1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/ADT/BitVector.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallSet.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/MC/MCInstrItineraries.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetMachine.h" 51 #include "llvm/Target/TargetRegisterInfo.h" 52 #include "llvm/Target/TargetSubtargetInfo.h" 53 using namespace llvm; 54 55 #define DEBUG_TYPE "twoaddrinstr" 56 57 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 58 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 59 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 60 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 61 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 62 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 63 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 64 65 // Temporary flag to disable rescheduling. 66 static cl::opt<bool> 67 EnableRescheduling("twoaddr-reschedule", 68 cl::desc("Coalesce copies by rescheduling (default=true)"), 69 cl::init(true), cl::Hidden); 70 71 namespace { 72 class TwoAddressInstructionPass : public MachineFunctionPass { 73 MachineFunction *MF; 74 const TargetInstrInfo *TII; 75 const TargetRegisterInfo *TRI; 76 const InstrItineraryData *InstrItins; 77 MachineRegisterInfo *MRI; 78 LiveVariables *LV; 79 LiveIntervals *LIS; 80 AliasAnalysis *AA; 81 CodeGenOpt::Level OptLevel; 82 83 // The current basic block being processed. 84 MachineBasicBlock *MBB; 85 86 // DistanceMap - Keep track the distance of a MI from the start of the 87 // current basic block. 88 DenseMap<MachineInstr*, unsigned> DistanceMap; 89 90 // Set of already processed instructions in the current block. 91 SmallPtrSet<MachineInstr*, 8> Processed; 92 93 // SrcRegMap - A map from virtual registers to physical registers which are 94 // likely targets to be coalesced to due to copies from physical registers to 95 // virtual registers. e.g. v1024 = move r0. 96 DenseMap<unsigned, unsigned> SrcRegMap; 97 98 // DstRegMap - A map from virtual registers to physical registers which are 99 // likely targets to be coalesced to due to copies to physical registers from 100 // virtual registers. e.g. r1 = move v1024. 101 DenseMap<unsigned, unsigned> DstRegMap; 102 103 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, 104 MachineBasicBlock::iterator OldPos); 105 106 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen); 107 108 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 109 110 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 111 MachineInstr *MI, unsigned Dist); 112 113 bool commuteInstruction(MachineInstr *MI, 114 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 115 116 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 117 118 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 119 MachineBasicBlock::iterator &nmi, 120 unsigned RegA, unsigned RegB, unsigned Dist); 121 122 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 123 124 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 125 MachineBasicBlock::iterator &nmi, 126 unsigned Reg); 127 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 128 MachineBasicBlock::iterator &nmi, 129 unsigned Reg); 130 131 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 132 MachineBasicBlock::iterator &nmi, 133 unsigned SrcIdx, unsigned DstIdx, 134 unsigned Dist, bool shouldOnlyCommute); 135 136 bool tryInstructionCommute(MachineInstr *MI, 137 unsigned DstOpIdx, 138 unsigned BaseOpIdx, 139 bool BaseOpKilled, 140 unsigned Dist); 141 void scanUses(unsigned DstReg); 142 143 void processCopy(MachineInstr *MI); 144 145 typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList; 146 typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap; 147 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 148 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 149 void eliminateRegSequence(MachineBasicBlock::iterator&); 150 151 public: 152 static char ID; // Pass identification, replacement for typeid 153 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 154 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 155 } 156 157 void getAnalysisUsage(AnalysisUsage &AU) const override { 158 AU.setPreservesCFG(); 159 AU.addRequired<AAResultsWrapperPass>(); 160 AU.addPreserved<LiveVariables>(); 161 AU.addPreserved<SlotIndexes>(); 162 AU.addPreserved<LiveIntervals>(); 163 AU.addPreservedID(MachineLoopInfoID); 164 AU.addPreservedID(MachineDominatorsID); 165 MachineFunctionPass::getAnalysisUsage(AU); 166 } 167 168 /// runOnMachineFunction - Pass entry point. 169 bool runOnMachineFunction(MachineFunction&) override; 170 }; 171 } // end anonymous namespace 172 173 char TwoAddressInstructionPass::ID = 0; 174 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction", 175 "Two-Address instruction pass", false, false) 176 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 177 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction", 178 "Two-Address instruction pass", false, false) 179 180 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 181 182 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 183 184 /// sink3AddrInstruction - A two-address instruction has been converted to a 185 /// three-address instruction to avoid clobbering a register. Try to sink it 186 /// past the instruction that would kill the above mentioned register to reduce 187 /// register pressure. 188 bool TwoAddressInstructionPass:: 189 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, 190 MachineBasicBlock::iterator OldPos) { 191 // FIXME: Shouldn't we be trying to do this before we three-addressify the 192 // instruction? After this transformation is done, we no longer need 193 // the instruction to be in three-address form. 194 195 // Check if it's safe to move this instruction. 196 bool SeenStore = true; // Be conservative. 197 if (!MI->isSafeToMove(AA, SeenStore)) 198 return false; 199 200 unsigned DefReg = 0; 201 SmallSet<unsigned, 4> UseRegs; 202 203 for (const MachineOperand &MO : MI->operands()) { 204 if (!MO.isReg()) 205 continue; 206 unsigned MOReg = MO.getReg(); 207 if (!MOReg) 208 continue; 209 if (MO.isUse() && MOReg != SavedReg) 210 UseRegs.insert(MO.getReg()); 211 if (!MO.isDef()) 212 continue; 213 if (MO.isImplicit()) 214 // Don't try to move it if it implicitly defines a register. 215 return false; 216 if (DefReg) 217 // For now, don't move any instructions that define multiple registers. 218 return false; 219 DefReg = MO.getReg(); 220 } 221 222 // Find the instruction that kills SavedReg. 223 MachineInstr *KillMI = nullptr; 224 if (LIS) { 225 LiveInterval &LI = LIS->getInterval(SavedReg); 226 assert(LI.end() != LI.begin() && 227 "Reg should not have empty live interval."); 228 229 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 230 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 231 if (I != LI.end() && I->start < MBBEndIdx) 232 return false; 233 234 --I; 235 KillMI = LIS->getInstructionFromIndex(I->end); 236 } 237 if (!KillMI) { 238 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) { 239 if (!UseMO.isKill()) 240 continue; 241 KillMI = UseMO.getParent(); 242 break; 243 } 244 } 245 246 // If we find the instruction that kills SavedReg, and it is in an 247 // appropriate location, we can try to sink the current instruction 248 // past it. 249 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 250 KillMI == OldPos || KillMI->isTerminator()) 251 return false; 252 253 // If any of the definitions are used by another instruction between the 254 // position and the kill use, then it's not safe to sink it. 255 // 256 // FIXME: This can be sped up if there is an easy way to query whether an 257 // instruction is before or after another instruction. Then we can use 258 // MachineRegisterInfo def / use instead. 