1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 39 #include "llvm/CodeGen/LiveVariables.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineFunctionPass.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/Passes.h" 48 #include "llvm/CodeGen/SlotIndexes.h" 49 #include "llvm/CodeGen/TargetInstrInfo.h" 50 #include "llvm/MC/MCInstrDesc.h" 51 #include "llvm/MC/MCInstrItineraries.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CodeGen.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include "llvm/Target/TargetOpcodes.h" 60 #include "llvm/Target/TargetRegisterInfo.h" 61 #include "llvm/Target/TargetSubtargetInfo.h" 62 #include <cassert> 63 #include <iterator> 64 #include <utility> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "twoaddressinstruction" 69 70 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 71 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 72 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 73 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 74 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 75 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 76 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 77 78 // Temporary flag to disable rescheduling. 79 static cl::opt<bool> 80 EnableRescheduling("twoaddr-reschedule", 81 cl::desc("Coalesce copies by rescheduling (default=true)"), 82 cl::init(true), cl::Hidden); 83 84 // Limit the number of dataflow edges to traverse when evaluating the benefit 85 // of commuting operands. 86 static cl::opt<unsigned> MaxDataFlowEdge( 87 "dataflow-edge-limit", cl::Hidden, cl::init(3), 88 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 89 "the benefit of commuting operands")); 90 91 namespace { 92 93 class TwoAddressInstructionPass : public MachineFunctionPass { 94 MachineFunction *MF; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const InstrItineraryData *InstrItins; 98 MachineRegisterInfo *MRI; 99 LiveVariables *LV; 100 LiveIntervals *LIS; 101 AliasAnalysis *AA; 102 CodeGenOpt::Level OptLevel; 103 104 // The current basic block being processed. 105 MachineBasicBlock *MBB; 106 107 // Keep track the distance of a MI from the start of the current basic block. 108 DenseMap<MachineInstr*, unsigned> DistanceMap; 109 110 // Set of already processed instructions in the current block. 111 SmallPtrSet<MachineInstr*, 8> Processed; 112 113 // A map from virtual registers to physical registers which are likely targets 114 // to be coalesced to due to copies from physical registers to virtual 115 // registers. e.g. v1024 = move r0. 116 DenseMap<unsigned, unsigned> SrcRegMap; 117 118 // A map from virtual registers to physical registers which are likely targets 119 // to be coalesced to due to copies to physical registers from virtual 120 // registers. e.g. r1 = move v1024. 121 DenseMap<unsigned, unsigned> DstRegMap; 122 123 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, 124 MachineBasicBlock::iterator OldPos); 125 126 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen); 127 128 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 129 130 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 131 MachineInstr *MI, unsigned Dist); 132 133 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 134 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 135 136 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 137 138 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 139 MachineBasicBlock::iterator &nmi, 140 unsigned RegA, unsigned RegB, unsigned Dist); 141 142 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 143 144 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 145 MachineBasicBlock::iterator &nmi, 146 unsigned Reg); 147 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 148 MachineBasicBlock::iterator &nmi, 149 unsigned Reg); 150 151 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 152 MachineBasicBlock::iterator &nmi, 153 unsigned SrcIdx, unsigned DstIdx, 154 unsigned Dist, bool shouldOnlyCommute); 155 156 bool tryInstructionCommute(MachineInstr *MI, 157 unsigned DstOpIdx, 158 unsigned BaseOpIdx, 159 bool BaseOpKilled, 160 unsigned Dist); 161 void scanUses(unsigned DstReg); 162 163 void processCopy(MachineInstr *MI); 164 165 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 166 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 167 168 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 169 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 170 void eliminateRegSequence(MachineBasicBlock::iterator&); 171 172 public: 173 static char ID; // Pass identification, replacement for typeid 174 175 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 176 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 177 } 178 179 void getAnalysisUsage(AnalysisUsage &AU) const override { 180 AU.setPreservesCFG(); 181 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 182 AU.addUsedIfAvailable<LiveVariables>(); 183 AU.addPreserved<LiveVariables>(); 184 AU.addPreserved<SlotIndexes>(); 185 AU.addPreserved<LiveIntervals>(); 186 AU.addPreservedID(MachineLoopInfoID); 187 AU.addPreservedID(MachineDominatorsID); 188 MachineFunctionPass::getAnalysisUsage(AU); 189 } 190 191 /// Pass entry point. 192 bool runOnMachineFunction(MachineFunction&) override; 193 }; 194 195 } // end anonymous namespace 196 197 char TwoAddressInstructionPass::ID = 0; 198 199 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 200 201 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 202 "Two-Address instruction pass", false, false) 203 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 204 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 205 "Two-Address instruction pass", false, false) 206 207 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 208 209 /// A two-address instruction has been converted to a three-address instruction 210 /// to avoid clobbering a register. Try to sink it past the instruction that 211 /// would kill the above mentioned register to reduce register pressure. 212 bool TwoAddressInstructionPass:: 213 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, 214 MachineBasicBlock::iterator OldPos) { 215 // FIXME: Shouldn't we be trying to do this before we three-addressify the 216 // instruction? After this transformation is done, we no longer need 217 // the instruction to be in three-address form. 218 219 // Check if it's safe to move this instruction. 220 bool SeenStore = true; // Be conservative. 221 if (!MI->isSafeToMove(AA, SeenStore)) 222 return false; 223 224 unsigned DefReg = 0; 225 SmallSet<unsigned, 4> UseRegs; 226 227 for (const MachineOperand &MO : MI->operands()) { 228 if (!MO.isReg()) 229 continue; 230 unsigned MOReg = MO.getReg(); 231 if (!MOReg) 232 continue; 233 if (MO.isUse() && MOReg != SavedReg) 234 UseRegs.insert(MO.getReg()); 235 if (!MO.isDef()) 236 continue; 237 if (MO.isImplicit()) 238 // Don't try to move it if it implicitly defines a register. 