1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TwoAddress instruction pass which is used 10 // by most register allocators. Two-Address instructions are rewritten 11 // from: 12 // 13 // A = B op C 14 // 15 // to: 16 // 17 // A = B 18 // A op= C 19 // 20 // Note that if a register allocator chooses to use this pass, that it 21 // has to be capable of handling the non-SSA nature of these rewritten 22 // virtual registers. 23 // 24 // It is also worth noting that the duplicate operand of the two 25 // address instruction is removed. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/Passes.h" 47 #include "llvm/CodeGen/SlotIndexes.h" 48 #include "llvm/CodeGen/TargetInstrInfo.h" 49 #include "llvm/CodeGen/TargetOpcodes.h" 50 #include "llvm/CodeGen/TargetRegisterInfo.h" 51 #include "llvm/CodeGen/TargetSubtargetInfo.h" 52 #include "llvm/MC/MCInstrDesc.h" 53 #include "llvm/MC/MCInstrItineraries.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <cassert> 62 #include <iterator> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "twoaddressinstruction" 68 69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 70 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 71 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 73 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 74 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 75 76 // Temporary flag to disable rescheduling. 77 static cl::opt<bool> 78 EnableRescheduling("twoaddr-reschedule", 79 cl::desc("Coalesce copies by rescheduling (default=true)"), 80 cl::init(true), cl::Hidden); 81 82 // Limit the number of dataflow edges to traverse when evaluating the benefit 83 // of commuting operands. 84 static cl::opt<unsigned> MaxDataFlowEdge( 85 "dataflow-edge-limit", cl::Hidden, cl::init(3), 86 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 87 "the benefit of commuting operands")); 88 89 namespace { 90 91 class TwoAddressInstructionPass : public MachineFunctionPass { 92 MachineFunction *MF; 93 const TargetInstrInfo *TII; 94 const TargetRegisterInfo *TRI; 95 const InstrItineraryData *InstrItins; 96 MachineRegisterInfo *MRI; 97 LiveVariables *LV; 98 LiveIntervals *LIS; 99 AliasAnalysis *AA; 100 CodeGenOpt::Level OptLevel; 101 102 // The current basic block being processed. 103 MachineBasicBlock *MBB; 104 105 // Keep track the distance of a MI from the start of the current basic block. 106 DenseMap<MachineInstr*, unsigned> DistanceMap; 107 108 // Set of already processed instructions in the current block. 109 SmallPtrSet<MachineInstr*, 8> Processed; 110 111 // A map from virtual registers to physical registers which are likely targets 112 // to be coalesced to due to copies from physical registers to virtual 113 // registers. e.g. v1024 = move r0. 114 DenseMap<Register, Register> SrcRegMap; 115 116 // A map from virtual registers to physical registers which are likely targets 117 // to be coalesced to due to copies to physical registers from virtual 118 // registers. e.g. r1 = move v1024. 119 DenseMap<Register, Register> DstRegMap; 120 121 void removeClobberedSrcRegMap(MachineInstr *MI); 122 123 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen); 124 125 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef); 126 127 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC, 128 MachineInstr *MI, unsigned Dist); 129 130 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 131 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 132 133 bool isProfitableToConv3Addr(Register RegA, Register RegB); 134 135 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 136 MachineBasicBlock::iterator &nmi, Register RegA, 137 Register RegB, unsigned &Dist); 138 139 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI); 140 141 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 142 MachineBasicBlock::iterator &nmi, Register Reg); 143 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 144 MachineBasicBlock::iterator &nmi, Register Reg); 145 146 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 147 MachineBasicBlock::iterator &nmi, 148 unsigned SrcIdx, unsigned DstIdx, 149 unsigned &Dist, bool shouldOnlyCommute); 150 151 bool tryInstructionCommute(MachineInstr *MI, 152 unsigned DstOpIdx, 153 unsigned BaseOpIdx, 154 bool BaseOpKilled, 155 unsigned Dist); 156 void scanUses(Register DstReg); 157 158 void processCopy(MachineInstr *MI); 159 160 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 161 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 162 163 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 164 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 165 void eliminateRegSequence(MachineBasicBlock::iterator&); 166 167 public: 168 static char ID; // Pass identification, replacement for typeid 169 170 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 171 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 172 } 173 174 void getAnalysisUsage(AnalysisUsage &AU) const override { 175 AU.setPreservesCFG(); 176 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 177 AU.addUsedIfAvailable<LiveVariables>(); 178 AU.addPreserved<LiveVariables>(); 179 AU.addPreserved<SlotIndexes>(); 180 AU.addPreserved<LiveIntervals>(); 181 AU.addPreservedID(MachineLoopInfoID); 182 AU.addPreservedID(MachineDominatorsID); 183 MachineFunctionPass::getAnalysisUsage(AU); 184 } 185 186 /// Pass entry point. 187 bool runOnMachineFunction(MachineFunction&) override; 188 }; 189 190 } // end anonymous namespace 191 192 char TwoAddressInstructionPass::ID = 0; 193 194 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 195 196 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 197 "Two-Address instruction pass", false, false) 198 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 199 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 200 "Two-Address instruction pass", false, false) 201 202 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS); 203 204 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 205 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB, 206 const MachineRegisterInfo *MRI) { 207 MachineInstr *Ret = nullptr; 208 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 209 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 210 continue; 211 if (!Ret) 212 Ret = &DefMI; 213 else if (Ret != &DefMI) 214 return nullptr; 215 } 216 return Ret; 217 } 218 219 /// Check if there is a reversed copy chain from FromReg to ToReg: 220 /// %Tmp1 = copy %Tmp2; 221 /// %FromReg = copy %Tmp1; 222 /// %ToReg = add %FromReg ... 223 /// %Tmp2 = copy %ToReg; 224 /// MaxLen specifies the maximum length of the copy chain the func 225 /// can walk through. 226 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg, 227 int Maxlen) { 228 Register TmpReg = FromReg; 229 for (int i = 0; i < Maxlen; i++) { 230 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 231 if (!Def || !Def->isCopy()) 232 return false; 233 234 TmpReg = Def->getOperand(1).getReg(); 235 236 if (TmpReg == ToReg) 237 return true; 238 } 239 return false; 240 } 241 242 /// Return true if there are no intervening uses between the last instruction 243 /// in the MBB that defines the specified register and the two-address 244 /// instruction which is being processed. It also returns the last def location 245 /// by reference. 246 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist, 247 unsigned &LastDef) { 248 LastDef = 0; 249 unsigned LastUse = Dist; 250 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 251 MachineInstr *MI = MO.getParent(); 252 if (MI->getParent() != MBB || MI->isDebugValue()) 253 continue; 254 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 255 if (DI == DistanceMap.end()) 256 continue; 257 if (MO.isUse() && DI->second < LastUse) 258 LastUse = DI->second; 259 if (MO.isDef() && DI->second > LastDef) 260 LastDef = DI->second; 261 } 262 263 return !(LastUse > LastDef && LastUse < Dist); 264 } 265 266 /// Return true if the specified MI is a copy instruction or an extract_subreg 267 /// instruction. It also returns the source and destination registers and 268 /// whether they are physical registers by reference. 