1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TwoAddress instruction pass which is used 10 // by most register allocators. Two-Address instructions are rewritten 11 // from: 12 // 13 // A = B op C 14 // 15 // to: 16 // 17 // A = B 18 // A op= C 19 // 20 // Note that if a register allocator chooses to use this pass, that it 21 // has to be capable of handling the non-SSA nature of these rewritten 22 // virtual registers. 23 // 24 // It is also worth noting that the duplicate operand of the two 25 // address instruction is removed. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/Passes.h" 47 #include "llvm/CodeGen/SlotIndexes.h" 48 #include "llvm/CodeGen/TargetInstrInfo.h" 49 #include "llvm/CodeGen/TargetOpcodes.h" 50 #include "llvm/CodeGen/TargetRegisterInfo.h" 51 #include "llvm/CodeGen/TargetSubtargetInfo.h" 52 #include "llvm/MC/MCInstrDesc.h" 53 #include "llvm/MC/MCInstrItineraries.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <cassert> 62 #include <iterator> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "twoaddressinstruction" 68 69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 70 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 71 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 73 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 74 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 75 76 // Temporary flag to disable rescheduling. 77 static cl::opt<bool> 78 EnableRescheduling("twoaddr-reschedule", 79 cl::desc("Coalesce copies by rescheduling (default=true)"), 80 cl::init(true), cl::Hidden); 81 82 // Limit the number of dataflow edges to traverse when evaluating the benefit 83 // of commuting operands. 84 static cl::opt<unsigned> MaxDataFlowEdge( 85 "dataflow-edge-limit", cl::Hidden, cl::init(3), 86 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 87 "the benefit of commuting operands")); 88 89 namespace { 90 91 class TwoAddressInstructionPass : public MachineFunctionPass { 92 MachineFunction *MF; 93 const TargetInstrInfo *TII; 94 const TargetRegisterInfo *TRI; 95 const InstrItineraryData *InstrItins; 96 MachineRegisterInfo *MRI; 97 LiveVariables *LV; 98 LiveIntervals *LIS; 99 AliasAnalysis *AA; 100 CodeGenOpt::Level OptLevel; 101 102 // The current basic block being processed. 103 MachineBasicBlock *MBB; 104 105 // Keep track the distance of a MI from the start of the current basic block. 106 DenseMap<MachineInstr*, unsigned> DistanceMap; 107 108 // Set of already processed instructions in the current block. 109 SmallPtrSet<MachineInstr*, 8> Processed; 110 111 // A map from virtual registers to physical registers which are likely targets 112 // to be coalesced to due to copies from physical registers to virtual 113 // registers. e.g. v1024 = move r0. 114 DenseMap<unsigned, unsigned> SrcRegMap; 115 116 // A map from virtual registers to physical registers which are likely targets 117 // to be coalesced to due to copies to physical registers from virtual 118 // registers. e.g. r1 = move v1024. 119 DenseMap<unsigned, unsigned> DstRegMap; 120 121 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen); 122 123 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 124 125 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 126 MachineInstr *MI, unsigned Dist); 127 128 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 129 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 130 131 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 132 133 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 134 MachineBasicBlock::iterator &nmi, 135 unsigned RegA, unsigned RegB, unsigned Dist); 136 137 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 138 139 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 140 MachineBasicBlock::iterator &nmi, 141 unsigned Reg); 142 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 143 MachineBasicBlock::iterator &nmi, 144 unsigned Reg); 145 146 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 147 MachineBasicBlock::iterator &nmi, 148 unsigned SrcIdx, unsigned DstIdx, 149 unsigned Dist, bool shouldOnlyCommute); 150 151 bool tryInstructionCommute(MachineInstr *MI, 152 unsigned DstOpIdx, 153 unsigned BaseOpIdx, 154 bool BaseOpKilled, 155 unsigned Dist); 156 void scanUses(unsigned DstReg); 157 158 void processCopy(MachineInstr *MI); 159 160 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 161 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 162 163 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 164 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 165 void eliminateRegSequence(MachineBasicBlock::iterator&); 166 167 public: 168 static char ID; // Pass identification, replacement for typeid 169 170 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 171 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 172 } 173 174 void getAnalysisUsage(AnalysisUsage &AU) const override { 175 AU.setPreservesCFG(); 176 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 177 AU.addUsedIfAvailable<LiveVariables>(); 178 AU.addPreserved<LiveVariables>(); 179 AU.addPreserved<SlotIndexes>(); 180 AU.addPreserved<LiveIntervals>(); 181 AU.addPreservedID(MachineLoopInfoID); 182 AU.addPreservedID(MachineDominatorsID); 183 MachineFunctionPass::getAnalysisUsage(AU); 184 } 185 186 /// Pass entry point. 187 bool runOnMachineFunction(MachineFunction&) override; 188 }; 189 190 } // end anonymous namespace 191 192 char TwoAddressInstructionPass::ID = 0; 193 194 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 195 196 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 197 "Two-Address instruction pass", false, false) 198 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 199 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 200 "Two-Address instruction pass", false, false) 201 202 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 203 204 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 205 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB, 206 const MachineRegisterInfo *MRI) { 207 MachineInstr *Ret = nullptr; 208 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 209 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 210 continue; 211 if (!Ret) 212 Ret = &DefMI; 213 else if (Ret != &DefMI) 214 return nullptr; 215 } 216 return Ret; 217 } 218 219 /// Check if there is a reversed copy chain from FromReg to ToReg: 220 /// %Tmp1 = copy %Tmp2; 221 /// %FromReg = copy %Tmp1; 222 /// %ToReg = add %FromReg ... 223 /// %Tmp2 = copy %ToReg; 224 /// MaxLen specifies the maximum length of the copy chain the func 225 /// can walk through. 226 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg, 227 int Maxlen) { 228 unsigned TmpReg = FromReg; 229 for (int i = 0; i < Maxlen; i++) { 230 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 231 if (!Def || !Def->isCopy()) 232 return false; 233 234 TmpReg = Def->getOperand(1).getReg(); 235 236 if (TmpReg == ToReg) 237 return true; 238 } 239 return false; 240 } 241 242 /// Return true if there are no intervening uses between the last instruction 243 /// in the MBB that defines the specified register and the two-address 244 /// instruction which is being processed. It also returns the last def location 245 /// by reference. 