1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #define DEBUG_TYPE "twoaddrinstr" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/ADT/BitVector.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallSet.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/Analysis/AliasAnalysis.h" 38 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 39 #include "llvm/CodeGen/LiveVariables.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/MC/MCInstrItineraries.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetMachine.h" 51 #include "llvm/Target/TargetRegisterInfo.h" 52 using namespace llvm; 53 54 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 55 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 56 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 57 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 58 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 59 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 60 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 61 62 // Temporary flag to disable rescheduling. 63 static cl::opt<bool> 64 EnableRescheduling("twoaddr-reschedule", 65 cl::desc("Coalesce copies by rescheduling (default=true)"), 66 cl::init(true), cl::Hidden); 67 68 namespace { 69 class TwoAddressInstructionPass : public MachineFunctionPass { 70 MachineFunction *MF; 71 const TargetInstrInfo *TII; 72 const TargetRegisterInfo *TRI; 73 const InstrItineraryData *InstrItins; 74 MachineRegisterInfo *MRI; 75 LiveVariables *LV; 76 LiveIntervals *LIS; 77 AliasAnalysis *AA; 78 CodeGenOpt::Level OptLevel; 79 80 // The current basic block being processed. 81 MachineBasicBlock *MBB; 82 83 // DistanceMap - Keep track the distance of a MI from the start of the 84 // current basic block. 85 DenseMap<MachineInstr*, unsigned> DistanceMap; 86 87 // Set of already processed instructions in the current block. 88 SmallPtrSet<MachineInstr*, 8> Processed; 89 90 // SrcRegMap - A map from virtual registers to physical registers which are 91 // likely targets to be coalesced to due to copies from physical registers to 92 // virtual registers. e.g. v1024 = move r0. 93 DenseMap<unsigned, unsigned> SrcRegMap; 94 95 // DstRegMap - A map from virtual registers to physical registers which are 96 // likely targets to be coalesced to due to copies to physical registers from 97 // virtual registers. e.g. r1 = move v1024. 98 DenseMap<unsigned, unsigned> DstRegMap; 99 100 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, 101 MachineBasicBlock::iterator OldPos); 102 103 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 104 105 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 106 MachineInstr *MI, unsigned Dist); 107 108 bool commuteInstruction(MachineBasicBlock::iterator &mi, 109 unsigned RegB, unsigned RegC, unsigned Dist); 110 111 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 112 113 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 114 MachineBasicBlock::iterator &nmi, 115 unsigned RegA, unsigned RegB, unsigned Dist); 116 117 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 118 119 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 120 MachineBasicBlock::iterator &nmi, 121 unsigned Reg); 122 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 123 MachineBasicBlock::iterator &nmi, 124 unsigned Reg); 125 126 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 127 MachineBasicBlock::iterator &nmi, 128 unsigned SrcIdx, unsigned DstIdx, 129 unsigned Dist, bool shouldOnlyCommute); 130 131 void scanUses(unsigned DstReg); 132 133 void processCopy(MachineInstr *MI); 134 135 typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList; 136 typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap; 137 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 138 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 139 void eliminateRegSequence(MachineBasicBlock::iterator&); 140 141 public: 142 static char ID; // Pass identification, replacement for typeid 143 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 144 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 145 } 146 147 void getAnalysisUsage(AnalysisUsage &AU) const override { 148 AU.setPreservesCFG(); 149 AU.addRequired<AliasAnalysis>(); 150 AU.addPreserved<LiveVariables>(); 151 AU.addPreserved<SlotIndexes>(); 152 AU.addPreserved<LiveIntervals>(); 153 AU.addPreservedID(MachineLoopInfoID); 154 AU.addPreservedID(MachineDominatorsID); 155 MachineFunctionPass::getAnalysisUsage(AU); 156 } 157 158 /// runOnMachineFunction - Pass entry point. 159 bool runOnMachineFunction(MachineFunction&) override; 160 }; 161 } // end anonymous namespace 162 163 char TwoAddressInstructionPass::ID = 0; 164 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction", 165 "Two-Address instruction pass", false, false) 166 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 167 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction", 168 "Two-Address instruction pass", false, false) 169 170 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 171 172 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 173 174 /// sink3AddrInstruction - A two-address instruction has been converted to a 175 /// three-address instruction to avoid clobbering a register. Try to sink it 176 /// past the instruction that would kill the above mentioned register to reduce 177 /// register pressure. 178 bool TwoAddressInstructionPass:: 179 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, 180 MachineBasicBlock::iterator OldPos) { 181 // FIXME: Shouldn't we be trying to do this before we three-addressify the 182 // instruction? After this transformation is done, we no longer need 183 // the instruction to be in three-address form. 184 185 // Check if it's safe to move this instruction. 186 bool SeenStore = true; // Be conservative. 187 if (!MI->isSafeToMove(TII, AA, SeenStore)) 188 return false; 189 190 unsigned DefReg = 0; 191 SmallSet<unsigned, 4> UseRegs; 192 193 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 194 const MachineOperand &MO = MI->getOperand(i); 195 if (!MO.isReg()) 196 continue; 197 unsigned MOReg = MO.getReg(); 198 if (!MOReg) 199 continue; 200 if (MO.isUse() && MOReg != SavedReg) 201 UseRegs.insert(MO.getReg()); 202 if (!MO.isDef()) 203 continue; 204 if (MO.isImplicit()) 205 // Don't try to move it if it implicitly defines a register. 206 return false; 207 if (DefReg) 208 // For now, don't move any instructions that define multiple registers. 209 return false; 210 DefReg = MO.getReg(); 211 } 212 213 // Find the instruction that kills SavedReg. 214 MachineInstr *KillMI = NULL; 215 if (LIS) { 216 LiveInterval &LI = LIS->getInterval(SavedReg); 217 assert(LI.end() != LI.begin() && 218 "Reg should not have empty live interval."); 219 220 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 221 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 222 if (I != LI.end() && I->start < MBBEndIdx) 223 return false; 224 225 --I; 226 KillMI = LIS->getInstructionFromIndex(I->end); 227 } 228 if (!KillMI) { 229 for (MachineRegisterInfo::use_nodbg_iterator 230 UI = MRI->use_nodbg_begin(SavedReg), 231 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 232 MachineOperand &UseMO = *UI; 233 if (!UseMO.isKill()) 234 continue; 235 KillMI = UseMO.getParent(); 236 break; 237 } 238 } 239 240 // If we find the instruction that kills SavedReg, and it is in an 241 // appropriate location, we can try to sink the current instruction 242 // past it. 243 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 244 KillMI == OldPos || KillMI->isTerminator()) 245 return false; 246 247 // If any of the definitions are used by another instruction between the 248 // position and the kill use, then it's not safe to sink it. 249 // 250 // FIXME: This can be sped up if there is an easy way to query whether an 251 // instruction is before or after another instruction. Then we can use 252 // MachineRegisterInfo def / use instead. 