269 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 270 Register &SrcReg, Register &DstReg, bool &IsSrcPhys, 271 bool &IsDstPhys) { 272 SrcReg = 0; 273 DstReg = 0; 274 if (MI.isCopy()) { 275 DstReg = MI.getOperand(0).getReg(); 276 SrcReg = MI.getOperand(1).getReg(); 277 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 278 DstReg = MI.getOperand(0).getReg(); 279 SrcReg = MI.getOperand(2).getReg(); 280 } else { 281 return false; 282 } 283 284 IsSrcPhys = SrcReg.isPhysical(); 285 IsDstPhys = DstReg.isPhysical(); 286 return true; 287 } 288 289 /// Test if the given register value, which is used by the 290 /// given instruction, is killed by the given instruction. 291 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, 292 LiveIntervals *LIS) { 293 if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) { 294 // FIXME: Sometimes tryInstructionTransform() will add instructions and 295 // test whether they can be folded before keeping them. In this case it 296 // sets a kill before recursively calling tryInstructionTransform() again. 297 // If there is no interval available, we assume that this instruction is 298 // one of those. A kill flag is manually inserted on the operand so the 299 // check below will handle it. 300 LiveInterval &LI = LIS->getInterval(Reg); 301 // This is to match the kill flag version where undefs don't have kill 302 // flags. 303 if (!LI.hasAtLeastOneValue()) 304 return false; 305 306 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 307 LiveInterval::const_iterator I = LI.find(useIdx); 308 assert(I != LI.end() && "Reg must be live-in to use."); 309 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 310 } 311 312 return MI->killsRegister(Reg); 313 } 314 315 /// Test if the given register value, which is used by the given 316 /// instruction, is killed by the given instruction. This looks through 317 /// coalescable copies to see if the original value is potentially not killed. 318 /// 319 /// For example, in this code: 320 /// 321 /// %reg1034 = copy %reg1024 322 /// %reg1035 = copy killed %reg1025 323 /// %reg1036 = add killed %reg1034, killed %reg1035 324 /// 325 /// %reg1034 is not considered to be killed, since it is copied from a 326 /// register which is not killed. Treating it as not killed lets the 327 /// normal heuristics commute the (two-address) add, which lets 328 /// coalescing eliminate the extra copy. 329 /// 330 /// If allowFalsePositives is true then likely kills are treated as kills even 331 /// if it can't be proven that they are kills. 332 static bool isKilled(MachineInstr &MI, Register Reg, 333 const MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 334 LiveIntervals *LIS, bool allowFalsePositives) { 335 MachineInstr *DefMI = &MI; 336 while (true) { 337 // All uses of physical registers are likely to be kills. 338 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg))) 339 return true; 340 if (!isPlainlyKilled(DefMI, Reg, LIS)) 341 return false; 342 if (Reg.isPhysical()) 343 return true; 344 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 345 // If there are multiple defs, we can't do a simple analysis, so just 346 // go with what the kill flag says. 347 if (std::next(Begin) != MRI->def_end()) 348 return true; 349 DefMI = Begin->getParent(); 350 bool IsSrcPhys, IsDstPhys; 351 Register SrcReg, DstReg; 352 // If the def is something other than a copy, then it isn't going to 353 // be coalesced, so follow the kill flag. 354 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 355 return true; 356 Reg = SrcReg; 357 } 358 } 359 360 /// Return true if the specified MI uses the specified register as a two-address 361 /// use. If so, return the destination register by reference. 362 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) { 363 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 364 const MachineOperand &MO = MI.getOperand(i); 365 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 366 continue; 367 unsigned ti; 368 if (MI.isRegTiedToDefOperand(i, &ti)) { 369 DstReg = MI.getOperand(ti).getReg(); 370 return true; 371 } 372 } 373 return false; 374 } 375 376 /// Given a register, if has a single in-basic block use, return the use 377 /// instruction if it's a copy or a two-address use. 378 static MachineInstr * 379 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB, 380 MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 381 bool &IsCopy, Register &DstReg, bool &IsDstPhys) { 382 if (!MRI->hasOneNonDBGUse(Reg)) 383 // None or more than one use. 384 return nullptr; 385 MachineOperand &UseOp = *MRI->use_nodbg_begin(Reg); 386 MachineInstr &UseMI = *UseOp.getParent(); 387 if (UseMI.getParent() != MBB) 388 return nullptr; 389 Register SrcReg; 390 bool IsSrcPhys; 391 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 392 IsCopy = true; 393 return &UseMI; 394 } 395 IsDstPhys = false; 396 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 397 IsDstPhys = DstReg.isPhysical(); 398 return &UseMI; 399 } 400 if (UseMI.isCommutable()) { 401 unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex; 402 unsigned Src2 = UseMI.getOperandNo(&UseOp); 403 if (TII->findCommutedOpIndices(UseMI, Src1, Src2)) { 404 MachineOperand &MO = UseMI.getOperand(Src1); 405 if (MO.isReg() && MO.isUse() && 406 isTwoAddrUse(UseMI, MO.getReg(), DstReg)) { 407 IsDstPhys = DstReg.isPhysical(); 408 return &UseMI; 409 } 410 } 411 } 412 return nullptr; 413 } 414 415 /// Return the physical register the specified virtual register might be mapped 416 /// to. 417 static MCRegister getMappedReg(Register Reg, 418 DenseMap<Register, Register> &RegMap) { 419 while (Reg.isVirtual()) { 420 DenseMap<Register, Register>::iterator SI = RegMap.find(Reg); 421 if (SI == RegMap.end()) 422 return 0; 423 Reg = SI->second; 424 } 425 if (Reg.isPhysical()) 426 return Reg; 427 return 0; 428 } 429 430 /// Return true if the two registers are equal or aliased. 431 static bool regsAreCompatible(Register RegA, Register RegB, 432 const TargetRegisterInfo *TRI) { 433 if (RegA == RegB) 434 return true; 435 if (!RegA || !RegB) 436 return false; 437 return TRI->regsOverlap(RegA, RegB); 438 } 439 440 /// From RegMap remove entries mapped to a physical register which overlaps MO. 441 static void removeMapRegEntry(const MachineOperand &MO, 442 DenseMap<Register, Register> &RegMap, 443 const TargetRegisterInfo *TRI) { 444 assert( 445 (MO.isReg() || MO.isRegMask()) && 446 "removeMapRegEntry must be called with a register or regmask operand."); 447 448 SmallVector<Register, 2> Srcs; 449 for (auto SI : RegMap) { 450 Register ToReg = SI.second; 451 if (ToReg.isVirtual()) 452 continue; 453 454 if (MO.isReg()) { 455 Register Reg = MO.getReg(); 456 if (TRI->regsOverlap(ToReg, Reg)) 457 Srcs.push_back(SI.first); 458 } else if (MO.clobbersPhysReg(ToReg)) 459 Srcs.push_back(SI.first); 460 } 461 462 for (auto SrcReg : Srcs) 463 RegMap.erase(SrcReg); 464 } 465 466 /// If a physical register is clobbered, old entries mapped to it should be 467 /// deleted. For example 468 /// 469 /// %2:gr64 = COPY killed $rdx 470 /// MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx 471 /// 472 /// After the MUL instruction, $rdx contains different value than in the COPY 473 /// instruction. So %2 should not map to $rdx after MUL. 474 void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr *MI) { 475 if (MI->isCopy()) { 476 // If a virtual register is copied to its mapped physical register, it 477 // doesn't change the potential coalescing between them, so we don't remove 478 // entries mapped to the physical register. For example 479 // 480 // %100 = COPY $r8 481 // ... 482 // $r8 = COPY %100 483 // 484 // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't 485 // destroy the content of $r8, and should not impact SrcRegMap. 