1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #define DEBUG_TYPE "twoaddrinstr" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/Function.h" 33 #include "llvm/CodeGen/LiveVariables.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/Analysis/AliasAnalysis.h" 39 #include "llvm/MC/MCInstrItineraries.h" 40 #include "llvm/Target/TargetRegisterInfo.h" 41 #include "llvm/Target/TargetInstrInfo.h" 42 #include "llvm/Target/TargetMachine.h" 43 #include "llvm/Target/TargetOptions.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/ADT/BitVector.h" 47 #include "llvm/ADT/DenseMap.h" 48 #include "llvm/ADT/SmallSet.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/ADT/STLExtras.h" 51 using namespace llvm; 52 53 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 54 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 55 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 56 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 57 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 58 STATISTIC(NumReMats, "Number of instructions re-materialized"); 59 STATISTIC(NumDeletes, "Number of dead instructions deleted"); 60 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 61 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 62 63 namespace { 64 class TwoAddressInstructionPass : public MachineFunctionPass { 65 const TargetInstrInfo *TII; 66 const TargetRegisterInfo *TRI; 67 const InstrItineraryData *InstrItins; 68 MachineRegisterInfo *MRI; 69 LiveVariables *LV; 70 AliasAnalysis *AA; 71 CodeGenOpt::Level OptLevel; 72 73 // DistanceMap - Keep track the distance of a MI from the start of the 74 // current basic block. 75 DenseMap<MachineInstr*, unsigned> DistanceMap; 76 77 // SrcRegMap - A map from virtual registers to physical registers which 78 // are likely targets to be coalesced to due to copies from physical 79 // registers to virtual registers. e.g. v1024 = move r0. 80 DenseMap<unsigned, unsigned> SrcRegMap; 81 82 // DstRegMap - A map from virtual registers to physical registers which 83 // are likely targets to be coalesced to due to copies to physical 84 // registers from virtual registers. e.g. r1 = move v1024. 85 DenseMap<unsigned, unsigned> DstRegMap; 86 87 /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen 88 /// during the initial walk of the machine function. 89 SmallVector<MachineInstr*, 16> RegSequences; 90 91 bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI, 92 unsigned Reg, 93 MachineBasicBlock::iterator OldPos); 94 95 bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC, 96 MachineInstr *MI, MachineInstr *DefMI, 97 MachineBasicBlock *MBB, unsigned Loc); 98 99 bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist, 100 unsigned &LastDef); 101 102 MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB, 103 unsigned Dist); 104 105 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 106 MachineInstr *MI, MachineBasicBlock *MBB, 107 unsigned Dist); 108 109 bool CommuteInstruction(MachineBasicBlock::iterator &mi, 110 MachineFunction::iterator &mbbi, 111 unsigned RegB, unsigned RegC, unsigned Dist); 112 113 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 114 115 bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi, 116 MachineBasicBlock::iterator &nmi, 117 MachineFunction::iterator &mbbi, 118 unsigned RegA, unsigned RegB, unsigned Dist); 119 120 typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill; 121 bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills, 122 SmallVector<NewKill, 4> &NewKills, 123 MachineBasicBlock *MBB, unsigned Dist); 124 bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi, 125 MachineBasicBlock::iterator &nmi, 126 MachineFunction::iterator &mbbi, unsigned Dist); 127 128 bool isDefTooClose(unsigned Reg, unsigned Dist, 129 MachineInstr *MI, MachineBasicBlock *MBB); 130 131 bool RescheduleMIBelowKill(MachineBasicBlock *MBB, 132 MachineBasicBlock::iterator &mi, 133 MachineBasicBlock::iterator &nmi, 134 unsigned Reg); 135 bool RescheduleKillAboveMI(MachineBasicBlock *MBB, 136 MachineBasicBlock::iterator &mi, 137 MachineBasicBlock::iterator &nmi, 138 unsigned Reg); 139 140 bool TryInstructionTransform(MachineBasicBlock::iterator &mi, 141 MachineBasicBlock::iterator &nmi, 142 MachineFunction::iterator &mbbi, 143 unsigned SrcIdx, unsigned DstIdx, 144 unsigned Dist, 145 SmallPtrSet<MachineInstr*, 8> &Processed); 146 147 void ScanUses(unsigned DstReg, MachineBasicBlock *MBB, 148 SmallPtrSet<MachineInstr*, 8> &Processed); 149 150 void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB, 151 SmallPtrSet<MachineInstr*, 8> &Processed); 152 153 void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg); 154 155 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part 156 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as 157 /// sub-register references of the register defined by REG_SEQUENCE. 158 bool EliminateRegSequences(); 159 160 public: 161 static char ID; // Pass identification, replacement for typeid 162 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 163 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 164 } 165 166 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.setPreservesCFG(); 168 AU.addRequired<AliasAnalysis>(); 169 AU.addPreserved<LiveVariables>(); 170 AU.addPreservedID(MachineLoopInfoID); 171 AU.addPreservedID(MachineDominatorsID); 172 MachineFunctionPass::getAnalysisUsage(AU); 173 } 174 175 /// runOnMachineFunction - Pass entry point. 176 bool runOnMachineFunction(MachineFunction&); 177 }; 178 } 179 180 char TwoAddressInstructionPass::ID = 0; 181 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction", 182 "Two-Address instruction pass", false, false) 183 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 184 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction", 185 "Two-Address instruction pass", false, false) 186 187 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 188 189 /// Sink3AddrInstruction - A two-address instruction has been converted to a 190 /// three-address instruction to avoid clobbering a register. Try to sink it 191 /// past the instruction that would kill the above mentioned register to reduce 192 /// register pressure. 193 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB, 194 MachineInstr *MI, unsigned SavedReg, 195 MachineBasicBlock::iterator OldPos) { 196 // FIXME: Shouldn't we be trying to do this before we three-addressify the 197 // instruction? After this transformation is done, we no longer need 198 // the instruction to be in three-address form. 199 200 // Check if it's safe to move this instruction. 201 bool SeenStore = true; // Be conservative. 202 if (!MI->isSafeToMove(TII, AA, SeenStore)) 203 return false; 204 205 unsigned DefReg = 0; 206 SmallSet<unsigned, 4> UseRegs; 207 208 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 209 const MachineOperand &MO = MI->getOperand(i); 210 if (!MO.isReg()) 211 continue; 212 unsigned MOReg = MO.getReg(); 213 if (!MOReg) 214 continue; 215 if (MO.isUse() && MOReg != SavedReg) 216 UseRegs.insert(MO.getReg()); 217 if (!MO.isDef()) 218 continue; 219 if (MO.isImplicit()) 220 // Don't try to move it if it implicitly defines a register. 221 return false; 222 if (DefReg) 223 // For now, don't move any instructions that define multiple registers. 224 return false; 225 DefReg = MO.getReg(); 226 } 227 228 // Find the instruction that kills SavedReg. 229 MachineInstr *KillMI = NULL; 230 for (MachineRegisterInfo::use_nodbg_iterator 231 UI = MRI->use_nodbg_begin(SavedReg), 232 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 233 MachineOperand &UseMO = UI.getOperand(); 234 if (!UseMO.isKill()) 235 continue; 236 KillMI = UseMO.getParent(); 237 break; 238 } 239 240 // If we find the instruction that kills SavedReg, and it is in an 241 // appropriate location, we can try to sink the current instruction 242 // past it. 243 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 244 KillMI->isTerminator()) 245 return false; 246 247 // If any of the definitions are used by another instruction between the 248 // position and the kill use, then it's not safe to sink it. 249 // 250 // FIXME: This can be sped up if there is an easy way to query whether an 251 // instruction is before or after another instruction. Then we can use 252 // MachineRegisterInfo def / use instead. 253 MachineOperand *KillMO = NULL; 254 MachineBasicBlock::iterator KillPos = KillMI; 255 ++KillPos; 256 257 unsigned NumVisited = 0; 258 for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) { 259 MachineInstr *OtherMI = I; 260 // DBG_VALUE cannot be counted against the limit. 