1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TwoAddress instruction pass which is used
10 // by most register allocators. Two-Address instructions are rewritten
11 // from:
12 //
13 //     A = B op C
14 //
15 // to:
16 //
17 //     A = B
18 //     A op= C
19 //
20 // Note that if a register allocator chooses to use this pass, that it
21 // has to be capable of handling the non-SSA nature of these rewritten
22 // virtual registers.
23 //
24 // It is also worth noting that the duplicate operand of the two
25 // address instruction is removed.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveVariables.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/Passes.h"
47 #include "llvm/CodeGen/SlotIndexes.h"
48 #include "llvm/CodeGen/TargetInstrInfo.h"
49 #include "llvm/CodeGen/TargetOpcodes.h"
50 #include "llvm/CodeGen/TargetRegisterInfo.h"
51 #include "llvm/CodeGen/TargetSubtargetInfo.h"
52 #include "llvm/MC/MCInstrDesc.h"
53 #include "llvm/MC/MCInstrItineraries.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include <cassert>
62 #include <iterator>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "twoaddressinstruction"
68 
69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
70 STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
71 STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
73 STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
74 STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
75 
76 // Temporary flag to disable rescheduling.
77 static cl::opt<bool>
78 EnableRescheduling("twoaddr-reschedule",
79                    cl::desc("Coalesce copies by rescheduling (default=true)"),
80                    cl::init(true), cl::Hidden);
81 
82 // Limit the number of dataflow edges to traverse when evaluating the benefit
83 // of commuting operands.
84 static cl::opt<unsigned> MaxDataFlowEdge(
85     "dataflow-edge-limit", cl::Hidden, cl::init(3),
86     cl::desc("Maximum number of dataflow edges to traverse when evaluating "
87              "the benefit of commuting operands"));
88 
89 namespace {
90 
91 class TwoAddressInstructionPass : public MachineFunctionPass {
92   MachineFunction *MF;
93   const TargetInstrInfo *TII;
94   const TargetRegisterInfo *TRI;
95   const InstrItineraryData *InstrItins;
96   MachineRegisterInfo *MRI;
97   LiveVariables *LV;
98   LiveIntervals *LIS;
99   AliasAnalysis *AA;
100   CodeGenOpt::Level OptLevel;
101 
102   // The current basic block being processed.
103   MachineBasicBlock *MBB;
104 
105   // Keep track the distance of a MI from the start of the current basic block.
106   DenseMap<MachineInstr*, unsigned> DistanceMap;
107 
108   // Set of already processed instructions in the current block.
109   SmallPtrSet<MachineInstr*, 8> Processed;
110 
111   // A map from virtual registers to physical registers which are likely targets
112   // to be coalesced to due to copies from physical registers to virtual
113   // registers. e.g. v1024 = move r0.
114   DenseMap<Register, Register> SrcRegMap;
115 
116   // A map from virtual registers to physical registers which are likely targets
117   // to be coalesced to due to copies to physical registers from virtual
118   // registers. e.g. r1 = move v1024.
119   DenseMap<Register, Register> DstRegMap;
120 
121   void removeClobberedSrcRegMap(MachineInstr *MI);
122 
123   bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen);
124 
125   bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef);
126 
127   bool isProfitableToCommute(Register RegA, Register RegB, Register RegC,
128                              MachineInstr *MI, unsigned Dist);
129 
130   bool commuteInstruction(MachineInstr *MI, unsigned DstIdx,
131                           unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
132 
133   bool isProfitableToConv3Addr(Register RegA, Register RegB);
134 
135   bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
136                           MachineBasicBlock::iterator &nmi, Register RegA,
137                           Register RegB, unsigned &Dist);
138 
139   bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI);
140 
141   bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
142                              MachineBasicBlock::iterator &nmi, Register Reg);
143   bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
144                              MachineBasicBlock::iterator &nmi, Register Reg);
145 
146   bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
147                                MachineBasicBlock::iterator &nmi,
148                                unsigned SrcIdx, unsigned DstIdx,
149                                unsigned &Dist, bool shouldOnlyCommute);
150 
151   bool tryInstructionCommute(MachineInstr *MI,
152                              unsigned DstOpIdx,
153                              unsigned BaseOpIdx,
154                              bool BaseOpKilled,
155                              unsigned Dist);
156   void scanUses(Register DstReg);
157 
158   void processCopy(MachineInstr *MI);
159 
160   using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>;
161   using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>;
162 
163   bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
164   void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
165   void eliminateRegSequence(MachineBasicBlock::iterator&);
166 
167 public:
168   static char ID; // Pass identification, replacement for typeid
169 
170   TwoAddressInstructionPass() : MachineFunctionPass(ID) {
171     initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
172   }
173 
174   void getAnalysisUsage(AnalysisUsage &AU) const override {
175     AU.setPreservesCFG();
176     AU.addUsedIfAvailable<AAResultsWrapperPass>();
177     AU.addUsedIfAvailable<LiveVariables>();
178     AU.addPreserved<LiveVariables>();
179     AU.addPreserved<SlotIndexes>();
180     AU.addPreserved<LiveIntervals>();
181     AU.addPreservedID(MachineLoopInfoID);
182     AU.addPreservedID(MachineDominatorsID);
183     MachineFunctionPass::getAnalysisUsage(AU);
184   }
185 
186   /// Pass entry point.
187   bool runOnMachineFunction(MachineFunction&) override;
188 };
189 
190 } // end anonymous namespace
191 
192 char TwoAddressInstructionPass::ID = 0;
193 
194 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
195 
196 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE,
197                 "Two-Address instruction pass", false, false)
198 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
199 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE,
200                 "Two-Address instruction pass", false, false)
201 
202 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS);
203 
204 /// Return the MachineInstr* if it is the single def of the Reg in current BB.
205 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB,
206                                   const MachineRegisterInfo *MRI) {
207   MachineInstr *Ret = nullptr;
208   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
209     if (DefMI.getParent() != BB || DefMI.isDebugValue())
210       continue;
211     if (!Ret)
212       Ret = &DefMI;
213     else if (Ret != &DefMI)
214       return nullptr;
215   }
216   return Ret;
217 }
218 
219 /// Check if there is a reversed copy chain from FromReg to ToReg:
220 /// %Tmp1 = copy %Tmp2;
221 /// %FromReg = copy %Tmp1;
222 /// %ToReg = add %FromReg ...
223 /// %Tmp2 = copy %ToReg;
224 /// MaxLen specifies the maximum length of the copy chain the func
225 /// can walk through.
226 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg,
227                                                int Maxlen) {
228   Register TmpReg = FromReg;
229   for (int i = 0; i < Maxlen; i++) {
230     MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
231     if (!Def || !Def->isCopy())
232       return false;
233 
234     TmpReg = Def->getOperand(1).getReg();
235 
236     if (TmpReg == ToReg)
237       return true;
238   }
239   return false;
240 }
241 
242 /// Return true if there are no intervening uses between the last instruction
243 /// in the MBB that defines the specified register and the two-address
244 /// instruction which is being processed. It also returns the last def location
245 /// by reference.
246 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist,
247                                                   unsigned &LastDef) {
248   LastDef = 0;
249   unsigned LastUse = Dist;
250   for (MachineOperand &MO : MRI->reg_operands(Reg)) {
251     MachineInstr *MI = MO.getParent();
252     if (MI->getParent() != MBB || MI->isDebugValue())
253       continue;
254     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
255     if (DI == DistanceMap.end())
256       continue;
257     if (MO.isUse() && DI->second < LastUse)
258       LastUse = DI->second;
259     if (MO.isDef() && DI->second > LastDef)
260       LastDef = DI->second;
261   }
262 
263   return !(LastUse > LastDef && LastUse < Dist);
264 }
265 
266 /// Return true if the specified MI is a copy instruction or an extract_subreg
267 /// instruction. It also returns the source and destination registers and
268 /// whether they are physical registers by reference.
