1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/ADT/BitVector.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallSet.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/MC/MCInstrItineraries.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetMachine.h" 51 #include "llvm/Target/TargetRegisterInfo.h" 52 #include "llvm/Target/TargetSubtargetInfo.h" 53 using namespace llvm; 54 55 #define DEBUG_TYPE "twoaddrinstr" 56 57 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 58 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 59 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 60 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 61 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 62 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 63 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 64 65 // Temporary flag to disable rescheduling. 66 static cl::opt<bool> 67 EnableRescheduling("twoaddr-reschedule", 68 cl::desc("Coalesce copies by rescheduling (default=true)"), 69 cl::init(true), cl::Hidden); 70 71 namespace { 72 class TwoAddressInstructionPass : public MachineFunctionPass { 73 MachineFunction *MF; 74 const TargetInstrInfo *TII; 75 const TargetRegisterInfo *TRI; 76 const InstrItineraryData *InstrItins; 77 MachineRegisterInfo *MRI; 78 LiveVariables *LV; 79 LiveIntervals *LIS; 80 AliasAnalysis *AA; 81 CodeGenOpt::Level OptLevel; 82 83 // The current basic block being processed. 84 MachineBasicBlock *MBB; 85 86 // DistanceMap - Keep track the distance of a MI from the start of the 87 // current basic block. 88 DenseMap<MachineInstr*, unsigned> DistanceMap; 89 90 // Set of already processed instructions in the current block. 91 SmallPtrSet<MachineInstr*, 8> Processed; 92 93 // SrcRegMap - A map from virtual registers to physical registers which are 94 // likely targets to be coalesced to due to copies from physical registers to 95 // virtual registers. e.g. v1024 = move r0. 96 DenseMap<unsigned, unsigned> SrcRegMap; 97 98 // DstRegMap - A map from virtual registers to physical registers which are 99 // likely targets to be coalesced to due to copies to physical registers from 100 // virtual registers. e.g. r1 = move v1024. 101 DenseMap<unsigned, unsigned> DstRegMap; 102 103 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, 104 MachineBasicBlock::iterator OldPos); 105 106 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen); 107 108 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 109 110 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 111 MachineInstr *MI, unsigned Dist); 112 113 bool commuteInstruction(MachineInstr *MI, 114 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 115 116 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 117 118 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 119 MachineBasicBlock::iterator &nmi, 120 unsigned RegA, unsigned RegB, unsigned Dist); 121 122 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 123 124 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 125 MachineBasicBlock::iterator &nmi, 126 unsigned Reg); 127 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 128 MachineBasicBlock::iterator &nmi, 129 unsigned Reg); 130 131 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 132 MachineBasicBlock::iterator &nmi, 133 unsigned SrcIdx, unsigned DstIdx, 134 unsigned Dist, bool shouldOnlyCommute); 135 136 bool tryInstructionCommute(MachineInstr *MI, 137 unsigned DstOpIdx, 138 unsigned BaseOpIdx, 139 bool BaseOpKilled, 140 unsigned Dist); 141 void scanUses(unsigned DstReg); 142 143 void processCopy(MachineInstr *MI); 144 145 typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList; 146 typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap; 147 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 148 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 149 void eliminateRegSequence(MachineBasicBlock::iterator&); 150 151 public: 152 static char ID; // Pass identification, replacement for typeid 153 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 154 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 155 } 156 157 void getAnalysisUsage(AnalysisUsage &AU) const override { 158 AU.setPreservesCFG(); 159 AU.addRequired<AAResultsWrapperPass>(); 160 AU.addPreserved<LiveVariables>(); 161 AU.addPreserved<SlotIndexes>(); 162 AU.addPreserved<LiveIntervals>(); 163 AU.addPreservedID(MachineLoopInfoID); 164 AU.addPreservedID(MachineDominatorsID); 165 MachineFunctionPass::getAnalysisUsage(AU); 166 } 167 168 /// runOnMachineFunction - Pass entry point. 169 bool runOnMachineFunction(MachineFunction&) override; 170 }; 171 } // end anonymous namespace 172 173 char TwoAddressInstructionPass::ID = 0; 174 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction", 175 "Two-Address instruction pass", false, false) 176 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 177 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction", 178 "Two-Address instruction pass", false, false) 179 180 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 181 182 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 183 184 /// sink3AddrInstruction - A two-address instruction has been converted to a 185 /// three-address instruction to avoid clobbering a register. Try to sink it 186 /// past the instruction that would kill the above mentioned register to reduce 187 /// register pressure. 188 bool TwoAddressInstructionPass:: 189 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, 190 MachineBasicBlock::iterator OldPos) { 191 // FIXME: Shouldn't we be trying to do this before we three-addressify the 192 // instruction? After this transformation is done, we no longer need 193 // the instruction to be in three-address form. 194 195 // Check if it's safe to move this instruction. 196 bool SeenStore = true; // Be conservative. 197 if (!MI->isSafeToMove(AA, SeenStore)) 198 return false; 199 200 unsigned DefReg = 0; 201 SmallSet<unsigned, 4> UseRegs; 202 203 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 204 const MachineOperand &MO = MI->getOperand(i); 205 if (!MO.isReg()) 206 continue; 207 unsigned MOReg = MO.getReg(); 208 if (!MOReg) 209 continue; 210 if (MO.isUse() && MOReg != SavedReg) 211 UseRegs.insert(MO.getReg()); 212 if (!MO.isDef()) 213 continue; 214 if (MO.isImplicit()) 215 // Don't try to move it if it implicitly defines a register. 216 return false; 217 if (DefReg) 218 // For now, don't move any instructions that define multiple registers. 219 return false; 220 DefReg = MO.getReg(); 221 } 222 223 // Find the instruction that kills SavedReg. 224 MachineInstr *KillMI = nullptr; 225 if (LIS) { 226 LiveInterval &LI = LIS->getInterval(SavedReg); 227 assert(LI.end() != LI.begin() && 228 "Reg should not have empty live interval."); 229 230 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 231 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 232 if (I != LI.end() && I->start < MBBEndIdx) 233 return false; 234 235 --I; 236 KillMI = LIS->getInstructionFromIndex(I->end); 237 } 238 if (!KillMI) { 239 for (MachineRegisterInfo::use_nodbg_iterator 240 UI = MRI->use_nodbg_begin(SavedReg), 241 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 242 MachineOperand &UseMO = *UI; 243 if (!UseMO.isKill()) 244 continue; 245 KillMI = UseMO.getParent(); 246 break; 247 } 248 } 249 250 // If we find the instruction that kills SavedReg, and it is in an 251 // appropriate location, we can try to sink the current instruction 252 // past it. 253 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 254 KillMI == OldPos || KillMI->isTerminator()) 255 return false; 256 257 // If any of the definitions are used by another instruction between the 258 // position and the kill use, then it's not safe to sink it. 259 // 260 // FIXME: This can be sped up if there is an easy way to query whether an 261 // instruction is before or after another instruction. Then we can use 262 // MachineRegisterInfo def / use instead. 