261 if (OtherMI->isDebugValue()) 262 continue; 263 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 264 return false; 265 ++NumVisited; 266 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 267 MachineOperand &MO = OtherMI->getOperand(i); 268 if (!MO.isReg()) 269 continue; 270 unsigned MOReg = MO.getReg(); 271 if (!MOReg) 272 continue; 273 if (DefReg == MOReg) 274 return false; 275 276 if (MO.isKill()) { 277 if (OtherMI == KillMI && MOReg == SavedReg) 278 // Save the operand that kills the register. We want to unset the kill 279 // marker if we can sink MI past it. 280 KillMO = &MO; 281 else if (UseRegs.count(MOReg)) 282 // One of the uses is killed before the destination. 283 return false; 284 } 285 } 286 } 287 288 // Update kill and LV information. 289 KillMO->setIsKill(false); 290 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 291 KillMO->setIsKill(true); 292 293 if (LV) 294 LV->replaceKillInstruction(SavedReg, KillMI, MI); 295 296 // Move instruction to its destination. 297 MBB->remove(MI); 298 MBB->insert(KillPos, MI); 299 300 ++Num3AddrSunk; 301 return true; 302 } 303 304 /// isTwoAddrUse - Return true if the specified MI is using the specified 305 /// register as a two-address operand. 306 static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) { 307 const MCInstrDesc &MCID = UseMI->getDesc(); 308 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 309 MachineOperand &MO = UseMI->getOperand(i); 310 if (MO.isReg() && MO.getReg() == Reg && 311 (MO.isDef() || UseMI->isRegTiedToDefOperand(i))) 312 // Earlier use is a two-address one. 313 return true; 314 } 315 return false; 316 } 317 318 /// isProfitableToReMat - Return true if the heuristics determines it is likely 319 /// to be profitable to re-materialize the definition of Reg rather than copy 320 /// the register. 321 bool 322 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg, 323 const TargetRegisterClass *RC, 324 MachineInstr *MI, MachineInstr *DefMI, 325 MachineBasicBlock *MBB, unsigned Loc) { 326 bool OtherUse = false; 327 for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg), 328 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 329 MachineOperand &UseMO = UI.getOperand(); 330 MachineInstr *UseMI = UseMO.getParent(); 331 MachineBasicBlock *UseMBB = UseMI->getParent(); 332 if (UseMBB == MBB) { 333 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 334 if (DI != DistanceMap.end() && DI->second == Loc) 335 continue; // Current use. 336 OtherUse = true; 337 // There is at least one other use in the MBB that will clobber the 338 // register. 339 if (isTwoAddrUse(UseMI, Reg)) 340 return true; 341 } 342 } 343 344 // If other uses in MBB are not two-address uses, then don't remat. 345 if (OtherUse) 346 return false; 347 348 // No other uses in the same block, remat if it's defined in the same 349 // block so it does not unnecessarily extend the live range. 350 return MBB == DefMI->getParent(); 351 } 352 353 /// NoUseAfterLastDef - Return true if there are no intervening uses between the 354 /// last instruction in the MBB that defines the specified register and the 355 /// two-address instruction which is being processed. It also returns the last 356 /// def location by reference 357 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg, 358 MachineBasicBlock *MBB, unsigned Dist, 359 unsigned &LastDef) { 360 LastDef = 0; 361 unsigned LastUse = Dist; 362 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg), 363 E = MRI->reg_end(); I != E; ++I) { 364 MachineOperand &MO = I.getOperand(); 365 MachineInstr *MI = MO.getParent(); 366 if (MI->getParent() != MBB || MI->isDebugValue()) 367 continue; 368 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 369 if (DI == DistanceMap.end()) 370 continue; 371 if (MO.isUse() && DI->second < LastUse) 372 LastUse = DI->second; 373 if (MO.isDef() && DI->second > LastDef) 374 LastDef = DI->second; 375 } 376 377 return !(LastUse > LastDef && LastUse < Dist); 378 } 379 380 MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg, 381 MachineBasicBlock *MBB, 382 unsigned Dist) { 383 unsigned LastUseDist = 0; 384 MachineInstr *LastUse = 0; 385 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg), 386 E = MRI->reg_end(); I != E; ++I) { 387 MachineOperand &MO = I.getOperand(); 388 MachineInstr *MI = MO.getParent(); 389 if (MI->getParent() != MBB || MI->isDebugValue()) 390 continue; 391 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 392 if (DI == DistanceMap.end()) 393 continue; 394 if (DI->second >= Dist) 395 continue; 396 397 if (MO.isUse() && DI->second > LastUseDist) { 398 LastUse = DI->first; 399 LastUseDist = DI->second; 400 } 401 } 402 return LastUse; 403 } 404 405 /// isCopyToReg - Return true if the specified MI is a copy instruction or 406 /// a extract_subreg instruction. It also returns the source and destination 407 /// registers and whether they are physical registers by reference. 408 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 409 unsigned &SrcReg, unsigned &DstReg, 410 bool &IsSrcPhys, bool &IsDstPhys) { 411 SrcReg = 0; 412 DstReg = 0; 413 if (MI.isCopy()) { 414 DstReg = MI.getOperand(0).getReg(); 415 SrcReg = MI.getOperand(1).getReg(); 416 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 417 DstReg = MI.getOperand(0).getReg(); 418 SrcReg = MI.getOperand(2).getReg(); 419 } else 420 return false; 421 422 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 423 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 424 return true; 425 } 426 427 /// isKilled - Test if the given register value, which is used by the given 428 /// instruction, is killed by the given instruction. This looks through 429 /// coalescable copies to see if the original value is potentially not killed. 430 /// 431 /// For example, in this code: 432 /// 433 /// %reg1034 = copy %reg1024 434 /// %reg1035 = copy %reg1025<kill> 435 /// %reg1036 = add %reg1034<kill>, %reg1035<kill> 436 /// 437 /// %reg1034 is not considered to be killed, since it is copied from a 438 /// register which is not killed. Treating it as not killed lets the 439 /// normal heuristics commute the (two-address) add, which lets 440 /// coalescing eliminate the extra copy. 441 /// 442 static bool isKilled(MachineInstr &MI, unsigned Reg, 443 const MachineRegisterInfo *MRI, 444 const TargetInstrInfo *TII) { 445 MachineInstr *DefMI = &MI; 446 for (;;) { 447 if (!DefMI->killsRegister(Reg)) 448 return false; 449 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 450 return true; 451 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 452 // If there are multiple defs, we can't do a simple analysis, so just 453 // go with what the kill flag says. 454 if (llvm::next(Begin) != MRI->def_end()) 455 return true; 456 DefMI = &*Begin; 457 bool IsSrcPhys, IsDstPhys; 458 unsigned SrcReg, DstReg; 459 // If the def is something other than a copy, then it isn't going to 460 // be coalesced, so follow the kill flag. 461 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 462 return true; 463 Reg = SrcReg; 464 } 465 } 466 467 /// isTwoAddrUse - Return true if the specified MI uses the specified register 468 /// as a two-address use. If so, return the destination register by reference. 469 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 470 const MCInstrDesc &MCID = MI.getDesc(); 471 unsigned NumOps = MI.isInlineAsm() 472 ? MI.getNumOperands() : MCID.getNumOperands(); 473 for (unsigned i = 0; i != NumOps; ++i) { 474 const MachineOperand &MO = MI.getOperand(i); 475 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 476 continue; 477 unsigned ti; 478 if (MI.isRegTiedToDefOperand(i, &ti)) { 479 DstReg = MI.getOperand(ti).getReg(); 480 return true; 481 } 482 } 483 return false; 484 } 485 486 /// findLocalKill - Look for an instruction below MI in the MBB that kills the 487 /// specified register. Returns null if there are any other Reg use between the 488 /// instructions. 489 static 490 MachineInstr *findLocalKill(unsigned Reg, MachineBasicBlock *MBB, 491 MachineInstr *MI, MachineRegisterInfo *MRI, 492 DenseMap<MachineInstr*, unsigned> &DistanceMap) { 493 MachineInstr *KillMI = 0; 494 for (MachineRegisterInfo::use_nodbg_iterator 495 UI = MRI->use_nodbg_begin(Reg), 496 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 497 MachineInstr *UseMI = &*UI; 498 if (UseMI == MI || UseMI->getParent() != MBB) 499 continue; 500 if (DistanceMap.count(UseMI)) 501 continue; 502 if (!UI.getOperand().isKill()) 503 return 0; 504 if (KillMI) 505 return 0; // -O0 kill markers cannot be trusted? 