259 MachineOperand *KillMO = nullptr; 260 MachineBasicBlock::iterator KillPos = KillMI; 261 ++KillPos; 262 263 unsigned NumVisited = 0; 264 for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) { 265 MachineInstr *OtherMI = I; 266 // DBG_VALUE cannot be counted against the limit. 267 if (OtherMI->isDebugValue()) 268 continue; 269 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 270 return false; 271 ++NumVisited; 272 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 273 MachineOperand &MO = OtherMI->getOperand(i); 274 if (!MO.isReg()) 275 continue; 276 unsigned MOReg = MO.getReg(); 277 if (!MOReg) 278 continue; 279 if (DefReg == MOReg) 280 return false; 281 282 if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) { 283 if (OtherMI == KillMI && MOReg == SavedReg) 284 // Save the operand that kills the register. We want to unset the kill 285 // marker if we can sink MI past it. 286 KillMO = &MO; 287 else if (UseRegs.count(MOReg)) 288 // One of the uses is killed before the destination. 289 return false; 290 } 291 } 292 } 293 assert(KillMO && "Didn't find kill"); 294 295 if (!LIS) { 296 // Update kill and LV information. 297 KillMO->setIsKill(false); 298 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 299 KillMO->setIsKill(true); 300 301 if (LV) 302 LV->replaceKillInstruction(SavedReg, KillMI, MI); 303 } 304 305 // Move instruction to its destination. 306 MBB->remove(MI); 307 MBB->insert(KillPos, MI); 308 309 if (LIS) 310 LIS->handleMove(MI); 311 312 ++Num3AddrSunk; 313 return true; 314 } 315 316 /// getSingleDef -- return the MachineInstr* if it is the single def of the Reg 317 /// in current BB. 318 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB, 319 const MachineRegisterInfo *MRI) { 320 MachineInstr *Ret = nullptr; 321 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 322 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 323 continue; 324 if (!Ret) 325 Ret = &DefMI; 326 else if (Ret != &DefMI) 327 return nullptr; 328 } 329 return Ret; 330 } 331 332 /// Check if there is a reversed copy chain from FromReg to ToReg: 333 /// %Tmp1 = copy %Tmp2; 334 /// %FromReg = copy %Tmp1; 335 /// %ToReg = add %FromReg ... 336 /// %Tmp2 = copy %ToReg; 337 /// MaxLen specifies the maximum length of the copy chain the func 338 /// can walk through. 339 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg, 340 int Maxlen) { 341 unsigned TmpReg = FromReg; 342 for (int i = 0; i < Maxlen; i++) { 343 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 344 if (!Def || !Def->isCopy()) 345 return false; 346 347 TmpReg = Def->getOperand(1).getReg(); 348 349 if (TmpReg == ToReg) 350 return true; 351 } 352 return false; 353 } 354 355 /// noUseAfterLastDef - Return true if there are no intervening uses between the 356 /// last instruction in the MBB that defines the specified register and the 357 /// two-address instruction which is being processed. It also returns the last 358 /// def location by reference 359 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 360 unsigned &LastDef) { 361 LastDef = 0; 362 unsigned LastUse = Dist; 363 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 364 MachineInstr *MI = MO.getParent(); 365 if (MI->getParent() != MBB || MI->isDebugValue()) 366 continue; 367 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 368 if (DI == DistanceMap.end()) 369 continue; 370 if (MO.isUse() && DI->second < LastUse) 371 LastUse = DI->second; 372 if (MO.isDef() && DI->second > LastDef) 373 LastDef = DI->second; 374 } 375 376 return !(LastUse > LastDef && LastUse < Dist); 377 } 378 379 /// isCopyToReg - Return true if the specified MI is a copy instruction or 380 /// a extract_subreg instruction. It also returns the source and destination 381 /// registers and whether they are physical registers by reference. 382 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 383 unsigned &SrcReg, unsigned &DstReg, 384 bool &IsSrcPhys, bool &IsDstPhys) { 385 SrcReg = 0; 386 DstReg = 0; 387 if (MI.isCopy()) { 388 DstReg = MI.getOperand(0).getReg(); 389 SrcReg = MI.getOperand(1).getReg(); 390 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 391 DstReg = MI.getOperand(0).getReg(); 392 SrcReg = MI.getOperand(2).getReg(); 393 } else 394 return false; 395 396 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 397 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 398 return true; 399 } 400 401 /// isPLainlyKilled - Test if the given register value, which is used by the 402 // given instruction, is killed by the given instruction. 403 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 404 LiveIntervals *LIS) { 405 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && 406 !LIS->isNotInMIMap(MI)) { 407 // FIXME: Sometimes tryInstructionTransform() will add instructions and 408 // test whether they can be folded before keeping them. In this case it 409 // sets a kill before recursively calling tryInstructionTransform() again. 410 // If there is no interval available, we assume that this instruction is 411 // one of those. A kill flag is manually inserted on the operand so the 412 // check below will handle it. 413 LiveInterval &LI = LIS->getInterval(Reg); 414 // This is to match the kill flag version where undefs don't have kill 415 // flags. 416 if (!LI.hasAtLeastOneValue()) 417 return false; 418 419 SlotIndex useIdx = LIS->getInstructionIndex(MI); 420 LiveInterval::const_iterator I = LI.find(useIdx); 421 assert(I != LI.end() && "Reg must be live-in to use."); 422 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 423 } 424 425 return MI->killsRegister(Reg); 426 } 427 428 /// isKilled - Test if the given register value, which is used by the given 429 /// instruction, is killed by the given instruction. This looks through 430 /// coalescable copies to see if the original value is potentially not killed. 431 /// 432 /// For example, in this code: 433 /// 434 /// %reg1034 = copy %reg1024 435 /// %reg1035 = copy %reg1025<kill> 436 /// %reg1036 = add %reg1034<kill>, %reg1035<kill> 437 /// 438 /// %reg1034 is not considered to be killed, since it is copied from a 439 /// register which is not killed. Treating it as not killed lets the 440 /// normal heuristics commute the (two-address) add, which lets 441 /// coalescing eliminate the extra copy. 442 /// 443 /// If allowFalsePositives is true then likely kills are treated as kills even 444 /// if it can't be proven that they are kills. 445 static bool isKilled(MachineInstr &MI, unsigned Reg, 446 const MachineRegisterInfo *MRI, 447 const TargetInstrInfo *TII, 448 LiveIntervals *LIS, 449 bool allowFalsePositives) { 450 MachineInstr *DefMI = &MI; 451 for (;;) { 452 // All uses of physical registers are likely to be kills. 453 if (TargetRegisterInfo::isPhysicalRegister(Reg) && 454 (allowFalsePositives || MRI->hasOneUse(Reg))) 455 return true; 456 if (!isPlainlyKilled(DefMI, Reg, LIS)) 457 return false; 458 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 459 return true; 460 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 461 // If there are multiple defs, we can't do a simple analysis, so just 462 // go with what the kill flag says. 463 if (std::next(Begin) != MRI->def_end()) 464 return true; 465 DefMI = Begin->getParent(); 466 bool IsSrcPhys, IsDstPhys; 467 unsigned SrcReg, DstReg; 468 // If the def is something other than a copy, then it isn't going to 469 // be coalesced, so follow the kill flag. 470 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 471 return true; 472 Reg = SrcReg; 473 } 474 } 475 476 /// isTwoAddrUse - Return true if the specified MI uses the specified register 477 /// as a two-address use. If so, return the destination register by reference. 