263 MachineOperand *KillMO = nullptr; 264 MachineBasicBlock::iterator KillPos = KillMI; 265 ++KillPos; 266 267 unsigned NumVisited = 0; 268 for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) { 269 MachineInstr *OtherMI = I; 270 // DBG_VALUE cannot be counted against the limit. 271 if (OtherMI->isDebugValue()) 272 continue; 273 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 274 return false; 275 ++NumVisited; 276 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 277 MachineOperand &MO = OtherMI->getOperand(i); 278 if (!MO.isReg()) 279 continue; 280 unsigned MOReg = MO.getReg(); 281 if (!MOReg) 282 continue; 283 if (DefReg == MOReg) 284 return false; 285 286 if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) { 287 if (OtherMI == KillMI && MOReg == SavedReg) 288 // Save the operand that kills the register. We want to unset the kill 289 // marker if we can sink MI past it. 290 KillMO = &MO; 291 else if (UseRegs.count(MOReg)) 292 // One of the uses is killed before the destination. 293 return false; 294 } 295 } 296 } 297 assert(KillMO && "Didn't find kill"); 298 299 if (!LIS) { 300 // Update kill and LV information. 301 KillMO->setIsKill(false); 302 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 303 KillMO->setIsKill(true); 304 305 if (LV) 306 LV->replaceKillInstruction(SavedReg, KillMI, MI); 307 } 308 309 // Move instruction to its destination. 310 MBB->remove(MI); 311 MBB->insert(KillPos, MI); 312 313 if (LIS) 314 LIS->handleMove(MI); 315 316 ++Num3AddrSunk; 317 return true; 318 } 319 320 /// getSingleDef -- return the MachineInstr* if it is the single def of the Reg 321 /// in current BB. 322 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB, 323 const MachineRegisterInfo *MRI) { 324 MachineInstr *Ret = nullptr; 325 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 326 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 327 continue; 328 if (!Ret) 329 Ret = &DefMI; 330 else if (Ret != &DefMI) 331 return nullptr; 332 } 333 return Ret; 334 } 335 336 /// Check if there is a reversed copy chain from FromReg to ToReg: 337 /// %Tmp1 = copy %Tmp2; 338 /// %FromReg = copy %Tmp1; 339 /// %ToReg = add %FromReg ... 340 /// %Tmp2 = copy %ToReg; 341 /// MaxLen specifies the maximum length of the copy chain the func 342 /// can walk through. 343 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg, 344 int Maxlen) { 345 unsigned TmpReg = FromReg; 346 for (int i = 0; i < Maxlen; i++) { 347 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 348 if (!Def || !Def->isCopy()) 349 return false; 350 351 TmpReg = Def->getOperand(1).getReg(); 352 353 if (TmpReg == ToReg) 354 return true; 355 } 356 return false; 357 } 358 359 /// noUseAfterLastDef - Return true if there are no intervening uses between the 360 /// last instruction in the MBB that defines the specified register and the 361 /// two-address instruction which is being processed. It also returns the last 362 /// def location by reference 363 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 364 unsigned &LastDef) { 365 LastDef = 0; 366 unsigned LastUse = Dist; 367 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 368 MachineInstr *MI = MO.getParent(); 369 if (MI->getParent() != MBB || MI->isDebugValue()) 370 continue; 371 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 372 if (DI == DistanceMap.end()) 373 continue; 374 if (MO.isUse() && DI->second < LastUse) 375 LastUse = DI->second; 376 if (MO.isDef() && DI->second > LastDef) 377 LastDef = DI->second; 378 } 379 380 return !(LastUse > LastDef && LastUse < Dist); 381 } 382 383 /// isCopyToReg - Return true if the specified MI is a copy instruction or 384 /// a extract_subreg instruction. It also returns the source and destination 385 /// registers and whether they are physical registers by reference. 386 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 387 unsigned &SrcReg, unsigned &DstReg, 388 bool &IsSrcPhys, bool &IsDstPhys) { 389 SrcReg = 0; 390 DstReg = 0; 391 if (MI.isCopy()) { 392 DstReg = MI.getOperand(0).getReg(); 393 SrcReg = MI.getOperand(1).getReg(); 394 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 395 DstReg = MI.getOperand(0).getReg(); 396 SrcReg = MI.getOperand(2).getReg(); 397 } else 398 return false; 399 400 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 401 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 402 return true; 403 } 404 405 /// isPLainlyKilled - Test if the given register value, which is used by the 406 // given instruction, is killed by the given instruction. 407 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 408 LiveIntervals *LIS) { 409 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && 410 !LIS->isNotInMIMap(MI)) { 411 // FIXME: Sometimes tryInstructionTransform() will add instructions and 412 // test whether they can be folded before keeping them. In this case it 413 // sets a kill before recursively calling tryInstructionTransform() again. 414 // If there is no interval available, we assume that this instruction is 415 // one of those. A kill flag is manually inserted on the operand so the 416 // check below will handle it. 417 LiveInterval &LI = LIS->getInterval(Reg); 418 // This is to match the kill flag version where undefs don't have kill 419 // flags. 420 if (!LI.hasAtLeastOneValue()) 421 return false; 422 423 SlotIndex useIdx = LIS->getInstructionIndex(MI); 424 LiveInterval::const_iterator I = LI.find(useIdx); 425 assert(I != LI.end() && "Reg must be live-in to use."); 426 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 427 } 428 429 return MI->killsRegister(Reg); 430 } 431 432 /// isKilled - Test if the given register value, which is used by the given 433 /// instruction, is killed by the given instruction. This looks through 434 /// coalescable copies to see if the original value is potentially not killed. 435 /// 436 /// For example, in this code: 437 /// 438 /// %reg1034 = copy %reg1024 439 /// %reg1035 = copy %reg1025<kill> 440 /// %reg1036 = add %reg1034<kill>, %reg1035<kill> 441 /// 442 /// %reg1034 is not considered to be killed, since it is copied from a 443 /// register which is not killed. Treating it as not killed lets the 444 /// normal heuristics commute the (two-address) add, which lets 445 /// coalescing eliminate the extra copy. 446 /// 447 /// If allowFalsePositives is true then likely kills are treated as kills even 448 /// if it can't be proven that they are kills. 449 static bool isKilled(MachineInstr &MI, unsigned Reg, 450 const MachineRegisterInfo *MRI, 451 const TargetInstrInfo *TII, 452 LiveIntervals *LIS, 453 bool allowFalsePositives) { 454 MachineInstr *DefMI = &MI; 455 for (;;) { 456 // All uses of physical registers are likely to be kills. 457 if (TargetRegisterInfo::isPhysicalRegister(Reg) && 458 (allowFalsePositives || MRI->hasOneUse(Reg))) 459 return true; 460 if (!isPlainlyKilled(DefMI, Reg, LIS)) 461 return false; 462 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 463 return true; 464 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 465 // If there are multiple defs, we can't do a simple analysis, so just 466 // go with what the kill flag says. 467 if (std::next(Begin) != MRI->def_end()) 468 return true; 469 DefMI = Begin->getParent(); 470 bool IsSrcPhys, IsDstPhys; 471 unsigned SrcReg, DstReg; 472 // If the def is something other than a copy, then it isn't going to 473 // be coalesced, so follow the kill flag. 474 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 475 return true; 476 Reg = SrcReg; 477 } 478 } 479 480 /// isTwoAddrUse - Return true if the specified MI uses the specified register 481 /// as a two-address use. If so, return the destination register by reference. 