506 KillMI = UseMI; 507 } 508 509 return KillMI; 510 } 511 512 /// findOnlyInterestingUse - Given a register, if has a single in-basic block 513 /// use, return the use instruction if it's a copy or a two-address use. 514 static 515 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 516 MachineRegisterInfo *MRI, 517 const TargetInstrInfo *TII, 518 bool &IsCopy, 519 unsigned &DstReg, bool &IsDstPhys) { 520 if (!MRI->hasOneNonDBGUse(Reg)) 521 // None or more than one use. 522 return 0; 523 MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg); 524 if (UseMI.getParent() != MBB) 525 return 0; 526 unsigned SrcReg; 527 bool IsSrcPhys; 528 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 529 IsCopy = true; 530 return &UseMI; 531 } 532 IsDstPhys = false; 533 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 534 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 535 return &UseMI; 536 } 537 return 0; 538 } 539 540 /// getMappedReg - Return the physical register the specified virtual register 541 /// might be mapped to. 542 static unsigned 543 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 544 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 545 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 546 if (SI == RegMap.end()) 547 return 0; 548 Reg = SI->second; 549 } 550 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 551 return Reg; 552 return 0; 553 } 554 555 /// regsAreCompatible - Return true if the two registers are equal or aliased. 556 /// 557 static bool 558 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 559 if (RegA == RegB) 560 return true; 561 if (!RegA || !RegB) 562 return false; 563 return TRI->regsOverlap(RegA, RegB); 564 } 565 566 567 /// isProfitableToReMat - Return true if it's potentially profitable to commute 568 /// the two-address instruction that's being processed. 569 bool 570 TwoAddressInstructionPass::isProfitableToCommute(unsigned regA, unsigned regB, 571 unsigned regC, 572 MachineInstr *MI, MachineBasicBlock *MBB, 573 unsigned Dist) { 574 if (OptLevel == CodeGenOpt::None) 575 return false; 576 577 // Determine if it's profitable to commute this two address instruction. In 578 // general, we want no uses between this instruction and the definition of 579 // the two-address register. 580 // e.g. 581 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 582 // %reg1029<def> = MOV8rr %reg1028 583 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 584 // insert => %reg1030<def> = MOV8rr %reg1028 585 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 586 // In this case, it might not be possible to coalesce the second MOV8rr 587 // instruction if the first one is coalesced. So it would be profitable to 588 // commute it: 589 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 590 // %reg1029<def> = MOV8rr %reg1028 591 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 592 // insert => %reg1030<def> = MOV8rr %reg1029 593 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 594 595 if (!MI->killsRegister(regC)) 596 return false; 597 598 // Ok, we have something like: 599 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 600 // let's see if it's worth commuting it. 601 602 // Look for situations like this: 603 // %reg1024<def> = MOV r1 604 // %reg1025<def> = MOV r0 605 // %reg1026<def> = ADD %reg1024, %reg1025 606 // r0 = MOV %reg1026 607 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 608 unsigned ToRegA = getMappedReg(regA, DstRegMap); 609 if (ToRegA) { 610 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 611 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 612 bool BComp = !FromRegB || regsAreCompatible(FromRegB, ToRegA, TRI); 613 bool CComp = !FromRegC || regsAreCompatible(FromRegC, ToRegA, TRI); 614 if (BComp != CComp) 615 return !BComp && CComp; 616 } 617 618 // If there is a use of regC between its last def (could be livein) and this 619 // instruction, then bail. 620 unsigned LastDefC = 0; 621 if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC)) 622 return false; 623 624 // If there is a use of regB between its last def (could be livein) and this 625 // instruction, then go ahead and make this transformation. 626 unsigned LastDefB = 0; 627 if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB)) 628 return true; 629 630 // Since there are no intervening uses for both registers, then commute 631 // if the def of regC is closer. Its live interval is shorter. 632 return LastDefB && LastDefC && LastDefC > LastDefB; 633 } 634 635 /// CommuteInstruction - Commute a two-address instruction and update the basic 636 /// block, distance map, and live variables if needed. Return true if it is 637 /// successful. 638 bool 639 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi, 640 MachineFunction::iterator &mbbi, 641 unsigned RegB, unsigned RegC, unsigned Dist) { 642 MachineInstr *MI = mi; 643 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 644 MachineInstr *NewMI = TII->commuteInstruction(MI); 645 646 if (NewMI == 0) { 647 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 648 return false; 649 } 650 651 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 652 // If the instruction changed to commute it, update livevar. 653 if (NewMI != MI) { 654 if (LV) 655 // Update live variables 656 LV->replaceKillInstruction(RegC, MI, NewMI); 657 658 mbbi->insert(mi, NewMI); // Insert the new inst 659 mbbi->erase(mi); // Nuke the old inst. 660 mi = NewMI; 661 DistanceMap.insert(std::make_pair(NewMI, Dist)); 662 } 663 664 // Update source register map. 665 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 666 if (FromRegC) { 667 unsigned RegA = MI->getOperand(0).getReg(); 668 SrcRegMap[RegA] = FromRegC; 669 } 670 671 return true; 672 } 673 674 /// isProfitableToConv3Addr - Return true if it is profitable to convert the 675 /// given 2-address instruction to a 3-address one. 676 bool 677 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 678 // Look for situations like this: 679 // %reg1024<def> = MOV r1 680 // %reg1025<def> = MOV r0 681 // %reg1026<def> = ADD %reg1024, %reg1025 682 // r2 = MOV %reg1026 683 // Turn ADD into a 3-address instruction to avoid a copy. 684 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 685 if (!FromRegB) 686 return false; 687 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 688 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 689 } 690 691 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a 692 /// three address one. Return true if this transformation was successful. 693 bool 694 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi, 695 MachineBasicBlock::iterator &nmi, 696 MachineFunction::iterator &mbbi, 697 unsigned RegA, unsigned RegB, 698 unsigned Dist) { 699 MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV); 700 if (NewMI) { 701 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 702 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 703 bool Sunk = false; 704 705 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 706 // FIXME: Temporary workaround. If the new instruction doesn't 707 // uses RegB, convertToThreeAddress must have created more 708 // then one instruction. 709 Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi); 710 711 mbbi->erase(mi); // Nuke the old inst. 712 713 if (!Sunk) { 714 DistanceMap.insert(std::make_pair(NewMI, Dist)); 715 mi = NewMI; 716 nmi = llvm::next(mi); 717 } 718 719 // Update source and destination register maps. 720 SrcRegMap.erase(RegA); 721 DstRegMap.erase(RegB); 722 return true; 723 } 724 725 return false; 726 } 727 728 /// ScanUses - Scan forward recursively for only uses, update maps if the use 729 /// is a copy or a two-address instruction. 