269 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
270                         Register &SrcReg, Register &DstReg, bool &IsSrcPhys,
271                         bool &IsDstPhys) {
272   SrcReg = 0;
273   DstReg = 0;
274   if (MI.isCopy()) {
275     DstReg = MI.getOperand(0).getReg();
276     SrcReg = MI.getOperand(1).getReg();
277   } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
278     DstReg = MI.getOperand(0).getReg();
279     SrcReg = MI.getOperand(2).getReg();
280   } else {
281     return false;
282   }
283 
284   IsSrcPhys = SrcReg.isPhysical();
285   IsDstPhys = DstReg.isPhysical();
286   return true;
287 }
288 
289 /// Test if the given register value, which is used by the
290 /// given instruction, is killed by the given instruction.
291 static bool isPlainlyKilled(MachineInstr *MI, Register Reg,
292                             LiveIntervals *LIS) {
293   if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) {
294     // FIXME: Sometimes tryInstructionTransform() will add instructions and
295     // test whether they can be folded before keeping them. In this case it
296     // sets a kill before recursively calling tryInstructionTransform() again.
297     // If there is no interval available, we assume that this instruction is
298     // one of those. A kill flag is manually inserted on the operand so the
299     // check below will handle it.
300     LiveInterval &LI = LIS->getInterval(Reg);
301     // This is to match the kill flag version where undefs don't have kill
302     // flags.
303     if (!LI.hasAtLeastOneValue())
304       return false;
305 
306     SlotIndex useIdx = LIS->getInstructionIndex(*MI);
307     LiveInterval::const_iterator I = LI.find(useIdx);
308     assert(I != LI.end() && "Reg must be live-in to use.");
309     return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
310   }
311 
312   return MI->killsRegister(Reg);
313 }
314 
315 /// Test if the given register value, which is used by the given
316 /// instruction, is killed by the given instruction. This looks through
317 /// coalescable copies to see if the original value is potentially not killed.
318 ///
319 /// For example, in this code:
320 ///
321 ///   %reg1034 = copy %reg1024
322 ///   %reg1035 = copy killed %reg1025
323 ///   %reg1036 = add killed %reg1034, killed %reg1035
324 ///
325 /// %reg1034 is not considered to be killed, since it is copied from a
326 /// register which is not killed. Treating it as not killed lets the
327 /// normal heuristics commute the (two-address) add, which lets
328 /// coalescing eliminate the extra copy.
329 ///
330 /// If allowFalsePositives is true then likely kills are treated as kills even
331 /// if it can't be proven that they are kills.
332 static bool isKilled(MachineInstr &MI, Register Reg,
333                      const MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
334                      LiveIntervals *LIS, bool allowFalsePositives) {
335   MachineInstr *DefMI = &MI;
336   while (true) {
337     // All uses of physical registers are likely to be kills.
338     if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg)))
339       return true;
340     if (!isPlainlyKilled(DefMI, Reg, LIS))
341       return false;
342     if (Reg.isPhysical())
343       return true;
344     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
345     // If there are multiple defs, we can't do a simple analysis, so just
346     // go with what the kill flag says.
347     if (std::next(Begin) != MRI->def_end())
348       return true;
349     DefMI = Begin->getParent();
350     bool IsSrcPhys, IsDstPhys;
351     Register SrcReg, DstReg;
352     // If the def is something other than a copy, then it isn't going to
353     // be coalesced, so follow the kill flag.
354     if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
355       return true;
356     Reg = SrcReg;
357   }
358 }
359 
360 /// Return true if the specified MI uses the specified register as a two-address
361 /// use. If so, return the destination register by reference.
362 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) {
363   for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
364     const MachineOperand &MO = MI.getOperand(i);
365     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
366       continue;
367     unsigned ti;
368     if (MI.isRegTiedToDefOperand(i, &ti)) {
369       DstReg = MI.getOperand(ti).getReg();
370       return true;
371     }
372   }
373   return false;
374 }
375 
376 /// Given a register, if has a single in-basic block use, return the use
377 /// instruction if it's a copy or a two-address use.
378 static MachineInstr *
379 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB,
380                        MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
381                        bool &IsCopy, Register &DstReg, bool &IsDstPhys) {
382   if (!MRI->hasOneNonDBGUse(Reg))
383     // None or more than one use.
384     return nullptr;
385   MachineOperand &UseOp = *MRI->use_nodbg_begin(Reg);
386   MachineInstr &UseMI = *UseOp.getParent();
387   if (UseMI.getParent() != MBB)
388     return nullptr;
389   Register SrcReg;
390   bool IsSrcPhys;
391   if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
392     IsCopy = true;
393     return &UseMI;
394   }
395   IsDstPhys = false;
396   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
397     IsDstPhys = DstReg.isPhysical();
398     return &UseMI;
399   }
400   if (UseMI.isCommutable()) {
401     unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex;
402     unsigned Src2 = UseMI.getOperandNo(&UseOp);
403     if (TII->findCommutedOpIndices(UseMI, Src1, Src2)) {
404       MachineOperand &MO = UseMI.getOperand(Src1);
405       if (MO.isReg() && MO.isUse() &&
406           isTwoAddrUse(UseMI, MO.getReg(), DstReg)) {
407         IsDstPhys = DstReg.isPhysical();
408         return &UseMI;
409       }
410     }
411   }
412   return nullptr;
413 }
414 
415 /// Return the physical register the specified virtual register might be mapped
416 /// to.
417 static MCRegister getMappedReg(Register Reg,
418                                DenseMap<Register, Register> &RegMap) {
419   while (Reg.isVirtual()) {
420     DenseMap<Register, Register>::iterator SI = RegMap.find(Reg);
421     if (SI == RegMap.end())
422       return 0;
423     Reg = SI->second;
424   }
425   if (Reg.isPhysical())
426     return Reg;
427   return 0;
428 }
429 
430 /// Return true if the two registers are equal or aliased.
431 static bool regsAreCompatible(Register RegA, Register RegB,
432                               const TargetRegisterInfo *TRI) {
433   if (RegA == RegB)
434     return true;
435   if (!RegA || !RegB)
436     return false;
437   return TRI->regsOverlap(RegA, RegB);
438 }
439 
440 /// From RegMap remove entries mapped to a physical register which overlaps MO.
441 static void removeMapRegEntry(const MachineOperand &MO,
442                               DenseMap<Register, Register> &RegMap,
443                               const TargetRegisterInfo *TRI) {
444   assert(
445       (MO.isReg() || MO.isRegMask()) &&
446       "removeMapRegEntry must be called with a register or regmask operand.");
447 
448   SmallVector<Register, 2> Srcs;
449   for (auto SI : RegMap) {
450     Register ToReg = SI.second;
451     if (ToReg.isVirtual())
452       continue;
453 
454     if (MO.isReg()) {
455       Register Reg = MO.getReg();
456       if (TRI->regsOverlap(ToReg, Reg))
457         Srcs.push_back(SI.first);
458     } else if (MO.clobbersPhysReg(ToReg))
459       Srcs.push_back(SI.first);
460   }
461 
462   for (auto SrcReg : Srcs)
463     RegMap.erase(SrcReg);
464 }
465 
466 /// If a physical register is clobbered, old entries mapped to it should be
467 /// deleted. For example
468 ///
469 ///     %2:gr64 = COPY killed $rdx
470 ///     MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx
471 ///
472 /// After the MUL instruction, $rdx contains different value than in the COPY
473 /// instruction. So %2 should not map to $rdx after MUL.
474 void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr *MI) {
475   if (MI->isCopy()) {
476     // If a virtual register is copied to its mapped physical register, it
477     // doesn't change the potential coalescing between them, so we don't remove
478     // entries mapped to the physical register. For example
479     //
480     // %100 = COPY $r8
481     //     ...
482     // $r8  = COPY %100
483     //
484     // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't
485     // destroy the content of $r8, and should not impact SrcRegMap.
486     Register Dst = MI->getOperand(0).getReg();
487     if (!Dst || Dst.isVirtual())
488       return;
489 
490     Register Src = MI->getOperand(1).getReg();
491     if (regsAreCompatible(Dst, getMappedReg(Src, SrcRegMap), TRI))
492       return;
493   }
494 
495   for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
496     const MachineOperand &MO = MI->getOperand(i);
497     if (MO.isRegMask()) {
498       removeMapRegEntry(MO, SrcRegMap, TRI);
499       continue;
500     }
501     if (!MO.isReg() || !MO.isDef())
502       continue;
503     Register Reg = MO.getReg();
504     if (!Reg || Reg.isVirtual())
505       continue;
506     removeMapRegEntry(MO, SrcRegMap, TRI);
507   }
508 }
509 
510 // Returns true if Reg is equal or aliased to at least one register in Set.