478 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 479 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 480 const MachineOperand &MO = MI.getOperand(i); 481 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 482 continue; 483 unsigned ti; 484 if (MI.isRegTiedToDefOperand(i, &ti)) { 485 DstReg = MI.getOperand(ti).getReg(); 486 return true; 487 } 488 } 489 return false; 490 } 491 492 /// findOnlyInterestingUse - Given a register, if has a single in-basic block 493 /// use, return the use instruction if it's a copy or a two-address use. 494 static 495 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 496 MachineRegisterInfo *MRI, 497 const TargetInstrInfo *TII, 498 bool &IsCopy, 499 unsigned &DstReg, bool &IsDstPhys) { 500 if (!MRI->hasOneNonDBGUse(Reg)) 501 // None or more than one use. 502 return nullptr; 503 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 504 if (UseMI.getParent() != MBB) 505 return nullptr; 506 unsigned SrcReg; 507 bool IsSrcPhys; 508 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 509 IsCopy = true; 510 return &UseMI; 511 } 512 IsDstPhys = false; 513 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 514 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 515 return &UseMI; 516 } 517 return nullptr; 518 } 519 520 /// getMappedReg - Return the physical register the specified virtual register 521 /// might be mapped to. 522 static unsigned 523 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 524 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 525 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 526 if (SI == RegMap.end()) 527 return 0; 528 Reg = SI->second; 529 } 530 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 531 return Reg; 532 return 0; 533 } 534 535 /// regsAreCompatible - Return true if the two registers are equal or aliased. 536 /// 537 static bool 538 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 539 if (RegA == RegB) 540 return true; 541 if (!RegA || !RegB) 542 return false; 543 return TRI->regsOverlap(RegA, RegB); 544 } 545 546 547 /// isProfitableToCommute - Return true if it's potentially profitable to commute 548 /// the two-address instruction that's being processed. 549 bool 550 TwoAddressInstructionPass:: 551 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 552 MachineInstr *MI, unsigned Dist) { 553 if (OptLevel == CodeGenOpt::None) 554 return false; 555 556 // Determine if it's profitable to commute this two address instruction. In 557 // general, we want no uses between this instruction and the definition of 558 // the two-address register. 559 // e.g. 560 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 561 // %reg1029<def> = MOV8rr %reg1028 562 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 563 // insert => %reg1030<def> = MOV8rr %reg1028 564 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 565 // In this case, it might not be possible to coalesce the second MOV8rr 566 // instruction if the first one is coalesced. So it would be profitable to 567 // commute it: 568 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 569 // %reg1029<def> = MOV8rr %reg1028 570 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 571 // insert => %reg1030<def> = MOV8rr %reg1029 572 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 573 574 if (!isPlainlyKilled(MI, regC, LIS)) 575 return false; 576 577 // Ok, we have something like: 578 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 579 // let's see if it's worth commuting it. 580 581 // Look for situations like this: 582 // %reg1024<def> = MOV r1 583 // %reg1025<def> = MOV r0 584 // %reg1026<def> = ADD %reg1024, %reg1025 585 // r0 = MOV %reg1026 586 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 587 unsigned ToRegA = getMappedReg(regA, DstRegMap); 588 if (ToRegA) { 589 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 590 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 591 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 592 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 593 594 // Compute if any of the following are true: 595 // -RegB is not tied to a register and RegC is compatible with RegA. 596 // -RegB is tied to the wrong physical register, but RegC is. 597 // -RegB is tied to the wrong physical register, and RegC isn't tied. 598 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 599 return true; 600 // Don't compute if any of the following are true: 601 // -RegC is not tied to a register and RegB is compatible with RegA. 602 // -RegC is tied to the wrong physical register, but RegB is. 603 // -RegC is tied to the wrong physical register, and RegB isn't tied. 604 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 605 return false; 606 } 607 608 // If there is a use of regC between its last def (could be livein) and this 609 // instruction, then bail. 610 unsigned LastDefC = 0; 611 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 612 return false; 613 614 // If there is a use of regB between its last def (could be livein) and this 615 // instruction, then go ahead and make this transformation. 616 unsigned LastDefB = 0; 617 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 618 return true; 619 620 // Look for situation like this: 621 // %reg101 = MOV %reg100 622 // %reg102 = ... 623 // %reg103 = ADD %reg102, %reg101 624 // ... = %reg103 ... 625 // %reg100 = MOV %reg103 626 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 627 // to eliminate an otherwise unavoidable copy. 628 // FIXME: 629 // We can extend the logic further: If an pair of operands in an insn has 630 // been merged, the insn could be regarded as a virtual copy, and the virtual 631 // copy could also be used to construct a copy chain. 632 // To more generally minimize register copies, ideally the logic of two addr 633 // instruction pass should be integrated with register allocation pass where 634 // interference graph is available. 635 if (isRevCopyChain(regC, regA, 3)) 636 return true; 637 638 if (isRevCopyChain(regB, regA, 3)) 639 return false; 640 641 // Since there are no intervening uses for both registers, then commute 642 // if the def of regC is closer. Its live interval is shorter. 643 return LastDefB && LastDefC && LastDefC > LastDefB; 644 } 645 646 /// commuteInstruction - Commute a two-address instruction and update the basic 647 /// block, distance map, and live variables if needed. Return true if it is 648 /// successful. 649 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 650 unsigned RegBIdx, 651 unsigned RegCIdx, 652 unsigned Dist) { 653 unsigned RegC = MI->getOperand(RegCIdx).getReg(); 654 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 655 MachineInstr *NewMI = TII->commuteInstruction(MI, false, RegBIdx, RegCIdx); 656 657 if (NewMI == nullptr) { 658 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 659 return false; 660 } 661 662 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 663 assert(NewMI == MI && 664 "TargetInstrInfo::commuteInstruction() should not return a new " 665 "instruction unless it was requested."); 666 667 // Update source register map. 668 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 669 if (FromRegC) { 670 unsigned RegA = MI->getOperand(0).getReg(); 671 SrcRegMap[RegA] = FromRegC; 672 } 673 674 return true; 675 } 676 677 /// isProfitableToConv3Addr - Return true if it is profitable to convert the 678 /// given 2-address instruction to a 3-address one. 679 bool 680 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 681 // Look for situations like this: 682 // %reg1024<def> = MOV r1 683 // %reg1025<def> = MOV r0 684 // %reg1026<def> = ADD %reg1024, %reg1025 685 // r2 = MOV %reg1026 686 // Turn ADD into a 3-address instruction to avoid a copy. 687 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 688 if (!FromRegB) 689 return false; 690 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 691 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 692 } 693 694 /// convertInstTo3Addr - Convert the specified two-address instruction into a 695 /// three address one. Return true if this transformation was successful. 