730 void 731 TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB, 732 SmallPtrSet<MachineInstr*, 8> &Processed) { 733 SmallVector<unsigned, 4> VirtRegPairs; 734 bool IsDstPhys; 735 bool IsCopy = false; 736 unsigned NewReg = 0; 737 unsigned Reg = DstReg; 738 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 739 NewReg, IsDstPhys)) { 740 if (IsCopy && !Processed.insert(UseMI)) 741 break; 742 743 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 744 if (DI != DistanceMap.end()) 745 // Earlier in the same MBB.Reached via a back edge. 746 break; 747 748 if (IsDstPhys) { 749 VirtRegPairs.push_back(NewReg); 750 break; 751 } 752 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 753 if (!isNew) 754 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 755 VirtRegPairs.push_back(NewReg); 756 Reg = NewReg; 757 } 758 759 if (!VirtRegPairs.empty()) { 760 unsigned ToReg = VirtRegPairs.back(); 761 VirtRegPairs.pop_back(); 762 while (!VirtRegPairs.empty()) { 763 unsigned FromReg = VirtRegPairs.back(); 764 VirtRegPairs.pop_back(); 765 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 766 if (!isNew) 767 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 768 ToReg = FromReg; 769 } 770 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 771 if (!isNew) 772 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 773 } 774 } 775 776 /// ProcessCopy - If the specified instruction is not yet processed, process it 777 /// if it's a copy. For a copy instruction, we find the physical registers the 778 /// source and destination registers might be mapped to. These are kept in 779 /// point-to maps used to determine future optimizations. e.g. 780 /// v1024 = mov r0 781 /// v1025 = mov r1 782 /// v1026 = add v1024, v1025 783 /// r1 = mov r1026 784 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 785 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 786 /// potentially joined with r1 on the output side. It's worthwhile to commute 787 /// 'add' to eliminate a copy. 788 void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI, 789 MachineBasicBlock *MBB, 790 SmallPtrSet<MachineInstr*, 8> &Processed) { 791 if (Processed.count(MI)) 792 return; 793 794 bool IsSrcPhys, IsDstPhys; 795 unsigned SrcReg, DstReg; 796 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 797 return; 798 799 if (IsDstPhys && !IsSrcPhys) 800 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 801 else if (!IsDstPhys && IsSrcPhys) { 802 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 803 if (!isNew) 804 assert(SrcRegMap[DstReg] == SrcReg && 805 "Can't map to two src physical registers!"); 806 807 ScanUses(DstReg, MBB, Processed); 808 } 809 810 Processed.insert(MI); 811 return; 812 } 813 814 /// isSafeToDelete - If the specified instruction does not produce any side 815 /// effects and all of its defs are dead, then it's safe to delete. 816 static bool isSafeToDelete(MachineInstr *MI, 817 const TargetInstrInfo *TII, 818 SmallVector<unsigned, 4> &Kills) { 819 if (MI->mayStore() || MI->isCall()) 820 return false; 821 if (MI->isTerminator() || MI->hasUnmodeledSideEffects()) 822 return false; 823 824 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 825 MachineOperand &MO = MI->getOperand(i); 826 if (!MO.isReg()) 827 continue; 828 if (MO.isDef() && !MO.isDead()) 829 return false; 830 if (MO.isUse() && MO.isKill()) 831 Kills.push_back(MO.getReg()); 832 } 833 return true; 834 } 835 836 /// canUpdateDeletedKills - Check if all the registers listed in Kills are 837 /// killed by instructions in MBB preceding the current instruction at 838 /// position Dist. If so, return true and record information about the 839 /// preceding kills in NewKills. 840 bool TwoAddressInstructionPass:: 841 canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills, 842 SmallVector<NewKill, 4> &NewKills, 843 MachineBasicBlock *MBB, unsigned Dist) { 844 while (!Kills.empty()) { 845 unsigned Kill = Kills.back(); 846 Kills.pop_back(); 847 if (TargetRegisterInfo::isPhysicalRegister(Kill)) 848 return false; 849 850 MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist); 851 if (!LastKill) 852 return false; 853 854 bool isModRef = LastKill->definesRegister(Kill); 855 NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef), 856 LastKill)); 857 } 858 return true; 859 } 860 861 /// DeleteUnusedInstr - If an instruction with a tied register operand can 862 /// be safely deleted, just delete it. 863 bool 864 TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi, 865 MachineBasicBlock::iterator &nmi, 866 MachineFunction::iterator &mbbi, 867 unsigned Dist) { 868 // Check if the instruction has no side effects and if all its defs are dead. 869 SmallVector<unsigned, 4> Kills; 870 if (!isSafeToDelete(mi, TII, Kills)) 871 return false; 872 873 // If this instruction kills some virtual registers, we need to 874 // update the kill information. If it's not possible to do so, 875 // then bail out. 876 SmallVector<NewKill, 4> NewKills; 877 if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist)) 878 return false; 879 880 if (LV) { 881 while (!NewKills.empty()) { 882 MachineInstr *NewKill = NewKills.back().second; 883 unsigned Kill = NewKills.back().first.first; 884 bool isDead = NewKills.back().first.second; 885 NewKills.pop_back(); 886 if (LV->removeVirtualRegisterKilled(Kill, mi)) { 887 if (isDead) 888 LV->addVirtualRegisterDead(Kill, NewKill); 889 else 890 LV->addVirtualRegisterKilled(Kill, NewKill); 891 } 892 } 893 } 894 895 mbbi->erase(mi); // Nuke the old inst. 896 mi = nmi; 897 return true; 898 } 899 900 /// RescheduleMIBelowKill - If there is one more local instruction that reads 901 /// 'Reg' and it kills 'Reg, consider moving the instruction below the kill 902 /// instruction in order to eliminate the need for the copy. 903 bool 904 TwoAddressInstructionPass::RescheduleMIBelowKill(MachineBasicBlock *MBB, 905 MachineBasicBlock::iterator &mi, 906 MachineBasicBlock::iterator &nmi, 907 unsigned Reg) { 908 MachineInstr *MI = &*mi; 909 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 910 if (DI == DistanceMap.end()) 911 // Must be created from unfolded load. Don't waste time trying this. 912 return false; 913 914 MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap); 915 if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 916 // Don't mess with copies, they may be coalesced later. 917 return false; 918 919 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 920 KillMI->isBranch() || KillMI->isTerminator()) 921 // Don't move pass calls, etc. 922 return false; 923 924 unsigned DstReg; 925 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 926 return false; 927 928 bool SeenStore = true; 929 if (!MI->isSafeToMove(TII, AA, SeenStore)) 930 return false; 931 932 if (TII->getInstrLatency(InstrItins, MI) > 1) 933 // FIXME: Needs more sophisticated heuristics. 934 return false; 935 936 SmallSet<unsigned, 2> Uses; 937 SmallSet<unsigned, 2> Kills; 938 SmallSet<unsigned, 2> Defs; 939 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 940 const MachineOperand &MO = MI->getOperand(i); 941 if (!MO.isReg()) 942 continue; 943 unsigned MOReg = MO.getReg(); 944 if (!MOReg) 945 continue; 946 if (MO.isDef()) 947 Defs.insert(MOReg); 948 else { 949 Uses.insert(MOReg); 950 if (MO.isKill() && MOReg != Reg) 951 Kills.insert(MOReg); 952 } 953 } 954 955 // Move the copies connected to MI down as well. 956 MachineBasicBlock::iterator From = MI; 957 MachineBasicBlock::iterator To = llvm::next(From); 958 while (To->isCopy() && Defs.count(To->getOperand(1).getReg())) { 959 Defs.insert(To->getOperand(0).getReg()); 960 ++To; 961 } 962 963 // Check if the reschedule will not break depedencies. 964 unsigned NumVisited = 0; 965 MachineBasicBlock::iterator KillPos = KillMI; 966 ++KillPos; 967 for (MachineBasicBlock::iterator I = To; I != KillPos; ++I) { 968 MachineInstr *OtherMI = I; 969 // DBG_VALUE cannot be counted against the limit. 970 if (OtherMI->isDebugValue()) 971 continue; 972 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 973 return false; 974 ++NumVisited; 975 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 976 OtherMI->isBranch() || OtherMI->isTerminator()) 977 // Don't move pass calls, etc. 978 return false; 979 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 980 const MachineOperand &MO = OtherMI->getOperand(i); 981 if (!MO.isReg()) 982 continue; 983 unsigned MOReg = MO.getReg(); 984 if (!MOReg) 985 continue; 986 if (MO.isDef()) { 987 if (Uses.count(MOReg)) 988 // Physical register use would be clobbered. 989 return false; 990 if (!MO.isDead() && Defs.count(MOReg)) 991 // May clobber a physical register def. 992 // FIXME: This may be too conservative. It's ok if the instruction 993 // is sunken completely below the use. 994 return false; 995 } else { 996 if (Defs.count(MOReg)) 997 return false; 998 if (MOReg != Reg && 999 ((MO.isKill() && Uses.count(MOReg)) || Kills.count(MOReg))) 1000 // Don't want to extend other live ranges and update kills. 