482 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 483 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 484 const MachineOperand &MO = MI.getOperand(i); 485 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 486 continue; 487 unsigned ti; 488 if (MI.isRegTiedToDefOperand(i, &ti)) { 489 DstReg = MI.getOperand(ti).getReg(); 490 return true; 491 } 492 } 493 return false; 494 } 495 496 /// findOnlyInterestingUse - Given a register, if has a single in-basic block 497 /// use, return the use instruction if it's a copy or a two-address use. 498 static 499 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 500 MachineRegisterInfo *MRI, 501 const TargetInstrInfo *TII, 502 bool &IsCopy, 503 unsigned &DstReg, bool &IsDstPhys) { 504 if (!MRI->hasOneNonDBGUse(Reg)) 505 // None or more than one use. 506 return nullptr; 507 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 508 if (UseMI.getParent() != MBB) 509 return nullptr; 510 unsigned SrcReg; 511 bool IsSrcPhys; 512 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 513 IsCopy = true; 514 return &UseMI; 515 } 516 IsDstPhys = false; 517 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 518 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 519 return &UseMI; 520 } 521 return nullptr; 522 } 523 524 /// getMappedReg - Return the physical register the specified virtual register 525 /// might be mapped to. 526 static unsigned 527 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 528 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 529 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 530 if (SI == RegMap.end()) 531 return 0; 532 Reg = SI->second; 533 } 534 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 535 return Reg; 536 return 0; 537 } 538 539 /// regsAreCompatible - Return true if the two registers are equal or aliased. 540 /// 541 static bool 542 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 543 if (RegA == RegB) 544 return true; 545 if (!RegA || !RegB) 546 return false; 547 return TRI->regsOverlap(RegA, RegB); 548 } 549 550 551 /// isProfitableToCommute - Return true if it's potentially profitable to commute 552 /// the two-address instruction that's being processed. 553 bool 554 TwoAddressInstructionPass:: 555 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 556 MachineInstr *MI, unsigned Dist) { 557 if (OptLevel == CodeGenOpt::None) 558 return false; 559 560 // Determine if it's profitable to commute this two address instruction. In 561 // general, we want no uses between this instruction and the definition of 562 // the two-address register. 563 // e.g. 564 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 565 // %reg1029<def> = MOV8rr %reg1028 566 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 567 // insert => %reg1030<def> = MOV8rr %reg1028 568 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 569 // In this case, it might not be possible to coalesce the second MOV8rr 570 // instruction if the first one is coalesced. So it would be profitable to 571 // commute it: 572 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 573 // %reg1029<def> = MOV8rr %reg1028 574 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 575 // insert => %reg1030<def> = MOV8rr %reg1029 576 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 577 578 if (!isPlainlyKilled(MI, regC, LIS)) 579 return false; 580 581 // Ok, we have something like: 582 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 583 // let's see if it's worth commuting it. 584 585 // Look for situations like this: 586 // %reg1024<def> = MOV r1 587 // %reg1025<def> = MOV r0 588 // %reg1026<def> = ADD %reg1024, %reg1025 589 // r0 = MOV %reg1026 590 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 591 unsigned ToRegA = getMappedReg(regA, DstRegMap); 592 if (ToRegA) { 593 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 594 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 595 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 596 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 597 598 // Compute if any of the following are true: 599 // -RegB is not tied to a register and RegC is compatible with RegA. 600 // -RegB is tied to the wrong physical register, but RegC is. 601 // -RegB is tied to the wrong physical register, and RegC isn't tied. 602 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 603 return true; 604 // Don't compute if any of the following are true: 605 // -RegC is not tied to a register and RegB is compatible with RegA. 606 // -RegC is tied to the wrong physical register, but RegB is. 607 // -RegC is tied to the wrong physical register, and RegB isn't tied. 608 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 609 return false; 610 } 611 612 // If there is a use of regC between its last def (could be livein) and this 613 // instruction, then bail. 614 unsigned LastDefC = 0; 615 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 616 return false; 617 618 // If there is a use of regB between its last def (could be livein) and this 619 // instruction, then go ahead and make this transformation. 620 unsigned LastDefB = 0; 621 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 622 return true; 623 624 // Look for situation like this: 625 // %reg101 = MOV %reg100 626 // %reg102 = ... 627 // %reg103 = ADD %reg102, %reg101 628 // ... = %reg103 ... 629 // %reg100 = MOV %reg103 630 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 631 // to eliminate an otherwise unavoidable copy. 632 // FIXME: 633 // We can extend the logic further: If an pair of operands in an insn has 634 // been merged, the insn could be regarded as a virtual copy, and the virtual 635 // copy could also be used to construct a copy chain. 636 // To more generally minimize register copies, ideally the logic of two addr 637 // instruction pass should be integrated with register allocation pass where 638 // interference graph is available. 639 if (isRevCopyChain(regC, regA, 3)) 640 return true; 641 642 if (isRevCopyChain(regB, regA, 3)) 643 return false; 644 645 // Since there are no intervening uses for both registers, then commute 646 // if the def of regC is closer. Its live interval is shorter. 647 return LastDefB && LastDefC && LastDefC > LastDefB; 648 } 649 650 /// commuteInstruction - Commute a two-address instruction and update the basic 651 /// block, distance map, and live variables if needed. Return true if it is 652 /// successful. 653 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 654 unsigned RegBIdx, 655 unsigned RegCIdx, 656 unsigned Dist) { 657 unsigned RegC = MI->getOperand(RegCIdx).getReg(); 658 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 659 MachineInstr *NewMI = TII->commuteInstruction(MI, false, RegBIdx, RegCIdx); 660 661 if (NewMI == nullptr) { 662 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 663 return false; 664 } 665 666 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 667 assert(NewMI == MI && 668 "TargetInstrInfo::commuteInstruction() should not return a new " 669 "instruction unless it was requested."); 670 671 // Update source register map. 672 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 673 if (FromRegC) { 674 unsigned RegA = MI->getOperand(0).getReg(); 675 SrcRegMap[RegA] = FromRegC; 676 } 677 678 return true; 679 } 680 681 /// isProfitableToConv3Addr - Return true if it is profitable to convert the 682 /// given 2-address instruction to a 3-address one. 683 bool 684 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 685 // Look for situations like this: 686 // %reg1024<def> = MOV r1 687 // %reg1025<def> = MOV r0 688 // %reg1026<def> = ADD %reg1024, %reg1025 689 // r2 = MOV %reg1026 690 // Turn ADD into a 3-address instruction to avoid a copy. 691 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 692 if (!FromRegB) 693 return false; 694 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 695 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 696 } 697 698 /// convertInstTo3Addr - Convert the specified two-address instruction into a 699 /// three address one. Return true if this transformation was successful. 