253 MachineOperand *KillMO = NULL; 254 MachineBasicBlock::iterator KillPos = KillMI; 255 ++KillPos; 256 257 unsigned NumVisited = 0; 258 for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) { 259 MachineInstr *OtherMI = I; 260 // DBG_VALUE cannot be counted against the limit. 261 if (OtherMI->isDebugValue()) 262 continue; 263 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 264 return false; 265 ++NumVisited; 266 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 267 MachineOperand &MO = OtherMI->getOperand(i); 268 if (!MO.isReg()) 269 continue; 270 unsigned MOReg = MO.getReg(); 271 if (!MOReg) 272 continue; 273 if (DefReg == MOReg) 274 return false; 275 276 if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) { 277 if (OtherMI == KillMI && MOReg == SavedReg) 278 // Save the operand that kills the register. We want to unset the kill 279 // marker if we can sink MI past it. 280 KillMO = &MO; 281 else if (UseRegs.count(MOReg)) 282 // One of the uses is killed before the destination. 283 return false; 284 } 285 } 286 } 287 assert(KillMO && "Didn't find kill"); 288 289 if (!LIS) { 290 // Update kill and LV information. 291 KillMO->setIsKill(false); 292 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 293 KillMO->setIsKill(true); 294 295 if (LV) 296 LV->replaceKillInstruction(SavedReg, KillMI, MI); 297 } 298 299 // Move instruction to its destination. 300 MBB->remove(MI); 301 MBB->insert(KillPos, MI); 302 303 if (LIS) 304 LIS->handleMove(MI); 305 306 ++Num3AddrSunk; 307 return true; 308 } 309 310 /// noUseAfterLastDef - Return true if there are no intervening uses between the 311 /// last instruction in the MBB that defines the specified register and the 312 /// two-address instruction which is being processed. It also returns the last 313 /// def location by reference 314 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 315 unsigned &LastDef) { 316 LastDef = 0; 317 unsigned LastUse = Dist; 318 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 319 MachineInstr *MI = MO.getParent(); 320 if (MI->getParent() != MBB || MI->isDebugValue()) 321 continue; 322 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 323 if (DI == DistanceMap.end()) 324 continue; 325 if (MO.isUse() && DI->second < LastUse) 326 LastUse = DI->second; 327 if (MO.isDef() && DI->second > LastDef) 328 LastDef = DI->second; 329 } 330 331 return !(LastUse > LastDef && LastUse < Dist); 332 } 333 334 /// isCopyToReg - Return true if the specified MI is a copy instruction or 335 /// a extract_subreg instruction. It also returns the source and destination 336 /// registers and whether they are physical registers by reference. 337 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 338 unsigned &SrcReg, unsigned &DstReg, 339 bool &IsSrcPhys, bool &IsDstPhys) { 340 SrcReg = 0; 341 DstReg = 0; 342 if (MI.isCopy()) { 343 DstReg = MI.getOperand(0).getReg(); 344 SrcReg = MI.getOperand(1).getReg(); 345 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 346 DstReg = MI.getOperand(0).getReg(); 347 SrcReg = MI.getOperand(2).getReg(); 348 } else 349 return false; 350 351 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 352 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 353 return true; 354 } 355 356 /// isPLainlyKilled - Test if the given register value, which is used by the 357 // given instruction, is killed by the given instruction. 358 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 359 LiveIntervals *LIS) { 360 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && 361 !LIS->isNotInMIMap(MI)) { 362 // FIXME: Sometimes tryInstructionTransform() will add instructions and 363 // test whether they can be folded before keeping them. In this case it 364 // sets a kill before recursively calling tryInstructionTransform() again. 365 // If there is no interval available, we assume that this instruction is 366 // one of those. A kill flag is manually inserted on the operand so the 367 // check below will handle it. 368 LiveInterval &LI = LIS->getInterval(Reg); 369 // This is to match the kill flag version where undefs don't have kill 370 // flags. 371 if (!LI.hasAtLeastOneValue()) 372 return false; 373 374 SlotIndex useIdx = LIS->getInstructionIndex(MI); 375 LiveInterval::const_iterator I = LI.find(useIdx); 376 assert(I != LI.end() && "Reg must be live-in to use."); 377 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 378 } 379 380 return MI->killsRegister(Reg); 381 } 382 383 /// isKilled - Test if the given register value, which is used by the given 384 /// instruction, is killed by the given instruction. This looks through 385 /// coalescable copies to see if the original value is potentially not killed. 386 /// 387 /// For example, in this code: 388 /// 389 /// %reg1034 = copy %reg1024 390 /// %reg1035 = copy %reg1025<kill> 391 /// %reg1036 = add %reg1034<kill>, %reg1035<kill> 392 /// 393 /// %reg1034 is not considered to be killed, since it is copied from a 394 /// register which is not killed. Treating it as not killed lets the 395 /// normal heuristics commute the (two-address) add, which lets 396 /// coalescing eliminate the extra copy. 397 /// 398 /// If allowFalsePositives is true then likely kills are treated as kills even 399 /// if it can't be proven that they are kills. 400 static bool isKilled(MachineInstr &MI, unsigned Reg, 401 const MachineRegisterInfo *MRI, 402 const TargetInstrInfo *TII, 403 LiveIntervals *LIS, 404 bool allowFalsePositives) { 405 MachineInstr *DefMI = &MI; 406 for (;;) { 407 // All uses of physical registers are likely to be kills. 408 if (TargetRegisterInfo::isPhysicalRegister(Reg) && 409 (allowFalsePositives || MRI->hasOneUse(Reg))) 410 return true; 411 if (!isPlainlyKilled(DefMI, Reg, LIS)) 412 return false; 413 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 414 return true; 415 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 416 // If there are multiple defs, we can't do a simple analysis, so just 417 // go with what the kill flag says. 418 if (std::next(Begin) != MRI->def_end()) 419 return true; 420 DefMI = Begin->getParent(); 421 bool IsSrcPhys, IsDstPhys; 422 unsigned SrcReg, DstReg; 423 // If the def is something other than a copy, then it isn't going to 424 // be coalesced, so follow the kill flag. 425 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 426 return true; 427 Reg = SrcReg; 428 } 429 } 430 431 /// isTwoAddrUse - Return true if the specified MI uses the specified register 432 /// as a two-address use. If so, return the destination register by reference. 