246 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 247 unsigned &LastDef) { 248 LastDef = 0; 249 unsigned LastUse = Dist; 250 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 251 MachineInstr *MI = MO.getParent(); 252 if (MI->getParent() != MBB || MI->isDebugValue()) 253 continue; 254 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 255 if (DI == DistanceMap.end()) 256 continue; 257 if (MO.isUse() && DI->second < LastUse) 258 LastUse = DI->second; 259 if (MO.isDef() && DI->second > LastDef) 260 LastDef = DI->second; 261 } 262 263 return !(LastUse > LastDef && LastUse < Dist); 264 } 265 266 /// Return true if the specified MI is a copy instruction or an extract_subreg 267 /// instruction. It also returns the source and destination registers and 268 /// whether they are physical registers by reference. 269 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 270 unsigned &SrcReg, unsigned &DstReg, 271 bool &IsSrcPhys, bool &IsDstPhys) { 272 SrcReg = 0; 273 DstReg = 0; 274 if (MI.isCopy()) { 275 DstReg = MI.getOperand(0).getReg(); 276 SrcReg = MI.getOperand(1).getReg(); 277 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 278 DstReg = MI.getOperand(0).getReg(); 279 SrcReg = MI.getOperand(2).getReg(); 280 } else 281 return false; 282 283 IsSrcPhys = Register::isPhysicalRegister(SrcReg); 284 IsDstPhys = Register::isPhysicalRegister(DstReg); 285 return true; 286 } 287 288 /// Test if the given register value, which is used by the 289 /// given instruction, is killed by the given instruction. 290 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 291 LiveIntervals *LIS) { 292 if (LIS && Register::isVirtualRegister(Reg) && !LIS->isNotInMIMap(*MI)) { 293 // FIXME: Sometimes tryInstructionTransform() will add instructions and 294 // test whether they can be folded before keeping them. In this case it 295 // sets a kill before recursively calling tryInstructionTransform() again. 296 // If there is no interval available, we assume that this instruction is 297 // one of those. A kill flag is manually inserted on the operand so the 298 // check below will handle it. 299 LiveInterval &LI = LIS->getInterval(Reg); 300 // This is to match the kill flag version where undefs don't have kill 301 // flags. 302 if (!LI.hasAtLeastOneValue()) 303 return false; 304 305 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 306 LiveInterval::const_iterator I = LI.find(useIdx); 307 assert(I != LI.end() && "Reg must be live-in to use."); 308 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 309 } 310 311 return MI->killsRegister(Reg); 312 } 313 314 /// Test if the given register value, which is used by the given 315 /// instruction, is killed by the given instruction. This looks through 316 /// coalescable copies to see if the original value is potentially not killed. 317 /// 318 /// For example, in this code: 319 /// 320 /// %reg1034 = copy %reg1024 321 /// %reg1035 = copy killed %reg1025 322 /// %reg1036 = add killed %reg1034, killed %reg1035 323 /// 324 /// %reg1034 is not considered to be killed, since it is copied from a 325 /// register which is not killed. Treating it as not killed lets the 326 /// normal heuristics commute the (two-address) add, which lets 327 /// coalescing eliminate the extra copy. 328 /// 329 /// If allowFalsePositives is true then likely kills are treated as kills even 330 /// if it can't be proven that they are kills. 331 static bool isKilled(MachineInstr &MI, unsigned Reg, 332 const MachineRegisterInfo *MRI, 333 const TargetInstrInfo *TII, 334 LiveIntervals *LIS, 335 bool allowFalsePositives) { 336 MachineInstr *DefMI = &MI; 337 while (true) { 338 // All uses of physical registers are likely to be kills. 339 if (Register::isPhysicalRegister(Reg) && 340 (allowFalsePositives || MRI->hasOneUse(Reg))) 341 return true; 342 if (!isPlainlyKilled(DefMI, Reg, LIS)) 343 return false; 344 if (Register::isPhysicalRegister(Reg)) 345 return true; 346 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 347 // If there are multiple defs, we can't do a simple analysis, so just 348 // go with what the kill flag says. 349 if (std::next(Begin) != MRI->def_end()) 350 return true; 351 DefMI = Begin->getParent(); 352 bool IsSrcPhys, IsDstPhys; 353 unsigned SrcReg, DstReg; 354 // If the def is something other than a copy, then it isn't going to 355 // be coalesced, so follow the kill flag. 356 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 357 return true; 358 Reg = SrcReg; 359 } 360 } 361 362 /// Return true if the specified MI uses the specified register as a two-address 363 /// use. If so, return the destination register by reference. 364 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 365 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 366 const MachineOperand &MO = MI.getOperand(i); 367 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 368 continue; 369 unsigned ti; 370 if (MI.isRegTiedToDefOperand(i, &ti)) { 371 DstReg = MI.getOperand(ti).getReg(); 372 return true; 373 } 374 } 375 return false; 376 } 377 378 /// Given a register, if has a single in-basic block use, return the use 379 /// instruction if it's a copy or a two-address use. 380 static 381 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 382 MachineRegisterInfo *MRI, 383 const TargetInstrInfo *TII, 384 bool &IsCopy, 385 unsigned &DstReg, bool &IsDstPhys) { 386 if (!MRI->hasOneNonDBGUse(Reg)) 387 // None or more than one use. 388 return nullptr; 389 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 390 if (UseMI.getParent() != MBB) 391 return nullptr; 392 unsigned SrcReg; 393 bool IsSrcPhys; 394 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 395 IsCopy = true; 396 return &UseMI; 397 } 398 IsDstPhys = false; 399 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 400 IsDstPhys = Register::isPhysicalRegister(DstReg); 401 return &UseMI; 402 } 403 return nullptr; 404 } 405 406 /// Return the physical register the specified virtual register might be mapped 407 /// to. 408 static unsigned 409 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 410 while (Register::isVirtualRegister(Reg)) { 411 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 412 if (SI == RegMap.end()) 413 return 0; 414 Reg = SI->second; 415 } 416 if (Register::isPhysicalRegister(Reg)) 417 return Reg; 418 return 0; 419 } 420 421 /// Return true if the two registers are equal or aliased. 422 static bool 423 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 424 if (RegA == RegB) 425 return true; 426 if (!RegA || !RegB) 427 return false; 428 return TRI->regsOverlap(RegA, RegB); 429 } 430 431 // Returns true if Reg is equal or aliased to at least one register in Set. 432 static bool regOverlapsSet(const SmallVectorImpl<unsigned> &Set, unsigned Reg, 433 const TargetRegisterInfo *TRI) { 434 for (unsigned R : Set) 435 if (TRI->regsOverlap(R, Reg)) 436 return true; 437 438 return false; 439 } 440 441 /// Return true if it's potentially profitable to commute the two-address 442 /// instruction that's being processed. 443 bool 444 TwoAddressInstructionPass:: 445 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 446 MachineInstr *MI, unsigned Dist) { 447 if (OptLevel == CodeGenOpt::None) 448 return false; 449 450 // Determine if it's profitable to commute this two address instruction. In 451 // general, we want no uses between this instruction and the definition of 452 // the two-address register. 