700 bool 701 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 702 MachineBasicBlock::iterator &nmi, 703 unsigned RegA, unsigned RegB, 704 unsigned Dist) { 705 // FIXME: Why does convertToThreeAddress() need an iterator reference? 706 MachineFunction::iterator MFI = MBB; 707 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV); 708 assert(MBB == MFI && "convertToThreeAddress changed iterator reference"); 709 if (!NewMI) 710 return false; 711 712 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 713 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 714 bool Sunk = false; 715 716 if (LIS) 717 LIS->ReplaceMachineInstrInMaps(mi, NewMI); 718 719 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 720 // FIXME: Temporary workaround. If the new instruction doesn't 721 // uses RegB, convertToThreeAddress must have created more 722 // then one instruction. 723 Sunk = sink3AddrInstruction(NewMI, RegB, mi); 724 725 MBB->erase(mi); // Nuke the old inst. 726 727 if (!Sunk) { 728 DistanceMap.insert(std::make_pair(NewMI, Dist)); 729 mi = NewMI; 730 nmi = std::next(mi); 731 } 732 733 // Update source and destination register maps. 734 SrcRegMap.erase(RegA); 735 DstRegMap.erase(RegB); 736 return true; 737 } 738 739 /// scanUses - Scan forward recursively for only uses, update maps if the use 740 /// is a copy or a two-address instruction. 741 void 742 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 743 SmallVector<unsigned, 4> VirtRegPairs; 744 bool IsDstPhys; 745 bool IsCopy = false; 746 unsigned NewReg = 0; 747 unsigned Reg = DstReg; 748 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 749 NewReg, IsDstPhys)) { 750 if (IsCopy && !Processed.insert(UseMI).second) 751 break; 752 753 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 754 if (DI != DistanceMap.end()) 755 // Earlier in the same MBB.Reached via a back edge. 756 break; 757 758 if (IsDstPhys) { 759 VirtRegPairs.push_back(NewReg); 760 break; 761 } 762 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 763 if (!isNew) 764 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 765 VirtRegPairs.push_back(NewReg); 766 Reg = NewReg; 767 } 768 769 if (!VirtRegPairs.empty()) { 770 unsigned ToReg = VirtRegPairs.back(); 771 VirtRegPairs.pop_back(); 772 while (!VirtRegPairs.empty()) { 773 unsigned FromReg = VirtRegPairs.back(); 774 VirtRegPairs.pop_back(); 775 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 776 if (!isNew) 777 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 778 ToReg = FromReg; 779 } 780 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 781 if (!isNew) 782 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 783 } 784 } 785 786 /// processCopy - If the specified instruction is not yet processed, process it 787 /// if it's a copy. For a copy instruction, we find the physical registers the 788 /// source and destination registers might be mapped to. These are kept in 789 /// point-to maps used to determine future optimizations. e.g. 790 /// v1024 = mov r0 791 /// v1025 = mov r1 792 /// v1026 = add v1024, v1025 793 /// r1 = mov r1026 794 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 795 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 796 /// potentially joined with r1 on the output side. It's worthwhile to commute 797 /// 'add' to eliminate a copy. 798 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 799 if (Processed.count(MI)) 800 return; 801 802 bool IsSrcPhys, IsDstPhys; 803 unsigned SrcReg, DstReg; 804 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 805 return; 806 807 if (IsDstPhys && !IsSrcPhys) 808 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 809 else if (!IsDstPhys && IsSrcPhys) { 810 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 811 if (!isNew) 812 assert(SrcRegMap[DstReg] == SrcReg && 813 "Can't map to two src physical registers!"); 814 815 scanUses(DstReg); 816 } 817 818 Processed.insert(MI); 819 return; 820 } 821 822 /// rescheduleMIBelowKill - If there is one more local instruction that reads 823 /// 'Reg' and it kills 'Reg, consider moving the instruction below the kill 824 /// instruction in order to eliminate the need for the copy. 825 bool TwoAddressInstructionPass:: 826 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 827 MachineBasicBlock::iterator &nmi, 828 unsigned Reg) { 829 // Bail immediately if we don't have LV or LIS available. We use them to find 830 // kills efficiently. 831 if (!LV && !LIS) 832 return false; 833 834 MachineInstr *MI = &*mi; 835 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 836 if (DI == DistanceMap.end()) 837 // Must be created from unfolded load. Don't waste time trying this. 838 return false; 839 840 MachineInstr *KillMI = nullptr; 841 if (LIS) { 842 LiveInterval &LI = LIS->getInterval(Reg); 843 assert(LI.end() != LI.begin() && 844 "Reg should not have empty live interval."); 845 846 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 847 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 848 if (I != LI.end() && I->start < MBBEndIdx) 849 return false; 850 851 --I; 852 KillMI = LIS->getInstructionFromIndex(I->end); 853 } else { 854 KillMI = LV->getVarInfo(Reg).findKill(MBB); 855 } 856 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 857 // Don't mess with copies, they may be coalesced later. 858 return false; 859 860 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 861 KillMI->isBranch() || KillMI->isTerminator()) 862 // Don't move pass calls, etc. 863 return false; 864 865 unsigned DstReg; 866 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 867 return false; 868 869 bool SeenStore = true; 870 if (!MI->isSafeToMove(AA, SeenStore)) 871 return false; 872 873 if (TII->getInstrLatency(InstrItins, MI) > 1) 874 // FIXME: Needs more sophisticated heuristics. 875 return false; 876 877 SmallSet<unsigned, 2> Uses; 878 SmallSet<unsigned, 2> Kills; 879 SmallSet<unsigned, 2> Defs; 880 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 881 const MachineOperand &MO = MI->getOperand(i); 882 if (!MO.isReg()) 883 continue; 884 unsigned MOReg = MO.getReg(); 885 if (!MOReg) 886 continue; 887 if (MO.isDef()) 888 Defs.insert(MOReg); 889 else { 890 Uses.insert(MOReg); 891 if (MOReg != Reg && (MO.isKill() || 892 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 893 Kills.insert(MOReg); 894 } 895 } 896 897 // Move the copies connected to MI down as well. 898 MachineBasicBlock::iterator Begin = MI; 899 MachineBasicBlock::iterator AfterMI = std::next(Begin); 900 901 MachineBasicBlock::iterator End = AfterMI; 902 while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) { 903 Defs.insert(End->getOperand(0).getReg()); 904 ++End; 905 } 906 907 // Check if the reschedule will not break depedencies. 908 unsigned NumVisited = 0; 909 MachineBasicBlock::iterator KillPos = KillMI; 910 ++KillPos; 911 for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) { 912 MachineInstr *OtherMI = I; 913 // DBG_VALUE cannot be counted against the limit. 914 if (OtherMI->isDebugValue()) 915 continue; 916 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 917 return false; 918 ++NumVisited; 919 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 920 OtherMI->isBranch() || OtherMI->isTerminator()) 921 // Don't move pass calls, etc. 922 return false; 923 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 924 const MachineOperand &MO = OtherMI->getOperand(i); 925 if (!MO.isReg()) 926 continue; 927 unsigned MOReg = MO.getReg(); 928 if (!MOReg) 929 continue; 930 if (MO.isDef()) { 931 if (Uses.count(MOReg)) 932 // Physical register use would be clobbered. 