511 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg,
512                            const TargetRegisterInfo *TRI) {
513   for (unsigned R : Set)
514     if (TRI->regsOverlap(R, Reg))
515       return true;
516 
517   return false;
518 }
519 
520 /// Return true if it's potentially profitable to commute the two-address
521 /// instruction that's being processed.
522 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA,
523                                                       Register RegB,
524                                                       Register RegC,
525                                                       MachineInstr *MI,
526                                                       unsigned Dist) {
527   if (OptLevel == CodeGenOpt::None)
528     return false;
529 
530   // Determine if it's profitable to commute this two address instruction. In
531   // general, we want no uses between this instruction and the definition of
532   // the two-address register.
533   // e.g.
534   // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
535   // %reg1029 = COPY %reg1028
536   // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
537   // insert => %reg1030 = COPY %reg1028
538   // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
539   // In this case, it might not be possible to coalesce the second COPY
540   // instruction if the first one is coalesced. So it would be profitable to
541   // commute it:
542   // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
543   // %reg1029 = COPY %reg1028
544   // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
545   // insert => %reg1030 = COPY %reg1029
546   // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags
547 
548   if (!isPlainlyKilled(MI, RegC, LIS))
549     return false;
550 
551   // Ok, we have something like:
552   // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
553   // let's see if it's worth commuting it.
554 
555   // Look for situations like this:
556   // %reg1024 = MOV r1
557   // %reg1025 = MOV r0
558   // %reg1026 = ADD %reg1024, %reg1025
559   // r0            = MOV %reg1026
560   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
561   MCRegister ToRegA = getMappedReg(RegA, DstRegMap);
562   if (ToRegA) {
563     MCRegister FromRegB = getMappedReg(RegB, SrcRegMap);
564     MCRegister FromRegC = getMappedReg(RegC, SrcRegMap);
565     bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
566     bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
567 
568     // Compute if any of the following are true:
569     // -RegB is not tied to a register and RegC is compatible with RegA.
570     // -RegB is tied to the wrong physical register, but RegC is.
571     // -RegB is tied to the wrong physical register, and RegC isn't tied.
572     if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
573       return true;
574     // Don't compute if any of the following are true:
575     // -RegC is not tied to a register and RegB is compatible with RegA.
576     // -RegC is tied to the wrong physical register, but RegB is.
577     // -RegC is tied to the wrong physical register, and RegB isn't tied.
578     if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
579       return false;
580   }
581 
582   // If there is a use of RegC between its last def (could be livein) and this
583   // instruction, then bail.
584   unsigned LastDefC = 0;
585   if (!noUseAfterLastDef(RegC, Dist, LastDefC))
586     return false;
587 
588   // If there is a use of RegB between its last def (could be livein) and this
589   // instruction, then go ahead and make this transformation.
590   unsigned LastDefB = 0;
591   if (!noUseAfterLastDef(RegB, Dist, LastDefB))
592     return true;
593 
594   // Look for situation like this:
595   // %reg101 = MOV %reg100
596   // %reg102 = ...
597   // %reg103 = ADD %reg102, %reg101
598   // ... = %reg103 ...
599   // %reg100 = MOV %reg103
600   // If there is a reversed copy chain from reg101 to reg103, commute the ADD
601   // to eliminate an otherwise unavoidable copy.
602   // FIXME:
603   // We can extend the logic further: If an pair of operands in an insn has
604   // been merged, the insn could be regarded as a virtual copy, and the virtual
605   // copy could also be used to construct a copy chain.
606   // To more generally minimize register copies, ideally the logic of two addr
607   // instruction pass should be integrated with register allocation pass where
608   // interference graph is available.
609   if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge))
610     return true;
611 
612   if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge))
613     return false;
614 
615   // Look for other target specific commute preference.
616   bool Commute;
617   if (TII->hasCommutePreference(*MI, Commute))
618     return Commute;
619 
620   // Since there are no intervening uses for both registers, then commute
621   // if the def of RegC is closer. Its live interval is shorter.
622   return LastDefB && LastDefC && LastDefC > LastDefB;
623 }
624 
625 /// Commute a two-address instruction and update the basic block, distance map,
626 /// and live variables if needed. Return true if it is successful.
627 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
628                                                    unsigned DstIdx,
629                                                    unsigned RegBIdx,
630                                                    unsigned RegCIdx,
631                                                    unsigned Dist) {
632   Register RegC = MI->getOperand(RegCIdx).getReg();
633   LLVM_DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
634   MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx);
635 
636   if (NewMI == nullptr) {
637     LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
638     return false;
639   }
640 
641   LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
642   assert(NewMI == MI &&
643          "TargetInstrInfo::commuteInstruction() should not return a new "
644          "instruction unless it was requested.");
645 
646   // Update source register map.
647   MCRegister FromRegC = getMappedReg(RegC, SrcRegMap);
648   if (FromRegC) {
649     Register RegA = MI->getOperand(DstIdx).getReg();
650     SrcRegMap[RegA] = FromRegC;
651   }
652 
653   return true;
654 }
655 
656 /// Return true if it is profitable to convert the given 2-address instruction
657 /// to a 3-address one.
658 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA,
659                                                         Register RegB) {
660   // Look for situations like this:
661   // %reg1024 = MOV r1
662   // %reg1025 = MOV r0
663   // %reg1026 = ADD %reg1024, %reg1025
664   // r2            = MOV %reg1026
665   // Turn ADD into a 3-address instruction to avoid a copy.
666   MCRegister FromRegB = getMappedReg(RegB, SrcRegMap);
667   if (!FromRegB)
668     return false;
669   MCRegister ToRegA = getMappedReg(RegA, DstRegMap);
670   return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
671 }
672 
673 /// Convert the specified two-address instruction into a three address one.
674 /// Return true if this transformation was successful.
675 bool TwoAddressInstructionPass::convertInstTo3Addr(
676     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
677     Register RegA, Register RegB, unsigned &Dist) {
678   MachineInstrSpan MIS(mi, MBB);
679   MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV, LIS);
680   if (!NewMI)
681     return false;
682 
683   LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
684   LLVM_DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
685 
686   // If the old instruction is debug value tracked, an update is required.
687   if (auto OldInstrNum = mi->peekDebugInstrNum()) {
688     assert(mi->getNumExplicitDefs() == 1);
689     assert(NewMI->getNumExplicitDefs() == 1);
690 
691     // Find the old and new def location.
692     auto OldIt = mi->defs().begin();
693     auto NewIt = NewMI->defs().begin();
694     unsigned OldIdx = mi->getOperandNo(OldIt);
695     unsigned NewIdx = NewMI->getOperandNo(NewIt);
696 
697     // Record that one def has been replaced by the other.
698     unsigned NewInstrNum = NewMI->getDebugInstrNum();
699     MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx),
700                                    std::make_pair(NewInstrNum, NewIdx));
701   }
702 
703   MBB->erase(mi); // Nuke the old inst.
704 
705   for (MachineInstr &MI : MIS)
706     DistanceMap.insert(std::make_pair(&MI, Dist++));
707   Dist--;
708   mi = NewMI;
709   nmi = std::next(mi);
710 
711   // Update source and destination register maps.
712   SrcRegMap.erase(RegA);
713   DstRegMap.erase(RegB);
714   return true;
715 }
716 
717 /// Scan forward recursively for only uses, update maps if the use is a copy or
718 /// a two-address instruction.
719 void TwoAddressInstructionPass::scanUses(Register DstReg) {
720   SmallVector<Register, 4> VirtRegPairs;
721   bool IsDstPhys;
722   bool IsCopy = false;
723   Register NewReg;
724   Register Reg = DstReg;
725   while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
726                                                       NewReg, IsDstPhys)) {
727     if (IsCopy && !Processed.insert(UseMI).second)
728       break;
729 
730     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
731     if (DI != DistanceMap.end())
732       // Earlier in the same MBB.Reached via a back edge.