696 bool 697 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 698 MachineBasicBlock::iterator &nmi, 699 unsigned RegA, unsigned RegB, 700 unsigned Dist) { 701 // FIXME: Why does convertToThreeAddress() need an iterator reference? 702 MachineFunction::iterator MFI = MBB->getIterator(); 703 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV); 704 assert(MBB->getIterator() == MFI && 705 "convertToThreeAddress changed iterator reference"); 706 if (!NewMI) 707 return false; 708 709 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 710 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 711 bool Sunk = false; 712 713 if (LIS) 714 LIS->ReplaceMachineInstrInMaps(mi, NewMI); 715 716 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 717 // FIXME: Temporary workaround. If the new instruction doesn't 718 // uses RegB, convertToThreeAddress must have created more 719 // then one instruction. 720 Sunk = sink3AddrInstruction(NewMI, RegB, mi); 721 722 MBB->erase(mi); // Nuke the old inst. 723 724 if (!Sunk) { 725 DistanceMap.insert(std::make_pair(NewMI, Dist)); 726 mi = NewMI; 727 nmi = std::next(mi); 728 } 729 730 // Update source and destination register maps. 731 SrcRegMap.erase(RegA); 732 DstRegMap.erase(RegB); 733 return true; 734 } 735 736 /// scanUses - Scan forward recursively for only uses, update maps if the use 737 /// is a copy or a two-address instruction. 738 void 739 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 740 SmallVector<unsigned, 4> VirtRegPairs; 741 bool IsDstPhys; 742 bool IsCopy = false; 743 unsigned NewReg = 0; 744 unsigned Reg = DstReg; 745 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 746 NewReg, IsDstPhys)) { 747 if (IsCopy && !Processed.insert(UseMI).second) 748 break; 749 750 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 751 if (DI != DistanceMap.end()) 752 // Earlier in the same MBB.Reached via a back edge. 753 break; 754 755 if (IsDstPhys) { 756 VirtRegPairs.push_back(NewReg); 757 break; 758 } 759 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 760 if (!isNew) 761 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 762 VirtRegPairs.push_back(NewReg); 763 Reg = NewReg; 764 } 765 766 if (!VirtRegPairs.empty()) { 767 unsigned ToReg = VirtRegPairs.back(); 768 VirtRegPairs.pop_back(); 769 while (!VirtRegPairs.empty()) { 770 unsigned FromReg = VirtRegPairs.back(); 771 VirtRegPairs.pop_back(); 772 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 773 if (!isNew) 774 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 775 ToReg = FromReg; 776 } 777 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 778 if (!isNew) 779 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 780 } 781 } 782 783 /// processCopy - If the specified instruction is not yet processed, process it 784 /// if it's a copy. For a copy instruction, we find the physical registers the 785 /// source and destination registers might be mapped to. These are kept in 786 /// point-to maps used to determine future optimizations. e.g. 787 /// v1024 = mov r0 788 /// v1025 = mov r1 789 /// v1026 = add v1024, v1025 790 /// r1 = mov r1026 791 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 792 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 793 /// potentially joined with r1 on the output side. It's worthwhile to commute 794 /// 'add' to eliminate a copy. 795 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 796 if (Processed.count(MI)) 797 return; 798 799 bool IsSrcPhys, IsDstPhys; 800 unsigned SrcReg, DstReg; 801 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 802 return; 803 804 if (IsDstPhys && !IsSrcPhys) 805 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 806 else if (!IsDstPhys && IsSrcPhys) { 807 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 808 if (!isNew) 809 assert(SrcRegMap[DstReg] == SrcReg && 810 "Can't map to two src physical registers!"); 811 812 scanUses(DstReg); 813 } 814 815 Processed.insert(MI); 816 return; 817 } 818 819 /// rescheduleMIBelowKill - If there is one more local instruction that reads 820 /// 'Reg' and it kills 'Reg, consider moving the instruction below the kill 821 /// instruction in order to eliminate the need for the copy. 822 bool TwoAddressInstructionPass:: 823 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 824 MachineBasicBlock::iterator &nmi, 825 unsigned Reg) { 826 // Bail immediately if we don't have LV or LIS available. We use them to find 827 // kills efficiently. 828 if (!LV && !LIS) 829 return false; 830 831 MachineInstr *MI = &*mi; 832 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 833 if (DI == DistanceMap.end()) 834 // Must be created from unfolded load. Don't waste time trying this. 835 return false; 836 837 MachineInstr *KillMI = nullptr; 838 if (LIS) { 839 LiveInterval &LI = LIS->getInterval(Reg); 840 assert(LI.end() != LI.begin() && 841 "Reg should not have empty live interval."); 842 843 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 844 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 845 if (I != LI.end() && I->start < MBBEndIdx) 846 return false; 847 848 --I; 849 KillMI = LIS->getInstructionFromIndex(I->end); 850 } else { 851 KillMI = LV->getVarInfo(Reg).findKill(MBB); 852 } 853 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 854 // Don't mess with copies, they may be coalesced later. 855 return false; 856 857 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 858 KillMI->isBranch() || KillMI->isTerminator()) 859 // Don't move pass calls, etc. 860 return false; 861 862 unsigned DstReg; 863 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 864 return false; 865 866 bool SeenStore = true; 867 if (!MI->isSafeToMove(AA, SeenStore)) 868 return false; 869 870 if (TII->getInstrLatency(InstrItins, MI) > 1) 871 // FIXME: Needs more sophisticated heuristics. 872 return false; 873 874 SmallSet<unsigned, 2> Uses; 875 SmallSet<unsigned, 2> Kills; 876 SmallSet<unsigned, 2> Defs; 877 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 878 const MachineOperand &MO = MI->getOperand(i); 879 if (!MO.isReg()) 880 continue; 881 unsigned MOReg = MO.getReg(); 882 if (!MOReg) 883 continue; 884 if (MO.isDef()) 885 Defs.insert(MOReg); 886 else { 887 Uses.insert(MOReg); 888 if (MOReg != Reg && (MO.isKill() || 889 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 890 Kills.insert(MOReg); 891 } 892 } 893 894 // Move the copies connected to MI down as well. 895 MachineBasicBlock::iterator Begin = MI; 896 MachineBasicBlock::iterator AfterMI = std::next(Begin); 897 898 MachineBasicBlock::iterator End = AfterMI; 899 while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) { 900 Defs.insert(End->getOperand(0).getReg()); 901 ++End; 902 } 903 904 // Check if the reschedule will not break depedencies. 905 unsigned NumVisited = 0; 906 MachineBasicBlock::iterator KillPos = KillMI; 907 ++KillPos; 908 for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) { 909 MachineInstr *OtherMI = I; 910 // DBG_VALUE cannot be counted against the limit. 911 if (OtherMI->isDebugValue()) 912 continue; 913 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 914 return false; 915 ++NumVisited; 916 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 917 OtherMI->isBranch() || OtherMI->isTerminator()) 918 // Don't move pass calls, etc. 919 return false; 920 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 921 const MachineOperand &MO = OtherMI->getOperand(i); 922 if (!MO.isReg()) 923 continue; 924 unsigned MOReg = MO.getReg(); 925 if (!MOReg) 926 continue; 927 if (MO.isDef()) { 928 if (Uses.count(MOReg)) 929 // Physical register use would be clobbered. 