933 return false; 934 if (!MO.isDead() && Defs.count(MOReg)) 935 // May clobber a physical register def. 936 // FIXME: This may be too conservative. It's ok if the instruction 937 // is sunken completely below the use. 938 return false; 939 } else { 940 if (Defs.count(MOReg)) 941 return false; 942 bool isKill = MO.isKill() || 943 (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)); 944 if (MOReg != Reg && 945 ((isKill && Uses.count(MOReg)) || Kills.count(MOReg))) 946 // Don't want to extend other live ranges and update kills. 947 return false; 948 if (MOReg == Reg && !isKill) 949 // We can't schedule across a use of the register in question. 950 return false; 951 // Ensure that if this is register in question, its the kill we expect. 952 assert((MOReg != Reg || OtherMI == KillMI) && 953 "Found multiple kills of a register in a basic block"); 954 } 955 } 956 } 957 958 // Move debug info as well. 959 while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue()) 960 --Begin; 961 962 nmi = End; 963 MachineBasicBlock::iterator InsertPos = KillPos; 964 if (LIS) { 965 // We have to move the copies first so that the MBB is still well-formed 966 // when calling handleMove(). 967 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 968 MachineInstr *CopyMI = MBBI; 969 ++MBBI; 970 MBB->splice(InsertPos, MBB, CopyMI); 971 LIS->handleMove(CopyMI); 972 InsertPos = CopyMI; 973 } 974 End = std::next(MachineBasicBlock::iterator(MI)); 975 } 976 977 // Copies following MI may have been moved as well. 978 MBB->splice(InsertPos, MBB, Begin, End); 979 DistanceMap.erase(DI); 980 981 // Update live variables 982 if (LIS) { 983 LIS->handleMove(MI); 984 } else { 985 LV->removeVirtualRegisterKilled(Reg, KillMI); 986 LV->addVirtualRegisterKilled(Reg, MI); 987 } 988 989 DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 990 return true; 991 } 992 993 /// isDefTooClose - Return true if the re-scheduling will put the given 994 /// instruction too close to the defs of its register dependencies. 995 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 996 MachineInstr *MI) { 997 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 998 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 999 continue; 1000 if (&DefMI == MI) 1001 return true; // MI is defining something KillMI uses 1002 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 1003 if (DDI == DistanceMap.end()) 1004 return true; // Below MI 1005 unsigned DefDist = DDI->second; 1006 assert(Dist > DefDist && "Visited def already?"); 1007 if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist)) 1008 return true; 1009 } 1010 return false; 1011 } 1012 1013 /// rescheduleKillAboveMI - If there is one more local instruction that reads 1014 /// 'Reg' and it kills 'Reg, consider moving the kill instruction above the 1015 /// current two-address instruction in order to eliminate the need for the 1016 /// copy. 1017 bool TwoAddressInstructionPass:: 1018 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 1019 MachineBasicBlock::iterator &nmi, 1020 unsigned Reg) { 1021 // Bail immediately if we don't have LV or LIS available. We use them to find 1022 // kills efficiently. 1023 if (!LV && !LIS) 1024 return false; 1025 1026 MachineInstr *MI = &*mi; 1027 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1028 if (DI == DistanceMap.end()) 1029 // Must be created from unfolded load. Don't waste time trying this. 1030 return false; 1031 1032 MachineInstr *KillMI = nullptr; 1033 if (LIS) { 1034 LiveInterval &LI = LIS->getInterval(Reg); 1035 assert(LI.end() != LI.begin() && 1036 "Reg should not have empty live interval."); 1037 1038 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1039 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1040 if (I != LI.end() && I->start < MBBEndIdx) 1041 return false; 1042 1043 --I; 1044 KillMI = LIS->getInstructionFromIndex(I->end); 1045 } else { 1046 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1047 } 1048 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1049 // Don't mess with copies, they may be coalesced later. 1050 return false; 1051 1052 unsigned DstReg; 1053 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1054 return false; 1055 1056 bool SeenStore = true; 1057 if (!KillMI->isSafeToMove(AA, SeenStore)) 1058 return false; 1059 1060 SmallSet<unsigned, 2> Uses; 1061 SmallSet<unsigned, 2> Kills; 1062 SmallSet<unsigned, 2> Defs; 1063 SmallSet<unsigned, 2> LiveDefs; 1064 for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) { 1065 const MachineOperand &MO = KillMI->getOperand(i); 1066 if (!MO.isReg()) 1067 continue; 1068 unsigned MOReg = MO.getReg(); 1069 if (MO.isUse()) { 1070 if (!MOReg) 1071 continue; 1072 if (isDefTooClose(MOReg, DI->second, MI)) 1073 return false; 1074 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1075 if (MOReg == Reg && !isKill) 1076 return false; 1077 Uses.insert(MOReg); 1078 if (isKill && MOReg != Reg) 1079 Kills.insert(MOReg); 1080 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1081 Defs.insert(MOReg); 1082 if (!MO.isDead()) 1083 LiveDefs.insert(MOReg); 1084 } 1085 } 1086 1087 // Check if the reschedule will not break depedencies. 1088 unsigned NumVisited = 0; 1089 MachineBasicBlock::iterator KillPos = KillMI; 1090 for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) { 1091 MachineInstr *OtherMI = I; 1092 // DBG_VALUE cannot be counted against the limit. 1093 if (OtherMI->isDebugValue()) 1094 continue; 1095 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1096 return false; 1097 ++NumVisited; 1098 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 1099 OtherMI->isBranch() || OtherMI->isTerminator()) 1100 // Don't move pass calls, etc. 1101 return false; 1102 SmallVector<unsigned, 2> OtherDefs; 1103 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 1104 const MachineOperand &MO = OtherMI->getOperand(i); 1105 if (!MO.isReg()) 1106 continue; 1107 unsigned MOReg = MO.getReg(); 1108 if (!MOReg) 1109 continue; 1110 if (MO.isUse()) { 1111 if (Defs.count(MOReg)) 1112 // Moving KillMI can clobber the physical register if the def has 1113 // not been seen. 1114 return false; 1115 if (Kills.count(MOReg)) 1116 // Don't want to extend other live ranges and update kills. 1117 return false; 1118 if (OtherMI != MI && MOReg == Reg && 1119 !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)))) 1120 // We can't schedule across a use of the register in question. 1121 return false; 1122 } else { 1123 OtherDefs.push_back(MOReg); 1124 } 1125 } 1126 1127 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1128 unsigned MOReg = OtherDefs[i]; 1129 if (Uses.count(MOReg)) 1130 return false; 1131 if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 1132 LiveDefs.count(MOReg)) 1133 return false; 1134 // Physical register def is seen. 1135 Defs.erase(MOReg); 1136 } 1137 } 1138 1139 // Move the old kill above MI, don't forget to move debug info as well. 1140 MachineBasicBlock::iterator InsertPos = mi; 1141 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue()) 1142 --InsertPos; 1143 MachineBasicBlock::iterator From = KillMI; 1144 MachineBasicBlock::iterator To = std::next(From); 1145 while (std::prev(From)->isDebugValue()) 1146 --From; 1147 MBB->splice(InsertPos, MBB, From, To); 1148 1149 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1150 DistanceMap.erase(DI); 1151 1152 // Update live variables 1153 if (LIS) { 1154 LIS->handleMove(KillMI); 1155 } else { 1156 LV->removeVirtualRegisterKilled(Reg, KillMI); 1157 LV->addVirtualRegisterKilled(Reg, MI); 1158 } 1159 1160 DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1161 return true; 1162 } 1163 1164 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1165 /// given machine instruction to improve opportunities for coalescing and 1166 /// elimination of a register to register copy. 1167 /// 1168 /// 'DstOpIdx' specifies the index of MI def operand. 