486 Register Dst = MI->getOperand(0).getReg(); 487 if (!Dst || Dst.isVirtual()) 488 return; 489 490 Register Src = MI->getOperand(1).getReg(); 491 if (regsAreCompatible(Dst, getMappedReg(Src, SrcRegMap), TRI)) 492 return; 493 } 494 495 for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) { 496 const MachineOperand &MO = MI->getOperand(i); 497 if (MO.isRegMask()) { 498 removeMapRegEntry(MO, SrcRegMap, TRI); 499 continue; 500 } 501 if (!MO.isReg() || !MO.isDef()) 502 continue; 503 Register Reg = MO.getReg(); 504 if (!Reg || Reg.isVirtual()) 505 continue; 506 removeMapRegEntry(MO, SrcRegMap, TRI); 507 } 508 } 509 510 // Returns true if Reg is equal or aliased to at least one register in Set. 511 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg, 512 const TargetRegisterInfo *TRI) { 513 for (unsigned R : Set) 514 if (TRI->regsOverlap(R, Reg)) 515 return true; 516 517 return false; 518 } 519 520 /// Return true if it's potentially profitable to commute the two-address 521 /// instruction that's being processed. 522 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA, 523 Register RegB, 524 Register RegC, 525 MachineInstr *MI, 526 unsigned Dist) { 527 if (OptLevel == CodeGenOpt::None) 528 return false; 529 530 // Determine if it's profitable to commute this two address instruction. In 531 // general, we want no uses between this instruction and the definition of 532 // the two-address register. 533 // e.g. 534 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 535 // %reg1029 = COPY %reg1028 536 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 537 // insert => %reg1030 = COPY %reg1028 538 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 539 // In this case, it might not be possible to coalesce the second COPY 540 // instruction if the first one is coalesced. So it would be profitable to 541 // commute it: 542 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 543 // %reg1029 = COPY %reg1028 544 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 545 // insert => %reg1030 = COPY %reg1029 546 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 547 548 if (!isPlainlyKilled(MI, RegC, LIS)) 549 return false; 550 551 // Ok, we have something like: 552 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 553 // let's see if it's worth commuting it. 554 555 // Look for situations like this: 556 // %reg1024 = MOV r1 557 // %reg1025 = MOV r0 558 // %reg1026 = ADD %reg1024, %reg1025 559 // r0 = MOV %reg1026 560 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 561 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 562 if (ToRegA) { 563 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 564 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 565 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 566 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 567 568 // Compute if any of the following are true: 569 // -RegB is not tied to a register and RegC is compatible with RegA. 570 // -RegB is tied to the wrong physical register, but RegC is. 571 // -RegB is tied to the wrong physical register, and RegC isn't tied. 572 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 573 return true; 574 // Don't compute if any of the following are true: 575 // -RegC is not tied to a register and RegB is compatible with RegA. 576 // -RegC is tied to the wrong physical register, but RegB is. 577 // -RegC is tied to the wrong physical register, and RegB isn't tied. 578 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 579 return false; 580 } 581 582 // If there is a use of RegC between its last def (could be livein) and this 583 // instruction, then bail. 584 unsigned LastDefC = 0; 585 if (!noUseAfterLastDef(RegC, Dist, LastDefC)) 586 return false; 587 588 // If there is a use of RegB between its last def (could be livein) and this 589 // instruction, then go ahead and make this transformation. 590 unsigned LastDefB = 0; 591 if (!noUseAfterLastDef(RegB, Dist, LastDefB)) 592 return true; 593 594 // Look for situation like this: 595 // %reg101 = MOV %reg100 596 // %reg102 = ... 597 // %reg103 = ADD %reg102, %reg101 598 // ... = %reg103 ... 599 // %reg100 = MOV %reg103 600 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 601 // to eliminate an otherwise unavoidable copy. 602 // FIXME: 603 // We can extend the logic further: If an pair of operands in an insn has 604 // been merged, the insn could be regarded as a virtual copy, and the virtual 605 // copy could also be used to construct a copy chain. 606 // To more generally minimize register copies, ideally the logic of two addr 607 // instruction pass should be integrated with register allocation pass where 608 // interference graph is available. 609 if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge)) 610 return true; 611 612 if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge)) 613 return false; 614 615 // Look for other target specific commute preference. 616 bool Commute; 617 if (TII->hasCommutePreference(*MI, Commute)) 618 return Commute; 619 620 // Since there are no intervening uses for both registers, then commute 621 // if the def of RegC is closer. Its live interval is shorter. 622 return LastDefB && LastDefC && LastDefC > LastDefB; 623 } 624 625 /// Commute a two-address instruction and update the basic block, distance map, 626 /// and live variables if needed. Return true if it is successful. 627 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 628 unsigned DstIdx, 629 unsigned RegBIdx, 630 unsigned RegCIdx, 631 unsigned Dist) { 632 Register RegC = MI->getOperand(RegCIdx).getReg(); 633 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 634 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 635 636 if (NewMI == nullptr) { 637 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 638 return false; 639 } 640 641 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 642 assert(NewMI == MI && 643 "TargetInstrInfo::commuteInstruction() should not return a new " 644 "instruction unless it was requested."); 645 646 // Update source register map. 647 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 648 if (FromRegC) { 649 Register RegA = MI->getOperand(DstIdx).getReg(); 650 SrcRegMap[RegA] = FromRegC; 651 } 652 653 return true; 654 } 655 656 /// Return true if it is profitable to convert the given 2-address instruction 657 /// to a 3-address one. 658 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA, 659 Register RegB) { 660 // Look for situations like this: 661 // %reg1024 = MOV r1 662 // %reg1025 = MOV r0 663 // %reg1026 = ADD %reg1024, %reg1025 664 // r2 = MOV %reg1026 665 // Turn ADD into a 3-address instruction to avoid a copy. 666 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 667 if (!FromRegB) 668 return false; 669 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 670 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 671 } 672 673 /// Convert the specified two-address instruction into a three address one. 674 /// Return true if this transformation was successful. 675 bool TwoAddressInstructionPass::convertInstTo3Addr( 676 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 677 Register RegA, Register RegB, unsigned &Dist) { 678 MachineInstrSpan MIS(mi, MBB); 679 MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV, LIS); 680 if (!NewMI) 681 return false; 682 683 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 684 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 685 686 // If the old instruction is debug value tracked, an update is required. 687 if (auto OldInstrNum = mi->peekDebugInstrNum()) { 688 assert(mi->getNumExplicitDefs() == 1); 689 assert(NewMI->getNumExplicitDefs() == 1); 690 691 // Find the old and new def location. 692 auto OldIt = mi->defs().begin(); 693 auto NewIt = NewMI->defs().begin(); 694 unsigned OldIdx = mi->getOperandNo(OldIt); 695 unsigned NewIdx = NewMI->getOperandNo(NewIt); 696 697 // Record that one def has been replaced by the other. 