433 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 434 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 435 const MachineOperand &MO = MI.getOperand(i); 436 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 437 continue; 438 unsigned ti; 439 if (MI.isRegTiedToDefOperand(i, &ti)) { 440 DstReg = MI.getOperand(ti).getReg(); 441 return true; 442 } 443 } 444 return false; 445 } 446 447 /// findOnlyInterestingUse - Given a register, if has a single in-basic block 448 /// use, return the use instruction if it's a copy or a two-address use. 449 static 450 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 451 MachineRegisterInfo *MRI, 452 const TargetInstrInfo *TII, 453 bool &IsCopy, 454 unsigned &DstReg, bool &IsDstPhys) { 455 if (!MRI->hasOneNonDBGUse(Reg)) 456 // None or more than one use. 457 return 0; 458 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 459 if (UseMI.getParent() != MBB) 460 return 0; 461 unsigned SrcReg; 462 bool IsSrcPhys; 463 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 464 IsCopy = true; 465 return &UseMI; 466 } 467 IsDstPhys = false; 468 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 469 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 470 return &UseMI; 471 } 472 return 0; 473 } 474 475 /// getMappedReg - Return the physical register the specified virtual register 476 /// might be mapped to. 477 static unsigned 478 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 479 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 480 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 481 if (SI == RegMap.end()) 482 return 0; 483 Reg = SI->second; 484 } 485 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 486 return Reg; 487 return 0; 488 } 489 490 /// regsAreCompatible - Return true if the two registers are equal or aliased. 491 /// 492 static bool 493 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 494 if (RegA == RegB) 495 return true; 496 if (!RegA || !RegB) 497 return false; 498 return TRI->regsOverlap(RegA, RegB); 499 } 500 501 502 /// isProfitableToCommute - Return true if it's potentially profitable to commute 503 /// the two-address instruction that's being processed. 504 bool 505 TwoAddressInstructionPass:: 506 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 507 MachineInstr *MI, unsigned Dist) { 508 if (OptLevel == CodeGenOpt::None) 509 return false; 510 511 // Determine if it's profitable to commute this two address instruction. In 512 // general, we want no uses between this instruction and the definition of 513 // the two-address register. 514 // e.g. 515 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 516 // %reg1029<def> = MOV8rr %reg1028 517 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 518 // insert => %reg1030<def> = MOV8rr %reg1028 519 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 520 // In this case, it might not be possible to coalesce the second MOV8rr 521 // instruction if the first one is coalesced. So it would be profitable to 522 // commute it: 523 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 524 // %reg1029<def> = MOV8rr %reg1028 525 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 526 // insert => %reg1030<def> = MOV8rr %reg1029 527 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 528 529 if (!isPlainlyKilled(MI, regC, LIS)) 530 return false; 531 532 // Ok, we have something like: 533 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 534 // let's see if it's worth commuting it. 535 536 // Look for situations like this: 537 // %reg1024<def> = MOV r1 538 // %reg1025<def> = MOV r0 539 // %reg1026<def> = ADD %reg1024, %reg1025 540 // r0 = MOV %reg1026 541 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 542 unsigned ToRegA = getMappedReg(regA, DstRegMap); 543 if (ToRegA) { 544 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 545 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 546 bool BComp = !FromRegB || regsAreCompatible(FromRegB, ToRegA, TRI); 547 bool CComp = !FromRegC || regsAreCompatible(FromRegC, ToRegA, TRI); 548 if (BComp != CComp) 549 return !BComp && CComp; 550 } 551 552 // If there is a use of regC between its last def (could be livein) and this 553 // instruction, then bail. 554 unsigned LastDefC = 0; 555 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 556 return false; 557 558 // If there is a use of regB between its last def (could be livein) and this 559 // instruction, then go ahead and make this transformation. 560 unsigned LastDefB = 0; 561 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 562 return true; 563 564 // Since there are no intervening uses for both registers, then commute 565 // if the def of regC is closer. Its live interval is shorter. 566 return LastDefB && LastDefC && LastDefC > LastDefB; 567 } 568 569 /// commuteInstruction - Commute a two-address instruction and update the basic 570 /// block, distance map, and live variables if needed. Return true if it is 571 /// successful. 572 bool TwoAddressInstructionPass:: 573 commuteInstruction(MachineBasicBlock::iterator &mi, 574 unsigned RegB, unsigned RegC, unsigned Dist) { 575 MachineInstr *MI = mi; 576 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 577 MachineInstr *NewMI = TII->commuteInstruction(MI); 578 579 if (NewMI == 0) { 580 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 581 return false; 582 } 583 584 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 585 assert(NewMI == MI && 586 "TargetInstrInfo::commuteInstruction() should not return a new " 587 "instruction unless it was requested."); 588 589 // Update source register map. 590 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 591 if (FromRegC) { 592 unsigned RegA = MI->getOperand(0).getReg(); 593 SrcRegMap[RegA] = FromRegC; 594 } 595 596 return true; 597 } 598 599 /// isProfitableToConv3Addr - Return true if it is profitable to convert the 600 /// given 2-address instruction to a 3-address one. 601 bool 602 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 603 // Look for situations like this: 604 // %reg1024<def> = MOV r1 605 // %reg1025<def> = MOV r0 606 // %reg1026<def> = ADD %reg1024, %reg1025 607 // r2 = MOV %reg1026 608 // Turn ADD into a 3-address instruction to avoid a copy. 609 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 610 if (!FromRegB) 611 return false; 612 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 613 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 614 } 615 616 /// convertInstTo3Addr - Convert the specified two-address instruction into a 617 /// three address one. Return true if this transformation was successful. 618 bool 619 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 620 MachineBasicBlock::iterator &nmi, 621 unsigned RegA, unsigned RegB, 622 unsigned Dist) { 623 // FIXME: Why does convertToThreeAddress() need an iterator reference? 624 MachineFunction::iterator MFI = MBB; 625 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV); 626 assert(MBB == MFI && "convertToThreeAddress changed iterator reference"); 627 if (!NewMI) 628 return false; 629 630 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 631 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 632 bool Sunk = false; 633 634 if (LIS) 635 LIS->ReplaceMachineInstrInMaps(mi, NewMI); 636 637 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 638 // FIXME: Temporary workaround. If the new instruction doesn't 639 // uses RegB, convertToThreeAddress must have created more 640 // then one instruction. 