239 return false; 240 if (DefReg) 241 // For now, don't move any instructions that define multiple registers. 242 return false; 243 DefReg = MO.getReg(); 244 } 245 246 // Find the instruction that kills SavedReg. 247 MachineInstr *KillMI = nullptr; 248 if (LIS) { 249 LiveInterval &LI = LIS->getInterval(SavedReg); 250 assert(LI.end() != LI.begin() && 251 "Reg should not have empty live interval."); 252 253 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 254 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 255 if (I != LI.end() && I->start < MBBEndIdx) 256 return false; 257 258 --I; 259 KillMI = LIS->getInstructionFromIndex(I->end); 260 } 261 if (!KillMI) { 262 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) { 263 if (!UseMO.isKill()) 264 continue; 265 KillMI = UseMO.getParent(); 266 break; 267 } 268 } 269 270 // If we find the instruction that kills SavedReg, and it is in an 271 // appropriate location, we can try to sink the current instruction 272 // past it. 273 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 274 MachineBasicBlock::iterator(KillMI) == OldPos || KillMI->isTerminator()) 275 return false; 276 277 // If any of the definitions are used by another instruction between the 278 // position and the kill use, then it's not safe to sink it. 279 // 280 // FIXME: This can be sped up if there is an easy way to query whether an 281 // instruction is before or after another instruction. Then we can use 282 // MachineRegisterInfo def / use instead. 283 MachineOperand *KillMO = nullptr; 284 MachineBasicBlock::iterator KillPos = KillMI; 285 ++KillPos; 286 287 unsigned NumVisited = 0; 288 for (MachineInstr &OtherMI : make_range(std::next(OldPos), KillPos)) { 289 // DBG_VALUE cannot be counted against the limit. 290 if (OtherMI.isDebugValue()) 291 continue; 292 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 293 return false; 294 ++NumVisited; 295 for (unsigned i = 0, e = OtherMI.getNumOperands(); i != e; ++i) { 296 MachineOperand &MO = OtherMI.getOperand(i); 297 if (!MO.isReg()) 298 continue; 299 unsigned MOReg = MO.getReg(); 300 if (!MOReg) 301 continue; 302 if (DefReg == MOReg) 303 return false; 304 305 if (MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))) { 306 if (&OtherMI == KillMI && MOReg == SavedReg) 307 // Save the operand that kills the register. We want to unset the kill 308 // marker if we can sink MI past it. 309 KillMO = &MO; 310 else if (UseRegs.count(MOReg)) 311 // One of the uses is killed before the destination. 312 return false; 313 } 314 } 315 } 316 assert(KillMO && "Didn't find kill"); 317 318 if (!LIS) { 319 // Update kill and LV information. 320 KillMO->setIsKill(false); 321 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 322 KillMO->setIsKill(true); 323 324 if (LV) 325 LV->replaceKillInstruction(SavedReg, *KillMI, *MI); 326 } 327 328 // Move instruction to its destination. 329 MBB->remove(MI); 330 MBB->insert(KillPos, MI); 331 332 if (LIS) 333 LIS->handleMove(*MI); 334 335 ++Num3AddrSunk; 336 return true; 337 } 338 339 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 340 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB, 341 const MachineRegisterInfo *MRI) { 342 MachineInstr *Ret = nullptr; 343 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 344 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 345 continue; 346 if (!Ret) 347 Ret = &DefMI; 348 else if (Ret != &DefMI) 349 return nullptr; 350 } 351 return Ret; 352 } 353 354 /// Check if there is a reversed copy chain from FromReg to ToReg: 355 /// %Tmp1 = copy %Tmp2; 356 /// %FromReg = copy %Tmp1; 357 /// %ToReg = add %FromReg ... 358 /// %Tmp2 = copy %ToReg; 359 /// MaxLen specifies the maximum length of the copy chain the func 360 /// can walk through. 361 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg, 362 int Maxlen) { 363 unsigned TmpReg = FromReg; 364 for (int i = 0; i < Maxlen; i++) { 365 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 366 if (!Def || !Def->isCopy()) 367 return false; 368 369 TmpReg = Def->getOperand(1).getReg(); 370 371 if (TmpReg == ToReg) 372 return true; 373 } 374 return false; 375 } 376 377 /// Return true if there are no intervening uses between the last instruction 378 /// in the MBB that defines the specified register and the two-address 379 /// instruction which is being processed. It also returns the last def location 380 /// by reference. 381 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 382 unsigned &LastDef) { 383 LastDef = 0; 384 unsigned LastUse = Dist; 385 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 386 MachineInstr *MI = MO.getParent(); 387 if (MI->getParent() != MBB || MI->isDebugValue()) 388 continue; 389 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 390 if (DI == DistanceMap.end()) 391 continue; 392 if (MO.isUse() && DI->second < LastUse) 393 LastUse = DI->second; 394 if (MO.isDef() && DI->second > LastDef) 395 LastDef = DI->second; 396 } 397 398 return !(LastUse > LastDef && LastUse < Dist); 399 } 400 401 /// Return true if the specified MI is a copy instruction or an extract_subreg 402 /// instruction. It also returns the source and destination registers and 403 /// whether they are physical registers by reference. 404 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 405 unsigned &SrcReg, unsigned &DstReg, 406 bool &IsSrcPhys, bool &IsDstPhys) { 407 SrcReg = 0; 408 DstReg = 0; 409 if (MI.isCopy()) { 410 DstReg = MI.getOperand(0).getReg(); 411 SrcReg = MI.getOperand(1).getReg(); 412 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 413 DstReg = MI.getOperand(0).getReg(); 414 SrcReg = MI.getOperand(2).getReg(); 415 } else 416 return false; 417 418 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 419 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 420 return true; 421 } 422 423 /// Test if the given register value, which is used by the 424 /// given instruction, is killed by the given instruction. 425 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 426 LiveIntervals *LIS) { 427 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && 428 !LIS->isNotInMIMap(*MI)) { 429 // FIXME: Sometimes tryInstructionTransform() will add instructions and 430 // test whether they can be folded before keeping them. In this case it 431 // sets a kill before recursively calling tryInstructionTransform() again. 432 // If there is no interval available, we assume that this instruction is 433 // one of those. A kill flag is manually inserted on the operand so the 434 // check below will handle it. 435 LiveInterval &LI = LIS->getInterval(Reg); 436 // This is to match the kill flag version where undefs don't have kill 437 // flags. 