698 unsigned NewInstrNum = NewMI->getDebugInstrNum(); 699 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx), 700 std::make_pair(NewInstrNum, NewIdx)); 701 } 702 703 MBB->erase(mi); // Nuke the old inst. 704 705 for (MachineInstr &MI : MIS) 706 DistanceMap.insert(std::make_pair(&MI, Dist++)); 707 Dist--; 708 mi = NewMI; 709 nmi = std::next(mi); 710 711 // Update source and destination register maps. 712 SrcRegMap.erase(RegA); 713 DstRegMap.erase(RegB); 714 return true; 715 } 716 717 /// Scan forward recursively for only uses, update maps if the use is a copy or 718 /// a two-address instruction. 719 void TwoAddressInstructionPass::scanUses(Register DstReg) { 720 SmallVector<Register, 4> VirtRegPairs; 721 bool IsDstPhys; 722 bool IsCopy = false; 723 Register NewReg; 724 Register Reg = DstReg; 725 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 726 NewReg, IsDstPhys)) { 727 if (IsCopy && !Processed.insert(UseMI).second) 728 break; 729 730 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 731 if (DI != DistanceMap.end()) 732 // Earlier in the same MBB.Reached via a back edge. 733 break; 734 735 if (IsDstPhys) { 736 VirtRegPairs.push_back(NewReg); 737 break; 738 } 739 SrcRegMap[NewReg] = Reg; 740 VirtRegPairs.push_back(NewReg); 741 Reg = NewReg; 742 } 743 744 if (!VirtRegPairs.empty()) { 745 unsigned ToReg = VirtRegPairs.back(); 746 VirtRegPairs.pop_back(); 747 while (!VirtRegPairs.empty()) { 748 unsigned FromReg = VirtRegPairs.pop_back_val(); 749 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 750 if (!isNew) 751 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 752 ToReg = FromReg; 753 } 754 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 755 if (!isNew) 756 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 757 } 758 } 759 760 /// If the specified instruction is not yet processed, process it if it's a 761 /// copy. For a copy instruction, we find the physical registers the 762 /// source and destination registers might be mapped to. These are kept in 763 /// point-to maps used to determine future optimizations. e.g. 764 /// v1024 = mov r0 765 /// v1025 = mov r1 766 /// v1026 = add v1024, v1025 767 /// r1 = mov r1026 768 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 769 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 770 /// potentially joined with r1 on the output side. It's worthwhile to commute 771 /// 'add' to eliminate a copy. 772 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 773 if (Processed.count(MI)) 774 return; 775 776 bool IsSrcPhys, IsDstPhys; 777 Register SrcReg, DstReg; 778 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 779 return; 780 781 if (IsDstPhys && !IsSrcPhys) { 782 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 783 } else if (!IsDstPhys && IsSrcPhys) { 784 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 785 if (!isNew) 786 assert(SrcRegMap[DstReg] == SrcReg && 787 "Can't map to two src physical registers!"); 788 789 scanUses(DstReg); 790 } 791 792 Processed.insert(MI); 793 } 794 795 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 796 /// consider moving the instruction below the kill instruction in order to 797 /// eliminate the need for the copy. 798 bool TwoAddressInstructionPass::rescheduleMIBelowKill( 799 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 800 Register Reg) { 801 // Bail immediately if we don't have LV or LIS available. We use them to find 802 // kills efficiently. 803 if (!LV && !LIS) 804 return false; 805 806 MachineInstr *MI = &*mi; 807 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 808 if (DI == DistanceMap.end()) 809 // Must be created from unfolded load. Don't waste time trying this. 810 return false; 811 812 MachineInstr *KillMI = nullptr; 813 if (LIS) { 814 LiveInterval &LI = LIS->getInterval(Reg); 815 assert(LI.end() != LI.begin() && 816 "Reg should not have empty live interval."); 817 818 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 819 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 820 if (I != LI.end() && I->start < MBBEndIdx) 821 return false; 822 823 --I; 824 KillMI = LIS->getInstructionFromIndex(I->end); 825 } else { 826 KillMI = LV->getVarInfo(Reg).findKill(MBB); 827 } 828 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 829 // Don't mess with copies, they may be coalesced later. 830 return false; 831 832 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 833 KillMI->isBranch() || KillMI->isTerminator()) 834 // Don't move pass calls, etc. 835 return false; 836 837 Register DstReg; 838 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 839 return false; 840 841 bool SeenStore = true; 842 if (!MI->isSafeToMove(AA, SeenStore)) 843 return false; 844 845 if (TII->getInstrLatency(InstrItins, *MI) > 1) 846 // FIXME: Needs more sophisticated heuristics. 847 return false; 848 849 SmallVector<Register, 2> Uses; 850 SmallVector<Register, 2> Kills; 851 SmallVector<Register, 2> Defs; 852 for (const MachineOperand &MO : MI->operands()) { 853 if (!MO.isReg()) 854 continue; 855 Register MOReg = MO.getReg(); 856 if (!MOReg) 857 continue; 858 if (MO.isDef()) 859 Defs.push_back(MOReg); 860 else { 861 Uses.push_back(MOReg); 862 if (MOReg != Reg && (MO.isKill() || 863 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 864 Kills.push_back(MOReg); 865 } 866 } 867 868 // Move the copies connected to MI down as well. 869 MachineBasicBlock::iterator Begin = MI; 870 MachineBasicBlock::iterator AfterMI = std::next(Begin); 871 MachineBasicBlock::iterator End = AfterMI; 872 while (End != MBB->end()) { 873 End = skipDebugInstructionsForward(End, MBB->end()); 874 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) 875 Defs.push_back(End->getOperand(0).getReg()); 876 else 877 break; 878 ++End; 879 } 880 881 // Check if the reschedule will not break dependencies. 882 unsigned NumVisited = 0; 883 MachineBasicBlock::iterator KillPos = KillMI; 884 ++KillPos; 885 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 886 // Debug or pseudo instructions cannot be counted against the limit. 887 if (OtherMI.isDebugOrPseudoInstr()) 888 continue; 889 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 890 return false; 891 ++NumVisited; 892 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 893 OtherMI.isBranch() || OtherMI.isTerminator()) 894 // Don't move pass calls, etc. 895 return false; 896 for (const MachineOperand &MO : OtherMI.operands()) { 897 if (!MO.isReg()) 898 continue; 899 Register MOReg = MO.getReg(); 900 if (!MOReg) 901 continue; 902 if (MO.isDef()) { 903 if (regOverlapsSet(Uses, MOReg, TRI)) 904 // Physical register use would be clobbered. 905 return false; 906 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 907 // May clobber a physical register def. 908 // FIXME: This may be too conservative. It's ok if the instruction 909 // is sunken completely below the use. 910 return false; 911 } else { 912 if (regOverlapsSet(Defs, MOReg, TRI)) 913 return false; 914 bool isKill = 915 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 916 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 917 regOverlapsSet(Kills, MOReg, TRI))) 918 // Don't want to extend other live ranges and update kills. 919 return false; 920 if (MOReg == Reg && !isKill) 921 // We can't schedule across a use of the register in question. 922 return false; 923 // Ensure that if this is register in question, its the kill we expect. 924 assert((MOReg != Reg || &OtherMI == KillMI) && 925 "Found multiple kills of a register in a basic block"); 926 } 927 } 928 } 929 930 // Move debug info as well. 931 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 932 --Begin; 933 934 nmi = End; 935 MachineBasicBlock::iterator InsertPos = KillPos; 936 if (LIS) { 937 // We have to move the copies (and any interleaved debug instructions) 938 // first so that the MBB is still well-formed when calling handleMove(). 