930 return false; 931 if (!MO.isDead() && Defs.count(MOReg)) 932 // May clobber a physical register def. 933 // FIXME: This may be too conservative. It's ok if the instruction 934 // is sunken completely below the use. 935 return false; 936 } else { 937 if (Defs.count(MOReg)) 938 return false; 939 bool isKill = MO.isKill() || 940 (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)); 941 if (MOReg != Reg && 942 ((isKill && Uses.count(MOReg)) || Kills.count(MOReg))) 943 // Don't want to extend other live ranges and update kills. 944 return false; 945 if (MOReg == Reg && !isKill) 946 // We can't schedule across a use of the register in question. 947 return false; 948 // Ensure that if this is register in question, its the kill we expect. 949 assert((MOReg != Reg || OtherMI == KillMI) && 950 "Found multiple kills of a register in a basic block"); 951 } 952 } 953 } 954 955 // Move debug info as well. 956 while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue()) 957 --Begin; 958 959 nmi = End; 960 MachineBasicBlock::iterator InsertPos = KillPos; 961 if (LIS) { 962 // We have to move the copies first so that the MBB is still well-formed 963 // when calling handleMove(). 964 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 965 MachineInstr *CopyMI = MBBI; 966 ++MBBI; 967 MBB->splice(InsertPos, MBB, CopyMI); 968 LIS->handleMove(CopyMI); 969 InsertPos = CopyMI; 970 } 971 End = std::next(MachineBasicBlock::iterator(MI)); 972 } 973 974 // Copies following MI may have been moved as well. 975 MBB->splice(InsertPos, MBB, Begin, End); 976 DistanceMap.erase(DI); 977 978 // Update live variables 979 if (LIS) { 980 LIS->handleMove(MI); 981 } else { 982 LV->removeVirtualRegisterKilled(Reg, KillMI); 983 LV->addVirtualRegisterKilled(Reg, MI); 984 } 985 986 DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 987 return true; 988 } 989 990 /// isDefTooClose - Return true if the re-scheduling will put the given 991 /// instruction too close to the defs of its register dependencies. 992 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 993 MachineInstr *MI) { 994 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 995 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 996 continue; 997 if (&DefMI == MI) 998 return true; // MI is defining something KillMI uses 999 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 1000 if (DDI == DistanceMap.end()) 1001 return true; // Below MI 1002 unsigned DefDist = DDI->second; 1003 assert(Dist > DefDist && "Visited def already?"); 1004 if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist)) 1005 return true; 1006 } 1007 return false; 1008 } 1009 1010 /// rescheduleKillAboveMI - If there is one more local instruction that reads 1011 /// 'Reg' and it kills 'Reg, consider moving the kill instruction above the 1012 /// current two-address instruction in order to eliminate the need for the 1013 /// copy. 1014 bool TwoAddressInstructionPass:: 1015 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 1016 MachineBasicBlock::iterator &nmi, 1017 unsigned Reg) { 1018 // Bail immediately if we don't have LV or LIS available. We use them to find 1019 // kills efficiently. 1020 if (!LV && !LIS) 1021 return false; 1022 1023 MachineInstr *MI = &*mi; 1024 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1025 if (DI == DistanceMap.end()) 1026 // Must be created from unfolded load. Don't waste time trying this. 1027 return false; 1028 1029 MachineInstr *KillMI = nullptr; 1030 if (LIS) { 1031 LiveInterval &LI = LIS->getInterval(Reg); 1032 assert(LI.end() != LI.begin() && 1033 "Reg should not have empty live interval."); 1034 1035 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1036 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1037 if (I != LI.end() && I->start < MBBEndIdx) 1038 return false; 1039 1040 --I; 1041 KillMI = LIS->getInstructionFromIndex(I->end); 1042 } else { 1043 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1044 } 1045 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1046 // Don't mess with copies, they may be coalesced later. 1047 return false; 1048 1049 unsigned DstReg; 1050 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1051 return false; 1052 1053 bool SeenStore = true; 1054 if (!KillMI->isSafeToMove(AA, SeenStore)) 1055 return false; 1056 1057 SmallSet<unsigned, 2> Uses; 1058 SmallSet<unsigned, 2> Kills; 1059 SmallSet<unsigned, 2> Defs; 1060 SmallSet<unsigned, 2> LiveDefs; 1061 for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) { 1062 const MachineOperand &MO = KillMI->getOperand(i); 1063 if (!MO.isReg()) 1064 continue; 1065 unsigned MOReg = MO.getReg(); 1066 if (MO.isUse()) { 1067 if (!MOReg) 1068 continue; 1069 if (isDefTooClose(MOReg, DI->second, MI)) 1070 return false; 1071 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1072 if (MOReg == Reg && !isKill) 1073 return false; 1074 Uses.insert(MOReg); 1075 if (isKill && MOReg != Reg) 1076 Kills.insert(MOReg); 1077 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1078 Defs.insert(MOReg); 1079 if (!MO.isDead()) 1080 LiveDefs.insert(MOReg); 1081 } 1082 } 1083 1084 // Check if the reschedule will not break depedencies. 1085 unsigned NumVisited = 0; 1086 MachineBasicBlock::iterator KillPos = KillMI; 1087 for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) { 1088 MachineInstr *OtherMI = I; 1089 // DBG_VALUE cannot be counted against the limit. 1090 if (OtherMI->isDebugValue()) 1091 continue; 1092 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1093 return false; 1094 ++NumVisited; 1095 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 1096 OtherMI->isBranch() || OtherMI->isTerminator()) 1097 // Don't move pass calls, etc. 1098 return false; 1099 SmallVector<unsigned, 2> OtherDefs; 1100 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 1101 const MachineOperand &MO = OtherMI->getOperand(i); 1102 if (!MO.isReg()) 1103 continue; 1104 unsigned MOReg = MO.getReg(); 1105 if (!MOReg) 1106 continue; 1107 if (MO.isUse()) { 1108 if (Defs.count(MOReg)) 1109 // Moving KillMI can clobber the physical register if the def has 1110 // not been seen. 1111 return false; 1112 if (Kills.count(MOReg)) 1113 // Don't want to extend other live ranges and update kills. 1114 return false; 1115 if (OtherMI != MI && MOReg == Reg && 1116 !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)))) 1117 // We can't schedule across a use of the register in question. 1118 return false; 1119 } else { 1120 OtherDefs.push_back(MOReg); 1121 } 1122 } 1123 1124 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1125 unsigned MOReg = OtherDefs[i]; 1126 if (Uses.count(MOReg)) 1127 return false; 1128 if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 1129 LiveDefs.count(MOReg)) 1130 return false; 1131 // Physical register def is seen. 1132 Defs.erase(MOReg); 1133 } 1134 } 1135 1136 // Move the old kill above MI, don't forget to move debug info as well. 1137 MachineBasicBlock::iterator InsertPos = mi; 1138 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue()) 1139 --InsertPos; 1140 MachineBasicBlock::iterator From = KillMI; 1141 MachineBasicBlock::iterator To = std::next(From); 1142 while (std::prev(From)->isDebugValue()) 1143 --From; 1144 MBB->splice(InsertPos, MBB, From, To); 1145 1146 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1147 DistanceMap.erase(DI); 1148 1149 // Update live variables 1150 if (LIS) { 1151 LIS->handleMove(KillMI); 1152 } else { 1153 LV->removeVirtualRegisterKilled(Reg, KillMI); 1154 LV->addVirtualRegisterKilled(Reg, MI); 1155 } 1156 1157 DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1158 return true; 1159 } 1160 1161 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1162 /// given machine instruction to improve opportunities for coalescing and 1163 /// elimination of a register to register copy. 1164 /// 1165 /// 'DstOpIdx' specifies the index of MI def operand. 