1001 return false; 1002 } 1003 } 1004 } 1005 1006 // Move debug info as well. 1007 while (From != MBB->begin() && llvm::prior(From)->isDebugValue()) 1008 --From; 1009 1010 // Copies following MI may have been moved as well. 1011 nmi = To; 1012 MBB->splice(KillPos, MBB, From, To); 1013 DistanceMap.erase(DI); 1014 1015 if (LV) { 1016 // Update live variables 1017 LV->removeVirtualRegisterKilled(Reg, KillMI); 1018 LV->addVirtualRegisterKilled(Reg, MI); 1019 } else { 1020 for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) { 1021 MachineOperand &MO = KillMI->getOperand(i); 1022 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 1023 continue; 1024 MO.setIsKill(false); 1025 } 1026 MI->addRegisterKilled(Reg, 0); 1027 } 1028 1029 return true; 1030 } 1031 1032 /// isDefTooClose - Return true if the re-scheduling will put the given 1033 /// instruction too close to the defs of its register dependencies. 1034 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 1035 MachineInstr *MI, 1036 MachineBasicBlock *MBB) { 1037 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg), 1038 DE = MRI->def_end(); DI != DE; ++DI) { 1039 MachineInstr *DefMI = &*DI; 1040 if (DefMI->getParent() != MBB || DefMI->isCopy() || DefMI->isCopyLike()) 1041 continue; 1042 if (DefMI == MI) 1043 return true; // MI is defining something KillMI uses 1044 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(DefMI); 1045 if (DDI == DistanceMap.end()) 1046 return true; // Below MI 1047 unsigned DefDist = DDI->second; 1048 assert(Dist > DefDist && "Visited def already?"); 1049 if (TII->getInstrLatency(InstrItins, DefMI) > (int)(Dist - DefDist)) 1050 return true; 1051 } 1052 return false; 1053 } 1054 1055 /// RescheduleKillAboveMI - If there is one more local instruction that reads 1056 /// 'Reg' and it kills 'Reg, consider moving the kill instruction above the 1057 /// current two-address instruction in order to eliminate the need for the 1058 /// copy. 1059 bool 1060 TwoAddressInstructionPass::RescheduleKillAboveMI(MachineBasicBlock *MBB, 1061 MachineBasicBlock::iterator &mi, 1062 MachineBasicBlock::iterator &nmi, 1063 unsigned Reg) { 1064 MachineInstr *MI = &*mi; 1065 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1066 if (DI == DistanceMap.end()) 1067 // Must be created from unfolded load. Don't waste time trying this. 1068 return false; 1069 1070 MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap); 1071 if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1072 // Don't mess with copies, they may be coalesced later. 1073 return false; 1074 1075 unsigned DstReg; 1076 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1077 return false; 1078 1079 bool SeenStore = true; 1080 if (!KillMI->isSafeToMove(TII, AA, SeenStore)) 1081 return false; 1082 1083 SmallSet<unsigned, 2> Uses; 1084 SmallSet<unsigned, 2> Kills; 1085 SmallSet<unsigned, 2> Defs; 1086 SmallSet<unsigned, 2> LiveDefs; 1087 for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) { 1088 const MachineOperand &MO = KillMI->getOperand(i); 1089 if (!MO.isReg()) 1090 continue; 1091 unsigned MOReg = MO.getReg(); 1092 if (MO.isUse()) { 1093 if (!MOReg) 1094 continue; 1095 if (isDefTooClose(MOReg, DI->second, MI, MBB)) 1096 return false; 1097 Uses.insert(MOReg); 1098 if (MO.isKill() && MOReg != Reg) 1099 Kills.insert(MOReg); 1100 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1101 Defs.insert(MOReg); 1102 if (!MO.isDead()) 1103 LiveDefs.insert(MOReg); 1104 } 1105 } 1106 1107 // Check if the reschedule will not break depedencies. 1108 unsigned NumVisited = 0; 1109 MachineBasicBlock::iterator KillPos = KillMI; 1110 for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) { 1111 MachineInstr *OtherMI = I; 1112 // DBG_VALUE cannot be counted against the limit. 1113 if (OtherMI->isDebugValue()) 1114 continue; 1115 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1116 return false; 1117 ++NumVisited; 1118 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 1119 OtherMI->isBranch() || OtherMI->isTerminator()) 1120 // Don't move pass calls, etc. 1121 return false; 1122 SmallVector<unsigned, 2> OtherDefs; 1123 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 1124 const MachineOperand &MO = OtherMI->getOperand(i); 1125 if (!MO.isReg()) 1126 continue; 1127 unsigned MOReg = MO.getReg(); 1128 if (!MOReg) 1129 continue; 1130 if (MO.isUse()) { 1131 if (Defs.count(MOReg)) 1132 // Moving KillMI can clobber the physical register if the def has 1133 // not been seen. 1134 return false; 1135 if (Kills.count(MOReg)) 1136 // Don't want to extend other live ranges and update kills. 1137 return false; 1138 } else { 1139 OtherDefs.push_back(MOReg); 1140 } 1141 } 1142 1143 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1144 unsigned MOReg = OtherDefs[i]; 1145 if (Uses.count(MOReg)) 1146 return false; 1147 if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 1148 LiveDefs.count(MOReg)) 1149 return false; 1150 // Physical register def is seen. 1151 Defs.erase(MOReg); 1152 } 1153 } 1154 1155 // Move the old kill above MI, don't forget to move debug info as well. 1156 MachineBasicBlock::iterator InsertPos = mi; 1157 while (InsertPos != MBB->begin() && llvm::prior(InsertPos)->isDebugValue()) 1158 --InsertPos; 1159 MachineBasicBlock::iterator From = KillMI; 1160 MachineBasicBlock::iterator To = llvm::next(From); 1161 while (llvm::prior(From)->isDebugValue()) 1162 --From; 1163 MBB->splice(InsertPos, MBB, From, To); 1164 1165 nmi = llvm::prior(InsertPos); // Backtrack so we process the moved instr. 1166 DistanceMap.erase(DI); 1167 1168 if (LV) { 1169 // Update live variables 1170 LV->removeVirtualRegisterKilled(Reg, KillMI); 1171 LV->addVirtualRegisterKilled(Reg, MI); 1172 } else { 1173 for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) { 1174 MachineOperand &MO = KillMI->getOperand(i); 1175 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 1176 continue; 1177 MO.setIsKill(false); 1178 } 1179 MI->addRegisterKilled(Reg, 0); 1180 } 1181 return true; 1182 } 1183 1184 /// TryInstructionTransform - For the case where an instruction has a single 1185 /// pair of tied register operands, attempt some transformations that may 1186 /// either eliminate the tied operands or improve the opportunities for 1187 /// coalescing away the register copy. Returns true if no copy needs to be 1188 /// inserted to untie mi's operands (either because they were untied, or 1189 /// because mi was rescheduled, and will be visited again later). 1190 bool TwoAddressInstructionPass:: 1191 TryInstructionTransform(MachineBasicBlock::iterator &mi, 1192 MachineBasicBlock::iterator &nmi, 1193 MachineFunction::iterator &mbbi, 1194 unsigned SrcIdx, unsigned DstIdx, unsigned Dist, 1195 SmallPtrSet<MachineInstr*, 8> &Processed) { 1196 if (OptLevel == CodeGenOpt::None) 1197 return false; 1198 1199 MachineInstr &MI = *mi; 1200 unsigned regA = MI.getOperand(DstIdx).getReg(); 1201 unsigned regB = MI.getOperand(SrcIdx).getReg(); 1202 1203 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1204 "cannot make instruction into two-address form"); 1205 1206 // If regA is dead and the instruction can be deleted, just delete 1207 // it so it doesn't clobber regB. 1208 bool regBKilled = isKilled(MI, regB, MRI, TII); 1209 if (!regBKilled && MI.getOperand(DstIdx).isDead() && 1210 DeleteUnusedInstr(mi, nmi, mbbi, Dist)) { 1211 ++NumDeletes; 1212 return true; // Done with this instruction. 1213 } 1214 1215 if (TargetRegisterInfo::isVirtualRegister(regA)) 1216 ScanUses(regA, &*mbbi, Processed); 1217 1218 // Check if it is profitable to commute the operands. 1219 unsigned SrcOp1, SrcOp2; 1220 unsigned regC = 0; 1221 unsigned regCIdx = ~0U; 1222 bool TryCommute = false; 1223 bool AggressiveCommute = false; 1224 if (MI.isCommutable() && MI.getNumOperands() >= 3 && 1225 TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) { 1226 if (SrcIdx == SrcOp1) 1227 regCIdx = SrcOp2; 1228 else if (SrcIdx == SrcOp2) 1229 regCIdx = SrcOp1; 1230 1231 if (regCIdx != ~0U) { 1232 regC = MI.getOperand(regCIdx).getReg(); 1233 if (!regBKilled && isKilled(MI, regC, MRI, TII)) 1234 // If C dies but B does not, swap the B and C operands. 1235 // This makes the live ranges of A and C joinable. 1236 TryCommute = true; 1237 else if (isProfitableToCommute(regA, regB, regC, &MI, mbbi, Dist)) { 1238 TryCommute = true; 1239 AggressiveCommute = true; 1240 } 1241 } 1242 } 1243 1244 // If it's profitable to commute, try to do so. 1245 if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) { 1246 ++NumCommuted; 1247 if (AggressiveCommute) 1248 ++NumAggrCommuted; 1249 return false; 1250 } 1251 1252 // If there is one more use of regB later in the same MBB, consider 1253 // re-schedule this MI below it. 1254 if (RescheduleMIBelowKill(mbbi, mi, nmi, regB)) { 1255 ++NumReSchedDowns; 1256 return true; 1257 } 1258 1259 if (MI.isConvertibleTo3Addr()) { 1260 // This instruction is potentially convertible to a true 1261 // three-address instruction. Check if it is profitable. 