438 if (!LI.hasAtLeastOneValue()) 439 return false; 440 441 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 442 LiveInterval::const_iterator I = LI.find(useIdx); 443 assert(I != LI.end() && "Reg must be live-in to use."); 444 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 445 } 446 447 return MI->killsRegister(Reg); 448 } 449 450 /// Test if the given register value, which is used by the given 451 /// instruction, is killed by the given instruction. This looks through 452 /// coalescable copies to see if the original value is potentially not killed. 453 /// 454 /// For example, in this code: 455 /// 456 /// %reg1034 = copy %reg1024 457 /// %reg1035 = copy %reg1025<kill> 458 /// %reg1036 = add %reg1034<kill>, %reg1035<kill> 459 /// 460 /// %reg1034 is not considered to be killed, since it is copied from a 461 /// register which is not killed. Treating it as not killed lets the 462 /// normal heuristics commute the (two-address) add, which lets 463 /// coalescing eliminate the extra copy. 464 /// 465 /// If allowFalsePositives is true then likely kills are treated as kills even 466 /// if it can't be proven that they are kills. 467 static bool isKilled(MachineInstr &MI, unsigned Reg, 468 const MachineRegisterInfo *MRI, 469 const TargetInstrInfo *TII, 470 LiveIntervals *LIS, 471 bool allowFalsePositives) { 472 MachineInstr *DefMI = &MI; 473 while (true) { 474 // All uses of physical registers are likely to be kills. 475 if (TargetRegisterInfo::isPhysicalRegister(Reg) && 476 (allowFalsePositives || MRI->hasOneUse(Reg))) 477 return true; 478 if (!isPlainlyKilled(DefMI, Reg, LIS)) 479 return false; 480 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 481 return true; 482 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 483 // If there are multiple defs, we can't do a simple analysis, so just 484 // go with what the kill flag says. 485 if (std::next(Begin) != MRI->def_end()) 486 return true; 487 DefMI = Begin->getParent(); 488 bool IsSrcPhys, IsDstPhys; 489 unsigned SrcReg, DstReg; 490 // If the def is something other than a copy, then it isn't going to 491 // be coalesced, so follow the kill flag. 492 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 493 return true; 494 Reg = SrcReg; 495 } 496 } 497 498 /// Return true if the specified MI uses the specified register as a two-address 499 /// use. If so, return the destination register by reference. 500 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 501 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 502 const MachineOperand &MO = MI.getOperand(i); 503 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 504 continue; 505 unsigned ti; 506 if (MI.isRegTiedToDefOperand(i, &ti)) { 507 DstReg = MI.getOperand(ti).getReg(); 508 return true; 509 } 510 } 511 return false; 512 } 513 514 /// Given a register, if has a single in-basic block use, return the use 515 /// instruction if it's a copy or a two-address use. 516 static 517 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 518 MachineRegisterInfo *MRI, 519 const TargetInstrInfo *TII, 520 bool &IsCopy, 521 unsigned &DstReg, bool &IsDstPhys) { 522 if (!MRI->hasOneNonDBGUse(Reg)) 523 // None or more than one use. 524 return nullptr; 525 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 526 if (UseMI.getParent() != MBB) 527 return nullptr; 528 unsigned SrcReg; 529 bool IsSrcPhys; 530 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 531 IsCopy = true; 532 return &UseMI; 533 } 534 IsDstPhys = false; 535 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 536 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 537 return &UseMI; 538 } 539 return nullptr; 540 } 541 542 /// Return the physical register the specified virtual register might be mapped 543 /// to. 544 static unsigned 545 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 546 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 547 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 548 if (SI == RegMap.end()) 549 return 0; 550 Reg = SI->second; 551 } 552 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 553 return Reg; 554 return 0; 555 } 556 557 /// Return true if the two registers are equal or aliased. 558 static bool 559 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 560 if (RegA == RegB) 561 return true; 562 if (!RegA || !RegB) 563 return false; 564 return TRI->regsOverlap(RegA, RegB); 565 } 566 567 // Returns true if Reg is equal or aliased to at least one register in Set. 568 static bool regOverlapsSet(const SmallVectorImpl<unsigned> &Set, unsigned Reg, 569 const TargetRegisterInfo *TRI) { 570 for (unsigned R : Set) 571 if (TRI->regsOverlap(R, Reg)) 572 return true; 573 574 return false; 575 } 576 577 /// Return true if it's potentially profitable to commute the two-address 578 /// instruction that's being processed. 579 bool 580 TwoAddressInstructionPass:: 581 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 582 MachineInstr *MI, unsigned Dist) { 583 if (OptLevel == CodeGenOpt::None) 584 return false; 585 586 // Determine if it's profitable to commute this two address instruction. In 587 // general, we want no uses between this instruction and the definition of 588 // the two-address register. 589 // e.g. 590 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 591 // %reg1029<def> = MOV8rr %reg1028 592 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 593 // insert => %reg1030<def> = MOV8rr %reg1028 594 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 595 // In this case, it might not be possible to coalesce the second MOV8rr 596 // instruction if the first one is coalesced. So it would be profitable to 597 // commute it: 598 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 599 // %reg1029<def> = MOV8rr %reg1028 600 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 601 // insert => %reg1030<def> = MOV8rr %reg1029 602 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 603 604 if (!isPlainlyKilled(MI, regC, LIS)) 605 return false; 606 607 // Ok, we have something like: 608 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 609 // let's see if it's worth commuting it. 610 611 // Look for situations like this: 612 // %reg1024<def> = MOV r1 613 // %reg1025<def> = MOV r0 614 // %reg1026<def> = ADD %reg1024, %reg1025 615 // r0 = MOV %reg1026 616 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 617 unsigned ToRegA = getMappedReg(regA, DstRegMap); 618 if (ToRegA) { 619 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 620 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 621 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 622 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 623 624 // Compute if any of the following are true: 625 // -RegB is not tied to a register and RegC is compatible with RegA. 626 // -RegB is tied to the wrong physical register, but RegC is. 627 // -RegB is tied to the wrong physical register, and RegC isn't tied. 628 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 629 return true; 630 // Don't compute if any of the following are true: 631 // -RegC is not tied to a register and RegB is compatible with RegA. 632 // -RegC is tied to the wrong physical register, but RegB is. 633 // -RegC is tied to the wrong physical register, and RegB isn't tied. 634 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 635 return false; 636 } 637 638 // If there is a use of regC between its last def (could be livein) and this 639 // instruction, then bail. 640 unsigned LastDefC = 0; 641 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 642 return false; 643 644 // If there is a use of regB between its last def (could be livein) and this 645 // instruction, then go ahead and make this transformation. 