1169 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1170 /// operand is killed by the given instruction. 1171 /// The 'Dist' arguments provides the distance of MI from the start of the 1172 /// current basic block and it is used to determine if it is profitable 1173 /// to commute operands in the instruction. 1174 /// 1175 /// Returns true if the transformation happened. Otherwise, returns false. 1176 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1177 unsigned DstOpIdx, 1178 unsigned BaseOpIdx, 1179 bool BaseOpKilled, 1180 unsigned Dist) { 1181 unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1182 unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1183 unsigned OpsNum = MI->getDesc().getNumOperands(); 1184 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1185 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1186 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1187 // and OtherOpIdx are commutable, it does not really searches for 1188 // other commutable operands and does not change the values of passed 1189 // variables. 1190 if (OtherOpIdx == BaseOpIdx || 1191 !TII->findCommutedOpIndices(MI, BaseOpIdx, OtherOpIdx)) 1192 continue; 1193 1194 unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1195 bool AggressiveCommute = false; 1196 1197 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1198 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1199 bool DoCommute = 1200 !BaseOpKilled && isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1201 1202 if (!DoCommute && 1203 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1204 DoCommute = true; 1205 AggressiveCommute = true; 1206 } 1207 1208 // If it's profitable to commute, try to do so. 1209 if (DoCommute && commuteInstruction(MI, BaseOpIdx, OtherOpIdx, Dist)) { 1210 ++NumCommuted; 1211 if (AggressiveCommute) 1212 ++NumAggrCommuted; 1213 return true; 1214 } 1215 } 1216 return false; 1217 } 1218 1219 /// tryInstructionTransform - For the case where an instruction has a single 1220 /// pair of tied register operands, attempt some transformations that may 1221 /// either eliminate the tied operands or improve the opportunities for 1222 /// coalescing away the register copy. Returns true if no copy needs to be 1223 /// inserted to untie mi's operands (either because they were untied, or 1224 /// because mi was rescheduled, and will be visited again later). If the 1225 /// shouldOnlyCommute flag is true, only instruction commutation is attempted. 1226 bool TwoAddressInstructionPass:: 1227 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1228 MachineBasicBlock::iterator &nmi, 1229 unsigned SrcIdx, unsigned DstIdx, 1230 unsigned Dist, bool shouldOnlyCommute) { 1231 if (OptLevel == CodeGenOpt::None) 1232 return false; 1233 1234 MachineInstr &MI = *mi; 1235 unsigned regA = MI.getOperand(DstIdx).getReg(); 1236 unsigned regB = MI.getOperand(SrcIdx).getReg(); 1237 1238 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1239 "cannot make instruction into two-address form"); 1240 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1241 1242 if (TargetRegisterInfo::isVirtualRegister(regA)) 1243 scanUses(regA); 1244 1245 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1246 1247 // If the instruction is convertible to 3 Addr, instead 1248 // of returning try 3 Addr transformation aggresively and 1249 // use this variable to check later. Because it might be better. 1250 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1251 // instead of the following code. 1252 // addl %esi, %edi 1253 // movl %edi, %eax 1254 // ret 1255 if (Commuted && !MI.isConvertibleTo3Addr()) 1256 return false; 1257 1258 if (shouldOnlyCommute) 1259 return false; 1260 1261 // If there is one more use of regB later in the same MBB, consider 1262 // re-schedule this MI below it. 1263 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1264 ++NumReSchedDowns; 1265 return true; 1266 } 1267 1268 if (MI.isConvertibleTo3Addr()) { 1269 // This instruction is potentially convertible to a true 1270 // three-address instruction. Check if it is profitable. 1271 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1272 // Try to convert it. 1273 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1274 ++NumConvertedTo3Addr; 1275 return true; // Done with this instruction. 1276 } 1277 } 1278 } 1279 1280 // Return if it is commuted but 3 addr conversion is failed. 1281 if (Commuted) 1282 return false; 1283 1284 // If there is one more use of regB later in the same MBB, consider 1285 // re-schedule it before this MI if it's legal. 1286 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1287 ++NumReSchedUps; 1288 return true; 1289 } 1290 1291 // If this is an instruction with a load folded into it, try unfolding 1292 // the load, e.g. avoid this: 1293 // movq %rdx, %rcx 1294 // addq (%rax), %rcx 1295 // in favor of this: 1296 // movq (%rax), %rcx 1297 // addq %rdx, %rcx 1298 // because it's preferable to schedule a load than a register copy. 1299 if (MI.mayLoad() && !regBKilled) { 1300 // Determine if a load can be unfolded. 1301 unsigned LoadRegIndex; 1302 unsigned NewOpc = 1303 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1304 /*UnfoldLoad=*/true, 1305 /*UnfoldStore=*/false, 1306 &LoadRegIndex); 1307 if (NewOpc != 0) { 1308 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1309 if (UnfoldMCID.getNumDefs() == 1) { 1310 // Unfold the load. 1311 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1312 const TargetRegisterClass *RC = 1313 TRI->getAllocatableClass( 1314 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1315 unsigned Reg = MRI->createVirtualRegister(RC); 1316 SmallVector<MachineInstr *, 2> NewMIs; 1317 if (!TII->unfoldMemoryOperand(*MF, &MI, Reg, 1318 /*UnfoldLoad=*/true,/*UnfoldStore=*/false, 1319 NewMIs)) { 1320 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1321 return false; 1322 } 1323 assert(NewMIs.size() == 2 && 1324 "Unfolded a load into multiple instructions!"); 1325 // The load was previously folded, so this is the only use. 1326 NewMIs[1]->addRegisterKilled(Reg, TRI); 1327 1328 // Tentatively insert the instructions into the block so that they 1329 // look "normal" to the transformation logic. 1330 MBB->insert(mi, NewMIs[0]); 1331 MBB->insert(mi, NewMIs[1]); 1332 1333 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1334 << "2addr: NEW INST: " << *NewMIs[1]); 1335 1336 // Transform the instruction, now that it no longer has a load. 1337 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1338 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1339 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1340 bool TransformResult = 1341 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1342 (void)TransformResult; 1343 assert(!TransformResult && 1344 "tryInstructionTransform() should return false."); 1345 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1346 // Success, or at least we made an improvement. Keep the unfolded 1347 // instructions and discard the original. 