733       break;
734 
735     if (IsDstPhys) {
736       VirtRegPairs.push_back(NewReg);
737       break;
738     }
739     SrcRegMap[NewReg] = Reg;
740     VirtRegPairs.push_back(NewReg);
741     Reg = NewReg;
742   }
743 
744   if (!VirtRegPairs.empty()) {
745     unsigned ToReg = VirtRegPairs.back();
746     VirtRegPairs.pop_back();
747     while (!VirtRegPairs.empty()) {
748       unsigned FromReg = VirtRegPairs.pop_back_val();
749       bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
750       if (!isNew)
751         assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
752       ToReg = FromReg;
753     }
754     bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
755     if (!isNew)
756       assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
757   }
758 }
759 
760 /// If the specified instruction is not yet processed, process it if it's a
761 /// copy. For a copy instruction, we find the physical registers the
762 /// source and destination registers might be mapped to. These are kept in
763 /// point-to maps used to determine future optimizations. e.g.
764 /// v1024 = mov r0
765 /// v1025 = mov r1
766 /// v1026 = add v1024, v1025
767 /// r1    = mov r1026
768 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
769 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
770 /// potentially joined with r1 on the output side. It's worthwhile to commute
771 /// 'add' to eliminate a copy.
772 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
773   if (Processed.count(MI))
774     return;
775 
776   bool IsSrcPhys, IsDstPhys;
777   Register SrcReg, DstReg;
778   if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
779     return;
780 
781   if (IsDstPhys && !IsSrcPhys) {
782     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
783   } else if (!IsDstPhys && IsSrcPhys) {
784     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
785     if (!isNew)
786       assert(SrcRegMap[DstReg] == SrcReg &&
787              "Can't map to two src physical registers!");
788 
789     scanUses(DstReg);
790   }
791 
792   Processed.insert(MI);
793 }
794 
795 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
796 /// consider moving the instruction below the kill instruction in order to
797 /// eliminate the need for the copy.
798 bool TwoAddressInstructionPass::rescheduleMIBelowKill(
799     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
800     Register Reg) {
801   // Bail immediately if we don't have LV or LIS available. We use them to find
802   // kills efficiently.
803   if (!LV && !LIS)
804     return false;
805 
806   MachineInstr *MI = &*mi;
807   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
808   if (DI == DistanceMap.end())
809     // Must be created from unfolded load. Don't waste time trying this.
810     return false;
811 
812   MachineInstr *KillMI = nullptr;
813   if (LIS) {
814     LiveInterval &LI = LIS->getInterval(Reg);
815     assert(LI.end() != LI.begin() &&
816            "Reg should not have empty live interval.");
817 
818     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
819     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
820     if (I != LI.end() && I->start < MBBEndIdx)
821       return false;
822 
823     --I;
824     KillMI = LIS->getInstructionFromIndex(I->end);
825   } else {
826     KillMI = LV->getVarInfo(Reg).findKill(MBB);
827   }
828   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
829     // Don't mess with copies, they may be coalesced later.
830     return false;
831 
832   if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
833       KillMI->isBranch() || KillMI->isTerminator())
834     // Don't move pass calls, etc.
835     return false;
836 
837   Register DstReg;
838   if (isTwoAddrUse(*KillMI, Reg, DstReg))
839     return false;
840 
841   bool SeenStore = true;
842   if (!MI->isSafeToMove(AA, SeenStore))
843     return false;
844 
845   if (TII->getInstrLatency(InstrItins, *MI) > 1)
846     // FIXME: Needs more sophisticated heuristics.
847     return false;
848 
849   SmallVector<Register, 2> Uses;
850   SmallVector<Register, 2> Kills;
851   SmallVector<Register, 2> Defs;
852   for (const MachineOperand &MO : MI->operands()) {
853     if (!MO.isReg())
854       continue;
855     Register MOReg = MO.getReg();
856     if (!MOReg)
857       continue;
858     if (MO.isDef())
859       Defs.push_back(MOReg);
860     else {
861       Uses.push_back(MOReg);
862       if (MOReg != Reg && (MO.isKill() ||
863                            (LIS && isPlainlyKilled(MI, MOReg, LIS))))
864         Kills.push_back(MOReg);
865     }
866   }
867 
868   // Move the copies connected to MI down as well.
869   MachineBasicBlock::iterator Begin = MI;
870   MachineBasicBlock::iterator AfterMI = std::next(Begin);
871   MachineBasicBlock::iterator End = AfterMI;
872   while (End != MBB->end()) {
873     End = skipDebugInstructionsForward(End, MBB->end());
874     if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI))
875       Defs.push_back(End->getOperand(0).getReg());
876     else
877       break;
878     ++End;
879   }
880 
881   // Check if the reschedule will not break dependencies.
882   unsigned NumVisited = 0;
883   MachineBasicBlock::iterator KillPos = KillMI;
884   ++KillPos;
885   for (MachineInstr &OtherMI : make_range(End, KillPos)) {
886     // Debug or pseudo instructions cannot be counted against the limit.
887     if (OtherMI.isDebugOrPseudoInstr())
888       continue;
889     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
890       return false;
891     ++NumVisited;
892     if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
893         OtherMI.isBranch() || OtherMI.isTerminator())
894       // Don't move pass calls, etc.
895       return false;
896     for (const MachineOperand &MO : OtherMI.operands()) {
897       if (!MO.isReg())
898         continue;
899       Register MOReg = MO.getReg();
900       if (!MOReg)
901         continue;
902       if (MO.isDef()) {
903         if (regOverlapsSet(Uses, MOReg, TRI))
904           // Physical register use would be clobbered.
905           return false;
906         if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI))
907           // May clobber a physical register def.
908           // FIXME: This may be too conservative. It's ok if the instruction
909           // is sunken completely below the use.
910           return false;
911       } else {
912         if (regOverlapsSet(Defs, MOReg, TRI))
913           return false;
914         bool isKill =
915             MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS));
916         if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) ||
917                              regOverlapsSet(Kills, MOReg, TRI)))
918           // Don't want to extend other live ranges and update kills.
919           return false;
920         if (MOReg == Reg && !isKill)
921           // We can't schedule across a use of the register in question.
922           return false;
923         // Ensure that if this is register in question, its the kill we expect.
924         assert((MOReg != Reg || &OtherMI == KillMI) &&
925                "Found multiple kills of a register in a basic block");
926       }
927     }
928   }
929 
930   // Move debug info as well.
931   while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr())
932     --Begin;
933 
934   nmi = End;
935   MachineBasicBlock::iterator InsertPos = KillPos;
936   if (LIS) {
937     // We have to move the copies (and any interleaved debug instructions)
938     // first so that the MBB is still well-formed when calling handleMove().
939     for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
940       auto CopyMI = MBBI++;
941       MBB->splice(InsertPos, MBB, CopyMI);
942       if (!CopyMI->isDebugOrPseudoInstr())
943         LIS->handleMove(*CopyMI);
944       InsertPos = CopyMI;
945     }
946     End = std::next(MachineBasicBlock::iterator(MI));
947   }
948 
949   // Copies following MI may have been moved as well.
950   MBB->splice(InsertPos, MBB, Begin, End);
951   DistanceMap.erase(DI);
952 
953   // Update live variables
954   if (LIS) {
955     LIS->handleMove(*MI);
956   } else {
957     LV->removeVirtualRegisterKilled(Reg, *KillMI);
958     LV->addVirtualRegisterKilled(Reg, *MI);
959   }
960 
961   LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
962   return true;
963 }
964 
965 /// Return true if the re-scheduling will put the given instruction too close
966 /// to the defs of its register dependencies.
967 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist,
968                                               MachineInstr *MI) {
969   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
970     if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
971       continue;
972     if (&DefMI == MI)
973       return true; // MI is defining something KillMI uses
974     DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
975     if (DDI == DistanceMap.end())
976       return true;  // Below MI
977     unsigned DefDist = DDI->second;
978     assert(Dist > DefDist && "Visited def already?");
979     if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
980       return true;
981   }
982   return false;
983 }
984 
985 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
986 /// consider moving the kill instruction above the current two-address
987 /// instruction in order to eliminate the need for the copy.