646 unsigned LastDefB = 0; 647 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 648 return true; 649 650 // Look for situation like this: 651 // %reg101 = MOV %reg100 652 // %reg102 = ... 653 // %reg103 = ADD %reg102, %reg101 654 // ... = %reg103 ... 655 // %reg100 = MOV %reg103 656 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 657 // to eliminate an otherwise unavoidable copy. 658 // FIXME: 659 // We can extend the logic further: If an pair of operands in an insn has 660 // been merged, the insn could be regarded as a virtual copy, and the virtual 661 // copy could also be used to construct a copy chain. 662 // To more generally minimize register copies, ideally the logic of two addr 663 // instruction pass should be integrated with register allocation pass where 664 // interference graph is available. 665 if (isRevCopyChain(regC, regA, MaxDataFlowEdge)) 666 return true; 667 668 if (isRevCopyChain(regB, regA, MaxDataFlowEdge)) 669 return false; 670 671 // Since there are no intervening uses for both registers, then commute 672 // if the def of regC is closer. Its live interval is shorter. 673 return LastDefB && LastDefC && LastDefC > LastDefB; 674 } 675 676 /// Commute a two-address instruction and update the basic block, distance map, 677 /// and live variables if needed. Return true if it is successful. 678 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 679 unsigned DstIdx, 680 unsigned RegBIdx, 681 unsigned RegCIdx, 682 unsigned Dist) { 683 unsigned RegC = MI->getOperand(RegCIdx).getReg(); 684 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 685 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 686 687 if (NewMI == nullptr) { 688 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 689 return false; 690 } 691 692 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 693 assert(NewMI == MI && 694 "TargetInstrInfo::commuteInstruction() should not return a new " 695 "instruction unless it was requested."); 696 697 // Update source register map. 698 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 699 if (FromRegC) { 700 unsigned RegA = MI->getOperand(DstIdx).getReg(); 701 SrcRegMap[RegA] = FromRegC; 702 } 703 704 return true; 705 } 706 707 /// Return true if it is profitable to convert the given 2-address instruction 708 /// to a 3-address one. 709 bool 710 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 711 // Look for situations like this: 712 // %reg1024<def> = MOV r1 713 // %reg1025<def> = MOV r0 714 // %reg1026<def> = ADD %reg1024, %reg1025 715 // r2 = MOV %reg1026 716 // Turn ADD into a 3-address instruction to avoid a copy. 717 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 718 if (!FromRegB) 719 return false; 720 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 721 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 722 } 723 724 /// Convert the specified two-address instruction into a three address one. 725 /// Return true if this transformation was successful. 726 bool 727 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 728 MachineBasicBlock::iterator &nmi, 729 unsigned RegA, unsigned RegB, 730 unsigned Dist) { 731 // FIXME: Why does convertToThreeAddress() need an iterator reference? 732 MachineFunction::iterator MFI = MBB->getIterator(); 733 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV); 734 assert(MBB->getIterator() == MFI && 735 "convertToThreeAddress changed iterator reference"); 736 if (!NewMI) 737 return false; 738 739 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 740 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 741 bool Sunk = false; 742 743 if (LIS) 744 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); 745 746 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 747 // FIXME: Temporary workaround. If the new instruction doesn't 748 // uses RegB, convertToThreeAddress must have created more 749 // then one instruction. 750 Sunk = sink3AddrInstruction(NewMI, RegB, mi); 751 752 MBB->erase(mi); // Nuke the old inst. 753 754 if (!Sunk) { 755 DistanceMap.insert(std::make_pair(NewMI, Dist)); 756 mi = NewMI; 757 nmi = std::next(mi); 758 } 759 760 // Update source and destination register maps. 761 SrcRegMap.erase(RegA); 762 DstRegMap.erase(RegB); 763 return true; 764 } 765 766 /// Scan forward recursively for only uses, update maps if the use is a copy or 767 /// a two-address instruction. 768 void 769 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 770 SmallVector<unsigned, 4> VirtRegPairs; 771 bool IsDstPhys; 772 bool IsCopy = false; 773 unsigned NewReg = 0; 774 unsigned Reg = DstReg; 775 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 776 NewReg, IsDstPhys)) { 777 if (IsCopy && !Processed.insert(UseMI).second) 778 break; 779 780 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 781 if (DI != DistanceMap.end()) 782 // Earlier in the same MBB.Reached via a back edge. 783 break; 784 785 if (IsDstPhys) { 786 VirtRegPairs.push_back(NewReg); 787 break; 788 } 789 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 790 if (!isNew) 791 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 792 VirtRegPairs.push_back(NewReg); 793 Reg = NewReg; 794 } 795 796 if (!VirtRegPairs.empty()) { 797 unsigned ToReg = VirtRegPairs.back(); 798 VirtRegPairs.pop_back(); 799 while (!VirtRegPairs.empty()) { 800 unsigned FromReg = VirtRegPairs.back(); 801 VirtRegPairs.pop_back(); 802 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 803 if (!isNew) 804 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 805 ToReg = FromReg; 806 } 807 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 808 if (!isNew) 809 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 810 } 811 } 812 813 /// If the specified instruction is not yet processed, process it if it's a 814 /// copy. For a copy instruction, we find the physical registers the 815 /// source and destination registers might be mapped to. These are kept in 816 /// point-to maps used to determine future optimizations. e.g. 817 /// v1024 = mov r0 818 /// v1025 = mov r1 819 /// v1026 = add v1024, v1025 820 /// r1 = mov r1026 821 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 822 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 