1348 if (LV) { 1349 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1350 MachineOperand &MO = MI.getOperand(i); 1351 if (MO.isReg() && 1352 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 1353 if (MO.isUse()) { 1354 if (MO.isKill()) { 1355 if (NewMIs[0]->killsRegister(MO.getReg())) 1356 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]); 1357 else { 1358 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1359 "Kill missing after load unfold!"); 1360 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]); 1361 } 1362 } 1363 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) { 1364 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1365 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]); 1366 else { 1367 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1368 "Dead flag missing after load unfold!"); 1369 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]); 1370 } 1371 } 1372 } 1373 } 1374 LV->addVirtualRegisterKilled(Reg, NewMIs[1]); 1375 } 1376 1377 SmallVector<unsigned, 4> OrigRegs; 1378 if (LIS) { 1379 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(), 1380 MOE = MI.operands_end(); MOI != MOE; ++MOI) { 1381 if (MOI->isReg()) 1382 OrigRegs.push_back(MOI->getReg()); 1383 } 1384 } 1385 1386 MI.eraseFromParent(); 1387 1388 // Update LiveIntervals. 1389 if (LIS) { 1390 MachineBasicBlock::iterator Begin(NewMIs[0]); 1391 MachineBasicBlock::iterator End(NewMIs[1]); 1392 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1393 } 1394 1395 mi = NewMIs[1]; 1396 } else { 1397 // Transforming didn't eliminate the tie and didn't lead to an 1398 // improvement. Clean up the unfolded instructions and keep the 1399 // original. 1400 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1401 NewMIs[0]->eraseFromParent(); 1402 NewMIs[1]->eraseFromParent(); 1403 } 1404 } 1405 } 1406 } 1407 1408 return false; 1409 } 1410 1411 // Collect tied operands of MI that need to be handled. 1412 // Rewrite trivial cases immediately. 1413 // Return true if any tied operands where found, including the trivial ones. 1414 bool TwoAddressInstructionPass:: 1415 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1416 const MCInstrDesc &MCID = MI->getDesc(); 1417 bool AnyOps = false; 1418 unsigned NumOps = MI->getNumOperands(); 1419 1420 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1421 unsigned DstIdx = 0; 1422 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1423 continue; 1424 AnyOps = true; 1425 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1426 MachineOperand &DstMO = MI->getOperand(DstIdx); 1427 unsigned SrcReg = SrcMO.getReg(); 1428 unsigned DstReg = DstMO.getReg(); 1429 // Tied constraint already satisfied? 1430 if (SrcReg == DstReg) 1431 continue; 1432 1433 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1434 1435 // Deal with <undef> uses immediately - simply rewrite the src operand. 1436 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1437 // Constrain the DstReg register class if required. 1438 if (TargetRegisterInfo::isVirtualRegister(DstReg)) 1439 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1440 TRI, *MF)) 1441 MRI->constrainRegClass(DstReg, RC); 1442 SrcMO.setReg(DstReg); 1443 SrcMO.setSubReg(0); 1444 DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1445 continue; 1446 } 1447 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1448 } 1449 return AnyOps; 1450 } 1451 1452 // Process a list of tied MI operands that all use the same source register. 1453 // The tied pairs are of the form (SrcIdx, DstIdx). 1454 void 1455 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1456 TiedPairList &TiedPairs, 1457 unsigned &Dist) { 1458 bool IsEarlyClobber = false; 1459 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1460 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1461 IsEarlyClobber |= DstMO.isEarlyClobber(); 1462 } 1463 1464 bool RemovedKillFlag = false; 1465 bool AllUsesCopied = true; 1466 unsigned LastCopiedReg = 0; 1467 SlotIndex LastCopyIdx; 1468 unsigned RegB = 0; 1469 unsigned SubRegB = 0; 1470 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1471 unsigned SrcIdx = TiedPairs[tpi].first; 1472 unsigned DstIdx = TiedPairs[tpi].second; 1473 1474 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1475 unsigned RegA = DstMO.getReg(); 1476 1477 // Grab RegB from the instruction because it may have changed if the 1478 // instruction was commuted. 1479 RegB = MI->getOperand(SrcIdx).getReg(); 1480 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1481 1482 if (RegA == RegB) { 1483 // The register is tied to multiple destinations (or else we would 1484 // not have continued this far), but this use of the register 1485 // already matches the tied destination. Leave it. 1486 AllUsesCopied = false; 1487 continue; 1488 } 1489 LastCopiedReg = RegA; 1490 1491 assert(TargetRegisterInfo::isVirtualRegister(RegB) && 1492 "cannot make instruction into two-address form"); 1493 1494 #ifndef NDEBUG 1495 // First, verify that we don't have a use of "a" in the instruction 1496 // (a = b + a for example) because our transformation will not 1497 // work. This should never occur because we are in SSA form. 1498 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1499 assert(i == DstIdx || 1500 !MI->getOperand(i).isReg() || 1501 MI->getOperand(i).getReg() != RegA); 1502 #endif 1503 1504 // Emit a copy. 1505 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1506 TII->get(TargetOpcode::COPY), RegA); 1507 // If this operand is folding a truncation, the truncation now moves to the 1508 // copy so that the register classes remain valid for the operands. 1509 MIB.addReg(RegB, 0, SubRegB); 1510 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1511 if (SubRegB) { 1512 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1513 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1514 SubRegB) && 1515 "tied subregister must be a truncation"); 1516 // The superreg class will not be used to constrain the subreg class. 1517 RC = nullptr; 1518 } 1519 else { 1520 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1521 && "tied subregister must be a truncation"); 1522 } 1523 } 1524 1525 // Update DistanceMap. 1526 MachineBasicBlock::iterator PrevMI = MI; 1527 --PrevMI; 1528 DistanceMap.insert(std::make_pair(PrevMI, Dist)); 1529 DistanceMap[MI] = ++Dist; 1530 1531 if (LIS) { 1532 LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot(); 1533 1534 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1535 LiveInterval &LI = LIS->getInterval(RegA); 1536 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1537 SlotIndex endIdx = 1538 LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber); 1539 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1540 } 1541 } 1542 1543 DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1544 1545 MachineOperand &MO = MI->getOperand(SrcIdx); 1546 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1547 "inconsistent operand info for 2-reg pass"); 1548 if (MO.isKill()) { 1549 MO.setIsKill(false); 1550 RemovedKillFlag = true; 1551 } 1552 1553 // Make sure regA is a legal regclass for the SrcIdx operand. 1554 if (TargetRegisterInfo::isVirtualRegister(RegA) && 1555 TargetRegisterInfo::isVirtualRegister(RegB)) 1556 MRI->constrainRegClass(RegA, RC); 1557 MO.setReg(RegA); 1558 // The getMatchingSuper asserts guarantee that the register class projected 1559 // by SubRegB is compatible with RegA with no subregister. So regardless of 1560 // whether the dest oper writes a subreg, the source oper should not. 1561 MO.setSubReg(0); 1562 1563 // Propagate SrcRegMap. 1564 SrcRegMap[RegA] = RegB; 1565 } 1566 1567 if (AllUsesCopied) { 1568 if (!IsEarlyClobber) { 1569 // Replace other (un-tied) uses of regB with LastCopiedReg. 1570 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1571 MachineOperand &MO = MI->getOperand(i); 1572 if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB && 1573 MO.isUse()) { 1574 if (MO.isKill()) { 1575 MO.setIsKill(false); 1576 RemovedKillFlag = true; 1577 } 1578 MO.setReg(LastCopiedReg); 1579 MO.setSubReg(0); 1580 } 1581 } 1582 } 1583 1584 // Update live variables for regB. 1585 if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) { 1586 MachineBasicBlock::iterator PrevMI = MI; 1587 --PrevMI; 1588 LV->addVirtualRegisterKilled(RegB, PrevMI); 1589 } 1590 1591 // Update LiveIntervals. 