939 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 940 auto CopyMI = MBBI++; 941 MBB->splice(InsertPos, MBB, CopyMI); 942 if (!CopyMI->isDebugOrPseudoInstr()) 943 LIS->handleMove(*CopyMI); 944 InsertPos = CopyMI; 945 } 946 End = std::next(MachineBasicBlock::iterator(MI)); 947 } 948 949 // Copies following MI may have been moved as well. 950 MBB->splice(InsertPos, MBB, Begin, End); 951 DistanceMap.erase(DI); 952 953 // Update live variables 954 if (LIS) { 955 LIS->handleMove(*MI); 956 } else { 957 LV->removeVirtualRegisterKilled(Reg, *KillMI); 958 LV->addVirtualRegisterKilled(Reg, *MI); 959 } 960 961 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 962 return true; 963 } 964 965 /// Return true if the re-scheduling will put the given instruction too close 966 /// to the defs of its register dependencies. 967 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist, 968 MachineInstr *MI) { 969 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 970 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 971 continue; 972 if (&DefMI == MI) 973 return true; // MI is defining something KillMI uses 974 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 975 if (DDI == DistanceMap.end()) 976 return true; // Below MI 977 unsigned DefDist = DDI->second; 978 assert(Dist > DefDist && "Visited def already?"); 979 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 980 return true; 981 } 982 return false; 983 } 984 985 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 986 /// consider moving the kill instruction above the current two-address 987 /// instruction in order to eliminate the need for the copy. 988 bool TwoAddressInstructionPass::rescheduleKillAboveMI( 989 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 990 Register Reg) { 991 // Bail immediately if we don't have LV or LIS available. We use them to find 992 // kills efficiently. 993 if (!LV && !LIS) 994 return false; 995 996 MachineInstr *MI = &*mi; 997 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 998 if (DI == DistanceMap.end()) 999 // Must be created from unfolded load. Don't waste time trying this. 1000 return false; 1001 1002 MachineInstr *KillMI = nullptr; 1003 if (LIS) { 1004 LiveInterval &LI = LIS->getInterval(Reg); 1005 assert(LI.end() != LI.begin() && 1006 "Reg should not have empty live interval."); 1007 1008 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1009 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1010 if (I != LI.end() && I->start < MBBEndIdx) 1011 return false; 1012 1013 --I; 1014 KillMI = LIS->getInstructionFromIndex(I->end); 1015 } else { 1016 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1017 } 1018 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1019 // Don't mess with copies, they may be coalesced later. 1020 return false; 1021 1022 Register DstReg; 1023 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1024 return false; 1025 1026 bool SeenStore = true; 1027 if (!KillMI->isSafeToMove(AA, SeenStore)) 1028 return false; 1029 1030 SmallVector<Register, 2> Uses; 1031 SmallVector<Register, 2> Kills; 1032 SmallVector<Register, 2> Defs; 1033 SmallVector<Register, 2> LiveDefs; 1034 for (const MachineOperand &MO : KillMI->operands()) { 1035 if (!MO.isReg()) 1036 continue; 1037 Register MOReg = MO.getReg(); 1038 if (MO.isUse()) { 1039 if (!MOReg) 1040 continue; 1041 if (isDefTooClose(MOReg, DI->second, MI)) 1042 return false; 1043 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1044 if (MOReg == Reg && !isKill) 1045 return false; 1046 Uses.push_back(MOReg); 1047 if (isKill && MOReg != Reg) 1048 Kills.push_back(MOReg); 1049 } else if (MOReg.isPhysical()) { 1050 Defs.push_back(MOReg); 1051 if (!MO.isDead()) 1052 LiveDefs.push_back(MOReg); 1053 } 1054 } 1055 1056 // Check if the reschedule will not break depedencies. 1057 unsigned NumVisited = 0; 1058 for (MachineInstr &OtherMI : 1059 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1060 // Debug or pseudo instructions cannot be counted against the limit. 1061 if (OtherMI.isDebugOrPseudoInstr()) 1062 continue; 1063 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1064 return false; 1065 ++NumVisited; 1066 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1067 OtherMI.isBranch() || OtherMI.isTerminator()) 1068 // Don't move pass calls, etc. 1069 return false; 1070 SmallVector<Register, 2> OtherDefs; 1071 for (const MachineOperand &MO : OtherMI.operands()) { 1072 if (!MO.isReg()) 1073 continue; 1074 Register MOReg = MO.getReg(); 1075 if (!MOReg) 1076 continue; 1077 if (MO.isUse()) { 1078 if (regOverlapsSet(Defs, MOReg, TRI)) 1079 // Moving KillMI can clobber the physical register if the def has 1080 // not been seen. 1081 return false; 1082 if (regOverlapsSet(Kills, MOReg, TRI)) 1083 // Don't want to extend other live ranges and update kills. 1084 return false; 1085 if (&OtherMI != MI && MOReg == Reg && 1086 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1087 // We can't schedule across a use of the register in question. 1088 return false; 1089 } else { 1090 OtherDefs.push_back(MOReg); 1091 } 1092 } 1093 1094 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1095 Register MOReg = OtherDefs[i]; 1096 if (regOverlapsSet(Uses, MOReg, TRI)) 1097 return false; 1098 if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI)) 1099 return false; 1100 // Physical register def is seen. 1101 llvm::erase_value(Defs, MOReg); 1102 } 1103 } 1104 1105 // Move the old kill above MI, don't forget to move debug info as well. 1106 MachineBasicBlock::iterator InsertPos = mi; 1107 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1108 --InsertPos; 1109 MachineBasicBlock::iterator From = KillMI; 1110 MachineBasicBlock::iterator To = std::next(From); 1111 while (std::prev(From)->isDebugInstr()) 1112 --From; 1113 MBB->splice(InsertPos, MBB, From, To); 1114 1115 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1116 DistanceMap.erase(DI); 1117 1118 // Update live variables 1119 if (LIS) { 1120 LIS->handleMove(*KillMI); 1121 } else { 1122 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1123 LV->addVirtualRegisterKilled(Reg, *MI); 1124 } 1125 1126 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1127 return true; 1128 } 1129 1130 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1131 /// given machine instruction to improve opportunities for coalescing and 1132 /// elimination of a register to register copy. 1133 /// 1134 /// 'DstOpIdx' specifies the index of MI def operand. 1135 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1136 /// operand is killed by the given instruction. 1137 /// The 'Dist' arguments provides the distance of MI from the start of the 1138 /// current basic block and it is used to determine if it is profitable 1139 /// to commute operands in the instruction. 1140 /// 1141 /// Returns true if the transformation happened. Otherwise, returns false. 1142 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1143 unsigned DstOpIdx, 1144 unsigned BaseOpIdx, 1145 bool BaseOpKilled, 1146 unsigned Dist) { 1147 if (!MI->isCommutable()) 1148 return false; 1149 1150 bool MadeChange = false; 1151 Register DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1152 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1153 unsigned OpsNum = MI->getDesc().getNumOperands(); 1154 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1155 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1156 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1157 // and OtherOpIdx are commutable, it does not really search for 1158 // other commutable operands and does not change the values of passed 1159 // variables. 1160 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1161 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1162 continue; 1163 1164 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1165 bool AggressiveCommute = false; 1166 1167 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1168 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1169 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1170 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1171 1172 if (!DoCommute && 1173 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1174 DoCommute = true; 1175 AggressiveCommute = true; 1176 } 1177 1178 // If it's profitable to commute, try to do so. 1179 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1180 Dist)) { 1181 MadeChange = true; 1182 ++NumCommuted; 1183 if (AggressiveCommute) 1184 ++NumAggrCommuted; 1185 1186 // There might be more than two commutable operands, update BaseOp and 1187 // continue scanning. 