823 /// potentially joined with r1 on the output side. It's worthwhile to commute 824 /// 'add' to eliminate a copy. 825 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 826 if (Processed.count(MI)) 827 return; 828 829 bool IsSrcPhys, IsDstPhys; 830 unsigned SrcReg, DstReg; 831 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 832 return; 833 834 if (IsDstPhys && !IsSrcPhys) 835 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 836 else if (!IsDstPhys && IsSrcPhys) { 837 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 838 if (!isNew) 839 assert(SrcRegMap[DstReg] == SrcReg && 840 "Can't map to two src physical registers!"); 841 842 scanUses(DstReg); 843 } 844 845 Processed.insert(MI); 846 } 847 848 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 849 /// consider moving the instruction below the kill instruction in order to 850 /// eliminate the need for the copy. 851 bool TwoAddressInstructionPass:: 852 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 853 MachineBasicBlock::iterator &nmi, 854 unsigned Reg) { 855 // Bail immediately if we don't have LV or LIS available. We use them to find 856 // kills efficiently. 857 if (!LV && !LIS) 858 return false; 859 860 MachineInstr *MI = &*mi; 861 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 862 if (DI == DistanceMap.end()) 863 // Must be created from unfolded load. Don't waste time trying this. 864 return false; 865 866 MachineInstr *KillMI = nullptr; 867 if (LIS) { 868 LiveInterval &LI = LIS->getInterval(Reg); 869 assert(LI.end() != LI.begin() && 870 "Reg should not have empty live interval."); 871 872 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 873 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 874 if (I != LI.end() && I->start < MBBEndIdx) 875 return false; 876 877 --I; 878 KillMI = LIS->getInstructionFromIndex(I->end); 879 } else { 880 KillMI = LV->getVarInfo(Reg).findKill(MBB); 881 } 882 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 883 // Don't mess with copies, they may be coalesced later. 884 return false; 885 886 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 887 KillMI->isBranch() || KillMI->isTerminator()) 888 // Don't move pass calls, etc. 889 return false; 890 891 unsigned DstReg; 892 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 893 return false; 894 895 bool SeenStore = true; 896 if (!MI->isSafeToMove(AA, SeenStore)) 897 return false; 898 899 if (TII->getInstrLatency(InstrItins, *MI) > 1) 900 // FIXME: Needs more sophisticated heuristics. 901 return false; 902 903 SmallVector<unsigned, 2> Uses; 904 SmallVector<unsigned, 2> Kills; 905 SmallVector<unsigned, 2> Defs; 906 for (const MachineOperand &MO : MI->operands()) { 907 if (!MO.isReg()) 908 continue; 909 unsigned MOReg = MO.getReg(); 910 if (!MOReg) 911 continue; 912 if (MO.isDef()) 913 Defs.push_back(MOReg); 914 else { 915 Uses.push_back(MOReg); 916 if (MOReg != Reg && (MO.isKill() || 917 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 918 Kills.push_back(MOReg); 919 } 920 } 921 922 // Move the copies connected to MI down as well. 923 MachineBasicBlock::iterator Begin = MI; 924 MachineBasicBlock::iterator AfterMI = std::next(Begin); 925 MachineBasicBlock::iterator End = AfterMI; 926 while (End->isCopy() && 927 regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) { 928 Defs.push_back(End->getOperand(0).getReg()); 929 ++End; 930 } 931 932 // Check if the reschedule will not break dependencies. 933 unsigned NumVisited = 0; 934 MachineBasicBlock::iterator KillPos = KillMI; 935 ++KillPos; 936 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 937 // DBG_VALUE cannot be counted against the limit. 938 if (OtherMI.isDebugValue()) 939 continue; 940 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 941 return false; 942 ++NumVisited; 943 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 944 OtherMI.isBranch() || OtherMI.isTerminator()) 945 // Don't move pass calls, etc. 946 return false; 947 for (const MachineOperand &MO : OtherMI.operands()) { 948 if (!MO.isReg()) 949 continue; 950 unsigned MOReg = MO.getReg(); 951 if (!MOReg) 952 continue; 953 if (MO.isDef()) { 954 if (regOverlapsSet(Uses, MOReg, TRI)) 955 // Physical register use would be clobbered. 956 return false; 957 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 958 // May clobber a physical register def. 959 // FIXME: This may be too conservative. It's ok if the instruction 960 // is sunken completely below the use. 961 return false; 962 } else { 963 if (regOverlapsSet(Defs, MOReg, TRI)) 964 return false; 965 bool isKill = 966 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 967 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 968 regOverlapsSet(Kills, MOReg, TRI))) 969 // Don't want to extend other live ranges and update kills. 970 return false; 971 if (MOReg == Reg && !isKill) 972 // We can't schedule across a use of the register in question. 973 return false; 974 // Ensure that if this is register in question, its the kill we expect. 975 assert((MOReg != Reg || &OtherMI == KillMI) && 976 "Found multiple kills of a register in a basic block"); 977 } 978 } 979 } 980 981 // Move debug info as well. 982 while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue()) 983 --Begin; 984 985 nmi = End; 986 MachineBasicBlock::iterator InsertPos = KillPos; 987 if (LIS) { 988 // We have to move the copies first so that the MBB is still well-formed 989 // when calling handleMove(). 990 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 991 auto CopyMI = MBBI++; 992 MBB->splice(InsertPos, MBB, CopyMI); 993 LIS->handleMove(*CopyMI); 994 InsertPos = CopyMI; 995 } 996 End = std::next(MachineBasicBlock::iterator(MI)); 997 } 998 999 // Copies following MI may have been moved as well. 1000 MBB->splice(InsertPos, MBB, Begin, End); 1001 DistanceMap.erase(DI); 1002 1003 // Update live variables 1004 if (LIS) { 1005 LIS->handleMove(*MI); 1006 } else { 1007 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1008 LV->addVirtualRegisterKilled(Reg, *MI); 1009 } 1010 1011 DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 1012 return true; 1013 } 1014 1015 /// Return true if the re-scheduling will put the given instruction too close 1016 /// to the defs of its register dependencies. 1017 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 1018 MachineInstr *MI) { 1019 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 1020 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 1021 continue; 1022 if (&DefMI == MI) 1023 return true; // MI is defining something KillMI uses 1024 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 1025 if (DDI == DistanceMap.end()) 1026 return true; // Below MI 1027 unsigned DefDist = DDI->second; 1028 assert(Dist > DefDist && "Visited def already?"); 1029 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 1030 return true; 1031 } 1032 return false; 1033 } 1034 1035 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 1036 /// consider moving the kill instruction above the current two-address 1037 /// instruction in order to eliminate the need for the copy. 1038 bool TwoAddressInstructionPass:: 1039 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 1040 MachineBasicBlock::iterator &nmi, 1041 unsigned Reg) { 1042 // Bail immediately if we don't have LV or LIS available. We use them to find 1043 // kills efficiently. 