1166 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1167 /// operand is killed by the given instruction. 1168 /// The 'Dist' arguments provides the distance of MI from the start of the 1169 /// current basic block and it is used to determine if it is profitable 1170 /// to commute operands in the instruction. 1171 /// 1172 /// Returns true if the transformation happened. Otherwise, returns false. 1173 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1174 unsigned DstOpIdx, 1175 unsigned BaseOpIdx, 1176 bool BaseOpKilled, 1177 unsigned Dist) { 1178 unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1179 unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1180 unsigned OpsNum = MI->getDesc().getNumOperands(); 1181 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1182 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1183 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1184 // and OtherOpIdx are commutable, it does not really searches for 1185 // other commutable operands and does not change the values of passed 1186 // variables. 1187 if (OtherOpIdx == BaseOpIdx || 1188 !TII->findCommutedOpIndices(MI, BaseOpIdx, OtherOpIdx)) 1189 continue; 1190 1191 unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1192 bool AggressiveCommute = false; 1193 1194 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1195 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1196 bool DoCommute = 1197 !BaseOpKilled && isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1198 1199 if (!DoCommute && 1200 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1201 DoCommute = true; 1202 AggressiveCommute = true; 1203 } 1204 1205 // If it's profitable to commute, try to do so. 1206 if (DoCommute && commuteInstruction(MI, BaseOpIdx, OtherOpIdx, Dist)) { 1207 ++NumCommuted; 1208 if (AggressiveCommute) 1209 ++NumAggrCommuted; 1210 return true; 1211 } 1212 } 1213 return false; 1214 } 1215 1216 /// tryInstructionTransform - For the case where an instruction has a single 1217 /// pair of tied register operands, attempt some transformations that may 1218 /// either eliminate the tied operands or improve the opportunities for 1219 /// coalescing away the register copy. Returns true if no copy needs to be 1220 /// inserted to untie mi's operands (either because they were untied, or 1221 /// because mi was rescheduled, and will be visited again later). If the 1222 /// shouldOnlyCommute flag is true, only instruction commutation is attempted. 1223 bool TwoAddressInstructionPass:: 1224 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1225 MachineBasicBlock::iterator &nmi, 1226 unsigned SrcIdx, unsigned DstIdx, 1227 unsigned Dist, bool shouldOnlyCommute) { 1228 if (OptLevel == CodeGenOpt::None) 1229 return false; 1230 1231 MachineInstr &MI = *mi; 1232 unsigned regA = MI.getOperand(DstIdx).getReg(); 1233 unsigned regB = MI.getOperand(SrcIdx).getReg(); 1234 1235 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1236 "cannot make instruction into two-address form"); 1237 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1238 1239 if (TargetRegisterInfo::isVirtualRegister(regA)) 1240 scanUses(regA); 1241 1242 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1243 1244 // If the instruction is convertible to 3 Addr, instead 1245 // of returning try 3 Addr transformation aggresively and 1246 // use this variable to check later. Because it might be better. 1247 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1248 // instead of the following code. 1249 // addl %esi, %edi 1250 // movl %edi, %eax 1251 // ret 1252 if (Commuted && !MI.isConvertibleTo3Addr()) 1253 return false; 1254 1255 if (shouldOnlyCommute) 1256 return false; 1257 1258 // If there is one more use of regB later in the same MBB, consider 1259 // re-schedule this MI below it. 1260 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1261 ++NumReSchedDowns; 1262 return true; 1263 } 1264 1265 // If we commuted, regB may have changed so we should re-sample it to avoid 1266 // confusing the three address conversion below. 1267 if (Commuted) { 1268 regB = MI.getOperand(SrcIdx).getReg(); 1269 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1270 } 1271 1272 if (MI.isConvertibleTo3Addr()) { 1273 // This instruction is potentially convertible to a true 1274 // three-address instruction. Check if it is profitable. 1275 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1276 // Try to convert it. 1277 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1278 ++NumConvertedTo3Addr; 1279 return true; // Done with this instruction. 1280 } 1281 } 1282 } 1283 1284 // Return if it is commuted but 3 addr conversion is failed. 1285 if (Commuted) 1286 return false; 1287 1288 // If there is one more use of regB later in the same MBB, consider 1289 // re-schedule it before this MI if it's legal. 1290 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1291 ++NumReSchedUps; 1292 return true; 1293 } 1294 1295 // If this is an instruction with a load folded into it, try unfolding 1296 // the load, e.g. avoid this: 1297 // movq %rdx, %rcx 1298 // addq (%rax), %rcx 1299 // in favor of this: 1300 // movq (%rax), %rcx 1301 // addq %rdx, %rcx 1302 // because it's preferable to schedule a load than a register copy. 1303 if (MI.mayLoad() && !regBKilled) { 1304 // Determine if a load can be unfolded. 1305 unsigned LoadRegIndex; 1306 unsigned NewOpc = 1307 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1308 /*UnfoldLoad=*/true, 1309 /*UnfoldStore=*/false, 1310 &LoadRegIndex); 1311 if (NewOpc != 0) { 1312 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1313 if (UnfoldMCID.getNumDefs() == 1) { 1314 // Unfold the load. 1315 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1316 const TargetRegisterClass *RC = 1317 TRI->getAllocatableClass( 1318 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1319 unsigned Reg = MRI->createVirtualRegister(RC); 1320 SmallVector<MachineInstr *, 2> NewMIs; 1321 if (!TII->unfoldMemoryOperand(*MF, &MI, Reg, 1322 /*UnfoldLoad=*/true,/*UnfoldStore=*/false, 1323 NewMIs)) { 1324 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1325 return false; 1326 } 1327 assert(NewMIs.size() == 2 && 1328 "Unfolded a load into multiple instructions!"); 1329 // The load was previously folded, so this is the only use. 1330 NewMIs[1]->addRegisterKilled(Reg, TRI); 1331 1332 // Tentatively insert the instructions into the block so that they 1333 // look "normal" to the transformation logic. 1334 MBB->insert(mi, NewMIs[0]); 1335 MBB->insert(mi, NewMIs[1]); 1336 1337 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1338 << "2addr: NEW INST: " << *NewMIs[1]); 1339 1340 // Transform the instruction, now that it no longer has a load. 1341 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1342 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1343 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1344 bool TransformResult = 1345 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1346 (void)TransformResult; 1347 assert(!TransformResult && 1348 "tryInstructionTransform() should return false."); 1349 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1350 // Success, or at least we made an improvement. Keep the unfolded 1351 // instructions and discard the original. 