453 // e.g. 454 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 455 // %reg1029 = COPY %reg1028 456 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 457 // insert => %reg1030 = COPY %reg1028 458 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 459 // In this case, it might not be possible to coalesce the second COPY 460 // instruction if the first one is coalesced. So it would be profitable to 461 // commute it: 462 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 463 // %reg1029 = COPY %reg1028 464 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 465 // insert => %reg1030 = COPY %reg1029 466 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 467 468 if (!isPlainlyKilled(MI, regC, LIS)) 469 return false; 470 471 // Ok, we have something like: 472 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 473 // let's see if it's worth commuting it. 474 475 // Look for situations like this: 476 // %reg1024 = MOV r1 477 // %reg1025 = MOV r0 478 // %reg1026 = ADD %reg1024, %reg1025 479 // r0 = MOV %reg1026 480 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 481 unsigned ToRegA = getMappedReg(regA, DstRegMap); 482 if (ToRegA) { 483 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 484 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 485 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 486 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 487 488 // Compute if any of the following are true: 489 // -RegB is not tied to a register and RegC is compatible with RegA. 490 // -RegB is tied to the wrong physical register, but RegC is. 491 // -RegB is tied to the wrong physical register, and RegC isn't tied. 492 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 493 return true; 494 // Don't compute if any of the following are true: 495 // -RegC is not tied to a register and RegB is compatible with RegA. 496 // -RegC is tied to the wrong physical register, but RegB is. 497 // -RegC is tied to the wrong physical register, and RegB isn't tied. 498 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 499 return false; 500 } 501 502 // If there is a use of regC between its last def (could be livein) and this 503 // instruction, then bail. 504 unsigned LastDefC = 0; 505 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 506 return false; 507 508 // If there is a use of regB between its last def (could be livein) and this 509 // instruction, then go ahead and make this transformation. 510 unsigned LastDefB = 0; 511 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 512 return true; 513 514 // Look for situation like this: 515 // %reg101 = MOV %reg100 516 // %reg102 = ... 517 // %reg103 = ADD %reg102, %reg101 518 // ... = %reg103 ... 519 // %reg100 = MOV %reg103 520 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 521 // to eliminate an otherwise unavoidable copy. 522 // FIXME: 523 // We can extend the logic further: If an pair of operands in an insn has 524 // been merged, the insn could be regarded as a virtual copy, and the virtual 525 // copy could also be used to construct a copy chain. 526 // To more generally minimize register copies, ideally the logic of two addr 527 // instruction pass should be integrated with register allocation pass where 528 // interference graph is available. 529 if (isRevCopyChain(regC, regA, MaxDataFlowEdge)) 530 return true; 531 532 if (isRevCopyChain(regB, regA, MaxDataFlowEdge)) 533 return false; 534 535 // Since there are no intervening uses for both registers, then commute 536 // if the def of regC is closer. Its live interval is shorter. 537 return LastDefB && LastDefC && LastDefC > LastDefB; 538 } 539 540 /// Commute a two-address instruction and update the basic block, distance map, 541 /// and live variables if needed. Return true if it is successful. 542 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 543 unsigned DstIdx, 544 unsigned RegBIdx, 545 unsigned RegCIdx, 546 unsigned Dist) { 547 Register RegC = MI->getOperand(RegCIdx).getReg(); 548 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 549 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 550 551 if (NewMI == nullptr) { 552 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 553 return false; 554 } 555 556 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 557 assert(NewMI == MI && 558 "TargetInstrInfo::commuteInstruction() should not return a new " 559 "instruction unless it was requested."); 560 561 // Update source register map. 562 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 563 if (FromRegC) { 564 Register RegA = MI->getOperand(DstIdx).getReg(); 565 SrcRegMap[RegA] = FromRegC; 566 } 567 568 return true; 569 } 570 571 /// Return true if it is profitable to convert the given 2-address instruction 572 /// to a 3-address one. 573 bool 574 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 575 // Look for situations like this: 576 // %reg1024 = MOV r1 577 // %reg1025 = MOV r0 578 // %reg1026 = ADD %reg1024, %reg1025 579 // r2 = MOV %reg1026 580 // Turn ADD into a 3-address instruction to avoid a copy. 581 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 582 if (!FromRegB) 583 return false; 584 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 585 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 586 } 587 588 /// Convert the specified two-address instruction into a three address one. 589 /// Return true if this transformation was successful. 590 bool 591 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 592 MachineBasicBlock::iterator &nmi, 593 unsigned RegA, unsigned RegB, 594 unsigned Dist) { 595 // FIXME: Why does convertToThreeAddress() need an iterator reference? 596 MachineFunction::iterator MFI = MBB->getIterator(); 597 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV); 598 assert(MBB->getIterator() == MFI && 599 "convertToThreeAddress changed iterator reference"); 600 if (!NewMI) 601 return false; 602 603 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 604 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 605 606 if (LIS) 607 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); 608 609 // If the old instruction is debug value tracked, an update is required. 610 if (auto OldInstrNum = mi->peekDebugInstrNum()) { 611 // Sanity check. 612 assert(mi->getNumExplicitDefs() == 1); 613 assert(NewMI->getNumExplicitDefs() == 1); 614 615 // Find the old and new def location. 616 auto OldIt = mi->defs().begin(); 617 auto NewIt = NewMI->defs().begin(); 618 unsigned OldIdx = mi->getOperandNo(OldIt); 619 unsigned NewIdx = NewMI->getOperandNo(NewIt); 620 621 // Record that one def has been replaced by the other. 622 unsigned NewInstrNum = NewMI->getDebugInstrNum(); 623 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx), 624 std::make_pair(NewInstrNum, NewIdx)); 625 } 626 627 MBB->erase(mi); // Nuke the old inst. 628 629 DistanceMap.insert(std::make_pair(NewMI, Dist)); 630 mi = NewMI; 631 nmi = std::next(mi); 632 633 // Update source and destination register maps. 634 SrcRegMap.erase(RegA); 635 DstRegMap.erase(RegB); 636 return true; 637 } 638 639 /// Scan forward recursively for only uses, update maps if the use is a copy or 640 /// a two-address instruction. 