1044 if (!LV && !LIS) 1045 return false; 1046 1047 MachineInstr *MI = &*mi; 1048 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1049 if (DI == DistanceMap.end()) 1050 // Must be created from unfolded load. Don't waste time trying this. 1051 return false; 1052 1053 MachineInstr *KillMI = nullptr; 1054 if (LIS) { 1055 LiveInterval &LI = LIS->getInterval(Reg); 1056 assert(LI.end() != LI.begin() && 1057 "Reg should not have empty live interval."); 1058 1059 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1060 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1061 if (I != LI.end() && I->start < MBBEndIdx) 1062 return false; 1063 1064 --I; 1065 KillMI = LIS->getInstructionFromIndex(I->end); 1066 } else { 1067 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1068 } 1069 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1070 // Don't mess with copies, they may be coalesced later. 1071 return false; 1072 1073 unsigned DstReg; 1074 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1075 return false; 1076 1077 bool SeenStore = true; 1078 if (!KillMI->isSafeToMove(AA, SeenStore)) 1079 return false; 1080 1081 SmallSet<unsigned, 2> Uses; 1082 SmallSet<unsigned, 2> Kills; 1083 SmallSet<unsigned, 2> Defs; 1084 SmallSet<unsigned, 2> LiveDefs; 1085 for (const MachineOperand &MO : KillMI->operands()) { 1086 if (!MO.isReg()) 1087 continue; 1088 unsigned MOReg = MO.getReg(); 1089 if (MO.isUse()) { 1090 if (!MOReg) 1091 continue; 1092 if (isDefTooClose(MOReg, DI->second, MI)) 1093 return false; 1094 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1095 if (MOReg == Reg && !isKill) 1096 return false; 1097 Uses.insert(MOReg); 1098 if (isKill && MOReg != Reg) 1099 Kills.insert(MOReg); 1100 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1101 Defs.insert(MOReg); 1102 if (!MO.isDead()) 1103 LiveDefs.insert(MOReg); 1104 } 1105 } 1106 1107 // Check if the reschedule will not break depedencies. 1108 unsigned NumVisited = 0; 1109 for (MachineInstr &OtherMI : 1110 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1111 // DBG_VALUE cannot be counted against the limit. 1112 if (OtherMI.isDebugValue()) 1113 continue; 1114 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1115 return false; 1116 ++NumVisited; 1117 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1118 OtherMI.isBranch() || OtherMI.isTerminator()) 1119 // Don't move pass calls, etc. 1120 return false; 1121 SmallVector<unsigned, 2> OtherDefs; 1122 for (const MachineOperand &MO : OtherMI.operands()) { 1123 if (!MO.isReg()) 1124 continue; 1125 unsigned MOReg = MO.getReg(); 1126 if (!MOReg) 1127 continue; 1128 if (MO.isUse()) { 1129 if (Defs.count(MOReg)) 1130 // Moving KillMI can clobber the physical register if the def has 1131 // not been seen. 1132 return false; 1133 if (Kills.count(MOReg)) 1134 // Don't want to extend other live ranges and update kills. 1135 return false; 1136 if (&OtherMI != MI && MOReg == Reg && 1137 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1138 // We can't schedule across a use of the register in question. 1139 return false; 1140 } else { 1141 OtherDefs.push_back(MOReg); 1142 } 1143 } 1144 1145 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1146 unsigned MOReg = OtherDefs[i]; 1147 if (Uses.count(MOReg)) 1148 return false; 1149 if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 1150 LiveDefs.count(MOReg)) 1151 return false; 1152 // Physical register def is seen. 1153 Defs.erase(MOReg); 1154 } 1155 } 1156 1157 // Move the old kill above MI, don't forget to move debug info as well. 1158 MachineBasicBlock::iterator InsertPos = mi; 1159 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue()) 1160 --InsertPos; 1161 MachineBasicBlock::iterator From = KillMI; 1162 MachineBasicBlock::iterator To = std::next(From); 1163 while (std::prev(From)->isDebugValue()) 1164 --From; 1165 MBB->splice(InsertPos, MBB, From, To); 1166 1167 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1168 DistanceMap.erase(DI); 1169 1170 // Update live variables 1171 if (LIS) { 1172 LIS->handleMove(*KillMI); 1173 } else { 1174 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1175 LV->addVirtualRegisterKilled(Reg, *MI); 1176 } 1177 1178 DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1179 return true; 1180 } 1181 1182 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1183 /// given machine instruction to improve opportunities for coalescing and 1184 /// elimination of a register to register copy. 1185 /// 1186 /// 'DstOpIdx' specifies the index of MI def operand. 1187 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1188 /// operand is killed by the given instruction. 1189 /// The 'Dist' arguments provides the distance of MI from the start of the 1190 /// current basic block and it is used to determine if it is profitable 1191 /// to commute operands in the instruction. 1192 /// 1193 /// Returns true if the transformation happened. Otherwise, returns false. 1194 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1195 unsigned DstOpIdx, 1196 unsigned BaseOpIdx, 1197 bool BaseOpKilled, 1198 unsigned Dist) { 1199 if (!MI->isCommutable()) 1200 return false; 1201 1202 unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1203 unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1204 unsigned OpsNum = MI->getDesc().getNumOperands(); 1205 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1206 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1207 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1208 // and OtherOpIdx are commutable, it does not really search for 1209 // other commutable operands and does not change the values of passed 1210 // variables. 1211 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1212 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1213 continue; 1214 1215 unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1216 bool AggressiveCommute = false; 1217 1218 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1219 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1220 bool DoCommute = 1221 !BaseOpKilled && isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1222 1223 if (!DoCommute && 1224 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1225 DoCommute = true; 1226 AggressiveCommute = true; 1227 } 1228 1229 // If it's profitable to commute, try to do so. 1230 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1231 Dist)) { 1232 ++NumCommuted; 1233 if (AggressiveCommute) 1234 ++NumAggrCommuted; 1235 return true; 1236 } 1237 } 1238 return false; 1239 } 1240 1241 /// For the case where an instruction has a single pair of tied register 1242 /// operands, attempt some transformations that may either eliminate the tied 1243 /// operands or improve the opportunities for coalescing away the register copy. 1244 /// Returns true if no copy needs to be inserted to untie mi's operands 1245 /// (either because they were untied, or because mi was rescheduled, and will 1246 /// be visited again later). If the shouldOnlyCommute flag is true, only 1247 /// instruction commutation is attempted. 