988 bool TwoAddressInstructionPass::rescheduleKillAboveMI(
989     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
990     Register Reg) {
991   // Bail immediately if we don't have LV or LIS available. We use them to find
992   // kills efficiently.
993   if (!LV && !LIS)
994     return false;
995 
996   MachineInstr *MI = &*mi;
997   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
998   if (DI == DistanceMap.end())
999     // Must be created from unfolded load. Don't waste time trying this.
1000     return false;
1001 
1002   MachineInstr *KillMI = nullptr;
1003   if (LIS) {
1004     LiveInterval &LI = LIS->getInterval(Reg);
1005     assert(LI.end() != LI.begin() &&
1006            "Reg should not have empty live interval.");
1007 
1008     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
1009     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
1010     if (I != LI.end() && I->start < MBBEndIdx)
1011       return false;
1012 
1013     --I;
1014     KillMI = LIS->getInstructionFromIndex(I->end);
1015   } else {
1016     KillMI = LV->getVarInfo(Reg).findKill(MBB);
1017   }
1018   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1019     // Don't mess with copies, they may be coalesced later.
1020     return false;
1021 
1022   Register DstReg;
1023   if (isTwoAddrUse(*KillMI, Reg, DstReg))
1024     return false;
1025 
1026   bool SeenStore = true;
1027   if (!KillMI->isSafeToMove(AA, SeenStore))
1028     return false;
1029 
1030   SmallVector<Register, 2> Uses;
1031   SmallVector<Register, 2> Kills;
1032   SmallVector<Register, 2> Defs;
1033   SmallVector<Register, 2> LiveDefs;
1034   for (const MachineOperand &MO : KillMI->operands()) {
1035     if (!MO.isReg())
1036       continue;
1037     Register MOReg = MO.getReg();
1038     if (MO.isUse()) {
1039       if (!MOReg)
1040         continue;
1041       if (isDefTooClose(MOReg, DI->second, MI))
1042         return false;
1043       bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
1044       if (MOReg == Reg && !isKill)
1045         return false;
1046       Uses.push_back(MOReg);
1047       if (isKill && MOReg != Reg)
1048         Kills.push_back(MOReg);
1049     } else if (MOReg.isPhysical()) {
1050       Defs.push_back(MOReg);
1051       if (!MO.isDead())
1052         LiveDefs.push_back(MOReg);
1053     }
1054   }
1055 
1056   // Check if the reschedule will not break depedencies.
1057   unsigned NumVisited = 0;
1058   for (MachineInstr &OtherMI :
1059        make_range(mi, MachineBasicBlock::iterator(KillMI))) {
1060     // Debug or pseudo instructions cannot be counted against the limit.
1061     if (OtherMI.isDebugOrPseudoInstr())
1062       continue;
1063     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1064       return false;
1065     ++NumVisited;
1066     if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
1067         OtherMI.isBranch() || OtherMI.isTerminator())
1068       // Don't move pass calls, etc.
1069       return false;
1070     SmallVector<Register, 2> OtherDefs;
1071     for (const MachineOperand &MO : OtherMI.operands()) {
1072       if (!MO.isReg())
1073         continue;
1074       Register MOReg = MO.getReg();
1075       if (!MOReg)
1076         continue;
1077       if (MO.isUse()) {
1078         if (regOverlapsSet(Defs, MOReg, TRI))
1079           // Moving KillMI can clobber the physical register if the def has
1080           // not been seen.
1081           return false;
1082         if (regOverlapsSet(Kills, MOReg, TRI))
1083           // Don't want to extend other live ranges and update kills.
1084           return false;
1085         if (&OtherMI != MI && MOReg == Reg &&
1086             !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))))
1087           // We can't schedule across a use of the register in question.
1088           return false;
1089       } else {
1090         OtherDefs.push_back(MOReg);
1091       }
1092     }
1093 
1094     for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1095       Register MOReg = OtherDefs[i];
1096       if (regOverlapsSet(Uses, MOReg, TRI))
1097         return false;
1098       if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI))
1099         return false;
1100       // Physical register def is seen.
1101       llvm::erase_value(Defs, MOReg);
1102     }
1103   }
1104 
1105   // Move the old kill above MI, don't forget to move debug info as well.
1106   MachineBasicBlock::iterator InsertPos = mi;
1107   while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr())
1108     --InsertPos;
1109   MachineBasicBlock::iterator From = KillMI;
1110   MachineBasicBlock::iterator To = std::next(From);
1111   while (std::prev(From)->isDebugInstr())
1112     --From;
1113   MBB->splice(InsertPos, MBB, From, To);
1114 
1115   nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1116   DistanceMap.erase(DI);
1117 
1118   // Update live variables
1119   if (LIS) {
1120     LIS->handleMove(*KillMI);
1121   } else {
1122     LV->removeVirtualRegisterKilled(Reg, *KillMI);
1123     LV->addVirtualRegisterKilled(Reg, *MI);
1124   }
1125 
1126   LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1127   return true;
1128 }
1129 
1130 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1131 /// given machine instruction to improve opportunities for coalescing and
1132 /// elimination of a register to register copy.
1133 ///
1134 /// 'DstOpIdx' specifies the index of MI def operand.
1135 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1136 /// operand is killed by the given instruction.
1137 /// The 'Dist' arguments provides the distance of MI from the start of the
1138 /// current basic block and it is used to determine if it is profitable
1139 /// to commute operands in the instruction.
1140 ///
1141 /// Returns true if the transformation happened. Otherwise, returns false.
1142 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
1143                                                       unsigned DstOpIdx,
1144                                                       unsigned BaseOpIdx,
1145                                                       bool BaseOpKilled,
1146                                                       unsigned Dist) {
1147   if (!MI->isCommutable())
1148     return false;
1149 
1150   bool MadeChange = false;
1151   Register DstOpReg = MI->getOperand(DstOpIdx).getReg();
1152   Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
1153   unsigned OpsNum = MI->getDesc().getNumOperands();
1154   unsigned OtherOpIdx = MI->getDesc().getNumDefs();
1155   for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
1156     // The call of findCommutedOpIndices below only checks if BaseOpIdx
1157     // and OtherOpIdx are commutable, it does not really search for
1158     // other commutable operands and does not change the values of passed
1159     // variables.
1160     if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() ||
1161         !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx))
1162       continue;
1163 
1164     Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
1165     bool AggressiveCommute = false;
1166 
1167     // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1168     // operands. This makes the live ranges of DstOp and OtherOp joinable.
1169     bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false);
1170     bool DoCommute = !BaseOpKilled && OtherOpKilled;
1171 
1172     if (!DoCommute &&
1173         isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
1174       DoCommute = true;
1175       AggressiveCommute = true;
1176     }
1177 
1178     // If it's profitable to commute, try to do so.
1179     if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx,
1180                                         Dist)) {
1181       MadeChange = true;
1182       ++NumCommuted;
1183       if (AggressiveCommute)
1184         ++NumAggrCommuted;
1185 
1186       // There might be more than two commutable operands, update BaseOp and
1187       // continue scanning.
1188       // FIXME: This assumes that the new instruction's operands are in the
1189       // same positions and were simply swapped.
1190       BaseOpReg = OtherOpReg;
1191       BaseOpKilled = OtherOpKilled;
1192       // Resamples OpsNum in case the number of operands was reduced. This
1193       // happens with X86.
1194       OpsNum = MI->getDesc().getNumOperands();
1195     }
1196   }
1197   return MadeChange;
1198 }
1199 
1200 /// For the case where an instruction has a single pair of tied register
1201 /// operands, attempt some transformations that may either eliminate the tied
1202 /// operands or improve the opportunities for coalescing away the register copy.
1203 /// Returns true if no copy needs to be inserted to untie mi's operands
1204 /// (either because they were untied, or because mi was rescheduled, and will
1205 /// be visited again later). If the shouldOnlyCommute flag is true, only
1206 /// instruction commutation is attempted.