1262 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1263 // Try to convert it. 1264 if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) { 1265 ++NumConvertedTo3Addr; 1266 return true; // Done with this instruction. 1267 } 1268 } 1269 } 1270 1271 // If there is one more use of regB later in the same MBB, consider 1272 // re-schedule it before this MI if it's legal. 1273 if (RescheduleKillAboveMI(mbbi, mi, nmi, regB)) { 1274 ++NumReSchedUps; 1275 return true; 1276 } 1277 1278 // If this is an instruction with a load folded into it, try unfolding 1279 // the load, e.g. avoid this: 1280 // movq %rdx, %rcx 1281 // addq (%rax), %rcx 1282 // in favor of this: 1283 // movq (%rax), %rcx 1284 // addq %rdx, %rcx 1285 // because it's preferable to schedule a load than a register copy. 1286 if (MI.mayLoad() && !regBKilled) { 1287 // Determine if a load can be unfolded. 1288 unsigned LoadRegIndex; 1289 unsigned NewOpc = 1290 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1291 /*UnfoldLoad=*/true, 1292 /*UnfoldStore=*/false, 1293 &LoadRegIndex); 1294 if (NewOpc != 0) { 1295 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1296 if (UnfoldMCID.getNumDefs() == 1) { 1297 MachineFunction &MF = *mbbi->getParent(); 1298 1299 // Unfold the load. 1300 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1301 const TargetRegisterClass *RC = 1302 TRI->getAllocatableClass( 1303 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, MF)); 1304 unsigned Reg = MRI->createVirtualRegister(RC); 1305 SmallVector<MachineInstr *, 2> NewMIs; 1306 if (!TII->unfoldMemoryOperand(MF, &MI, Reg, 1307 /*UnfoldLoad=*/true,/*UnfoldStore=*/false, 1308 NewMIs)) { 1309 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1310 return false; 1311 } 1312 assert(NewMIs.size() == 2 && 1313 "Unfolded a load into multiple instructions!"); 1314 // The load was previously folded, so this is the only use. 1315 NewMIs[1]->addRegisterKilled(Reg, TRI); 1316 1317 // Tentatively insert the instructions into the block so that they 1318 // look "normal" to the transformation logic. 1319 mbbi->insert(mi, NewMIs[0]); 1320 mbbi->insert(mi, NewMIs[1]); 1321 1322 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1323 << "2addr: NEW INST: " << *NewMIs[1]); 1324 1325 // Transform the instruction, now that it no longer has a load. 1326 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1327 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1328 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1329 bool TransformSuccess = 1330 TryInstructionTransform(NewMI, mi, mbbi, 1331 NewSrcIdx, NewDstIdx, Dist, Processed); 1332 if (TransformSuccess || 1333 NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1334 // Success, or at least we made an improvement. Keep the unfolded 1335 // instructions and discard the original. 1336 if (LV) { 1337 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1338 MachineOperand &MO = MI.getOperand(i); 1339 if (MO.isReg() && 1340 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 1341 if (MO.isUse()) { 1342 if (MO.isKill()) { 1343 if (NewMIs[0]->killsRegister(MO.getReg())) 1344 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]); 1345 else { 1346 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1347 "Kill missing after load unfold!"); 1348 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]); 1349 } 1350 } 1351 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) { 1352 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1353 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]); 1354 else { 1355 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1356 "Dead flag missing after load unfold!"); 1357 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]); 1358 } 1359 } 1360 } 1361 } 1362 LV->addVirtualRegisterKilled(Reg, NewMIs[1]); 1363 } 1364 MI.eraseFromParent(); 1365 mi = NewMIs[1]; 1366 if (TransformSuccess) 1367 return true; 1368 } else { 1369 // Transforming didn't eliminate the tie and didn't lead to an 1370 // improvement. Clean up the unfolded instructions and keep the 1371 // original. 1372 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1373 NewMIs[0]->eraseFromParent(); 1374 NewMIs[1]->eraseFromParent(); 1375 } 1376 } 1377 } 1378 } 1379 1380 return false; 1381 } 1382 1383 /// runOnMachineFunction - Reduce two-address instructions to two operands. 1384 /// 1385 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) { 1386 const TargetMachine &TM = MF.getTarget(); 1387 MRI = &MF.getRegInfo(); 1388 TII = TM.getInstrInfo(); 1389 TRI = TM.getRegisterInfo(); 1390 InstrItins = TM.getInstrItineraryData(); 1391 LV = getAnalysisIfAvailable<LiveVariables>(); 1392 AA = &getAnalysis<AliasAnalysis>(); 1393 OptLevel = TM.getOptLevel(); 1394 1395 bool MadeChange = false; 1396 1397 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1398 DEBUG(dbgs() << "********** Function: " 1399 << MF.getFunction()->getName() << '\n'); 1400 1401 // This pass takes the function out of SSA form. 1402 MRI->leaveSSA(); 1403 1404 // ReMatRegs - Keep track of the registers whose def's are remat'ed. 1405 BitVector ReMatRegs(MRI->getNumVirtRegs()); 1406 1407 typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> > 1408 TiedOperandMap; 1409 TiedOperandMap TiedOperands(4); 1410 1411 SmallPtrSet<MachineInstr*, 8> Processed; 1412 for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end(); 1413 mbbi != mbbe; ++mbbi) { 1414 unsigned Dist = 0; 1415 DistanceMap.clear(); 1416 SrcRegMap.clear(); 1417 DstRegMap.clear(); 1418 Processed.clear(); 1419 for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end(); 1420 mi != me; ) { 1421 MachineBasicBlock::iterator nmi = llvm::next(mi); 1422 if (mi->isDebugValue()) { 1423 mi = nmi; 1424 continue; 1425 } 1426 1427 // Remember REG_SEQUENCE instructions, we'll deal with them later. 1428 if (mi->isRegSequence()) 1429 RegSequences.push_back(&*mi); 1430 1431 const MCInstrDesc &MCID = mi->getDesc(); 1432 bool FirstTied = true; 1433 1434 DistanceMap.insert(std::make_pair(mi, ++Dist)); 1435 1436 ProcessCopy(&*mi, &*mbbi, Processed); 1437 1438 // First scan through all the tied register uses in this instruction 1439 // and record a list of pairs of tied operands for each register. 1440 unsigned NumOps = mi->isInlineAsm() 1441 ? mi->getNumOperands() : MCID.getNumOperands(); 1442 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1443 unsigned DstIdx = 0; 1444 if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1445 continue; 1446 1447 if (FirstTied) { 1448 FirstTied = false; 1449 ++NumTwoAddressInstrs; 1450 DEBUG(dbgs() << '\t' << *mi); 1451 } 1452 1453 assert(mi->getOperand(SrcIdx).isReg() && 1454 mi->getOperand(SrcIdx).getReg() && 1455 mi->getOperand(SrcIdx).isUse() && 1456 "two address instruction invalid"); 1457 1458 unsigned regB = mi->getOperand(SrcIdx).getReg(); 1459 TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx)); 1460 } 1461 1462 // Now iterate over the information collected above. 1463 for (TiedOperandMap::iterator OI = TiedOperands.begin(), 1464 OE = TiedOperands.end(); OI != OE; ++OI) { 1465 SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second; 1466 1467 // If the instruction has a single pair of tied operands, try some 1468 // transformations that may either eliminate the tied operands or 1469 // improve the opportunities for coalescing away the register copy. 1470 if (TiedOperands.size() == 1 && TiedPairs.size() == 1) { 1471 unsigned SrcIdx = TiedPairs[0].first; 1472 unsigned DstIdx = TiedPairs[0].second; 1473 1474 // If the registers are already equal, nothing needs to be done. 1475 if (mi->getOperand(SrcIdx).getReg() == 1476 mi->getOperand(DstIdx).getReg()) 1477 break; // Done with this instruction. 1478 1479 if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist, 1480 Processed)) 1481 break; // The tied operands have been eliminated. 1482 } 1483 1484 bool IsEarlyClobber = false; 1485 bool RemovedKillFlag = false; 1486 bool AllUsesCopied = true; 1487 unsigned LastCopiedReg = 0; 1488 unsigned regB = OI->first; 1489 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1490 unsigned SrcIdx = TiedPairs[tpi].first; 1491 unsigned DstIdx = TiedPairs[tpi].second; 1492 1493 const MachineOperand &DstMO = mi->getOperand(DstIdx); 1494 unsigned regA = DstMO.getReg(); 1495 IsEarlyClobber |= DstMO.isEarlyClobber(); 1496 1497 // Grab regB from the instruction because it may have changed if the 1498 // instruction was commuted. 