1248 bool TwoAddressInstructionPass:: 1249 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1250 MachineBasicBlock::iterator &nmi, 1251 unsigned SrcIdx, unsigned DstIdx, 1252 unsigned Dist, bool shouldOnlyCommute) { 1253 if (OptLevel == CodeGenOpt::None) 1254 return false; 1255 1256 MachineInstr &MI = *mi; 1257 unsigned regA = MI.getOperand(DstIdx).getReg(); 1258 unsigned regB = MI.getOperand(SrcIdx).getReg(); 1259 1260 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1261 "cannot make instruction into two-address form"); 1262 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1263 1264 if (TargetRegisterInfo::isVirtualRegister(regA)) 1265 scanUses(regA); 1266 1267 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1268 1269 // If the instruction is convertible to 3 Addr, instead 1270 // of returning try 3 Addr transformation aggresively and 1271 // use this variable to check later. Because it might be better. 1272 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1273 // instead of the following code. 1274 // addl %esi, %edi 1275 // movl %edi, %eax 1276 // ret 1277 if (Commuted && !MI.isConvertibleTo3Addr()) 1278 return false; 1279 1280 if (shouldOnlyCommute) 1281 return false; 1282 1283 // If there is one more use of regB later in the same MBB, consider 1284 // re-schedule this MI below it. 1285 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1286 ++NumReSchedDowns; 1287 return true; 1288 } 1289 1290 // If we commuted, regB may have changed so we should re-sample it to avoid 1291 // confusing the three address conversion below. 1292 if (Commuted) { 1293 regB = MI.getOperand(SrcIdx).getReg(); 1294 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1295 } 1296 1297 if (MI.isConvertibleTo3Addr()) { 1298 // This instruction is potentially convertible to a true 1299 // three-address instruction. Check if it is profitable. 1300 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1301 // Try to convert it. 1302 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1303 ++NumConvertedTo3Addr; 1304 return true; // Done with this instruction. 1305 } 1306 } 1307 } 1308 1309 // Return if it is commuted but 3 addr conversion is failed. 1310 if (Commuted) 1311 return false; 1312 1313 // If there is one more use of regB later in the same MBB, consider 1314 // re-schedule it before this MI if it's legal. 1315 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1316 ++NumReSchedUps; 1317 return true; 1318 } 1319 1320 // If this is an instruction with a load folded into it, try unfolding 1321 // the load, e.g. avoid this: 1322 // movq %rdx, %rcx 1323 // addq (%rax), %rcx 1324 // in favor of this: 1325 // movq (%rax), %rcx 1326 // addq %rdx, %rcx 1327 // because it's preferable to schedule a load than a register copy. 1328 if (MI.mayLoad() && !regBKilled) { 1329 // Determine if a load can be unfolded. 1330 unsigned LoadRegIndex; 1331 unsigned NewOpc = 1332 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1333 /*UnfoldLoad=*/true, 1334 /*UnfoldStore=*/false, 1335 &LoadRegIndex); 1336 if (NewOpc != 0) { 1337 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1338 if (UnfoldMCID.getNumDefs() == 1) { 1339 // Unfold the load. 1340 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1341 const TargetRegisterClass *RC = 1342 TRI->getAllocatableClass( 1343 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1344 unsigned Reg = MRI->createVirtualRegister(RC); 1345 SmallVector<MachineInstr *, 2> NewMIs; 1346 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1347 /*UnfoldLoad=*/true, 1348 /*UnfoldStore=*/false, NewMIs)) { 1349 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1350 return false; 1351 } 1352 assert(NewMIs.size() == 2 && 1353 "Unfolded a load into multiple instructions!"); 1354 // The load was previously folded, so this is the only use. 1355 NewMIs[1]->addRegisterKilled(Reg, TRI); 1356 1357 // Tentatively insert the instructions into the block so that they 1358 // look "normal" to the transformation logic. 1359 MBB->insert(mi, NewMIs[0]); 1360 MBB->insert(mi, NewMIs[1]); 1361 1362 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1363 << "2addr: NEW INST: " << *NewMIs[1]); 1364 1365 // Transform the instruction, now that it no longer has a load. 1366 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1367 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1368 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1369 bool TransformResult = 1370 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1371 (void)TransformResult; 1372 assert(!TransformResult && 1373 "tryInstructionTransform() should return false."); 1374 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1375 // Success, or at least we made an improvement. Keep the unfolded 1376 // instructions and discard the original. 1377 if (LV) { 1378 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1379 MachineOperand &MO = MI.getOperand(i); 1380 if (MO.isReg() && 1381 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 1382 if (MO.isUse()) { 1383 if (MO.isKill()) { 1384 if (NewMIs[0]->killsRegister(MO.getReg())) 1385 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1386 else { 1387 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1388 "Kill missing after load unfold!"); 1389 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1390 } 1391 } 1392 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1393 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1394 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1395 else { 1396 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1397 "Dead flag missing after load unfold!"); 1398 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1399 } 1400 } 1401 } 1402 } 1403 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1404 } 1405 1406 SmallVector<unsigned, 4> OrigRegs; 1407 if (LIS) { 1408 for (const MachineOperand &MO : MI.operands()) { 1409 if (MO.isReg()) 1410 OrigRegs.push_back(MO.getReg()); 1411 } 1412 } 1413 1414 MI.eraseFromParent(); 1415 1416 // Update LiveIntervals. 