1188 // FIXME: This assumes that the new instruction's operands are in the 1189 // same positions and were simply swapped. 1190 BaseOpReg = OtherOpReg; 1191 BaseOpKilled = OtherOpKilled; 1192 // Resamples OpsNum in case the number of operands was reduced. This 1193 // happens with X86. 1194 OpsNum = MI->getDesc().getNumOperands(); 1195 } 1196 } 1197 return MadeChange; 1198 } 1199 1200 /// For the case where an instruction has a single pair of tied register 1201 /// operands, attempt some transformations that may either eliminate the tied 1202 /// operands or improve the opportunities for coalescing away the register copy. 1203 /// Returns true if no copy needs to be inserted to untie mi's operands 1204 /// (either because they were untied, or because mi was rescheduled, and will 1205 /// be visited again later). If the shouldOnlyCommute flag is true, only 1206 /// instruction commutation is attempted. 1207 bool TwoAddressInstructionPass:: 1208 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1209 MachineBasicBlock::iterator &nmi, 1210 unsigned SrcIdx, unsigned DstIdx, 1211 unsigned &Dist, bool shouldOnlyCommute) { 1212 if (OptLevel == CodeGenOpt::None) 1213 return false; 1214 1215 MachineInstr &MI = *mi; 1216 Register regA = MI.getOperand(DstIdx).getReg(); 1217 Register regB = MI.getOperand(SrcIdx).getReg(); 1218 1219 assert(regB.isVirtual() && "cannot make instruction into two-address form"); 1220 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1221 1222 if (regA.isVirtual()) 1223 scanUses(regA); 1224 1225 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1226 1227 // If the instruction is convertible to 3 Addr, instead 1228 // of returning try 3 Addr transformation aggressively and 1229 // use this variable to check later. Because it might be better. 1230 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1231 // instead of the following code. 1232 // addl %esi, %edi 1233 // movl %edi, %eax 1234 // ret 1235 if (Commuted && !MI.isConvertibleTo3Addr()) 1236 return false; 1237 1238 if (shouldOnlyCommute) 1239 return false; 1240 1241 // If there is one more use of regB later in the same MBB, consider 1242 // re-schedule this MI below it. 1243 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1244 ++NumReSchedDowns; 1245 return true; 1246 } 1247 1248 // If we commuted, regB may have changed so we should re-sample it to avoid 1249 // confusing the three address conversion below. 1250 if (Commuted) { 1251 regB = MI.getOperand(SrcIdx).getReg(); 1252 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1253 } 1254 1255 if (MI.isConvertibleTo3Addr()) { 1256 // This instruction is potentially convertible to a true 1257 // three-address instruction. Check if it is profitable. 1258 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1259 // Try to convert it. 1260 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1261 ++NumConvertedTo3Addr; 1262 return true; // Done with this instruction. 1263 } 1264 } 1265 } 1266 1267 // Return if it is commuted but 3 addr conversion is failed. 1268 if (Commuted) 1269 return false; 1270 1271 // If there is one more use of regB later in the same MBB, consider 1272 // re-schedule it before this MI if it's legal. 1273 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1274 ++NumReSchedUps; 1275 return true; 1276 } 1277 1278 // If this is an instruction with a load folded into it, try unfolding 1279 // the load, e.g. avoid this: 1280 // movq %rdx, %rcx 1281 // addq (%rax), %rcx 1282 // in favor of this: 1283 // movq (%rax), %rcx 1284 // addq %rdx, %rcx 1285 // because it's preferable to schedule a load than a register copy. 1286 if (MI.mayLoad() && !regBKilled) { 1287 // Determine if a load can be unfolded. 1288 unsigned LoadRegIndex; 1289 unsigned NewOpc = 1290 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1291 /*UnfoldLoad=*/true, 1292 /*UnfoldStore=*/false, 1293 &LoadRegIndex); 1294 if (NewOpc != 0) { 1295 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1296 if (UnfoldMCID.getNumDefs() == 1) { 1297 // Unfold the load. 1298 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1299 const TargetRegisterClass *RC = 1300 TRI->getAllocatableClass( 1301 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1302 Register Reg = MRI->createVirtualRegister(RC); 1303 SmallVector<MachineInstr *, 2> NewMIs; 1304 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1305 /*UnfoldLoad=*/true, 1306 /*UnfoldStore=*/false, NewMIs)) { 1307 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1308 return false; 1309 } 1310 assert(NewMIs.size() == 2 && 1311 "Unfolded a load into multiple instructions!"); 1312 // The load was previously folded, so this is the only use. 1313 NewMIs[1]->addRegisterKilled(Reg, TRI); 1314 1315 // Tentatively insert the instructions into the block so that they 1316 // look "normal" to the transformation logic. 1317 MBB->insert(mi, NewMIs[0]); 1318 MBB->insert(mi, NewMIs[1]); 1319 DistanceMap.insert(std::make_pair(NewMIs[0], Dist++)); 1320 DistanceMap.insert(std::make_pair(NewMIs[1], Dist)); 1321 1322 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1323 << "2addr: NEW INST: " << *NewMIs[1]); 1324 1325 // Transform the instruction, now that it no longer has a load. 1326 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1327 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1328 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1329 bool TransformResult = 1330 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1331 (void)TransformResult; 1332 assert(!TransformResult && 1333 "tryInstructionTransform() should return false."); 1334 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1335 // Success, or at least we made an improvement. Keep the unfolded 1336 // instructions and discard the original. 1337 if (LV) { 1338 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1339 MachineOperand &MO = MI.getOperand(i); 1340 if (MO.isReg() && MO.getReg().isVirtual()) { 1341 if (MO.isUse()) { 1342 if (MO.isKill()) { 1343 if (NewMIs[0]->killsRegister(MO.getReg())) 1344 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1345 else { 1346 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1347 "Kill missing after load unfold!"); 1348 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1349 } 1350 } 1351 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1352 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1353 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1354 else { 1355 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1356 "Dead flag missing after load unfold!"); 1357 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1358 } 1359 } 1360 } 1361 } 1362 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1363 } 1364 1365 SmallVector<Register, 4> OrigRegs; 1366 if (LIS) { 1367 for (const MachineOperand &MO : MI.operands()) { 1368 if (MO.isReg()) 1369 OrigRegs.push_back(MO.getReg()); 1370 } 1371 1372 LIS->RemoveMachineInstrFromMaps(MI); 1373 } 1374 1375 MI.eraseFromParent(); 1376 DistanceMap.erase(&MI); 1377 1378 // Update LiveIntervals. 1379 if (LIS) { 1380 MachineBasicBlock::iterator Begin(NewMIs[0]); 1381 MachineBasicBlock::iterator End(NewMIs[1]); 1382 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1383 } 1384 1385 mi = NewMIs[1]; 1386 } else { 1387 // Transforming didn't eliminate the tie and didn't lead to an 1388 // improvement. Clean up the unfolded instructions and keep the 1389 // original. 1390 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1391 NewMIs[0]->eraseFromParent(); 1392 NewMIs[1]->eraseFromParent(); 1393 DistanceMap.erase(NewMIs[0]); 1394 DistanceMap.erase(NewMIs[1]); 1395 Dist--; 1396 } 1397 } 1398 } 1399 } 1400 1401 return false; 1402 } 1403 1404 // Collect tied operands of MI that need to be handled. 1405 // Rewrite trivial cases immediately. 