); 1820 1821 if (!DefEmitted) { 1822 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1823 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1824 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1825 MI.RemoveOperand(j); 1826 } else { 1827 if (LIS) 1828 LIS->RemoveMachineInstrFromMaps(MI); 1829 1830 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1831 MI.eraseFromParent(); 1832 } 1833 1834 // Udpate LiveIntervals. 1835 if (LIS) 1836 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1837 } 1838