641 Sunk = sink3AddrInstruction(NewMI, RegB, mi); 642 643 MBB->erase(mi); // Nuke the old inst. 644 645 if (!Sunk) { 646 DistanceMap.insert(std::make_pair(NewMI, Dist)); 647 mi = NewMI; 648 nmi = std::next(mi); 649 } 650 651 // Update source and destination register maps. 652 SrcRegMap.erase(RegA); 653 DstRegMap.erase(RegB); 654 return true; 655 } 656 657 /// scanUses - Scan forward recursively for only uses, update maps if the use 658 /// is a copy or a two-address instruction. 659 void 660 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 661 SmallVector<unsigned, 4> VirtRegPairs; 662 bool IsDstPhys; 663 bool IsCopy = false; 664 unsigned NewReg = 0; 665 unsigned Reg = DstReg; 666 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 667 NewReg, IsDstPhys)) { 668 if (IsCopy && !Processed.insert(UseMI)) 669 break; 670 671 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 672 if (DI != DistanceMap.end()) 673 // Earlier in the same MBB.Reached via a back edge. 674 break; 675 676 if (IsDstPhys) { 677 VirtRegPairs.push_back(NewReg); 678 break; 679 } 680 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 681 if (!isNew) 682 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 683 VirtRegPairs.push_back(NewReg); 684 Reg = NewReg; 685 } 686 687 if (!VirtRegPairs.empty()) { 688 unsigned ToReg = VirtRegPairs.back(); 689 VirtRegPairs.pop_back(); 690 while (!VirtRegPairs.empty()) { 691 unsigned FromReg = VirtRegPairs.back(); 692 VirtRegPairs.pop_back(); 693 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 694 if (!isNew) 695 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 696 ToReg = FromReg; 697 } 698 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 699 if (!isNew) 700 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 701 } 702 } 703 704 /// processCopy - If the specified instruction is not yet processed, process it 705 /// if it's a copy. For a copy instruction, we find the physical registers the 706 /// source and destination registers might be mapped to. These are kept in 707 /// point-to maps used to determine future optimizations. e.g. 708 /// v1024 = mov r0 709 /// v1025 = mov r1 710 /// v1026 = add v1024, v1025 711 /// r1 = mov r1026 712 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 713 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 714 /// potentially joined with r1 on the output side. It's worthwhile to commute 715 /// 'add' to eliminate a copy. 716 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 717 if (Processed.count(MI)) 718 return; 719 720 bool IsSrcPhys, IsDstPhys; 721 unsigned SrcReg, DstReg; 722 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 723 return; 724 725 if (IsDstPhys && !IsSrcPhys) 726 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 727 else if (!IsDstPhys && IsSrcPhys) { 728 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 729 if (!isNew) 730 assert(SrcRegMap[DstReg] == SrcReg && 731 "Can't map to two src physical registers!"); 732 733 scanUses(DstReg); 734 } 735 736 Processed.insert(MI); 737 return; 738 } 739 740 /// rescheduleMIBelowKill - If there is one more local instruction that reads 741 /// 'Reg' and it kills 'Reg, consider moving the instruction below the kill 742 /// instruction in order to eliminate the need for the copy. 743 bool TwoAddressInstructionPass:: 744 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 745 MachineBasicBlock::iterator &nmi, 746 unsigned Reg) { 747 // Bail immediately if we don't have LV or LIS available. We use them to find 748 // kills efficiently. 749 if (!LV && !LIS) 750 return false; 751 752 MachineInstr *MI = &*mi; 753 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 754 if (DI == DistanceMap.end()) 755 // Must be created from unfolded load. Don't waste time trying this. 756 return false; 757 758 MachineInstr *KillMI = 0; 759 if (LIS) { 760 LiveInterval &LI = LIS->getInterval(Reg); 761 assert(LI.end() != LI.begin() && 762 "Reg should not have empty live interval."); 763 764 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 765 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 766 if (I != LI.end() && I->start < MBBEndIdx) 767 return false; 768 769 --I; 770 KillMI = LIS->getInstructionFromIndex(I->end); 771 } else { 772 KillMI = LV->getVarInfo(Reg).findKill(MBB); 773 } 774 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 775 // Don't mess with copies, they may be coalesced later. 776 return false; 777 778 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 779 KillMI->isBranch() || KillMI->isTerminator()) 780 // Don't move pass calls, etc. 781 return false; 782 783 unsigned DstReg; 784 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 785 return false; 786 787 bool SeenStore = true; 788 if (!MI->isSafeToMove(TII, AA, SeenStore)) 789 return false; 790 791 if (TII->getInstrLatency(InstrItins, MI) > 1) 792 // FIXME: Needs more sophisticated heuristics. 793 return false; 794 795 SmallSet<unsigned, 2> Uses; 796 SmallSet<unsigned, 2> Kills; 797 SmallSet<unsigned, 2> Defs; 798 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 799 const MachineOperand &MO = MI->getOperand(i); 800 if (!MO.isReg()) 801 continue; 802 unsigned MOReg = MO.getReg(); 803 if (!MOReg) 804 continue; 805 if (MO.isDef()) 806 Defs.insert(MOReg); 807 else { 808 Uses.insert(MOReg); 809 if (MOReg != Reg && (MO.isKill() || 810 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 811 Kills.insert(MOReg); 812 } 813 } 814 815 // Move the copies connected to MI down as well. 816 MachineBasicBlock::iterator Begin = MI; 817 MachineBasicBlock::iterator AfterMI = std::next(Begin); 818 819 MachineBasicBlock::iterator End = AfterMI; 820 while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) { 821 Defs.insert(End->getOperand(0).getReg()); 822 ++End; 823 } 824 825 // Check if the reschedule will not break depedencies. 826 unsigned NumVisited = 0; 827 MachineBasicBlock::iterator KillPos = KillMI; 828 ++KillPos; 829 for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) { 830 MachineInstr *OtherMI = I; 831 // DBG_VALUE cannot be counted against the limit. 832 if (OtherMI->isDebugValue()) 833 continue; 834 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 835 return false; 836 ++NumVisited; 837 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 838 OtherMI->isBranch() || OtherMI->isTerminator()) 839 // Don't move pass calls, etc. 840 return false; 841 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 842 const MachineOperand &MO = OtherMI->getOperand(i); 843 if (!MO.isReg()) 844 continue; 845 unsigned MOReg = MO.getReg(); 846 if (!MOReg) 847 continue; 848 if (MO.isDef()) { 849 if (Uses.count(MOReg)) 850 // Physical register use would be clobbered. 851 return false; 852 if (!MO.isDead() && Defs.count(MOReg)) 853 // May clobber a physical register def. 854 // FIXME: This may be too conservative. It's ok if the instruction 855 // is sunken completely below the use. 856 return false; 857 } else { 858 if (Defs.count(MOReg)) 859 return false; 860 bool isKill = MO.isKill() || 861 (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)); 862 if (MOReg != Reg && 863 ((isKill && Uses.count(MOReg)) || Kills.count(MOReg))) 864 // Don't want to extend other live ranges and update kills. 