1592 if (LIS) { 1593 LiveInterval &LI = LIS->getInterval(RegB); 1594 SlotIndex MIIdx = LIS->getInstructionIndex(MI); 1595 LiveInterval::const_iterator I = LI.find(MIIdx); 1596 assert(I != LI.end() && "RegB must be live-in to use."); 1597 1598 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1599 if (I->end == UseIdx) 1600 LI.removeSegment(LastCopyIdx, UseIdx); 1601 } 1602 1603 } else if (RemovedKillFlag) { 1604 // Some tied uses of regB matched their destination registers, so 1605 // regB is still used in this instruction, but a kill flag was 1606 // removed from a different tied use of regB, so now we need to add 1607 // a kill flag to one of the remaining uses of regB. 1608 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1609 MachineOperand &MO = MI->getOperand(i); 1610 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1611 MO.setIsKill(true); 1612 break; 1613 } 1614 } 1615 } 1616 } 1617 1618 /// runOnMachineFunction - Reduce two-address instructions to two operands. 1619 /// 1620 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1621 MF = &Func; 1622 const TargetMachine &TM = MF->getTarget(); 1623 MRI = &MF->getRegInfo(); 1624 TII = MF->getSubtarget().getInstrInfo(); 1625 TRI = MF->getSubtarget().getRegisterInfo(); 1626 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1627 LV = getAnalysisIfAvailable<LiveVariables>(); 1628 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1629 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1630 OptLevel = TM.getOptLevel(); 1631 1632 bool MadeChange = false; 1633 1634 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1635 DEBUG(dbgs() << "********** Function: " 1636 << MF->getName() << '\n'); 1637 1638 // This pass takes the function out of SSA form. 1639 MRI->leaveSSA(); 1640 1641 TiedOperandMap TiedOperands; 1642 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1643 MBBI != MBBE; ++MBBI) { 1644 MBB = MBBI; 1645 unsigned Dist = 0; 1646 DistanceMap.clear(); 1647 SrcRegMap.clear(); 1648 DstRegMap.clear(); 1649 Processed.clear(); 1650 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1651 mi != me; ) { 1652 MachineBasicBlock::iterator nmi = std::next(mi); 1653 if (mi->isDebugValue()) { 1654 mi = nmi; 1655 continue; 1656 } 1657 1658 // Expand REG_SEQUENCE instructions. This will position mi at the first 1659 // expanded instruction. 1660 if (mi->isRegSequence()) 1661 eliminateRegSequence(mi); 1662 1663 DistanceMap.insert(std::make_pair(mi, ++Dist)); 1664 1665 processCopy(&*mi); 1666 1667 // First scan through all the tied register uses in this instruction 1668 // and record a list of pairs of tied operands for each register. 1669 if (!collectTiedOperands(mi, TiedOperands)) { 1670 mi = nmi; 1671 continue; 1672 } 1673 1674 ++NumTwoAddressInstrs; 1675 MadeChange = true; 1676 DEBUG(dbgs() << '\t' << *mi); 1677 1678 // If the instruction has a single pair of tied operands, try some 1679 // transformations that may either eliminate the tied operands or 1680 // improve the opportunities for coalescing away the register copy. 1681 if (TiedOperands.size() == 1) { 1682 SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs 1683 = TiedOperands.begin()->second; 1684 if (TiedPairs.size() == 1) { 1685 unsigned SrcIdx = TiedPairs[0].first; 1686 unsigned DstIdx = TiedPairs[0].second; 1687 unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); 1688 unsigned DstReg = mi->getOperand(DstIdx).getReg(); 1689 if (SrcReg != DstReg && 1690 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1691 // The tied operands have been eliminated or shifted further down 1692 // the block to ease elimination. Continue processing with 'nmi'. 1693 TiedOperands.clear(); 1694 mi = nmi; 1695 continue; 1696 } 1697 } 1698 } 1699 1700 // Now iterate over the information collected above. 1701 for (TiedOperandMap::iterator OI = TiedOperands.begin(), 1702 OE = TiedOperands.end(); OI != OE; ++OI) { 1703 processTiedPairs(mi, OI->second, Dist); 1704 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1705 } 1706 1707 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1708 if (mi->isInsertSubreg()) { 1709 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1710 // To %reg:subidx = COPY %subreg 1711 unsigned SubIdx = mi->getOperand(3).getImm(); 1712 mi->RemoveOperand(3); 1713 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1714 mi->getOperand(0).setSubReg(SubIdx); 1715 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1716 mi->RemoveOperand(1); 1717 mi->setDesc(TII->get(TargetOpcode::COPY)); 1718 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1719 } 1720 1721 // Clear TiedOperands here instead of at the top of the loop 1722 // since most instructions do not have tied operands. 1723 TiedOperands.clear(); 1724 mi = nmi; 1725 } 1726 } 1727 1728 if (LIS) 1729 MF->verify(this, "After two-address instruction pass"); 1730 1731 return MadeChange; 1732 } 1733 1734 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1735 /// 1736 /// The instruction is turned into a sequence of sub-register copies: 1737 /// 1738 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1739 /// 1740 /// Becomes: 1741 /// 1742 /// %dst:ssub0<def,undef> = COPY %v1 1743 /// %dst:ssub1<def> = COPY %v2 1744 /// 1745 void TwoAddressInstructionPass:: 1746 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1747 MachineInstr *MI = MBBI; 1748 unsigned DstReg = MI->getOperand(0).getReg(); 1749 if (MI->getOperand(0).getSubReg() || 1750 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1751 !(MI->getNumOperands() & 1)) { 1752 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); 1753 llvm_unreachable(nullptr); 1754 } 1755 1756 SmallVector<unsigned, 4> OrigRegs; 1757 if (LIS) { 1758 OrigRegs.push_back(MI->getOperand(0).getReg()); 1759 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) 1760 OrigRegs.push_back(MI->getOperand(i).getReg()); 1761 } 1762 1763 bool DefEmitted = false; 1764 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 1765 MachineOperand &UseMO = MI->getOperand(i); 1766 unsigned SrcReg = UseMO.getReg(); 1767 unsigned SubIdx = MI->getOperand(i+1).getImm(); 1768 // Nothing needs to be inserted for <undef> operands. 1769 if (UseMO.isUndef()) 1770 continue; 1771 1772 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1773 // might insert a COPY that uses SrcReg after is was killed. 1774 bool isKill = UseMO.isKill(); 1775 if (isKill) 1776 for (unsigned j = i + 2; j < e; j += 2) 1777 if (MI->getOperand(j).getReg() == SrcReg) { 1778 MI->getOperand(j).setIsKill(); 1779 UseMO.setIsKill(false); 1780 isKill = false; 1781 break; 1782 } 1783 1784 // Insert the sub-register copy. 1785 MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1786 TII->get(TargetOpcode::COPY)) 1787 .addReg(DstReg, RegState::Define, SubIdx) 1788 .addOperand(UseMO); 1789 1790 // The first def needs an <undef> flag because there is no live register 1791 // before it. 1792 if (!DefEmitted) { 1793 CopyMI->getOperand(0).setIsUndef(true); 1794 // Return an iterator pointing to the first inserted instr. 1795 MBBI = CopyMI; 1796 } 1797 DefEmitted = true; 1798 1799 // Update LiveVariables' kill info. 1800 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1801 LV->replaceKillInstruction(SrcReg, MI, CopyMI); 1802 1803 DEBUG(dbgs() << "Inserted: " << *CopyMI); 1804 } 1805 1806 MachineBasicBlock::iterator EndMBBI = 1807 std::next(MachineBasicBlock::iterator(MI)); 1808 1809 if (!DefEmitted) { 1810 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF"); 1811 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1812 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j) 1813 MI->RemoveOperand(j); 1814 } else { 1815 DEBUG(dbgs() << "Eliminated: " << *MI); 1816 MI->eraseFromParent(); 1817 } 1818 1819 // Udpate LiveIntervals. 1820 if (LIS) 1821 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1822 } 1823