1352 if (LV) { 1353 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1354 MachineOperand &MO = MI.getOperand(i); 1355 if (MO.isReg() && 1356 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 1357 if (MO.isUse()) { 1358 if (MO.isKill()) { 1359 if (NewMIs[0]->killsRegister(MO.getReg())) 1360 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]); 1361 else { 1362 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1363 "Kill missing after load unfold!"); 1364 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]); 1365 } 1366 } 1367 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) { 1368 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1369 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]); 1370 else { 1371 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1372 "Dead flag missing after load unfold!"); 1373 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]); 1374 } 1375 } 1376 } 1377 } 1378 LV->addVirtualRegisterKilled(Reg, NewMIs[1]); 1379 } 1380 1381 SmallVector<unsigned, 4> OrigRegs; 1382 if (LIS) { 1383 for (const MachineOperand &MO : MI.operands()) { 1384 if (MO.isReg()) 1385 OrigRegs.push_back(MO.getReg()); 1386 } 1387 } 1388 1389 MI.eraseFromParent(); 1390 1391 // Update LiveIntervals. 1392 if (LIS) { 1393 MachineBasicBlock::iterator Begin(NewMIs[0]); 1394 MachineBasicBlock::iterator End(NewMIs[1]); 1395 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1396 } 1397 1398 mi = NewMIs[1]; 1399 } else { 1400 // Transforming didn't eliminate the tie and didn't lead to an 1401 // improvement. Clean up the unfolded instructions and keep the 1402 // original. 1403 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1404 NewMIs[0]->eraseFromParent(); 1405 NewMIs[1]->eraseFromParent(); 1406 } 1407 } 1408 } 1409 } 1410 1411 return false; 1412 } 1413 1414 // Collect tied operands of MI that need to be handled. 1415 // Rewrite trivial cases immediately. 1416 // Return true if any tied operands where found, including the trivial ones. 1417 bool TwoAddressInstructionPass:: 1418 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1419 const MCInstrDesc &MCID = MI->getDesc(); 1420 bool AnyOps = false; 1421 unsigned NumOps = MI->getNumOperands(); 1422 1423 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1424 unsigned DstIdx = 0; 1425 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1426 continue; 1427 AnyOps = true; 1428 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1429 MachineOperand &DstMO = MI->getOperand(DstIdx); 1430 unsigned SrcReg = SrcMO.getReg(); 1431 unsigned DstReg = DstMO.getReg(); 1432 // Tied constraint already satisfied? 1433 if (SrcReg == DstReg) 1434 continue; 1435 1436 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1437 1438 // Deal with <undef> uses immediately - simply rewrite the src operand. 1439 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1440 // Constrain the DstReg register class if required. 1441 if (TargetRegisterInfo::isVirtualRegister(DstReg)) 1442 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1443 TRI, *MF)) 1444 MRI->constrainRegClass(DstReg, RC); 1445 SrcMO.setReg(DstReg); 1446 SrcMO.setSubReg(0); 1447 DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1448 continue; 1449 } 1450 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1451 } 1452 return AnyOps; 1453 } 1454 1455 // Process a list of tied MI operands that all use the same source register. 1456 // The tied pairs are of the form (SrcIdx, DstIdx). 1457 void 1458 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1459 TiedPairList &TiedPairs, 1460 unsigned &Dist) { 1461 bool IsEarlyClobber = false; 1462 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1463 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1464 IsEarlyClobber |= DstMO.isEarlyClobber(); 1465 } 1466 1467 bool RemovedKillFlag = false; 1468 bool AllUsesCopied = true; 1469 unsigned LastCopiedReg = 0; 1470 SlotIndex LastCopyIdx; 1471 unsigned RegB = 0; 1472 unsigned SubRegB = 0; 1473 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1474 unsigned SrcIdx = TiedPairs[tpi].first; 1475 unsigned DstIdx = TiedPairs[tpi].second; 1476 1477 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1478 unsigned RegA = DstMO.getReg(); 1479 1480 // Grab RegB from the instruction because it may have changed if the 1481 // instruction was commuted. 1482 RegB = MI->getOperand(SrcIdx).getReg(); 1483 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1484 1485 if (RegA == RegB) { 1486 // The register is tied to multiple destinations (or else we would 1487 // not have continued this far), but this use of the register 1488 // already matches the tied destination. Leave it. 1489 AllUsesCopied = false; 1490 continue; 1491 } 1492 LastCopiedReg = RegA; 1493 1494 assert(TargetRegisterInfo::isVirtualRegister(RegB) && 1495 "cannot make instruction into two-address form"); 1496 1497 #ifndef NDEBUG 1498 // First, verify that we don't have a use of "a" in the instruction 1499 // (a = b + a for example) because our transformation will not 1500 // work. This should never occur because we are in SSA form. 1501 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1502 assert(i == DstIdx || 1503 !MI->getOperand(i).isReg() || 1504 MI->getOperand(i).getReg() != RegA); 1505 #endif 1506 1507 // Emit a copy. 1508 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1509 TII->get(TargetOpcode::COPY), RegA); 1510 // If this operand is folding a truncation, the truncation now moves to the 1511 // copy so that the register classes remain valid for the operands. 1512 MIB.addReg(RegB, 0, SubRegB); 1513 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1514 if (SubRegB) { 1515 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1516 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1517 SubRegB) && 1518 "tied subregister must be a truncation"); 1519 // The superreg class will not be used to constrain the subreg class. 1520 RC = nullptr; 1521 } 1522 else { 1523 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1524 && "tied subregister must be a truncation"); 1525 } 1526 } 1527 1528 // Update DistanceMap. 1529 MachineBasicBlock::iterator PrevMI = MI; 1530 --PrevMI; 1531 DistanceMap.insert(std::make_pair(PrevMI, Dist)); 1532 DistanceMap[MI] = ++Dist; 1533 1534 if (LIS) { 1535 LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot(); 1536 1537 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1538 LiveInterval &LI = LIS->getInterval(RegA); 1539 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1540 SlotIndex endIdx = 1541 LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber); 1542 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1543 } 1544 } 1545 1546 DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1547 1548 MachineOperand &MO = MI->getOperand(SrcIdx); 1549 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1550 "inconsistent operand info for 2-reg pass"); 1551 if (MO.isKill()) { 1552 MO.setIsKill(false); 1553 RemovedKillFlag = true; 1554 } 1555 1556 // Make sure regA is a legal regclass for the SrcIdx operand. 1557 if (TargetRegisterInfo::isVirtualRegister(RegA) && 1558 TargetRegisterInfo::isVirtualRegister(RegB)) 1559 MRI->constrainRegClass(RegA, RC); 1560 MO.setReg(RegA); 1561 // The getMatchingSuper asserts guarantee that the register class projected 1562 // by SubRegB is compatible with RegA with no subregister. So regardless of 1563 // whether the dest oper writes a subreg, the source oper should not. 1564 MO.setSubReg(0); 1565 1566 // Propagate SrcRegMap. 1567 SrcRegMap[RegA] = RegB; 1568 } 1569 1570 if (AllUsesCopied) { 1571 if (!IsEarlyClobber) { 1572 // Replace other (un-tied) uses of regB with LastCopiedReg. 1573 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1574 MachineOperand &MO = MI->getOperand(i); 1575 if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB && 1576 MO.isUse()) { 1577 if (MO.isKill()) { 1578 MO.setIsKill(false); 1579 RemovedKillFlag = true; 1580 } 1581 MO.setReg(LastCopiedReg); 1582 MO.setSubReg(0); 1583 } 1584 } 1585 } 1586 1587 // Update live variables for regB. 1588 if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) { 1589 MachineBasicBlock::iterator PrevMI = MI; 1590 --PrevMI; 1591 LV->addVirtualRegisterKilled(RegB, PrevMI); 1592 } 1593 1594 // Update LiveIntervals. 