865 return false; 866 if (MOReg == Reg && !isKill) 867 // We can't schedule across a use of the register in question. 868 return false; 869 // Ensure that if this is register in question, its the kill we expect. 870 assert((MOReg != Reg || OtherMI == KillMI) && 871 "Found multiple kills of a register in a basic block"); 872 } 873 } 874 } 875 876 // Move debug info as well. 877 while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue()) 878 --Begin; 879 880 nmi = End; 881 MachineBasicBlock::iterator InsertPos = KillPos; 882 if (LIS) { 883 // We have to move the copies first so that the MBB is still well-formed 884 // when calling handleMove(). 885 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 886 MachineInstr *CopyMI = MBBI; 887 ++MBBI; 888 MBB->splice(InsertPos, MBB, CopyMI); 889 LIS->handleMove(CopyMI); 890 InsertPos = CopyMI; 891 } 892 End = std::next(MachineBasicBlock::iterator(MI)); 893 } 894 895 // Copies following MI may have been moved as well. 896 MBB->splice(InsertPos, MBB, Begin, End); 897 DistanceMap.erase(DI); 898 899 // Update live variables 900 if (LIS) { 901 LIS->handleMove(MI); 902 } else { 903 LV->removeVirtualRegisterKilled(Reg, KillMI); 904 LV->addVirtualRegisterKilled(Reg, MI); 905 } 906 907 DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 908 return true; 909 } 910 911 /// isDefTooClose - Return true if the re-scheduling will put the given 912 /// instruction too close to the defs of its register dependencies. 913 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 914 MachineInstr *MI) { 915 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 916 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 917 continue; 918 if (&DefMI == MI) 919 return true; // MI is defining something KillMI uses 920 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 921 if (DDI == DistanceMap.end()) 922 return true; // Below MI 923 unsigned DefDist = DDI->second; 924 assert(Dist > DefDist && "Visited def already?"); 925 if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist)) 926 return true; 927 } 928 return false; 929 } 930 931 /// rescheduleKillAboveMI - If there is one more local instruction that reads 932 /// 'Reg' and it kills 'Reg, consider moving the kill instruction above the 933 /// current two-address instruction in order to eliminate the need for the 934 /// copy. 935 bool TwoAddressInstructionPass:: 936 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 937 MachineBasicBlock::iterator &nmi, 938 unsigned Reg) { 939 // Bail immediately if we don't have LV or LIS available. We use them to find 940 // kills efficiently. 941 if (!LV && !LIS) 942 return false; 943 944 MachineInstr *MI = &*mi; 945 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 946 if (DI == DistanceMap.end()) 947 // Must be created from unfolded load. Don't waste time trying this. 948 return false; 949 950 MachineInstr *KillMI = 0; 951 if (LIS) { 952 LiveInterval &LI = LIS->getInterval(Reg); 953 assert(LI.end() != LI.begin() && 954 "Reg should not have empty live interval."); 955 956 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 957 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 958 if (I != LI.end() && I->start < MBBEndIdx) 959 return false; 960 961 --I; 962 KillMI = LIS->getInstructionFromIndex(I->end); 963 } else { 964 KillMI = LV->getVarInfo(Reg).findKill(MBB); 965 } 966 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 967 // Don't mess with copies, they may be coalesced later. 968 return false; 969 970 unsigned DstReg; 971 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 972 return false; 973 974 bool SeenStore = true; 975 if (!KillMI->isSafeToMove(TII, AA, SeenStore)) 976 return false; 977 978 SmallSet<unsigned, 2> Uses; 979 SmallSet<unsigned, 2> Kills; 980 SmallSet<unsigned, 2> Defs; 981 SmallSet<unsigned, 2> LiveDefs; 982 for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) { 983 const MachineOperand &MO = KillMI->getOperand(i); 984 if (!MO.isReg()) 985 continue; 986 unsigned MOReg = MO.getReg(); 987 if (MO.isUse()) { 988 if (!MOReg) 989 continue; 990 if (isDefTooClose(MOReg, DI->second, MI)) 991 return false; 992 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 993 if (MOReg == Reg && !isKill) 994 return false; 995 Uses.insert(MOReg); 996 if (isKill && MOReg != Reg) 997 Kills.insert(MOReg); 998 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { 999 Defs.insert(MOReg); 1000 if (!MO.isDead()) 1001 LiveDefs.insert(MOReg); 1002 } 1003 } 1004 1005 // Check if the reschedule will not break depedencies. 1006 unsigned NumVisited = 0; 1007 MachineBasicBlock::iterator KillPos = KillMI; 1008 for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) { 1009 MachineInstr *OtherMI = I; 1010 // DBG_VALUE cannot be counted against the limit. 1011 if (OtherMI->isDebugValue()) 1012 continue; 1013 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1014 return false; 1015 ++NumVisited; 1016 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 1017 OtherMI->isBranch() || OtherMI->isTerminator()) 1018 // Don't move pass calls, etc. 1019 return false; 1020 SmallVector<unsigned, 2> OtherDefs; 1021 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 1022 const MachineOperand &MO = OtherMI->getOperand(i); 1023 if (!MO.isReg()) 1024 continue; 1025 unsigned MOReg = MO.getReg(); 1026 if (!MOReg) 1027 continue; 1028 if (MO.isUse()) { 1029 if (Defs.count(MOReg)) 1030 // Moving KillMI can clobber the physical register if the def has 1031 // not been seen. 1032 return false; 1033 if (Kills.count(MOReg)) 1034 // Don't want to extend other live ranges and update kills. 1035 return false; 1036 if (OtherMI != MI && MOReg == Reg && 1037 !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)))) 1038 // We can't schedule across a use of the register in question. 1039 return false; 1040 } else { 1041 OtherDefs.push_back(MOReg); 1042 } 1043 } 1044 1045 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1046 unsigned MOReg = OtherDefs[i]; 1047 if (Uses.count(MOReg)) 1048 return false; 1049 if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 1050 LiveDefs.count(MOReg)) 1051 return false; 1052 // Physical register def is seen. 1053 Defs.erase(MOReg); 1054 } 1055 } 1056 1057 // Move the old kill above MI, don't forget to move debug info as well. 1058 MachineBasicBlock::iterator InsertPos = mi; 1059 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue()) 1060 --InsertPos; 1061 MachineBasicBlock::iterator From = KillMI; 1062 MachineBasicBlock::iterator To = std::next(From); 1063 while (std::prev(From)->isDebugValue()) 1064 --From; 1065 MBB->splice(InsertPos, MBB, From, To); 1066 1067 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1068 DistanceMap.erase(DI); 1069 1070 // Update live variables 1071 if (LIS) { 1072 LIS->handleMove(KillMI); 1073 } else { 1074 LV->removeVirtualRegisterKilled(Reg, KillMI); 1075 LV->addVirtualRegisterKilled(Reg, MI); 1076 } 1077 1078 DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1079 return true; 1080 } 1081 1082 /// tryInstructionTransform - For the case where an instruction has a single 1083 /// pair of tied register operands, attempt some transformations that may 1084 /// either eliminate the tied operands or improve the opportunities for 1085 /// coalescing away the register copy. Returns true if no copy needs to be 1086 /// inserted to untie mi's operands (either because they were untied, or 1087 /// because mi was rescheduled, and will be visited again later). If the 1088 /// shouldOnlyCommute flag is true, only instruction commutation is attempted. 