1207 bool TwoAddressInstructionPass::
1208 tryInstructionTransform(MachineBasicBlock::iterator &mi,
1209                         MachineBasicBlock::iterator &nmi,
1210                         unsigned SrcIdx, unsigned DstIdx,
1211                         unsigned &Dist, bool shouldOnlyCommute) {
1212   if (OptLevel == CodeGenOpt::None)
1213     return false;
1214 
1215   MachineInstr &MI = *mi;
1216   Register regA = MI.getOperand(DstIdx).getReg();
1217   Register regB = MI.getOperand(SrcIdx).getReg();
1218 
1219   assert(regB.isVirtual() && "cannot make instruction into two-address form");
1220   bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1221 
1222   if (regA.isVirtual())
1223     scanUses(regA);
1224 
1225   bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
1226 
1227   // If the instruction is convertible to 3 Addr, instead
1228   // of returning try 3 Addr transformation aggressively and
1229   // use this variable to check later. Because it might be better.
1230   // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1231   // instead of the following code.
1232   //   addl     %esi, %edi
1233   //   movl     %edi, %eax
1234   //   ret
1235   if (Commuted && !MI.isConvertibleTo3Addr())
1236     return false;
1237 
1238   if (shouldOnlyCommute)
1239     return false;
1240 
1241   // If there is one more use of regB later in the same MBB, consider
1242   // re-schedule this MI below it.
1243   if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1244     ++NumReSchedDowns;
1245     return true;
1246   }
1247 
1248   // If we commuted, regB may have changed so we should re-sample it to avoid
1249   // confusing the three address conversion below.
1250   if (Commuted) {
1251     regB = MI.getOperand(SrcIdx).getReg();
1252     regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1253   }
1254 
1255   if (MI.isConvertibleTo3Addr()) {
1256     // This instruction is potentially convertible to a true
1257     // three-address instruction.  Check if it is profitable.
1258     if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1259       // Try to convert it.
1260       if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1261         ++NumConvertedTo3Addr;
1262         return true; // Done with this instruction.
1263       }
1264     }
1265   }
1266 
1267   // Return if it is commuted but 3 addr conversion is failed.
1268   if (Commuted)
1269     return false;
1270 
1271   // If there is one more use of regB later in the same MBB, consider
1272   // re-schedule it before this MI if it's legal.
1273   if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1274     ++NumReSchedUps;
1275     return true;
1276   }
1277 
1278   // If this is an instruction with a load folded into it, try unfolding
1279   // the load, e.g. avoid this:
1280   //   movq %rdx, %rcx
1281   //   addq (%rax), %rcx
1282   // in favor of this:
1283   //   movq (%rax), %rcx
1284   //   addq %rdx, %rcx
1285   // because it's preferable to schedule a load than a register copy.
1286   if (MI.mayLoad() && !regBKilled) {
1287     // Determine if a load can be unfolded.
1288     unsigned LoadRegIndex;
1289     unsigned NewOpc =
1290       TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1291                                       /*UnfoldLoad=*/true,
1292                                       /*UnfoldStore=*/false,
1293                                       &LoadRegIndex);
1294     if (NewOpc != 0) {
1295       const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1296       if (UnfoldMCID.getNumDefs() == 1) {
1297         // Unfold the load.
1298         LLVM_DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1299         const TargetRegisterClass *RC =
1300           TRI->getAllocatableClass(
1301             TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1302         Register Reg = MRI->createVirtualRegister(RC);
1303         SmallVector<MachineInstr *, 2> NewMIs;
1304         if (!TII->unfoldMemoryOperand(*MF, MI, Reg,
1305                                       /*UnfoldLoad=*/true,
1306                                       /*UnfoldStore=*/false, NewMIs)) {
1307           LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1308           return false;
1309         }
1310         assert(NewMIs.size() == 2 &&
1311                "Unfolded a load into multiple instructions!");
1312         // The load was previously folded, so this is the only use.
1313         NewMIs[1]->addRegisterKilled(Reg, TRI);
1314 
1315         // Tentatively insert the instructions into the block so that they
1316         // look "normal" to the transformation logic.
1317         MBB->insert(mi, NewMIs[0]);
1318         MBB->insert(mi, NewMIs[1]);
1319         DistanceMap.insert(std::make_pair(NewMIs[0], Dist++));
1320         DistanceMap.insert(std::make_pair(NewMIs[1], Dist));
1321 
1322         LLVM_DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1323                           << "2addr:    NEW INST: " << *NewMIs[1]);
1324 
1325         // Transform the instruction, now that it no longer has a load.
1326         unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1327         unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1328         MachineBasicBlock::iterator NewMI = NewMIs[1];
1329         bool TransformResult =
1330           tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1331         (void)TransformResult;
1332         assert(!TransformResult &&
1333                "tryInstructionTransform() should return false.");
1334         if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1335           // Success, or at least we made an improvement. Keep the unfolded
1336           // instructions and discard the original.
1337           if (LV) {
1338             for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1339               MachineOperand &MO = MI.getOperand(i);
1340               if (MO.isReg() && MO.getReg().isVirtual()) {
1341                 if (MO.isUse()) {
1342                   if (MO.isKill()) {
1343                     if (NewMIs[0]->killsRegister(MO.getReg()))
1344                       LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]);
1345                     else {
1346                       assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1347                              "Kill missing after load unfold!");
1348                       LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]);
1349                     }
1350                   }
1351                 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) {
1352                   if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1353                     LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]);
1354                   else {
1355                     assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1356                            "Dead flag missing after load unfold!");
1357                     LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]);
1358                   }
1359                 }
1360               }
1361             }
1362             LV->addVirtualRegisterKilled(Reg, *NewMIs[1]);
1363           }
1364 
1365           SmallVector<Register, 4> OrigRegs;
1366           if (LIS) {
1367             for (const MachineOperand &MO : MI.operands()) {
1368               if (MO.isReg())
1369                 OrigRegs.push_back(MO.getReg());
1370             }
1371 
1372             LIS->RemoveMachineInstrFromMaps(MI);
1373           }
1374 
1375           MI.eraseFromParent();
1376           DistanceMap.erase(&MI);
1377 
1378           // Update LiveIntervals.
1379           if (LIS) {
1380             MachineBasicBlock::iterator Begin(NewMIs[0]);
1381             MachineBasicBlock::iterator End(NewMIs[1]);
1382             LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1383           }
1384 
1385           mi = NewMIs[1];
1386         } else {
1387           // Transforming didn't eliminate the tie and didn't lead to an
1388           // improvement. Clean up the unfolded instructions and keep the
1389           // original.
1390           LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1391           NewMIs[0]->eraseFromParent();
1392           NewMIs[1]->eraseFromParent();
1393           DistanceMap.erase(NewMIs[0]);
1394           DistanceMap.erase(NewMIs[1]);
1395           Dist--;
1396         }
1397       }
1398     }
1399   }
1400 
1401   return false;
1402 }
1403 
1404 // Collect tied operands of MI that need to be handled.
1405 // Rewrite trivial cases immediately.
1406 // Return true if any tied operands where found, including the trivial ones.
1407 bool TwoAddressInstructionPass::
1408 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1409   bool AnyOps = false;
1410   unsigned NumOps = MI->getNumOperands();
1411 
1412   for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1413     unsigned DstIdx = 0;
1414     if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1415       continue;
1416     AnyOps = true;
1417     MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1418     MachineOperand &DstMO = MI->getOperand(DstIdx);
1419     Register SrcReg = SrcMO.getReg();
1420     Register DstReg = DstMO.getReg();
1421     // Tied constraint already satisfied?
1422     if (SrcReg == DstReg)
1423       continue;
1424 
1425     assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1426 
1427     // Deal with undef uses immediately - simply rewrite the src operand.
1428     if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1429       // Constrain the DstReg register class if required.
1430       if (DstReg.isVirtual()) {
1431         const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
1432         MRI->constrainRegClass(DstReg, RC);
1433       }
1434       SrcMO.setReg(DstReg);
1435       SrcMO.setSubReg(0);
1436       LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1437       continue;
1438     }
1439     TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1440   }
1441   return AnyOps;
1442 }
1443 
1444 // Process a list of tied MI operands that all use the same source register.