1499 regB = mi->getOperand(SrcIdx).getReg(); 1500 1501 if (regA == regB) { 1502 // The register is tied to multiple destinations (or else we would 1503 // not have continued this far), but this use of the register 1504 // already matches the tied destination. Leave it. 1505 AllUsesCopied = false; 1506 continue; 1507 } 1508 LastCopiedReg = regA; 1509 1510 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1511 "cannot make instruction into two-address form"); 1512 1513 #ifndef NDEBUG 1514 // First, verify that we don't have a use of "a" in the instruction 1515 // (a = b + a for example) because our transformation will not 1516 // work. This should never occur because we are in SSA form. 1517 for (unsigned i = 0; i != mi->getNumOperands(); ++i) 1518 assert(i == DstIdx || 1519 !mi->getOperand(i).isReg() || 1520 mi->getOperand(i).getReg() != regA); 1521 #endif 1522 1523 // Emit a copy or rematerialize the definition. 1524 bool isCopy = false; 1525 const TargetRegisterClass *rc = MRI->getRegClass(regB); 1526 MachineInstr *DefMI = MRI->getVRegDef(regB); 1527 // If it's safe and profitable, remat the definition instead of 1528 // copying it. 1529 if (DefMI && 1530 DefMI->isAsCheapAsAMove() && 1531 DefMI->isSafeToReMat(TII, AA, regB) && 1532 isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){ 1533 DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n"); 1534 unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg(); 1535 TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI); 1536 ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB)); 1537 ++NumReMats; 1538 } else { 1539 BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY), 1540 regA).addReg(regB); 1541 isCopy = true; 1542 } 1543 1544 // Update DistanceMap. 1545 MachineBasicBlock::iterator prevMI = prior(mi); 1546 DistanceMap.insert(std::make_pair(prevMI, Dist)); 1547 DistanceMap[mi] = ++Dist; 1548 1549 DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI); 1550 1551 MachineOperand &MO = mi->getOperand(SrcIdx); 1552 assert(MO.isReg() && MO.getReg() == regB && MO.isUse() && 1553 "inconsistent operand info for 2-reg pass"); 1554 if (MO.isKill()) { 1555 MO.setIsKill(false); 1556 RemovedKillFlag = true; 1557 } 1558 1559 // Make sure regA is a legal regclass for the SrcIdx operand. 1560 if (TargetRegisterInfo::isVirtualRegister(regA) && 1561 TargetRegisterInfo::isVirtualRegister(regB)) 1562 MRI->constrainRegClass(regA, MRI->getRegClass(regB)); 1563 1564 MO.setReg(regA); 1565 1566 if (isCopy) 1567 // Propagate SrcRegMap. 1568 SrcRegMap[regA] = regB; 1569 } 1570 1571 if (AllUsesCopied) { 1572 if (!IsEarlyClobber) { 1573 // Replace other (un-tied) uses of regB with LastCopiedReg. 1574 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { 1575 MachineOperand &MO = mi->getOperand(i); 1576 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) { 1577 if (MO.isKill()) { 1578 MO.setIsKill(false); 1579 RemovedKillFlag = true; 1580 } 1581 MO.setReg(LastCopiedReg); 1582 } 1583 } 1584 } 1585 1586 // Update live variables for regB. 1587 if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi)) 1588 LV->addVirtualRegisterKilled(regB, prior(mi)); 1589 1590 } else if (RemovedKillFlag) { 1591 // Some tied uses of regB matched their destination registers, so 1592 // regB is still used in this instruction, but a kill flag was 1593 // removed from a different tied use of regB, so now we need to add 1594 // a kill flag to one of the remaining uses of regB. 1595 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { 1596 MachineOperand &MO = mi->getOperand(i); 1597 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) { 1598 MO.setIsKill(true); 1599 break; 1600 } 1601 } 1602 } 1603 1604 // Schedule the source copy / remat inserted to form two-address 1605 // instruction. FIXME: Does it matter the distance map may not be 1606 // accurate after it's scheduled? 1607 TII->scheduleTwoAddrSource(prior(mi), mi, *TRI); 1608 1609 MadeChange = true; 1610 1611 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1612 1613 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1614 if (mi->isInsertSubreg()) { 1615 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1616 // To %reg:subidx = COPY %subreg 1617 unsigned SubIdx = mi->getOperand(3).getImm(); 1618 mi->RemoveOperand(3); 1619 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1620 mi->getOperand(0).setSubReg(SubIdx); 1621 mi->RemoveOperand(1); 1622 mi->setDesc(TII->get(TargetOpcode::COPY)); 1623 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1624 } 1625 } 1626 1627 // Clear TiedOperands here instead of at the top of the loop 1628 // since most instructions do not have tied operands. 1629 TiedOperands.clear(); 1630 mi = nmi; 1631 } 1632 } 1633 1634 // Some remat'ed instructions are dead. 1635 for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) { 1636 unsigned VReg = TargetRegisterInfo::index2VirtReg(i); 1637 if (MRI->use_nodbg_empty(VReg)) { 1638 MachineInstr *DefMI = MRI->getVRegDef(VReg); 1639 DefMI->eraseFromParent(); 1640 } 1641 } 1642 1643 // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve 1644 // SSA form. It's now safe to de-SSA. 1645 MadeChange |= EliminateRegSequences(); 1646 1647 return MadeChange; 1648 } 1649 1650 static void UpdateRegSequenceSrcs(unsigned SrcReg, 1651 unsigned DstReg, unsigned SubIdx, 1652 MachineRegisterInfo *MRI, 1653 const TargetRegisterInfo &TRI) { 1654 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg), 1655 RE = MRI->reg_end(); RI != RE; ) { 1656 MachineOperand &MO = RI.getOperand(); 1657 ++RI; 1658 MO.substVirtReg(DstReg, SubIdx, TRI); 1659 } 1660 } 1661 1662 // Find the first def of Reg, assuming they are all in the same basic block. 1663 static MachineInstr *findFirstDef(unsigned Reg, MachineRegisterInfo *MRI) { 1664 SmallPtrSet<MachineInstr*, 8> Defs; 1665 MachineInstr *First = 0; 1666 for (MachineRegisterInfo::def_iterator RI = MRI->def_begin(Reg); 1667 MachineInstr *MI = RI.skipInstruction(); Defs.insert(MI)) 1668 First = MI; 1669 if (!First) 1670 return 0; 1671 1672 MachineBasicBlock *MBB = First->getParent(); 1673 MachineBasicBlock::iterator A = First, B = First; 1674 bool Moving; 1675 do { 1676 Moving = false; 1677 if (A != MBB->begin()) { 1678 Moving = true; 1679 --A; 1680 if (Defs.erase(A)) First = A; 1681 } 1682 if (B != MBB->end()) { 1683 Defs.erase(B); 1684 ++B; 1685 Moving = true; 1686 } 1687 } while (Moving && !Defs.empty()); 1688 assert(Defs.empty() && "Instructions outside basic block!"); 1689 return First; 1690 } 1691 1692 /// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are 1693 /// EXTRACT_SUBREG from the same register and to the same virtual register 1694 /// with different sub-register indices, attempt to combine the 1695 /// EXTRACT_SUBREGs and pre-coalesce them. e.g. 1696 /// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0 1697 /// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6 1698 /// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5 1699 /// Since D subregs 5, 6 can combine to a Q register, we can coalesce 1700 /// reg1026 to reg1029. 1701 void 1702 TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, 1703 unsigned DstReg) { 1704 SmallSet<unsigned, 4> Seen; 1705 for (unsigned i = 0, e = Srcs.size(); i != e; ++i) { 1706 unsigned SrcReg = Srcs[i]; 1707 if (!Seen.insert(SrcReg)) 1708 continue; 1709 1710 // Check that the instructions are all in the same basic block. 1711 MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg); 1712 MachineInstr *DstDefMI = MRI->getVRegDef(DstReg); 1713 if (SrcDefMI->getParent() != DstDefMI->getParent()) 1714 continue; 1715 1716 // If there are no other uses than copies which feed into 1717 // the reg_sequence, then we might be able to coalesce them. 1718 bool CanCoalesce = true; 1719 SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices; 1720 for (MachineRegisterInfo::use_nodbg_iterator 1721 UI = MRI->use_nodbg_begin(SrcReg), 1722 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 1723 MachineInstr *UseMI = &*UI; 1724 if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) { 1725 CanCoalesce = false; 1726 break; 1727 } 1728 SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg()); 1729 DstSubIndices.push_back(UseMI->getOperand(0).getSubReg()); 1730 } 1731 1732 if (!CanCoalesce || SrcSubIndices.size() < 2) 1733 continue; 1734 1735 // Check that the source subregisters can be combined. 