641 void 642 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 643 SmallVector<unsigned, 4> VirtRegPairs; 644 bool IsDstPhys; 645 bool IsCopy = false; 646 unsigned NewReg = 0; 647 unsigned Reg = DstReg; 648 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 649 NewReg, IsDstPhys)) { 650 if (IsCopy && !Processed.insert(UseMI).second) 651 break; 652 653 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 654 if (DI != DistanceMap.end()) 655 // Earlier in the same MBB.Reached via a back edge. 656 break; 657 658 if (IsDstPhys) { 659 VirtRegPairs.push_back(NewReg); 660 break; 661 } 662 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 663 if (!isNew) 664 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 665 VirtRegPairs.push_back(NewReg); 666 Reg = NewReg; 667 } 668 669 if (!VirtRegPairs.empty()) { 670 unsigned ToReg = VirtRegPairs.back(); 671 VirtRegPairs.pop_back(); 672 while (!VirtRegPairs.empty()) { 673 unsigned FromReg = VirtRegPairs.back(); 674 VirtRegPairs.pop_back(); 675 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 676 if (!isNew) 677 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 678 ToReg = FromReg; 679 } 680 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 681 if (!isNew) 682 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 683 } 684 } 685 686 /// If the specified instruction is not yet processed, process it if it's a 687 /// copy. For a copy instruction, we find the physical registers the 688 /// source and destination registers might be mapped to. These are kept in 689 /// point-to maps used to determine future optimizations. e.g. 690 /// v1024 = mov r0 691 /// v1025 = mov r1 692 /// v1026 = add v1024, v1025 693 /// r1 = mov r1026 694 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 695 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 696 /// potentially joined with r1 on the output side. It's worthwhile to commute 697 /// 'add' to eliminate a copy. 698 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 699 if (Processed.count(MI)) 700 return; 701 702 bool IsSrcPhys, IsDstPhys; 703 unsigned SrcReg, DstReg; 704 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 705 return; 706 707 if (IsDstPhys && !IsSrcPhys) 708 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 709 else if (!IsDstPhys && IsSrcPhys) { 710 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 711 if (!isNew) 712 assert(SrcRegMap[DstReg] == SrcReg && 713 "Can't map to two src physical registers!"); 714 715 scanUses(DstReg); 716 } 717 718 Processed.insert(MI); 719 } 720 721 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 722 /// consider moving the instruction below the kill instruction in order to 723 /// eliminate the need for the copy. 724 bool TwoAddressInstructionPass:: 725 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 726 MachineBasicBlock::iterator &nmi, 727 unsigned Reg) { 728 // Bail immediately if we don't have LV or LIS available. We use them to find 729 // kills efficiently. 730 if (!LV && !LIS) 731 return false; 732 733 MachineInstr *MI = &*mi; 734 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 735 if (DI == DistanceMap.end()) 736 // Must be created from unfolded load. Don't waste time trying this. 737 return false; 738 739 MachineInstr *KillMI = nullptr; 740 if (LIS) { 741 LiveInterval &LI = LIS->getInterval(Reg); 742 assert(LI.end() != LI.begin() && 743 "Reg should not have empty live interval."); 744 745 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 746 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 747 if (I != LI.end() && I->start < MBBEndIdx) 748 return false; 749 750 --I; 751 KillMI = LIS->getInstructionFromIndex(I->end); 752 } else { 753 KillMI = LV->getVarInfo(Reg).findKill(MBB); 754 } 755 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 756 // Don't mess with copies, they may be coalesced later. 757 return false; 758 759 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 760 KillMI->isBranch() || KillMI->isTerminator()) 761 // Don't move pass calls, etc. 762 return false; 763 764 unsigned DstReg; 765 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 766 return false; 767 768 bool SeenStore = true; 769 if (!MI->isSafeToMove(AA, SeenStore)) 770 return false; 771 772 if (TII->getInstrLatency(InstrItins, *MI) > 1) 773 // FIXME: Needs more sophisticated heuristics. 774 return false; 775 776 SmallVector<unsigned, 2> Uses; 777 SmallVector<unsigned, 2> Kills; 778 SmallVector<unsigned, 2> Defs; 779 for (const MachineOperand &MO : MI->operands()) { 780 if (!MO.isReg()) 781 continue; 782 Register MOReg = MO.getReg(); 783 if (!MOReg) 784 continue; 785 if (MO.isDef()) 786 Defs.push_back(MOReg); 787 else { 788 Uses.push_back(MOReg); 789 if (MOReg != Reg && (MO.isKill() || 790 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 791 Kills.push_back(MOReg); 792 } 793 } 794 795 // Move the copies connected to MI down as well. 796 MachineBasicBlock::iterator Begin = MI; 797 MachineBasicBlock::iterator AfterMI = std::next(Begin); 798 MachineBasicBlock::iterator End = AfterMI; 799 while (End != MBB->end()) { 800 End = skipDebugInstructionsForward(End, MBB->end()); 801 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) 802 Defs.push_back(End->getOperand(0).getReg()); 803 else 804 break; 805 ++End; 806 } 807 808 // Check if the reschedule will not break dependencies. 809 unsigned NumVisited = 0; 810 MachineBasicBlock::iterator KillPos = KillMI; 811 ++KillPos; 812 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 813 // Debug instructions cannot be counted against the limit. 814 if (OtherMI.isDebugInstr()) 815 continue; 816 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 817 return false; 818 ++NumVisited; 819 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 820 OtherMI.isBranch() || OtherMI.isTerminator()) 821 // Don't move pass calls, etc. 822 return false; 823 for (const MachineOperand &MO : OtherMI.operands()) { 824 if (!MO.isReg()) 825 continue; 826 Register MOReg = MO.getReg(); 827 if (!MOReg) 828 continue; 829 if (MO.isDef()) { 830 if (regOverlapsSet(Uses, MOReg, TRI)) 831 // Physical register use would be clobbered. 832 return false; 833 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 834 // May clobber a physical register def. 835 // FIXME: This may be too conservative. It's ok if the instruction 836 // is sunken completely below the use. 837 return false; 838 } else { 839 if (regOverlapsSet(Defs, MOReg, TRI)) 840 return false; 841 bool isKill = 842 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 843 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 844 regOverlapsSet(Kills, MOReg, TRI))) 845 // Don't want to extend other live ranges and update kills. 846 return false; 847 if (MOReg == Reg && !isKill) 848 // We can't schedule across a use of the register in question. 849 return false; 850 // Ensure that if this is register in question, its the kill we expect. 851 assert((MOReg != Reg || &OtherMI == KillMI) && 852 "Found multiple kills of a register in a basic block"); 853 } 854 } 855 } 856 857 // Move debug info as well. 858 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 859 --Begin; 860 861 nmi = End; 862 MachineBasicBlock::iterator InsertPos = KillPos; 863 if (LIS) { 864 // We have to move the copies first so that the MBB is still well-formed 865 // when calling handleMove(). 866 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 867 auto CopyMI = MBBI++; 868 MBB->splice(InsertPos, MBB, CopyMI); 869 LIS->handleMove(*CopyMI); 870 InsertPos = CopyMI; 871 } 872 End = std::next(MachineBasicBlock::iterator(MI)); 873 } 874 875 // Copies following MI may have been moved as well. 876 MBB->splice(InsertPos, MBB, Begin, End); 877 DistanceMap.erase(DI); 878 879 // Update live variables 880 if (LIS) { 881 LIS->handleMove(*MI); 882 } else { 883 LV->removeVirtualRegisterKilled(Reg, *KillMI); 884 LV->addVirtualRegisterKilled(Reg, *MI); 885 } 886 887 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 888 return true; 889 } 890 891 /// Return true if the re-scheduling will put the given instruction too close 892 /// to the defs of its register dependencies. 