1089 bool TwoAddressInstructionPass:: 1090 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1091 MachineBasicBlock::iterator &nmi, 1092 unsigned SrcIdx, unsigned DstIdx, 1093 unsigned Dist, bool shouldOnlyCommute) { 1094 if (OptLevel == CodeGenOpt::None) 1095 return false; 1096 1097 MachineInstr &MI = *mi; 1098 unsigned regA = MI.getOperand(DstIdx).getReg(); 1099 unsigned regB = MI.getOperand(SrcIdx).getReg(); 1100 1101 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1102 "cannot make instruction into two-address form"); 1103 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1104 1105 if (TargetRegisterInfo::isVirtualRegister(regA)) 1106 scanUses(regA); 1107 1108 // Check if it is profitable to commute the operands. 1109 unsigned SrcOp1, SrcOp2; 1110 unsigned regC = 0; 1111 unsigned regCIdx = ~0U; 1112 bool TryCommute = false; 1113 bool AggressiveCommute = false; 1114 if (MI.isCommutable() && MI.getNumOperands() >= 3 && 1115 TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) { 1116 if (SrcIdx == SrcOp1) 1117 regCIdx = SrcOp2; 1118 else if (SrcIdx == SrcOp2) 1119 regCIdx = SrcOp1; 1120 1121 if (regCIdx != ~0U) { 1122 regC = MI.getOperand(regCIdx).getReg(); 1123 if (!regBKilled && isKilled(MI, regC, MRI, TII, LIS, false)) 1124 // If C dies but B does not, swap the B and C operands. 1125 // This makes the live ranges of A and C joinable. 1126 TryCommute = true; 1127 else if (isProfitableToCommute(regA, regB, regC, &MI, Dist)) { 1128 TryCommute = true; 1129 AggressiveCommute = true; 1130 } 1131 } 1132 } 1133 1134 // If it's profitable to commute, try to do so. 1135 if (TryCommute && commuteInstruction(mi, regB, regC, Dist)) { 1136 ++NumCommuted; 1137 if (AggressiveCommute) 1138 ++NumAggrCommuted; 1139 return false; 1140 } 1141 1142 if (shouldOnlyCommute) 1143 return false; 1144 1145 // If there is one more use of regB later in the same MBB, consider 1146 // re-schedule this MI below it. 1147 if (EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1148 ++NumReSchedDowns; 1149 return true; 1150 } 1151 1152 if (MI.isConvertibleTo3Addr()) { 1153 // This instruction is potentially convertible to a true 1154 // three-address instruction. Check if it is profitable. 1155 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1156 // Try to convert it. 1157 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1158 ++NumConvertedTo3Addr; 1159 return true; // Done with this instruction. 1160 } 1161 } 1162 } 1163 1164 // If there is one more use of regB later in the same MBB, consider 1165 // re-schedule it before this MI if it's legal. 1166 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1167 ++NumReSchedUps; 1168 return true; 1169 } 1170 1171 // If this is an instruction with a load folded into it, try unfolding 1172 // the load, e.g. avoid this: 1173 // movq %rdx, %rcx 1174 // addq (%rax), %rcx 1175 // in favor of this: 1176 // movq (%rax), %rcx 1177 // addq %rdx, %rcx 1178 // because it's preferable to schedule a load than a register copy. 1179 if (MI.mayLoad() && !regBKilled) { 1180 // Determine if a load can be unfolded. 1181 unsigned LoadRegIndex; 1182 unsigned NewOpc = 1183 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1184 /*UnfoldLoad=*/true, 1185 /*UnfoldStore=*/false, 1186 &LoadRegIndex); 1187 if (NewOpc != 0) { 1188 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1189 if (UnfoldMCID.getNumDefs() == 1) { 1190 // Unfold the load. 1191 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1192 const TargetRegisterClass *RC = 1193 TRI->getAllocatableClass( 1194 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1195 unsigned Reg = MRI->createVirtualRegister(RC); 1196 SmallVector<MachineInstr *, 2> NewMIs; 1197 if (!TII->unfoldMemoryOperand(*MF, &MI, Reg, 1198 /*UnfoldLoad=*/true,/*UnfoldStore=*/false, 1199 NewMIs)) { 1200 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1201 return false; 1202 } 1203 assert(NewMIs.size() == 2 && 1204 "Unfolded a load into multiple instructions!"); 1205 // The load was previously folded, so this is the only use. 1206 NewMIs[1]->addRegisterKilled(Reg, TRI); 1207 1208 // Tentatively insert the instructions into the block so that they 1209 // look "normal" to the transformation logic. 1210 MBB->insert(mi, NewMIs[0]); 1211 MBB->insert(mi, NewMIs[1]); 1212 1213 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1214 << "2addr: NEW INST: " << *NewMIs[1]); 1215 1216 // Transform the instruction, now that it no longer has a load. 1217 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1218 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1219 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1220 bool TransformResult = 1221 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1222 (void)TransformResult; 1223 assert(!TransformResult && 1224 "tryInstructionTransform() should return false."); 1225 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1226 // Success, or at least we made an improvement. Keep the unfolded 1227 // instructions and discard the original. 1228 if (LV) { 1229 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1230 MachineOperand &MO = MI.getOperand(i); 1231 if (MO.isReg() && 1232 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 1233 if (MO.isUse()) { 1234 if (MO.isKill()) { 1235 if (NewMIs[0]->killsRegister(MO.getReg())) 1236 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]); 1237 else { 1238 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1239 "Kill missing after load unfold!"); 1240 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]); 1241 } 1242 } 1243 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) { 1244 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1245 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]); 1246 else { 1247 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1248 "Dead flag missing after load unfold!"); 1249 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]); 1250 } 1251 } 1252 } 1253 } 1254 LV->addVirtualRegisterKilled(Reg, NewMIs[1]); 1255 } 1256 1257 SmallVector<unsigned, 4> OrigRegs; 1258 if (LIS) { 1259 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(), 1260 MOE = MI.operands_end(); MOI != MOE; ++MOI) { 1261 if (MOI->isReg()) 1262 OrigRegs.push_back(MOI->getReg()); 1263 } 1264 } 1265 1266 MI.eraseFromParent(); 1267 1268 // Update LiveIntervals. 1269 if (LIS) { 1270 MachineBasicBlock::iterator Begin(NewMIs[0]); 1271 MachineBasicBlock::iterator End(NewMIs[1]); 1272 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1273 } 1274 1275 mi = NewMIs[1]; 1276 } else { 1277 // Transforming didn't eliminate the tie and didn't lead to an 1278 // improvement. Clean up the unfolded instructions and keep the 1279 // original. 