1736 std::sort(SrcSubIndices.begin(), SrcSubIndices.end()); 1737 unsigned NewSrcSubIdx = 0; 1738 if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices, 1739 NewSrcSubIdx)) 1740 continue; 1741 1742 // Check that the destination subregisters can also be combined. 1743 std::sort(DstSubIndices.begin(), DstSubIndices.end()); 1744 unsigned NewDstSubIdx = 0; 1745 if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices, 1746 NewDstSubIdx)) 1747 continue; 1748 1749 // If neither source nor destination can be combined to the full register, 1750 // just give up. This could be improved if it ever matters. 1751 if (NewSrcSubIdx != 0 && NewDstSubIdx != 0) 1752 continue; 1753 1754 // Now that we know that all the uses are extract_subregs and that those 1755 // subregs can somehow be combined, scan all the extract_subregs again to 1756 // make sure the subregs are in the right order and can be composed. 1757 MachineInstr *SomeMI = 0; 1758 CanCoalesce = true; 1759 for (MachineRegisterInfo::use_nodbg_iterator 1760 UI = MRI->use_nodbg_begin(SrcReg), 1761 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 1762 MachineInstr *UseMI = &*UI; 1763 assert(UseMI->isCopy()); 1764 unsigned DstSubIdx = UseMI->getOperand(0).getSubReg(); 1765 unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg(); 1766 assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination"); 1767 if ((NewDstSubIdx == 0 && 1768 TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) || 1769 (NewSrcSubIdx == 0 && 1770 TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) { 1771 CanCoalesce = false; 1772 break; 1773 } 1774 // Keep track of one of the uses. Preferably the first one which has a 1775 // <def,undef> flag. 1776 if (!SomeMI || UseMI->getOperand(0).isUndef()) 1777 SomeMI = UseMI; 1778 } 1779 if (!CanCoalesce) 1780 continue; 1781 1782 // Insert a copy to replace the original. 1783 MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI, 1784 SomeMI->getDebugLoc(), 1785 TII->get(TargetOpcode::COPY)) 1786 .addReg(DstReg, RegState::Define | 1787 getUndefRegState(SomeMI->getOperand(0).isUndef()), 1788 NewDstSubIdx) 1789 .addReg(SrcReg, 0, NewSrcSubIdx); 1790 1791 // Remove all the old extract instructions. 1792 for (MachineRegisterInfo::use_nodbg_iterator 1793 UI = MRI->use_nodbg_begin(SrcReg), 1794 UE = MRI->use_nodbg_end(); UI != UE; ) { 1795 MachineInstr *UseMI = &*UI; 1796 ++UI; 1797 if (UseMI == CopyMI) 1798 continue; 1799 assert(UseMI->isCopy()); 1800 // Move any kills to the new copy or extract instruction. 1801 if (UseMI->getOperand(1).isKill()) { 1802 CopyMI->getOperand(1).setIsKill(); 1803 if (LV) 1804 // Update live variables 1805 LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI); 1806 } 1807 UseMI->eraseFromParent(); 1808 } 1809 } 1810 } 1811 1812 static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq, 1813 MachineRegisterInfo *MRI) { 1814 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg), 1815 UE = MRI->use_end(); UI != UE; ++UI) { 1816 MachineInstr *UseMI = &*UI; 1817 if (UseMI != RegSeq && UseMI->isRegSequence()) 1818 return true; 1819 } 1820 return false; 1821 } 1822 1823 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part 1824 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as 1825 /// sub-register references of the register defined by REG_SEQUENCE. e.g. 1826 /// 1827 /// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ... 1828 /// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6 1829 /// => 1830 /// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ... 1831 bool TwoAddressInstructionPass::EliminateRegSequences() { 1832 if (RegSequences.empty()) 1833 return false; 1834 1835 for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) { 1836 MachineInstr *MI = RegSequences[i]; 1837 unsigned DstReg = MI->getOperand(0).getReg(); 1838 if (MI->getOperand(0).getSubReg() || 1839 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1840 !(MI->getNumOperands() & 1)) { 1841 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); 1842 llvm_unreachable(0); 1843 } 1844 1845 bool IsImpDef = true; 1846 SmallVector<unsigned, 4> RealSrcs; 1847 SmallSet<unsigned, 4> Seen; 1848 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 1849 unsigned SrcReg = MI->getOperand(i).getReg(); 1850 unsigned SrcSubIdx = MI->getOperand(i).getSubReg(); 1851 unsigned SubIdx = MI->getOperand(i+1).getImm(); 1852 // DefMI of NULL means the value does not have a vreg in this block 1853 // i.e., its a physical register or a subreg. 1854 // In either case we force a copy to be generated. 1855 MachineInstr *DefMI = NULL; 1856 if (!MI->getOperand(i).getSubReg() && 1857 !TargetRegisterInfo::isPhysicalRegister(SrcReg)) { 1858 DefMI = MRI->getVRegDef(SrcReg); 1859 } 1860 1861 if (DefMI && DefMI->isImplicitDef()) { 1862 DefMI->eraseFromParent(); 1863 continue; 1864 } 1865 IsImpDef = false; 1866 1867 // Remember COPY sources. These might be candidate for coalescing. 1868 if (DefMI && DefMI->isCopy() && DefMI->getOperand(1).getSubReg()) 1869 RealSrcs.push_back(DefMI->getOperand(1).getReg()); 1870 1871 bool isKill = MI->getOperand(i).isKill(); 1872 if (!DefMI || !Seen.insert(SrcReg) || 1873 MI->getParent() != DefMI->getParent() || 1874 !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) || 1875 !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg), 1876 MRI->getRegClass(SrcReg), SubIdx)) { 1877 // REG_SEQUENCE cannot have duplicated operands, add a copy. 1878 // Also add an copy if the source is live-in the block. We don't want 1879 // to end up with a partial-redef of a livein, e.g. 1880 // BB0: 1881 // reg1051:10<def> = 1882 // ... 1883 // BB1: 1884 // ... = reg1051:10 1885 // BB2: 1886 // reg1051:9<def> = 1887 // LiveIntervalAnalysis won't like it. 1888 // 1889 // If the REG_SEQUENCE doesn't kill its source, keeping live variables 1890 // correctly up to date becomes very difficult. Insert a copy. 1891 1892 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1893 // might insert a COPY that uses SrcReg after is was killed. 1894 if (isKill) 1895 for (unsigned j = i + 2; j < e; j += 2) 1896 if (MI->getOperand(j).getReg() == SrcReg) { 1897 MI->getOperand(j).setIsKill(); 1898 isKill = false; 1899 break; 1900 } 1901 1902 MachineBasicBlock::iterator InsertLoc = MI; 1903 MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc, 1904 MI->getDebugLoc(), TII->get(TargetOpcode::COPY)) 1905 .addReg(DstReg, RegState::Define, SubIdx) 1906 .addReg(SrcReg, getKillRegState(isKill), SrcSubIdx); 1907 MI->getOperand(i).setReg(0); 1908 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1909 LV->replaceKillInstruction(SrcReg, MI, CopyMI); 1910 DEBUG(dbgs() << "Inserted: " << *CopyMI); 1911 } 1912 } 1913 1914 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 1915 unsigned SrcReg = MI->getOperand(i).getReg(); 1916 if (!SrcReg) continue; 1917 unsigned SubIdx = MI->getOperand(i+1).getImm(); 1918 UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI); 1919 } 1920 1921 // Set <def,undef> flags on the first DstReg def in the basic block. 1922 // It marks the beginning of the live range. All the other defs are 1923 // read-modify-write. 1924 if (MachineInstr *Def = findFirstDef(DstReg, MRI)) { 1925 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 1926 MachineOperand &MO = Def->getOperand(i); 1927 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1928 MO.setIsUndef(); 1929 } 1930 // Make sure there is a full non-subreg imp-def operand on the 1931 // instruction. This shouldn't be necessary, but it seems that at least 1932 // RAFast requires it. 1933 Def->addRegisterDefined(DstReg, TRI); 1934 DEBUG(dbgs() << "First def: " << *Def); 1935 } 1936 1937 if (IsImpDef) { 1938 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF"); 1939 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1940 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j) 1941 MI->RemoveOperand(j); 1942 } else { 1943 DEBUG(dbgs() << "Eliminated: " << *MI); 1944 MI->eraseFromParent(); 1945 } 1946 1947 // Try coalescing some EXTRACT_SUBREG instructions. This can create 1948 // INSERT_SUBREG instructions that must have <undef> flags added by 1949 // LiveIntervalAnalysis, so only run it when LiveVariables is available. 1950 if (LV) 1951 CoalesceExtSubRegs(RealSrcs, DstReg); 1952 } 1953 1954 RegSequences.clear(); 1955 return true; 1956 } 1957