1406 // Return true if any tied operands where found, including the trivial ones. 1407 bool TwoAddressInstructionPass:: 1408 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1409 bool AnyOps = false; 1410 unsigned NumOps = MI->getNumOperands(); 1411 1412 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1413 unsigned DstIdx = 0; 1414 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1415 continue; 1416 AnyOps = true; 1417 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1418 MachineOperand &DstMO = MI->getOperand(DstIdx); 1419 Register SrcReg = SrcMO.getReg(); 1420 Register DstReg = DstMO.getReg(); 1421 // Tied constraint already satisfied? 1422 if (SrcReg == DstReg) 1423 continue; 1424 1425 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1426 1427 // Deal with undef uses immediately - simply rewrite the src operand. 1428 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1429 // Constrain the DstReg register class if required. 1430 if (DstReg.isVirtual()) { 1431 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 1432 MRI->constrainRegClass(DstReg, RC); 1433 } 1434 SrcMO.setReg(DstReg); 1435 SrcMO.setSubReg(0); 1436 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1437 continue; 1438 } 1439 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1440 } 1441 return AnyOps; 1442 } 1443 1444 // Process a list of tied MI operands that all use the same source register. 1445 // The tied pairs are of the form (SrcIdx, DstIdx). 1446 void 1447 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1448 TiedPairList &TiedPairs, 1449 unsigned &Dist) { 1450 bool IsEarlyClobber = llvm::find_if(TiedPairs, [MI](auto const &TP) { 1451 return MI->getOperand(TP.second).isEarlyClobber(); 1452 }) != TiedPairs.end(); 1453 1454 bool RemovedKillFlag = false; 1455 bool AllUsesCopied = true; 1456 unsigned LastCopiedReg = 0; 1457 SlotIndex LastCopyIdx; 1458 Register RegB = 0; 1459 unsigned SubRegB = 0; 1460 for (auto &TP : TiedPairs) { 1461 unsigned SrcIdx = TP.first; 1462 unsigned DstIdx = TP.second; 1463 1464 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1465 Register RegA = DstMO.getReg(); 1466 1467 // Grab RegB from the instruction because it may have changed if the 1468 // instruction was commuted. 1469 RegB = MI->getOperand(SrcIdx).getReg(); 1470 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1471 1472 if (RegA == RegB) { 1473 // The register is tied to multiple destinations (or else we would 1474 // not have continued this far), but this use of the register 1475 // already matches the tied destination. Leave it. 1476 AllUsesCopied = false; 1477 continue; 1478 } 1479 LastCopiedReg = RegA; 1480 1481 assert(RegB.isVirtual() && "cannot make instruction into two-address form"); 1482 1483 #ifndef NDEBUG 1484 // First, verify that we don't have a use of "a" in the instruction 1485 // (a = b + a for example) because our transformation will not 1486 // work. This should never occur because we are in SSA form. 1487 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1488 assert(i == DstIdx || 1489 !MI->getOperand(i).isReg() || 1490 MI->getOperand(i).getReg() != RegA); 1491 #endif 1492 1493 // Emit a copy. 1494 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1495 TII->get(TargetOpcode::COPY), RegA); 1496 // If this operand is folding a truncation, the truncation now moves to the 1497 // copy so that the register classes remain valid for the operands. 1498 MIB.addReg(RegB, 0, SubRegB); 1499 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1500 if (SubRegB) { 1501 if (RegA.isVirtual()) { 1502 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1503 SubRegB) && 1504 "tied subregister must be a truncation"); 1505 // The superreg class will not be used to constrain the subreg class. 1506 RC = nullptr; 1507 } else { 1508 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1509 && "tied subregister must be a truncation"); 1510 } 1511 } 1512 1513 // Update DistanceMap. 1514 MachineBasicBlock::iterator PrevMI = MI; 1515 --PrevMI; 1516 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1517 DistanceMap[MI] = ++Dist; 1518 1519 if (LIS) { 1520 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1521 1522 SlotIndex endIdx = 1523 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1524 if (RegA.isVirtual()) { 1525 LiveInterval &LI = LIS->getInterval(RegA); 1526 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1527 LI.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1528 for (auto &S : LI.subranges()) { 1529 VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1530 S.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1531 } 1532 } else { 1533 for (MCRegUnitIterator Unit(RegA, TRI); Unit.isValid(); ++Unit) { 1534 if (LiveRange *LR = LIS->getCachedRegUnit(*Unit)) { 1535 VNInfo *VNI = 1536 LR->getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1537 LR->addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1538 } 1539 } 1540 } 1541 } 1542 1543 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1544 1545 MachineOperand &MO = MI->getOperand(SrcIdx); 1546 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1547 "inconsistent operand info for 2-reg pass"); 1548 if (MO.isKill()) { 1549 MO.setIsKill(false); 1550 RemovedKillFlag = true; 1551 } 1552 1553 // Make sure regA is a legal regclass for the SrcIdx operand. 1554 if (RegA.isVirtual() && RegB.isVirtual()) 1555 MRI->constrainRegClass(RegA, RC); 1556 MO.setReg(RegA); 1557 // The getMatchingSuper asserts guarantee that the register class projected 1558 // by SubRegB is compatible with RegA with no subregister. So regardless of 1559 // whether the dest oper writes a subreg, the source oper should not. 1560 MO.setSubReg(0); 1561 } 1562 1563 if (AllUsesCopied) { 1564 LaneBitmask RemainingUses = LaneBitmask::getNone(); 1565 // Replace other (un-tied) uses of regB with LastCopiedReg. 1566 for (MachineOperand &MO : MI->operands()) { 1567 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1568 if (MO.getSubReg() == SubRegB && !IsEarlyClobber) { 1569 if (MO.isKill()) { 1570 MO.setIsKill(false); 1571 RemovedKillFlag = true; 1572 } 1573 MO.setReg(LastCopiedReg); 1574 MO.setSubReg(0); 1575 } else { 1576 RemainingUses |= TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1577 } 1578 } 1579 } 1580 1581 // Update live variables for regB. 1582 if (RemovedKillFlag && RemainingUses.none() && LV && 1583 LV->getVarInfo(RegB).removeKill(*MI)) { 1584 MachineBasicBlock::iterator PrevMI = MI; 1585 --PrevMI; 1586 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1587 } 1588 1589 if (RemovedKillFlag && RemainingUses.none()) 1590 SrcRegMap[LastCopiedReg] = RegB; 1591 1592 // Update LiveIntervals. 1593 if (LIS) { 1594 SlotIndex UseIdx = LIS->getInstructionIndex(*MI); 1595 auto Shrink = [=](LiveRange &LR, LaneBitmask LaneMask) { 1596 LiveRange::Segment *S = LR.getSegmentContaining(LastCopyIdx); 1597 if (!S) 1598 return true; 1599 if ((LaneMask & RemainingUses).any()) 1600 return false; 1601 if (S->end.getBaseIndex() != UseIdx) 1602 return false; 1603 S->end = LastCopyIdx; 1604 return true; 1605 }; 1606 1607 LiveInterval &LI = LIS->getInterval(RegB); 1608 bool ShrinkLI = true; 1609 for (auto &S : LI.subranges()) 1610 ShrinkLI &= Shrink(S, S.LaneMask); 1611 if (ShrinkLI) 1612 Shrink(LI, LaneBitmask::getAll()); 1613 } 1614 } else if (RemovedKillFlag) { 1615 // Some tied uses of regB matched their destination registers, so 1616 // regB is still used in this instruction, but a kill flag was 1617 // removed from a different tied use of regB, so now we need to add 1618 // a kill flag to one of the remaining uses of regB. 1619 for (MachineOperand &MO : MI->operands()) { 1620 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1621 MO.setIsKill(true); 1622 break; 1623 } 1624 } 1625 } 1626 } 1627 1628 /// Reduce two-address instructions to two operands. 