1280 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1281 NewMIs[0]->eraseFromParent(); 1282 NewMIs[1]->eraseFromParent(); 1283 } 1284 } 1285 } 1286 } 1287 1288 return false; 1289 } 1290 1291 // Collect tied operands of MI that need to be handled. 1292 // Rewrite trivial cases immediately. 1293 // Return true if any tied operands where found, including the trivial ones. 1294 bool TwoAddressInstructionPass:: 1295 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1296 const MCInstrDesc &MCID = MI->getDesc(); 1297 bool AnyOps = false; 1298 unsigned NumOps = MI->getNumOperands(); 1299 1300 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1301 unsigned DstIdx = 0; 1302 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1303 continue; 1304 AnyOps = true; 1305 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1306 MachineOperand &DstMO = MI->getOperand(DstIdx); 1307 unsigned SrcReg = SrcMO.getReg(); 1308 unsigned DstReg = DstMO.getReg(); 1309 // Tied constraint already satisfied? 1310 if (SrcReg == DstReg) 1311 continue; 1312 1313 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1314 1315 // Deal with <undef> uses immediately - simply rewrite the src operand. 1316 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1317 // Constrain the DstReg register class if required. 1318 if (TargetRegisterInfo::isVirtualRegister(DstReg)) 1319 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1320 TRI, *MF)) 1321 MRI->constrainRegClass(DstReg, RC); 1322 SrcMO.setReg(DstReg); 1323 SrcMO.setSubReg(0); 1324 DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1325 continue; 1326 } 1327 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1328 } 1329 return AnyOps; 1330 } 1331 1332 // Process a list of tied MI operands that all use the same source register. 1333 // The tied pairs are of the form (SrcIdx, DstIdx). 1334 void 1335 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1336 TiedPairList &TiedPairs, 1337 unsigned &Dist) { 1338 bool IsEarlyClobber = false; 1339 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1340 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1341 IsEarlyClobber |= DstMO.isEarlyClobber(); 1342 } 1343 1344 bool RemovedKillFlag = false; 1345 bool AllUsesCopied = true; 1346 unsigned LastCopiedReg = 0; 1347 SlotIndex LastCopyIdx; 1348 unsigned RegB = 0; 1349 unsigned SubRegB = 0; 1350 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1351 unsigned SrcIdx = TiedPairs[tpi].first; 1352 unsigned DstIdx = TiedPairs[tpi].second; 1353 1354 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1355 unsigned RegA = DstMO.getReg(); 1356 1357 // Grab RegB from the instruction because it may have changed if the 1358 // instruction was commuted. 1359 RegB = MI->getOperand(SrcIdx).getReg(); 1360 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1361 1362 if (RegA == RegB) { 1363 // The register is tied to multiple destinations (or else we would 1364 // not have continued this far), but this use of the register 1365 // already matches the tied destination. Leave it. 1366 AllUsesCopied = false; 1367 continue; 1368 } 1369 LastCopiedReg = RegA; 1370 1371 assert(TargetRegisterInfo::isVirtualRegister(RegB) && 1372 "cannot make instruction into two-address form"); 1373 1374 #ifndef NDEBUG 1375 // First, verify that we don't have a use of "a" in the instruction 1376 // (a = b + a for example) because our transformation will not 1377 // work. This should never occur because we are in SSA form. 1378 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1379 assert(i == DstIdx || 1380 !MI->getOperand(i).isReg() || 1381 MI->getOperand(i).getReg() != RegA); 1382 #endif 1383 1384 // Emit a copy. 1385 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1386 TII->get(TargetOpcode::COPY), RegA); 1387 // If this operand is folding a truncation, the truncation now moves to the 1388 // copy so that the register classes remain valid for the operands. 1389 MIB.addReg(RegB, 0, SubRegB); 1390 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1391 if (SubRegB) { 1392 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1393 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1394 SubRegB) && 1395 "tied subregister must be a truncation"); 1396 // The superreg class will not be used to constrain the subreg class. 1397 RC = 0; 1398 } 1399 else { 1400 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1401 && "tied subregister must be a truncation"); 1402 } 1403 } 1404 1405 // Update DistanceMap. 1406 MachineBasicBlock::iterator PrevMI = MI; 1407 --PrevMI; 1408 DistanceMap.insert(std::make_pair(PrevMI, Dist)); 1409 DistanceMap[MI] = ++Dist; 1410 1411 if (LIS) { 1412 LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot(); 1413 1414 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1415 LiveInterval &LI = LIS->getInterval(RegA); 1416 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1417 SlotIndex endIdx = 1418 LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber); 1419 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1420 } 1421 } 1422 1423 DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1424 1425 MachineOperand &MO = MI->getOperand(SrcIdx); 1426 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1427 "inconsistent operand info for 2-reg pass"); 1428 if (MO.isKill()) { 1429 MO.setIsKill(false); 1430 RemovedKillFlag = true; 1431 } 1432 1433 // Make sure regA is a legal regclass for the SrcIdx operand. 1434 if (TargetRegisterInfo::isVirtualRegister(RegA) && 1435 TargetRegisterInfo::isVirtualRegister(RegB)) 1436 MRI->constrainRegClass(RegA, RC); 1437 MO.setReg(RegA); 1438 // The getMatchingSuper asserts guarantee that the register class projected 1439 // by SubRegB is compatible with RegA with no subregister. So regardless of 1440 // whether the dest oper writes a subreg, the source oper should not. 1441 MO.setSubReg(0); 1442 1443 // Propagate SrcRegMap. 1444 SrcRegMap[RegA] = RegB; 1445 } 1446 1447 1448 if (AllUsesCopied) { 1449 if (!IsEarlyClobber) { 1450 // Replace other (un-tied) uses of regB with LastCopiedReg. 1451 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1452 MachineOperand &MO = MI->getOperand(i); 1453 if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB && 1454 MO.isUse()) { 1455 if (MO.isKill()) { 1456 MO.setIsKill(false); 1457 RemovedKillFlag = true; 1458 } 1459 MO.setReg(LastCopiedReg); 1460 MO.setSubReg(0); 1461 } 1462 } 1463 } 1464 1465 // Update live variables for regB. 1466 if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) { 1467 MachineBasicBlock::iterator PrevMI = MI; 1468 --PrevMI; 1469 LV->addVirtualRegisterKilled(RegB, PrevMI); 1470 } 1471 1472 // Update LiveIntervals. 1473 if (LIS) { 1474 LiveInterval &LI = LIS->getInterval(RegB); 1475 SlotIndex MIIdx = LIS->getInstructionIndex(MI); 1476 LiveInterval::const_iterator I = LI.find(MIIdx); 1477 assert(I != LI.end() && "RegB must be live-in to use."); 1478 1479 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1480 if (I->end == UseIdx) 1481 LI.removeSegment(LastCopyIdx, UseIdx); 1482 } 1483 1484 } else if (RemovedKillFlag) { 1485 // Some tied uses of regB matched their destination registers, so 1486 // regB is still used in this instruction, but a kill flag was 1487 // removed from a different tied use of regB, so now we need to add 1488 // a kill flag to one of the remaining uses of regB. 1489 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1490 MachineOperand &MO = MI->getOperand(i); 1491 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1492 MO.setIsKill(true); 1493 break; 1494 } 1495 } 1496 } 1497 } 1498 1499 /// runOnMachineFunction - Reduce two-address instructions to two operands. 