893 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 894 MachineInstr *MI) { 895 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 896 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 897 continue; 898 if (&DefMI == MI) 899 return true; // MI is defining something KillMI uses 900 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 901 if (DDI == DistanceMap.end()) 902 return true; // Below MI 903 unsigned DefDist = DDI->second; 904 assert(Dist > DefDist && "Visited def already?"); 905 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 906 return true; 907 } 908 return false; 909 } 910 911 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 912 /// consider moving the kill instruction above the current two-address 913 /// instruction in order to eliminate the need for the copy. 914 bool TwoAddressInstructionPass:: 915 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 916 MachineBasicBlock::iterator &nmi, 917 unsigned Reg) { 918 // Bail immediately if we don't have LV or LIS available. We use them to find 919 // kills efficiently. 920 if (!LV && !LIS) 921 return false; 922 923 MachineInstr *MI = &*mi; 924 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 925 if (DI == DistanceMap.end()) 926 // Must be created from unfolded load. Don't waste time trying this. 927 return false; 928 929 MachineInstr *KillMI = nullptr; 930 if (LIS) { 931 LiveInterval &LI = LIS->getInterval(Reg); 932 assert(LI.end() != LI.begin() && 933 "Reg should not have empty live interval."); 934 935 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 936 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 937 if (I != LI.end() && I->start < MBBEndIdx) 938 return false; 939 940 --I; 941 KillMI = LIS->getInstructionFromIndex(I->end); 942 } else { 943 KillMI = LV->getVarInfo(Reg).findKill(MBB); 944 } 945 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 946 // Don't mess with copies, they may be coalesced later. 947 return false; 948 949 unsigned DstReg; 950 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 951 return false; 952 953 bool SeenStore = true; 954 if (!KillMI->isSafeToMove(AA, SeenStore)) 955 return false; 956 957 SmallVector<unsigned, 2> Uses; 958 SmallVector<unsigned, 2> Kills; 959 SmallVector<unsigned, 2> Defs; 960 SmallVector<unsigned, 2> LiveDefs; 961 for (const MachineOperand &MO : KillMI->operands()) { 962 if (!MO.isReg()) 963 continue; 964 Register MOReg = MO.getReg(); 965 if (MO.isUse()) { 966 if (!MOReg) 967 continue; 968 if (isDefTooClose(MOReg, DI->second, MI)) 969 return false; 970 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 971 if (MOReg == Reg && !isKill) 972 return false; 973 Uses.push_back(MOReg); 974 if (isKill && MOReg != Reg) 975 Kills.push_back(MOReg); 976 } else if (Register::isPhysicalRegister(MOReg)) { 977 Defs.push_back(MOReg); 978 if (!MO.isDead()) 979 LiveDefs.push_back(MOReg); 980 } 981 } 982 983 // Check if the reschedule will not break depedencies. 984 unsigned NumVisited = 0; 985 for (MachineInstr &OtherMI : 986 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 987 // Debug instructions cannot be counted against the limit. 988 if (OtherMI.isDebugInstr()) 989 continue; 990 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 991 return false; 992 ++NumVisited; 993 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 994 OtherMI.isBranch() || OtherMI.isTerminator()) 995 // Don't move pass calls, etc. 996 return false; 997 SmallVector<unsigned, 2> OtherDefs; 998 for (const MachineOperand &MO : OtherMI.operands()) { 999 if (!MO.isReg()) 1000 continue; 1001 Register MOReg = MO.getReg(); 1002 if (!MOReg) 1003 continue; 1004 if (MO.isUse()) { 1005 if (regOverlapsSet(Defs, MOReg, TRI)) 1006 // Moving KillMI can clobber the physical register if the def has 1007 // not been seen. 1008 return false; 1009 if (regOverlapsSet(Kills, MOReg, TRI)) 1010 // Don't want to extend other live ranges and update kills. 1011 return false; 1012 if (&OtherMI != MI && MOReg == Reg && 1013 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1014 // We can't schedule across a use of the register in question. 1015 return false; 1016 } else { 1017 OtherDefs.push_back(MOReg); 1018 } 1019 } 1020 1021 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1022 unsigned MOReg = OtherDefs[i]; 1023 if (regOverlapsSet(Uses, MOReg, TRI)) 1024 return false; 1025 if (Register::isPhysicalRegister(MOReg) && 1026 regOverlapsSet(LiveDefs, MOReg, TRI)) 1027 return false; 1028 // Physical register def is seen. 1029 Defs.erase(std::remove(Defs.begin(), Defs.end(), MOReg), Defs.end()); 1030 } 1031 } 1032 1033 // Move the old kill above MI, don't forget to move debug info as well. 1034 MachineBasicBlock::iterator InsertPos = mi; 1035 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1036 --InsertPos; 1037 MachineBasicBlock::iterator From = KillMI; 1038 MachineBasicBlock::iterator To = std::next(From); 1039 while (std::prev(From)->isDebugInstr()) 1040 --From; 1041 MBB->splice(InsertPos, MBB, From, To); 1042 1043 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1044 DistanceMap.erase(DI); 1045 1046 // Update live variables 1047 if (LIS) { 1048 LIS->handleMove(*KillMI); 1049 } else { 1050 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1051 LV->addVirtualRegisterKilled(Reg, *MI); 1052 } 1053 1054 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1055 return true; 1056 } 1057 1058 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1059 /// given machine instruction to improve opportunities for coalescing and 1060 /// elimination of a register to register copy. 1061 /// 1062 /// 'DstOpIdx' specifies the index of MI def operand. 1063 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1064 /// operand is killed by the given instruction. 1065 /// The 'Dist' arguments provides the distance of MI from the start of the 1066 /// current basic block and it is used to determine if it is profitable 1067 /// to commute operands in the instruction. 1068 /// 1069 /// Returns true if the transformation happened. Otherwise, returns false. 1070 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1071 unsigned DstOpIdx, 1072 unsigned BaseOpIdx, 1073 bool BaseOpKilled, 1074 unsigned Dist) { 1075 if (!MI->isCommutable()) 1076 return false; 1077 1078 bool MadeChange = false; 1079 Register DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1080 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1081 unsigned OpsNum = MI->getDesc().getNumOperands(); 1082 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1083 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1084 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1085 // and OtherOpIdx are commutable, it does not really search for 1086 // other commutable operands and does not change the values of passed 1087 // variables. 1088 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1089 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1090 continue; 1091 1092 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1093 bool AggressiveCommute = false; 1094 1095 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1096 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1097 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1098 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1099 1100 if (!DoCommute && 1101 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1102 DoCommute = true; 1103 AggressiveCommute = true; 1104 } 1105 1106 // If it's profitable to commute, try to do so. 1107 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1108 Dist)) { 1109 MadeChange = true; 1110 ++NumCommuted; 1111 if (AggressiveCommute) 1112 ++NumAggrCommuted; 1113 1114 // There might be more than two commutable operands, update BaseOp and 1115 // continue scanning. 