1629 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1630 MF = &Func; 1631 const TargetMachine &TM = MF->getTarget(); 1632 MRI = &MF->getRegInfo(); 1633 TII = MF->getSubtarget().getInstrInfo(); 1634 TRI = MF->getSubtarget().getRegisterInfo(); 1635 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1636 LV = getAnalysisIfAvailable<LiveVariables>(); 1637 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1638 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1639 AA = &AAPass->getAAResults(); 1640 else 1641 AA = nullptr; 1642 OptLevel = TM.getOptLevel(); 1643 // Disable optimizations if requested. We cannot skip the whole pass as some 1644 // fixups are necessary for correctness. 1645 if (skipFunction(Func.getFunction())) 1646 OptLevel = CodeGenOpt::None; 1647 1648 bool MadeChange = false; 1649 1650 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1651 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1652 1653 // This pass takes the function out of SSA form. 1654 MRI->leaveSSA(); 1655 1656 // This pass will rewrite the tied-def to meet the RegConstraint. 1657 MF->getProperties() 1658 .set(MachineFunctionProperties::Property::TiedOpsRewritten); 1659 1660 TiedOperandMap TiedOperands; 1661 for (MachineBasicBlock &MBBI : *MF) { 1662 MBB = &MBBI; 1663 unsigned Dist = 0; 1664 DistanceMap.clear(); 1665 SrcRegMap.clear(); 1666 DstRegMap.clear(); 1667 Processed.clear(); 1668 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1669 mi != me; ) { 1670 MachineBasicBlock::iterator nmi = std::next(mi); 1671 // Skip debug instructions. 1672 if (mi->isDebugInstr()) { 1673 mi = nmi; 1674 continue; 1675 } 1676 1677 // Expand REG_SEQUENCE instructions. This will position mi at the first 1678 // expanded instruction. 1679 if (mi->isRegSequence()) 1680 eliminateRegSequence(mi); 1681 1682 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1683 1684 processCopy(&*mi); 1685 1686 // First scan through all the tied register uses in this instruction 1687 // and record a list of pairs of tied operands for each register. 1688 if (!collectTiedOperands(&*mi, TiedOperands)) { 1689 removeClobberedSrcRegMap(&*mi); 1690 mi = nmi; 1691 continue; 1692 } 1693 1694 ++NumTwoAddressInstrs; 1695 MadeChange = true; 1696 LLVM_DEBUG(dbgs() << '\t' << *mi); 1697 1698 // If the instruction has a single pair of tied operands, try some 1699 // transformations that may either eliminate the tied operands or 1700 // improve the opportunities for coalescing away the register copy. 1701 if (TiedOperands.size() == 1) { 1702 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1703 = TiedOperands.begin()->second; 1704 if (TiedPairs.size() == 1) { 1705 unsigned SrcIdx = TiedPairs[0].first; 1706 unsigned DstIdx = TiedPairs[0].second; 1707 Register SrcReg = mi->getOperand(SrcIdx).getReg(); 1708 Register DstReg = mi->getOperand(DstIdx).getReg(); 1709 if (SrcReg != DstReg && 1710 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1711 // The tied operands have been eliminated or shifted further down 1712 // the block to ease elimination. Continue processing with 'nmi'. 1713 TiedOperands.clear(); 1714 removeClobberedSrcRegMap(&*mi); 1715 mi = nmi; 1716 continue; 1717 } 1718 } 1719 } 1720 1721 // Now iterate over the information collected above. 1722 for (auto &TO : TiedOperands) { 1723 processTiedPairs(&*mi, TO.second, Dist); 1724 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1725 } 1726 1727 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1728 if (mi->isInsertSubreg()) { 1729 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1730 // To %reg:subidx = COPY %subreg 1731 unsigned SubIdx = mi->getOperand(3).getImm(); 1732 mi->RemoveOperand(3); 1733 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1734 mi->getOperand(0).setSubReg(SubIdx); 1735 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1736 mi->RemoveOperand(1); 1737 mi->setDesc(TII->get(TargetOpcode::COPY)); 1738 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1739 1740 // Update LiveIntervals. 1741 if (LIS) { 1742 Register Reg = mi->getOperand(0).getReg(); 1743 LiveInterval &LI = LIS->getInterval(Reg); 1744 if (LI.hasSubRanges()) { 1745 // The COPY no longer defines subregs of %reg except for 1746 // %reg.subidx. 1747 LaneBitmask LaneMask = 1748 TRI->getSubRegIndexLaneMask(mi->getOperand(0).getSubReg()); 1749 SlotIndex Idx = LIS->getInstructionIndex(*mi); 1750 for (auto &S : LI.subranges()) { 1751 if ((S.LaneMask & LaneMask).none()) { 1752 LiveRange::iterator UseSeg = S.FindSegmentContaining(Idx); 1753 LiveRange::iterator DefSeg = std::next(UseSeg); 1754 S.MergeValueNumberInto(DefSeg->valno, UseSeg->valno); 1755 } 1756 } 1757 1758 // The COPY no longer has a use of %reg. 1759 LIS->shrinkToUses(&LI); 1760 } else { 1761 // The live interval for Reg did not have subranges but now it needs 1762 // them because we have introduced a subreg def. Recompute it. 1763 LIS->removeInterval(Reg); 1764 LIS->createAndComputeVirtRegInterval(Reg); 1765 } 1766 } 1767 } 1768 1769 // Clear TiedOperands here instead of at the top of the loop 1770 // since most instructions do not have tied operands. 1771 TiedOperands.clear(); 1772 removeClobberedSrcRegMap(&*mi); 1773 mi = nmi; 1774 } 1775 } 1776 1777 return MadeChange; 1778 } 1779 1780 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1781 /// 1782 /// The instruction is turned into a sequence of sub-register copies: 1783 /// 1784 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1785 /// 1786 /// Becomes: 1787 /// 1788 /// undef %dst:ssub0 = COPY %v1 1789 /// %dst:ssub1 = COPY %v2 1790 void TwoAddressInstructionPass:: 1791 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1792 MachineInstr &MI = *MBBI; 1793 Register DstReg = MI.getOperand(0).getReg(); 1794 if (MI.getOperand(0).getSubReg() || DstReg.isPhysical() || 1795 !(MI.getNumOperands() & 1)) { 1796 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1797 llvm_unreachable(nullptr); 1798 } 1799 1800 SmallVector<Register, 4> OrigRegs; 1801 if (LIS) { 1802 OrigRegs.push_back(MI.getOperand(0).getReg()); 1803 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1804 OrigRegs.push_back(MI.getOperand(i).getReg()); 1805 } 1806 1807 bool DefEmitted = false; 1808 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1809 MachineOperand &UseMO = MI.getOperand(i); 1810 Register SrcReg = UseMO.getReg(); 1811 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1812 // Nothing needs to be inserted for undef operands. 1813 if (UseMO.isUndef()) 1814 continue; 1815 1816 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1817 // might insert a COPY that uses SrcReg after is was killed. 1818 bool isKill = UseMO.isKill(); 1819 if (isKill) 1820 for (unsigned j = i + 2; j < e; j += 2) 1821 if (MI.getOperand(j).getReg() == SrcReg) { 1822 MI.getOperand(j).setIsKill(); 1823 UseMO.setIsKill(false); 1824 isKill = false; 1825 break; 1826 } 1827 1828 // Insert the sub-register copy. 1829 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1830 TII->get(TargetOpcode::COPY)) 1831 .addReg(DstReg, RegState::Define, SubIdx) 1832 .add(UseMO); 1833 1834 // The first def needs an undef flag because there is no live register 1835 // before it. 1836 if (!DefEmitted) { 1837 CopyMI->getOperand(0).setIsUndef(true); 1838 // Return an iterator pointing to the first inserted instr. 1839 MBBI = CopyMI; 1840 } 1841 DefEmitted = true; 1842 1843 // Update LiveVariables' kill info. 1844 if (LV && isKill && !SrcReg.isPhysical()) 1845 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1846 1847 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1848 } 1849 1850 MachineBasicBlock::iterator EndMBBI = 1851 std::next(MachineBasicBlock::iterator(MI)); 1852 1853 if (!DefEmitted) { 1854 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1855 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1856 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1857 MI.RemoveOperand(j); 1858 } else { 1859 if (LIS) 1860 LIS->RemoveMachineInstrFromMaps(MI); 1861 1862 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1863 MI.eraseFromParent(); 1864 } 1865 1866 // Udpate LiveIntervals. 1867 if (LIS) 1868 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1869 } 1870