1445 // The tied pairs are of the form (SrcIdx, DstIdx).
1446 void
1447 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1448                                             TiedPairList &TiedPairs,
1449                                             unsigned &Dist) {
1450   bool IsEarlyClobber = llvm::find_if(TiedPairs, [MI](auto const &TP) {
1451                           return MI->getOperand(TP.second).isEarlyClobber();
1452                         }) != TiedPairs.end();
1453 
1454   bool RemovedKillFlag = false;
1455   bool AllUsesCopied = true;
1456   unsigned LastCopiedReg = 0;
1457   SlotIndex LastCopyIdx;
1458   Register RegB = 0;
1459   unsigned SubRegB = 0;
1460   for (auto &TP : TiedPairs) {
1461     unsigned SrcIdx = TP.first;
1462     unsigned DstIdx = TP.second;
1463 
1464     const MachineOperand &DstMO = MI->getOperand(DstIdx);
1465     Register RegA = DstMO.getReg();
1466 
1467     // Grab RegB from the instruction because it may have changed if the
1468     // instruction was commuted.
1469     RegB = MI->getOperand(SrcIdx).getReg();
1470     SubRegB = MI->getOperand(SrcIdx).getSubReg();
1471 
1472     if (RegA == RegB) {
1473       // The register is tied to multiple destinations (or else we would
1474       // not have continued this far), but this use of the register
1475       // already matches the tied destination.  Leave it.
1476       AllUsesCopied = false;
1477       continue;
1478     }
1479     LastCopiedReg = RegA;
1480 
1481     assert(RegB.isVirtual() && "cannot make instruction into two-address form");
1482 
1483 #ifndef NDEBUG
1484     // First, verify that we don't have a use of "a" in the instruction
1485     // (a = b + a for example) because our transformation will not
1486     // work. This should never occur because we are in SSA form.
1487     for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1488       assert(i == DstIdx ||
1489              !MI->getOperand(i).isReg() ||
1490              MI->getOperand(i).getReg() != RegA);
1491 #endif
1492 
1493     // Emit a copy.
1494     MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1495                                       TII->get(TargetOpcode::COPY), RegA);
1496     // If this operand is folding a truncation, the truncation now moves to the
1497     // copy so that the register classes remain valid for the operands.
1498     MIB.addReg(RegB, 0, SubRegB);
1499     const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1500     if (SubRegB) {
1501       if (RegA.isVirtual()) {
1502         assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1503                                              SubRegB) &&
1504                "tied subregister must be a truncation");
1505         // The superreg class will not be used to constrain the subreg class.
1506         RC = nullptr;
1507       } else {
1508         assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1509                && "tied subregister must be a truncation");
1510       }
1511     }
1512 
1513     // Update DistanceMap.
1514     MachineBasicBlock::iterator PrevMI = MI;
1515     --PrevMI;
1516     DistanceMap.insert(std::make_pair(&*PrevMI, Dist));
1517     DistanceMap[MI] = ++Dist;
1518 
1519     if (LIS) {
1520       LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot();
1521 
1522       SlotIndex endIdx =
1523           LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber);
1524       if (RegA.isVirtual()) {
1525         LiveInterval &LI = LIS->getInterval(RegA);
1526         VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1527         LI.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI));
1528         for (auto &S : LI.subranges()) {
1529           VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1530           S.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI));
1531         }
1532       } else {
1533         for (MCRegUnitIterator Unit(RegA, TRI); Unit.isValid(); ++Unit) {
1534           if (LiveRange *LR = LIS->getCachedRegUnit(*Unit)) {
1535             VNInfo *VNI =
1536                 LR->getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1537             LR->addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI));
1538           }
1539         }
1540       }
1541     }
1542 
1543     LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1544 
1545     MachineOperand &MO = MI->getOperand(SrcIdx);
1546     assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1547            "inconsistent operand info for 2-reg pass");
1548     if (MO.isKill()) {
1549       MO.setIsKill(false);
1550       RemovedKillFlag = true;
1551     }
1552 
1553     // Make sure regA is a legal regclass for the SrcIdx operand.
1554     if (RegA.isVirtual() && RegB.isVirtual())
1555       MRI->constrainRegClass(RegA, RC);
1556     MO.setReg(RegA);
1557     // The getMatchingSuper asserts guarantee that the register class projected
1558     // by SubRegB is compatible with RegA with no subregister. So regardless of
1559     // whether the dest oper writes a subreg, the source oper should not.
1560     MO.setSubReg(0);
1561   }
1562 
1563   if (AllUsesCopied) {
1564     LaneBitmask RemainingUses = LaneBitmask::getNone();
1565     // Replace other (un-tied) uses of regB with LastCopiedReg.
1566     for (MachineOperand &MO : MI->operands()) {
1567       if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1568         if (MO.getSubReg() == SubRegB && !IsEarlyClobber) {
1569           if (MO.isKill()) {
1570             MO.setIsKill(false);
1571             RemovedKillFlag = true;
1572           }
1573           MO.setReg(LastCopiedReg);
1574           MO.setSubReg(0);
1575         } else {
1576           RemainingUses |= TRI->getSubRegIndexLaneMask(MO.getSubReg());
1577         }
1578       }
1579     }
1580 
1581     // Update live variables for regB.
1582     if (RemovedKillFlag && RemainingUses.none() && LV &&
1583         LV->getVarInfo(RegB).removeKill(*MI)) {
1584       MachineBasicBlock::iterator PrevMI = MI;
1585       --PrevMI;
1586       LV->addVirtualRegisterKilled(RegB, *PrevMI);
1587     }
1588 
1589     if (RemovedKillFlag && RemainingUses.none())
1590       SrcRegMap[LastCopiedReg] = RegB;
1591 
1592     // Update LiveIntervals.
1593     if (LIS) {
1594       SlotIndex UseIdx = LIS->getInstructionIndex(*MI);
1595       auto Shrink = [=](LiveRange &LR, LaneBitmask LaneMask) {
1596         LiveRange::Segment *S = LR.getSegmentContaining(LastCopyIdx);
1597         if (!S)
1598           return true;
1599         if ((LaneMask & RemainingUses).any())
1600           return false;
1601         if (S->end.getBaseIndex() != UseIdx)
1602           return false;
1603         S->end = LastCopyIdx;
1604         return true;
1605       };
1606 
1607       LiveInterval &LI = LIS->getInterval(RegB);
1608       bool ShrinkLI = true;
1609       for (auto &S : LI.subranges())
1610         ShrinkLI &= Shrink(S, S.LaneMask);
1611       if (ShrinkLI)
1612         Shrink(LI, LaneBitmask::getAll());
1613     }
1614   } else if (RemovedKillFlag) {
1615     // Some tied uses of regB matched their destination registers, so
1616     // regB is still used in this instruction, but a kill flag was
1617     // removed from a different tied use of regB, so now we need to add
1618     // a kill flag to one of the remaining uses of regB.
1619     for (MachineOperand &MO : MI->operands()) {
1620       if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1621         MO.setIsKill(true);
1622         break;
1623       }
1624     }
1625   }
1626 }
1627 
1628 /// Reduce two-address instructions to two operands.
1629 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1630   MF = &Func;
1631   const TargetMachine &TM = MF->getTarget();
1632   MRI = &MF->getRegInfo();
1633   TII = MF->getSubtarget().getInstrInfo();
1634   TRI = MF->getSubtarget().getRegisterInfo();
1635   InstrItins = MF->getSubtarget().getInstrItineraryData();
1636   LV = getAnalysisIfAvailable<LiveVariables>();
1637   LIS = getAnalysisIfAvailable<LiveIntervals>();
1638   if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>())
1639     AA = &AAPass->getAAResults();
1640   else
1641     AA = nullptr;
1642   OptLevel = TM.getOptLevel();
1643   // Disable optimizations if requested. We cannot skip the whole pass as some
1644   // fixups are necessary for correctness.
1645   if (skipFunction(Func.getFunction()))
1646     OptLevel = CodeGenOpt::None;
1647 
1648   bool MadeChange = false;
1649 
1650   LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1651   LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n');
1652 
1653   // This pass takes the function out of SSA form.