1116 // FIXME: This assumes that the new instruction's operands are in the 1117 // same positions and were simply swapped. 1118 BaseOpReg = OtherOpReg; 1119 BaseOpKilled = OtherOpKilled; 1120 // Resamples OpsNum in case the number of operands was reduced. This 1121 // happens with X86. 1122 OpsNum = MI->getDesc().getNumOperands(); 1123 } 1124 } 1125 return MadeChange; 1126 } 1127 1128 /// For the case where an instruction has a single pair of tied register 1129 /// operands, attempt some transformations that may either eliminate the tied 1130 /// operands or improve the opportunities for coalescing away the register copy. 1131 /// Returns true if no copy needs to be inserted to untie mi's operands 1132 /// (either because they were untied, or because mi was rescheduled, and will 1133 /// be visited again later). If the shouldOnlyCommute flag is true, only 1134 /// instruction commutation is attempted. 1135 bool TwoAddressInstructionPass:: 1136 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1137 MachineBasicBlock::iterator &nmi, 1138 unsigned SrcIdx, unsigned DstIdx, 1139 unsigned Dist, bool shouldOnlyCommute) { 1140 if (OptLevel == CodeGenOpt::None) 1141 return false; 1142 1143 MachineInstr &MI = *mi; 1144 Register regA = MI.getOperand(DstIdx).getReg(); 1145 Register regB = MI.getOperand(SrcIdx).getReg(); 1146 1147 assert(Register::isVirtualRegister(regB) && 1148 "cannot make instruction into two-address form"); 1149 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1150 1151 if (Register::isVirtualRegister(regA)) 1152 scanUses(regA); 1153 1154 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1155 1156 // If the instruction is convertible to 3 Addr, instead 1157 // of returning try 3 Addr transformation aggressively and 1158 // use this variable to check later. Because it might be better. 1159 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1160 // instead of the following code. 1161 // addl %esi, %edi 1162 // movl %edi, %eax 1163 // ret 1164 if (Commuted && !MI.isConvertibleTo3Addr()) 1165 return false; 1166 1167 if (shouldOnlyCommute) 1168 return false; 1169 1170 // If there is one more use of regB later in the same MBB, consider 1171 // re-schedule this MI below it. 1172 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1173 ++NumReSchedDowns; 1174 return true; 1175 } 1176 1177 // If we commuted, regB may have changed so we should re-sample it to avoid 1178 // confusing the three address conversion below. 1179 if (Commuted) { 1180 regB = MI.getOperand(SrcIdx).getReg(); 1181 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1182 } 1183 1184 if (MI.isConvertibleTo3Addr()) { 1185 // This instruction is potentially convertible to a true 1186 // three-address instruction. Check if it is profitable. 1187 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1188 // Try to convert it. 1189 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1190 ++NumConvertedTo3Addr; 1191 return true; // Done with this instruction. 1192 } 1193 } 1194 } 1195 1196 // Return if it is commuted but 3 addr conversion is failed. 1197 if (Commuted) 1198 return false; 1199 1200 // If there is one more use of regB later in the same MBB, consider 1201 // re-schedule it before this MI if it's legal. 1202 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1203 ++NumReSchedUps; 1204 return true; 1205 } 1206 1207 // If this is an instruction with a load folded into it, try unfolding 1208 // the load, e.g. avoid this: 1209 // movq %rdx, %rcx 1210 // addq (%rax), %rcx 1211 // in favor of this: 1212 // movq (%rax), %rcx 1213 // addq %rdx, %rcx 1214 // because it's preferable to schedule a load than a register copy. 1215 if (MI.mayLoad() && !regBKilled) { 1216 // Determine if a load can be unfolded. 1217 unsigned LoadRegIndex; 1218 unsigned NewOpc = 1219 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1220 /*UnfoldLoad=*/true, 1221 /*UnfoldStore=*/false, 1222 &LoadRegIndex); 1223 if (NewOpc != 0) { 1224 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1225 if (UnfoldMCID.getNumDefs() == 1) { 1226 // Unfold the load. 1227 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1228 const TargetRegisterClass *RC = 1229 TRI->getAllocatableClass( 1230 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1231 Register Reg = MRI->createVirtualRegister(RC); 1232 SmallVector<MachineInstr *, 2> NewMIs; 1233 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1234 /*UnfoldLoad=*/true, 1235 /*UnfoldStore=*/false, NewMIs)) { 1236 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1237 return false; 1238 } 1239 assert(NewMIs.size() == 2 && 1240 "Unfolded a load into multiple instructions!"); 1241 // The load was previously folded, so this is the only use. 1242 NewMIs[1]->addRegisterKilled(Reg, TRI); 1243 1244 // Tentatively insert the instructions into the block so that they 1245 // look "normal" to the transformation logic. 1246 MBB->insert(mi, NewMIs[0]); 1247 MBB->insert(mi, NewMIs[1]); 1248 1249 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1250 << "2addr: NEW INST: " << *NewMIs[1]); 1251 1252 // Transform the instruction, now that it no longer has a load. 1253 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1254 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1255 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1256 bool TransformResult = 1257 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1258 (void)TransformResult; 1259 assert(!TransformResult && 1260 "tryInstructionTransform() should return false."); 1261 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1262 // Success, or at least we made an improvement. Keep the unfolded 1263 // instructions and discard the original. 1264 if (LV) { 1265 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1266 MachineOperand &MO = MI.getOperand(i); 1267 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) { 1268 if (MO.isUse()) { 1269 if (MO.isKill()) { 1270 if (NewMIs[0]->killsRegister(MO.getReg())) 1271 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1272 else { 1273 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1274 "Kill missing after load unfold!"); 1275 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1276 } 1277 } 1278 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1279 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1280 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1281 else { 1282 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1283 "Dead flag missing after load unfold!"); 1284 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1285 } 1286 } 1287 } 1288 } 1289 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1290 } 1291 1292 SmallVector<Register, 4> OrigRegs; 1293 if (LIS) { 1294 for (const MachineOperand &MO : MI.operands()) { 1295 if (MO.isReg()) 1296 OrigRegs.push_back(MO.getReg()); 1297 } 1298 } 1299 1300 MI.eraseFromParent(); 1301 1302 // Update LiveIntervals. 1303 if (LIS) { 1304 MachineBasicBlock::iterator Begin(NewMIs[0]); 1305 MachineBasicBlock::iterator End(NewMIs[1]); 1306 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1307 } 1308 1309 mi = NewMIs[1]; 1310 } else { 1311 // Transforming didn't eliminate the tie and didn't lead to an 1312 // improvement. Clean up the unfolded instructions and keep the 1313 // original. 