1595 if (LIS) { 1596 LiveInterval &LI = LIS->getInterval(RegB); 1597 SlotIndex MIIdx = LIS->getInstructionIndex(MI); 1598 LiveInterval::const_iterator I = LI.find(MIIdx); 1599 assert(I != LI.end() && "RegB must be live-in to use."); 1600 1601 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1602 if (I->end == UseIdx) 1603 LI.removeSegment(LastCopyIdx, UseIdx); 1604 } 1605 1606 } else if (RemovedKillFlag) { 1607 // Some tied uses of regB matched their destination registers, so 1608 // regB is still used in this instruction, but a kill flag was 1609 // removed from a different tied use of regB, so now we need to add 1610 // a kill flag to one of the remaining uses of regB. 1611 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1612 MachineOperand &MO = MI->getOperand(i); 1613 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1614 MO.setIsKill(true); 1615 break; 1616 } 1617 } 1618 } 1619 } 1620 1621 /// runOnMachineFunction - Reduce two-address instructions to two operands. 1622 /// 1623 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1624 MF = &Func; 1625 const TargetMachine &TM = MF->getTarget(); 1626 MRI = &MF->getRegInfo(); 1627 TII = MF->getSubtarget().getInstrInfo(); 1628 TRI = MF->getSubtarget().getRegisterInfo(); 1629 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1630 LV = getAnalysisIfAvailable<LiveVariables>(); 1631 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1632 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1633 OptLevel = TM.getOptLevel(); 1634 1635 bool MadeChange = false; 1636 1637 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1638 DEBUG(dbgs() << "********** Function: " 1639 << MF->getName() << '\n'); 1640 1641 // This pass takes the function out of SSA form. 1642 MRI->leaveSSA(); 1643 1644 TiedOperandMap TiedOperands; 1645 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1646 MBBI != MBBE; ++MBBI) { 1647 MBB = &*MBBI; 1648 unsigned Dist = 0; 1649 DistanceMap.clear(); 1650 SrcRegMap.clear(); 1651 DstRegMap.clear(); 1652 Processed.clear(); 1653 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1654 mi != me; ) { 1655 MachineBasicBlock::iterator nmi = std::next(mi); 1656 if (mi->isDebugValue()) { 1657 mi = nmi; 1658 continue; 1659 } 1660 1661 // Expand REG_SEQUENCE instructions. This will position mi at the first 1662 // expanded instruction. 1663 if (mi->isRegSequence()) 1664 eliminateRegSequence(mi); 1665 1666 DistanceMap.insert(std::make_pair(mi, ++Dist)); 1667 1668 processCopy(&*mi); 1669 1670 // First scan through all the tied register uses in this instruction 1671 // and record a list of pairs of tied operands for each register. 1672 if (!collectTiedOperands(mi, TiedOperands)) { 1673 mi = nmi; 1674 continue; 1675 } 1676 1677 ++NumTwoAddressInstrs; 1678 MadeChange = true; 1679 DEBUG(dbgs() << '\t' << *mi); 1680 1681 // If the instruction has a single pair of tied operands, try some 1682 // transformations that may either eliminate the tied operands or 1683 // improve the opportunities for coalescing away the register copy. 1684 if (TiedOperands.size() == 1) { 1685 SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs 1686 = TiedOperands.begin()->second; 1687 if (TiedPairs.size() == 1) { 1688 unsigned SrcIdx = TiedPairs[0].first; 1689 unsigned DstIdx = TiedPairs[0].second; 1690 unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); 1691 unsigned DstReg = mi->getOperand(DstIdx).getReg(); 1692 if (SrcReg != DstReg && 1693 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1694 // The tied operands have been eliminated or shifted further down 1695 // the block to ease elimination. Continue processing with 'nmi'. 1696 TiedOperands.clear(); 1697 mi = nmi; 1698 continue; 1699 } 1700 } 1701 } 1702 1703 // Now iterate over the information collected above. 1704 for (auto &TO : TiedOperands) { 1705 processTiedPairs(mi, TO.second, Dist); 1706 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1707 } 1708 1709 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1710 if (mi->isInsertSubreg()) { 1711 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1712 // To %reg:subidx = COPY %subreg 1713 unsigned SubIdx = mi->getOperand(3).getImm(); 1714 mi->RemoveOperand(3); 1715 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1716 mi->getOperand(0).setSubReg(SubIdx); 1717 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1718 mi->RemoveOperand(1); 1719 mi->setDesc(TII->get(TargetOpcode::COPY)); 1720 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1721 } 1722 1723 // Clear TiedOperands here instead of at the top of the loop 1724 // since most instructions do not have tied operands. 1725 TiedOperands.clear(); 1726 mi = nmi; 1727 } 1728 } 1729 1730 if (LIS) 1731 MF->verify(this, "After two-address instruction pass"); 1732 1733 return MadeChange; 1734 } 1735 1736 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1737 /// 1738 /// The instruction is turned into a sequence of sub-register copies: 1739 /// 1740 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1741 /// 1742 /// Becomes: 1743 /// 1744 /// %dst:ssub0<def,undef> = COPY %v1 1745 /// %dst:ssub1<def> = COPY %v2 1746 /// 1747 void TwoAddressInstructionPass:: 1748 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1749 MachineInstr *MI = MBBI; 1750 unsigned DstReg = MI->getOperand(0).getReg(); 1751 if (MI->getOperand(0).getSubReg() || 1752 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1753 !(MI->getNumOperands() & 1)) { 1754 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); 1755 llvm_unreachable(nullptr); 1756 } 1757 1758 SmallVector<unsigned, 4> OrigRegs; 1759 if (LIS) { 1760 OrigRegs.push_back(MI->getOperand(0).getReg()); 1761 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) 1762 OrigRegs.push_back(MI->getOperand(i).getReg()); 1763 } 1764 1765 bool DefEmitted = false; 1766 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 1767 MachineOperand &UseMO = MI->getOperand(i); 1768 unsigned SrcReg = UseMO.getReg(); 1769 unsigned SubIdx = MI->getOperand(i+1).getImm(); 1770 // Nothing needs to be inserted for <undef> operands. 1771 if (UseMO.isUndef()) 1772 continue; 1773 1774 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1775 // might insert a COPY that uses SrcReg after is was killed. 1776 bool isKill = UseMO.isKill(); 1777 if (isKill) 1778 for (unsigned j = i + 2; j < e; j += 2) 1779 if (MI->getOperand(j).getReg() == SrcReg) { 1780 MI->getOperand(j).setIsKill(); 1781 UseMO.setIsKill(false); 1782 isKill = false; 1783 break; 1784 } 1785 1786 // Insert the sub-register copy. 1787 MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1788 TII->get(TargetOpcode::COPY)) 1789 .addReg(DstReg, RegState::Define, SubIdx) 1790 .addOperand(UseMO); 1791 1792 // The first def needs an <undef> flag because there is no live register 1793 // before it. 1794 if (!DefEmitted) { 1795 CopyMI->getOperand(0).setIsUndef(true); 1796 // Return an iterator pointing to the first inserted instr. 1797 MBBI = CopyMI; 1798 } 1799 DefEmitted = true; 1800 1801 // Update LiveVariables' kill info. 1802 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1803 LV->replaceKillInstruction(SrcReg, MI, CopyMI); 1804 1805 DEBUG(dbgs() << "Inserted: " << *CopyMI); 1806 } 1807 1808 MachineBasicBlock::iterator EndMBBI = 1809 std::next(MachineBasicBlock::iterator(MI)); 1810 1811 if (!DefEmitted) { 1812 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF"); 1813 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1814 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j) 1815 MI->RemoveOperand(j); 1816 } else { 1817 DEBUG(dbgs() << "Eliminated: " << *MI); 1818 MI->eraseFromParent(); 1819 } 1820 1821 // Udpate LiveIntervals. 1822 if (LIS) 1823 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1824 } 1825