1654   MRI->leaveSSA();
1655 
1656   // This pass will rewrite the tied-def to meet the RegConstraint.
1657   MF->getProperties()
1658       .set(MachineFunctionProperties::Property::TiedOpsRewritten);
1659 
1660   TiedOperandMap TiedOperands;
1661   for (MachineBasicBlock &MBBI : *MF) {
1662     MBB = &MBBI;
1663     unsigned Dist = 0;
1664     DistanceMap.clear();
1665     SrcRegMap.clear();
1666     DstRegMap.clear();
1667     Processed.clear();
1668     for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1669          mi != me; ) {
1670       MachineBasicBlock::iterator nmi = std::next(mi);
1671       // Skip debug instructions.
1672       if (mi->isDebugInstr()) {
1673         mi = nmi;
1674         continue;
1675       }
1676 
1677       // Expand REG_SEQUENCE instructions. This will position mi at the first
1678       // expanded instruction.
1679       if (mi->isRegSequence())
1680         eliminateRegSequence(mi);
1681 
1682       DistanceMap.insert(std::make_pair(&*mi, ++Dist));
1683 
1684       processCopy(&*mi);
1685 
1686       // First scan through all the tied register uses in this instruction
1687       // and record a list of pairs of tied operands for each register.
1688       if (!collectTiedOperands(&*mi, TiedOperands)) {
1689         removeClobberedSrcRegMap(&*mi);
1690         mi = nmi;
1691         continue;
1692       }
1693 
1694       ++NumTwoAddressInstrs;
1695       MadeChange = true;
1696       LLVM_DEBUG(dbgs() << '\t' << *mi);
1697 
1698       // If the instruction has a single pair of tied operands, try some
1699       // transformations that may either eliminate the tied operands or
1700       // improve the opportunities for coalescing away the register copy.
1701       if (TiedOperands.size() == 1) {
1702         SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs
1703           = TiedOperands.begin()->second;
1704         if (TiedPairs.size() == 1) {
1705           unsigned SrcIdx = TiedPairs[0].first;
1706           unsigned DstIdx = TiedPairs[0].second;
1707           Register SrcReg = mi->getOperand(SrcIdx).getReg();
1708           Register DstReg = mi->getOperand(DstIdx).getReg();
1709           if (SrcReg != DstReg &&
1710               tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1711             // The tied operands have been eliminated or shifted further down
1712             // the block to ease elimination. Continue processing with 'nmi'.
1713             TiedOperands.clear();
1714             removeClobberedSrcRegMap(&*mi);
1715             mi = nmi;
1716             continue;
1717           }
1718         }
1719       }
1720 
1721       // Now iterate over the information collected above.
1722       for (auto &TO : TiedOperands) {
1723         processTiedPairs(&*mi, TO.second, Dist);
1724         LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1725       }
1726 
1727       // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1728       if (mi->isInsertSubreg()) {
1729         // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1730         // To   %reg:subidx = COPY %subreg
1731         unsigned SubIdx = mi->getOperand(3).getImm();
1732         mi->RemoveOperand(3);
1733         assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1734         mi->getOperand(0).setSubReg(SubIdx);
1735         mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1736         mi->RemoveOperand(1);
1737         mi->setDesc(TII->get(TargetOpcode::COPY));
1738         LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1739 
1740         // Update LiveIntervals.
1741         if (LIS) {
1742           Register Reg = mi->getOperand(0).getReg();
1743           LiveInterval &LI = LIS->getInterval(Reg);
1744           if (LI.hasSubRanges()) {
1745             // The COPY no longer defines subregs of %reg except for
1746             // %reg.subidx.
1747             LaneBitmask LaneMask =
1748                 TRI->getSubRegIndexLaneMask(mi->getOperand(0).getSubReg());
1749             SlotIndex Idx = LIS->getInstructionIndex(*mi);
1750             for (auto &S : LI.subranges()) {
1751               if ((S.LaneMask & LaneMask).none()) {
1752                 LiveRange::iterator UseSeg = S.FindSegmentContaining(Idx);
1753                 LiveRange::iterator DefSeg = std::next(UseSeg);
1754                 S.MergeValueNumberInto(DefSeg->valno, UseSeg->valno);
1755               }
1756             }
1757 
1758             // The COPY no longer has a use of %reg.
1759             LIS->shrinkToUses(&LI);
1760           } else {
1761             // The live interval for Reg did not have subranges but now it needs
1762             // them because we have introduced a subreg def. Recompute it.
1763             LIS->removeInterval(Reg);
1764             LIS->createAndComputeVirtRegInterval(Reg);
1765           }
1766         }
1767       }
1768 
1769       // Clear TiedOperands here instead of at the top of the loop
1770       // since most instructions do not have tied operands.
1771       TiedOperands.clear();
1772       removeClobberedSrcRegMap(&*mi);
1773       mi = nmi;
1774     }
1775   }
1776 
1777   return MadeChange;
1778 }
1779 
1780 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1781 ///
1782 /// The instruction is turned into a sequence of sub-register copies:
1783 ///
1784 ///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1785 ///
1786 /// Becomes:
1787 ///
1788 ///   undef %dst:ssub0 = COPY %v1
1789 ///   %dst:ssub1 = COPY %v2
1790 void TwoAddressInstructionPass::
1791 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1792   MachineInstr &MI = *MBBI;
1793   Register DstReg = MI.getOperand(0).getReg();
1794   if (MI.getOperand(0).getSubReg() || DstReg.isPhysical() ||
1795       !(MI.getNumOperands() & 1)) {
1796     LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI);
1797     llvm_unreachable(nullptr);
1798   }
1799 
1800   SmallVector<Register, 4> OrigRegs;
1801   if (LIS) {
1802     OrigRegs.push_back(MI.getOperand(0).getReg());
1803     for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2)
1804       OrigRegs.push_back(MI.getOperand(i).getReg());
1805   }
1806 
1807   bool DefEmitted = false;
1808   for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) {
1809     MachineOperand &UseMO = MI.getOperand(i);
1810     Register SrcReg = UseMO.getReg();
1811     unsigned SubIdx = MI.getOperand(i+1).getImm();
1812     // Nothing needs to be inserted for undef operands.
1813     if (UseMO.isUndef())
1814       continue;
1815 
1816     // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1817     // might insert a COPY that uses SrcReg after is was killed.
1818     bool isKill = UseMO.isKill();
1819     if (isKill)
1820       for (unsigned j = i + 2; j < e; j += 2)
1821         if (MI.getOperand(j).getReg() == SrcReg) {
1822           MI.getOperand(j).setIsKill();
1823           UseMO.setIsKill(false);
1824           isKill = false;
1825           break;
1826         }
1827 
1828     // Insert the sub-register copy.
1829     MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1830                                    TII->get(TargetOpcode::COPY))
1831                                .addReg(DstReg, RegState::Define, SubIdx)
1832                                .add(UseMO);
1833 
1834     // The first def needs an undef flag because there is no live register
1835     // before it.
1836     if (!DefEmitted) {
1837       CopyMI->getOperand(0).setIsUndef(true);
1838       // Return an iterator pointing to the first inserted instr.
1839       MBBI = CopyMI;
1840     }
1841     DefEmitted = true;
1842 
1843     // Update LiveVariables' kill info.
1844     if (LV && isKill && !SrcReg.isPhysical())
1845       LV->replaceKillInstruction(SrcReg, MI, *CopyMI);
1846 
1847     LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI);
1848   }
1849 
1850   MachineBasicBlock::iterator EndMBBI =
1851       std::next(MachineBasicBlock::iterator(MI));
1852 
1853   if (!DefEmitted) {
1854     LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF");
1855     MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1856     for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j)
1857       MI.RemoveOperand(j);
1858   } else {
1859     if (LIS)
1860       LIS->RemoveMachineInstrFromMaps(MI);
1861 
1862     LLVM_DEBUG(dbgs() << "Eliminated: " << MI);
1863     MI.eraseFromParent();
1864   }
1865 
1866   // Udpate LiveIntervals.
1867   if (LIS)
1868     LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
1869 }
1870