1314 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1315 NewMIs[0]->eraseFromParent(); 1316 NewMIs[1]->eraseFromParent(); 1317 } 1318 } 1319 } 1320 } 1321 1322 return false; 1323 } 1324 1325 // Collect tied operands of MI that need to be handled. 1326 // Rewrite trivial cases immediately. 1327 // Return true if any tied operands where found, including the trivial ones. 1328 bool TwoAddressInstructionPass:: 1329 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1330 const MCInstrDesc &MCID = MI->getDesc(); 1331 bool AnyOps = false; 1332 unsigned NumOps = MI->getNumOperands(); 1333 1334 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1335 unsigned DstIdx = 0; 1336 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1337 continue; 1338 AnyOps = true; 1339 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1340 MachineOperand &DstMO = MI->getOperand(DstIdx); 1341 Register SrcReg = SrcMO.getReg(); 1342 Register DstReg = DstMO.getReg(); 1343 // Tied constraint already satisfied? 1344 if (SrcReg == DstReg) 1345 continue; 1346 1347 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1348 1349 // Deal with undef uses immediately - simply rewrite the src operand. 1350 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1351 // Constrain the DstReg register class if required. 1352 if (Register::isVirtualRegister(DstReg)) 1353 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1354 TRI, *MF)) 1355 MRI->constrainRegClass(DstReg, RC); 1356 SrcMO.setReg(DstReg); 1357 SrcMO.setSubReg(0); 1358 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1359 continue; 1360 } 1361 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1362 } 1363 return AnyOps; 1364 } 1365 1366 // Process a list of tied MI operands that all use the same source register. 1367 // The tied pairs are of the form (SrcIdx, DstIdx). 1368 void 1369 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1370 TiedPairList &TiedPairs, 1371 unsigned &Dist) { 1372 bool IsEarlyClobber = false; 1373 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1374 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1375 IsEarlyClobber |= DstMO.isEarlyClobber(); 1376 } 1377 1378 bool RemovedKillFlag = false; 1379 bool AllUsesCopied = true; 1380 unsigned LastCopiedReg = 0; 1381 SlotIndex LastCopyIdx; 1382 unsigned RegB = 0; 1383 unsigned SubRegB = 0; 1384 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1385 unsigned SrcIdx = TiedPairs[tpi].first; 1386 unsigned DstIdx = TiedPairs[tpi].second; 1387 1388 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1389 Register RegA = DstMO.getReg(); 1390 1391 // Grab RegB from the instruction because it may have changed if the 1392 // instruction was commuted. 1393 RegB = MI->getOperand(SrcIdx).getReg(); 1394 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1395 1396 if (RegA == RegB) { 1397 // The register is tied to multiple destinations (or else we would 1398 // not have continued this far), but this use of the register 1399 // already matches the tied destination. Leave it. 1400 AllUsesCopied = false; 1401 continue; 1402 } 1403 LastCopiedReg = RegA; 1404 1405 assert(Register::isVirtualRegister(RegB) && 1406 "cannot make instruction into two-address form"); 1407 1408 #ifndef NDEBUG 1409 // First, verify that we don't have a use of "a" in the instruction 1410 // (a = b + a for example) because our transformation will not 1411 // work. This should never occur because we are in SSA form. 1412 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1413 assert(i == DstIdx || 1414 !MI->getOperand(i).isReg() || 1415 MI->getOperand(i).getReg() != RegA); 1416 #endif 1417 1418 // Emit a copy. 1419 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1420 TII->get(TargetOpcode::COPY), RegA); 1421 // If this operand is folding a truncation, the truncation now moves to the 1422 // copy so that the register classes remain valid for the operands. 1423 MIB.addReg(RegB, 0, SubRegB); 1424 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1425 if (SubRegB) { 1426 if (Register::isVirtualRegister(RegA)) { 1427 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1428 SubRegB) && 1429 "tied subregister must be a truncation"); 1430 // The superreg class will not be used to constrain the subreg class. 1431 RC = nullptr; 1432 } else { 1433 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1434 && "tied subregister must be a truncation"); 1435 } 1436 } 1437 1438 // Update DistanceMap. 1439 MachineBasicBlock::iterator PrevMI = MI; 1440 --PrevMI; 1441 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1442 DistanceMap[MI] = ++Dist; 1443 1444 if (LIS) { 1445 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1446 1447 if (Register::isVirtualRegister(RegA)) { 1448 LiveInterval &LI = LIS->getInterval(RegA); 1449 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1450 SlotIndex endIdx = 1451 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1452 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1453 } 1454 } 1455 1456 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1457 1458 MachineOperand &MO = MI->getOperand(SrcIdx); 1459 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1460 "inconsistent operand info for 2-reg pass"); 1461 if (MO.isKill()) { 1462 MO.setIsKill(false); 1463 RemovedKillFlag = true; 1464 } 1465 1466 // Make sure regA is a legal regclass for the SrcIdx operand. 1467 if (Register::isVirtualRegister(RegA) && Register::isVirtualRegister(RegB)) 1468 MRI->constrainRegClass(RegA, RC); 1469 MO.setReg(RegA); 1470 // The getMatchingSuper asserts guarantee that the register class projected 1471 // by SubRegB is compatible with RegA with no subregister. So regardless of 1472 // whether the dest oper writes a subreg, the source oper should not. 1473 MO.setSubReg(0); 1474 1475 // Propagate SrcRegMap. 1476 SrcRegMap[RegA] = RegB; 1477 } 1478 1479 if (AllUsesCopied) { 1480 bool ReplacedAllUntiedUses = true; 1481 if (!IsEarlyClobber) { 1482 // Replace other (un-tied) uses of regB with LastCopiedReg. 1483 for (MachineOperand &MO : MI->operands()) { 1484 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1485 if (MO.getSubReg() == SubRegB) { 1486 if (MO.isKill()) { 1487 MO.setIsKill(false); 1488 RemovedKillFlag = true; 1489 } 1490 MO.setReg(LastCopiedReg); 1491 MO.setSubReg(0); 1492 } else { 1493 ReplacedAllUntiedUses = false; 1494 } 1495 } 1496 } 1497 } 1498 1499 // Update live variables for regB. 1500 if (RemovedKillFlag && ReplacedAllUntiedUses && 1501 LV && LV->getVarInfo(RegB).removeKill(*MI)) { 1502 MachineBasicBlock::iterator PrevMI = MI; 1503 --PrevMI; 1504 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1505 } 1506 1507 // Update LiveIntervals. 1508 if (LIS) { 1509 LiveInterval &LI = LIS->getInterval(RegB); 1510 SlotIndex MIIdx = LIS->getInstructionIndex(*MI); 1511 LiveInterval::const_iterator I = LI.find(MIIdx); 1512 assert(I != LI.end() && "RegB must be live-in to use."); 1513 1514 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1515 if (I->end == UseIdx) 1516 LI.removeSegment(LastCopyIdx, UseIdx); 1517 } 1518 } else if (RemovedKillFlag) { 1519 // Some tied uses of regB matched their destination registers, so 1520 // regB is still used in this instruction, but a kill flag was 1521 // removed from a different tied use of regB, so now we need to add 1522 // a kill flag to one of the remaining uses of regB. 1523 for (MachineOperand &MO : MI->operands()) { 1524 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1525 MO.setIsKill(true); 1526 break; 1527 } 1528 } 1529 } 1530 } 1531 1532 /// Reduce two-address instructions to two operands. 