1500 /// 1501 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1502 MF = &Func; 1503 const TargetMachine &TM = MF->getTarget(); 1504 MRI = &MF->getRegInfo(); 1505 TII = TM.getInstrInfo(); 1506 TRI = TM.getRegisterInfo(); 1507 InstrItins = TM.getInstrItineraryData(); 1508 LV = getAnalysisIfAvailable<LiveVariables>(); 1509 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1510 AA = &getAnalysis<AliasAnalysis>(); 1511 OptLevel = TM.getOptLevel(); 1512 1513 bool MadeChange = false; 1514 1515 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1516 DEBUG(dbgs() << "********** Function: " 1517 << MF->getName() << '\n'); 1518 1519 // This pass takes the function out of SSA form. 1520 MRI->leaveSSA(); 1521 1522 TiedOperandMap TiedOperands; 1523 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1524 MBBI != MBBE; ++MBBI) { 1525 MBB = MBBI; 1526 unsigned Dist = 0; 1527 DistanceMap.clear(); 1528 SrcRegMap.clear(); 1529 DstRegMap.clear(); 1530 Processed.clear(); 1531 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1532 mi != me; ) { 1533 MachineBasicBlock::iterator nmi = std::next(mi); 1534 if (mi->isDebugValue()) { 1535 mi = nmi; 1536 continue; 1537 } 1538 1539 // Expand REG_SEQUENCE instructions. This will position mi at the first 1540 // expanded instruction. 1541 if (mi->isRegSequence()) 1542 eliminateRegSequence(mi); 1543 1544 DistanceMap.insert(std::make_pair(mi, ++Dist)); 1545 1546 processCopy(&*mi); 1547 1548 // First scan through all the tied register uses in this instruction 1549 // and record a list of pairs of tied operands for each register. 1550 if (!collectTiedOperands(mi, TiedOperands)) { 1551 mi = nmi; 1552 continue; 1553 } 1554 1555 ++NumTwoAddressInstrs; 1556 MadeChange = true; 1557 DEBUG(dbgs() << '\t' << *mi); 1558 1559 // If the instruction has a single pair of tied operands, try some 1560 // transformations that may either eliminate the tied operands or 1561 // improve the opportunities for coalescing away the register copy. 1562 if (TiedOperands.size() == 1) { 1563 SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs 1564 = TiedOperands.begin()->second; 1565 if (TiedPairs.size() == 1) { 1566 unsigned SrcIdx = TiedPairs[0].first; 1567 unsigned DstIdx = TiedPairs[0].second; 1568 unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); 1569 unsigned DstReg = mi->getOperand(DstIdx).getReg(); 1570 if (SrcReg != DstReg && 1571 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1572 // The tied operands have been eliminated or shifted further down the 1573 // block to ease elimination. Continue processing with 'nmi'. 1574 TiedOperands.clear(); 1575 mi = nmi; 1576 continue; 1577 } 1578 } 1579 } 1580 1581 // Now iterate over the information collected above. 1582 for (TiedOperandMap::iterator OI = TiedOperands.begin(), 1583 OE = TiedOperands.end(); OI != OE; ++OI) { 1584 processTiedPairs(mi, OI->second, Dist); 1585 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1586 } 1587 1588 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1589 if (mi->isInsertSubreg()) { 1590 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1591 // To %reg:subidx = COPY %subreg 1592 unsigned SubIdx = mi->getOperand(3).getImm(); 1593 mi->RemoveOperand(3); 1594 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1595 mi->getOperand(0).setSubReg(SubIdx); 1596 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1597 mi->RemoveOperand(1); 1598 mi->setDesc(TII->get(TargetOpcode::COPY)); 1599 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1600 } 1601 1602 // Clear TiedOperands here instead of at the top of the loop 1603 // since most instructions do not have tied operands. 1604 TiedOperands.clear(); 1605 mi = nmi; 1606 } 1607 } 1608 1609 if (LIS) 1610 MF->verify(this, "After two-address instruction pass"); 1611 1612 return MadeChange; 1613 } 1614 1615 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1616 /// 1617 /// The instruction is turned into a sequence of sub-register copies: 1618 /// 1619 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1620 /// 1621 /// Becomes: 1622 /// 1623 /// %dst:ssub0<def,undef> = COPY %v1 1624 /// %dst:ssub1<def> = COPY %v2 1625 /// 1626 void TwoAddressInstructionPass:: 1627 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1628 MachineInstr *MI = MBBI; 1629 unsigned DstReg = MI->getOperand(0).getReg(); 1630 if (MI->getOperand(0).getSubReg() || 1631 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1632 !(MI->getNumOperands() & 1)) { 1633 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); 1634 llvm_unreachable(0); 1635 } 1636 1637 SmallVector<unsigned, 4> OrigRegs; 1638 if (LIS) { 1639 OrigRegs.push_back(MI->getOperand(0).getReg()); 1640 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) 1641 OrigRegs.push_back(MI->getOperand(i).getReg()); 1642 } 1643 1644 bool DefEmitted = false; 1645 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 1646 MachineOperand &UseMO = MI->getOperand(i); 1647 unsigned SrcReg = UseMO.getReg(); 1648 unsigned SubIdx = MI->getOperand(i+1).getImm(); 1649 // Nothing needs to be inserted for <undef> operands. 1650 if (UseMO.isUndef()) 1651 continue; 1652 1653 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1654 // might insert a COPY that uses SrcReg after is was killed. 1655 bool isKill = UseMO.isKill(); 1656 if (isKill) 1657 for (unsigned j = i + 2; j < e; j += 2) 1658 if (MI->getOperand(j).getReg() == SrcReg) { 1659 MI->getOperand(j).setIsKill(); 1660 UseMO.setIsKill(false); 1661 isKill = false; 1662 break; 1663 } 1664 1665 // Insert the sub-register copy. 1666 MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1667 TII->get(TargetOpcode::COPY)) 1668 .addReg(DstReg, RegState::Define, SubIdx) 1669 .addOperand(UseMO); 1670 1671 // The first def needs an <undef> flag because there is no live register 1672 // before it. 1673 if (!DefEmitted) { 1674 CopyMI->getOperand(0).setIsUndef(true); 1675 // Return an iterator pointing to the first inserted instr. 1676 MBBI = CopyMI; 1677 } 1678 DefEmitted = true; 1679 1680 // Update LiveVariables' kill info. 1681 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1682 LV->replaceKillInstruction(SrcReg, MI, CopyMI); 1683 1684 DEBUG(dbgs() << "Inserted: " << *CopyMI); 1685 } 1686 1687 MachineBasicBlock::iterator EndMBBI = 1688 std::next(MachineBasicBlock::iterator(MI)); 1689 1690 if (!DefEmitted) { 1691 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF"); 1692 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1693 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j) 1694 MI->RemoveOperand(j); 1695 } else { 1696 DEBUG(dbgs() << "Eliminated: " << *MI); 1697 MI->eraseFromParent(); 1698 } 1699 1700 // Udpate LiveIntervals. 1701 if (LIS) 1702 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1703 } 1704