1533 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1534 MF = &Func; 1535 const TargetMachine &TM = MF->getTarget(); 1536 MRI = &MF->getRegInfo(); 1537 TII = MF->getSubtarget().getInstrInfo(); 1538 TRI = MF->getSubtarget().getRegisterInfo(); 1539 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1540 LV = getAnalysisIfAvailable<LiveVariables>(); 1541 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1542 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1543 AA = &AAPass->getAAResults(); 1544 else 1545 AA = nullptr; 1546 OptLevel = TM.getOptLevel(); 1547 // Disable optimizations if requested. We cannot skip the whole pass as some 1548 // fixups are necessary for correctness. 1549 if (skipFunction(Func.getFunction())) 1550 OptLevel = CodeGenOpt::None; 1551 1552 bool MadeChange = false; 1553 1554 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1555 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1556 1557 // This pass takes the function out of SSA form. 1558 MRI->leaveSSA(); 1559 1560 // This pass will rewrite the tied-def to meet the RegConstraint. 1561 MF->getProperties() 1562 .set(MachineFunctionProperties::Property::TiedOpsRewritten); 1563 1564 TiedOperandMap TiedOperands; 1565 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1566 MBBI != MBBE; ++MBBI) { 1567 MBB = &*MBBI; 1568 unsigned Dist = 0; 1569 DistanceMap.clear(); 1570 SrcRegMap.clear(); 1571 DstRegMap.clear(); 1572 Processed.clear(); 1573 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1574 mi != me; ) { 1575 MachineBasicBlock::iterator nmi = std::next(mi); 1576 // Skip debug instructions. 1577 if (mi->isDebugInstr()) { 1578 mi = nmi; 1579 continue; 1580 } 1581 1582 // Expand REG_SEQUENCE instructions. This will position mi at the first 1583 // expanded instruction. 1584 if (mi->isRegSequence()) 1585 eliminateRegSequence(mi); 1586 1587 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1588 1589 processCopy(&*mi); 1590 1591 // First scan through all the tied register uses in this instruction 1592 // and record a list of pairs of tied operands for each register. 1593 if (!collectTiedOperands(&*mi, TiedOperands)) { 1594 mi = nmi; 1595 continue; 1596 } 1597 1598 ++NumTwoAddressInstrs; 1599 MadeChange = true; 1600 LLVM_DEBUG(dbgs() << '\t' << *mi); 1601 1602 // If the instruction has a single pair of tied operands, try some 1603 // transformations that may either eliminate the tied operands or 1604 // improve the opportunities for coalescing away the register copy. 1605 if (TiedOperands.size() == 1) { 1606 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1607 = TiedOperands.begin()->second; 1608 if (TiedPairs.size() == 1) { 1609 unsigned SrcIdx = TiedPairs[0].first; 1610 unsigned DstIdx = TiedPairs[0].second; 1611 Register SrcReg = mi->getOperand(SrcIdx).getReg(); 1612 Register DstReg = mi->getOperand(DstIdx).getReg(); 1613 if (SrcReg != DstReg && 1614 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1615 // The tied operands have been eliminated or shifted further down 1616 // the block to ease elimination. Continue processing with 'nmi'. 1617 TiedOperands.clear(); 1618 mi = nmi; 1619 continue; 1620 } 1621 } 1622 } 1623 1624 // Now iterate over the information collected above. 1625 for (auto &TO : TiedOperands) { 1626 processTiedPairs(&*mi, TO.second, Dist); 1627 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1628 } 1629 1630 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1631 if (mi->isInsertSubreg()) { 1632 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1633 // To %reg:subidx = COPY %subreg 1634 unsigned SubIdx = mi->getOperand(3).getImm(); 1635 mi->RemoveOperand(3); 1636 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1637 mi->getOperand(0).setSubReg(SubIdx); 1638 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1639 mi->RemoveOperand(1); 1640 mi->setDesc(TII->get(TargetOpcode::COPY)); 1641 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1642 } 1643 1644 // Clear TiedOperands here instead of at the top of the loop 1645 // since most instructions do not have tied operands. 1646 TiedOperands.clear(); 1647 mi = nmi; 1648 } 1649 } 1650 1651 if (LIS) 1652 MF->verify(this, "After two-address instruction pass"); 1653 1654 return MadeChange; 1655 } 1656 1657 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1658 /// 1659 /// The instruction is turned into a sequence of sub-register copies: 1660 /// 1661 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1662 /// 1663 /// Becomes: 1664 /// 1665 /// undef %dst:ssub0 = COPY %v1 1666 /// %dst:ssub1 = COPY %v2 1667 void TwoAddressInstructionPass:: 1668 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1669 MachineInstr &MI = *MBBI; 1670 Register DstReg = MI.getOperand(0).getReg(); 1671 if (MI.getOperand(0).getSubReg() || Register::isPhysicalRegister(DstReg) || 1672 !(MI.getNumOperands() & 1)) { 1673 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1674 llvm_unreachable(nullptr); 1675 } 1676 1677 SmallVector<Register, 4> OrigRegs; 1678 if (LIS) { 1679 OrigRegs.push_back(MI.getOperand(0).getReg()); 1680 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1681 OrigRegs.push_back(MI.getOperand(i).getReg()); 1682 } 1683 1684 bool DefEmitted = false; 1685 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1686 MachineOperand &UseMO = MI.getOperand(i); 1687 Register SrcReg = UseMO.getReg(); 1688 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1689 // Nothing needs to be inserted for undef operands. 1690 if (UseMO.isUndef()) 1691 continue; 1692 1693 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1694 // might insert a COPY that uses SrcReg after is was killed. 1695 bool isKill = UseMO.isKill(); 1696 if (isKill) 1697 for (unsigned j = i + 2; j < e; j += 2) 1698 if (MI.getOperand(j).getReg() == SrcReg) { 1699 MI.getOperand(j).setIsKill(); 1700 UseMO.setIsKill(false); 1701 isKill = false; 1702 break; 1703 } 1704 1705 // Insert the sub-register copy. 1706 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1707 TII->get(TargetOpcode::COPY)) 1708 .addReg(DstReg, RegState::Define, SubIdx) 1709 .add(UseMO); 1710 1711 // The first def needs an undef flag because there is no live register 1712 // before it. 1713 if (!DefEmitted) { 1714 CopyMI->getOperand(0).setIsUndef(true); 1715 // Return an iterator pointing to the first inserted instr. 1716 MBBI = CopyMI; 1717 } 1718 DefEmitted = true; 1719 1720 // Update LiveVariables' kill info. 1721 if (LV && isKill && !Register::isPhysicalRegister(SrcReg)) 1722 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1723 1724 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1725 } 1726 1727 MachineBasicBlock::iterator EndMBBI = 1728 std::next(MachineBasicBlock::iterator(MI)); 1729 1730 if (!DefEmitted) { 1731 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1732 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1733 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1734 MI.RemoveOperand(j); 1735 } else { 1736 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1737 MI.eraseFromParent(); 1738 } 1739 1740 // Udpate LiveIntervals. 1741 if (LIS) 1742 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1743 } 1744