1417 if (LIS) { 1418 MachineBasicBlock::iterator Begin(NewMIs[0]); 1419 MachineBasicBlock::iterator End(NewMIs[1]); 1420 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1421 } 1422 1423 mi = NewMIs[1]; 1424 } else { 1425 // Transforming didn't eliminate the tie and didn't lead to an 1426 // improvement. Clean up the unfolded instructions and keep the 1427 // original. 1428 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1429 NewMIs[0]->eraseFromParent(); 1430 NewMIs[1]->eraseFromParent(); 1431 } 1432 } 1433 } 1434 } 1435 1436 return false; 1437 } 1438 1439 // Collect tied operands of MI that need to be handled. 1440 // Rewrite trivial cases immediately. 1441 // Return true if any tied operands where found, including the trivial ones. 1442 bool TwoAddressInstructionPass:: 1443 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1444 const MCInstrDesc &MCID = MI->getDesc(); 1445 bool AnyOps = false; 1446 unsigned NumOps = MI->getNumOperands(); 1447 1448 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1449 unsigned DstIdx = 0; 1450 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1451 continue; 1452 AnyOps = true; 1453 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1454 MachineOperand &DstMO = MI->getOperand(DstIdx); 1455 unsigned SrcReg = SrcMO.getReg(); 1456 unsigned DstReg = DstMO.getReg(); 1457 // Tied constraint already satisfied? 1458 if (SrcReg == DstReg) 1459 continue; 1460 1461 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1462 1463 // Deal with <undef> uses immediately - simply rewrite the src operand. 1464 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1465 // Constrain the DstReg register class if required. 1466 if (TargetRegisterInfo::isVirtualRegister(DstReg)) 1467 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1468 TRI, *MF)) 1469 MRI->constrainRegClass(DstReg, RC); 1470 SrcMO.setReg(DstReg); 1471 SrcMO.setSubReg(0); 1472 DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1473 continue; 1474 } 1475 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1476 } 1477 return AnyOps; 1478 } 1479 1480 // Process a list of tied MI operands that all use the same source register. 1481 // The tied pairs are of the form (SrcIdx, DstIdx). 1482 void 1483 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1484 TiedPairList &TiedPairs, 1485 unsigned &Dist) { 1486 bool IsEarlyClobber = false; 1487 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1488 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1489 IsEarlyClobber |= DstMO.isEarlyClobber(); 1490 } 1491 1492 bool RemovedKillFlag = false; 1493 bool AllUsesCopied = true; 1494 unsigned LastCopiedReg = 0; 1495 SlotIndex LastCopyIdx; 1496 unsigned RegB = 0; 1497 unsigned SubRegB = 0; 1498 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1499 unsigned SrcIdx = TiedPairs[tpi].first; 1500 unsigned DstIdx = TiedPairs[tpi].second; 1501 1502 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1503 unsigned RegA = DstMO.getReg(); 1504 1505 // Grab RegB from the instruction because it may have changed if the 1506 // instruction was commuted. 1507 RegB = MI->getOperand(SrcIdx).getReg(); 1508 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1509 1510 if (RegA == RegB) { 1511 // The register is tied to multiple destinations (or else we would 1512 // not have continued this far), but this use of the register 1513 // already matches the tied destination. Leave it. 1514 AllUsesCopied = false; 1515 continue; 1516 } 1517 LastCopiedReg = RegA; 1518 1519 assert(TargetRegisterInfo::isVirtualRegister(RegB) && 1520 "cannot make instruction into two-address form"); 1521 1522 #ifndef NDEBUG 1523 // First, verify that we don't have a use of "a" in the instruction 1524 // (a = b + a for example) because our transformation will not 1525 // work. This should never occur because we are in SSA form. 1526 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1527 assert(i == DstIdx || 1528 !MI->getOperand(i).isReg() || 1529 MI->getOperand(i).getReg() != RegA); 1530 #endif 1531 1532 // Emit a copy. 1533 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1534 TII->get(TargetOpcode::COPY), RegA); 1535 // If this operand is folding a truncation, the truncation now moves to the 1536 // copy so that the register classes remain valid for the operands. 1537 MIB.addReg(RegB, 0, SubRegB); 1538 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1539 if (SubRegB) { 1540 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1541 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1542 SubRegB) && 1543 "tied subregister must be a truncation"); 1544 // The superreg class will not be used to constrain the subreg class. 1545 RC = nullptr; 1546 } 1547 else { 1548 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1549 && "tied subregister must be a truncation"); 1550 } 1551 } 1552 1553 // Update DistanceMap. 1554 MachineBasicBlock::iterator PrevMI = MI; 1555 --PrevMI; 1556 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1557 DistanceMap[MI] = ++Dist; 1558 1559 if (LIS) { 1560 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1561 1562 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1563 LiveInterval &LI = LIS->getInterval(RegA); 1564 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1565 SlotIndex endIdx = 1566 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1567 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1568 } 1569 } 1570 1571 DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1572 1573 MachineOperand &MO = MI->getOperand(SrcIdx); 1574 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1575 "inconsistent operand info for 2-reg pass"); 1576 if (MO.isKill()) { 1577 MO.setIsKill(false); 1578 RemovedKillFlag = true; 1579 } 1580 1581 // Make sure regA is a legal regclass for the SrcIdx operand. 1582 if (TargetRegisterInfo::isVirtualRegister(RegA) && 1583 TargetRegisterInfo::isVirtualRegister(RegB)) 1584 MRI->constrainRegClass(RegA, RC); 1585 MO.setReg(RegA); 1586 // The getMatchingSuper asserts guarantee that the register class projected 1587 // by SubRegB is compatible with RegA with no subregister. So regardless of 1588 // whether the dest oper writes a subreg, the source oper should not. 1589 MO.setSubReg(0); 1590 1591 // Propagate SrcRegMap. 1592 SrcRegMap[RegA] = RegB; 1593 } 1594 1595 if (AllUsesCopied) { 1596 if (!IsEarlyClobber) { 1597 // Replace other (un-tied) uses of regB with LastCopiedReg. 1598 for (MachineOperand &MO : MI->operands()) { 1599 if (MO.isReg() && MO.getReg() == RegB && 1600 MO.isUse()) { 1601 if (MO.isKill()) { 1602 MO.setIsKill(false); 1603 RemovedKillFlag = true; 1604 } 1605 MO.setReg(LastCopiedReg); 1606 MO.setSubReg(MO.getSubReg()); 1607 } 1608 } 1609 } 1610 1611 // Update live variables for regB. 1612 if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(*MI)) { 1613 MachineBasicBlock::iterator PrevMI = MI; 1614 --PrevMI; 1615 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1616 } 1617 1618 // Update LiveIntervals. 1619 if (LIS) { 1620 LiveInterval &LI = LIS->getInterval(RegB); 1621 SlotIndex MIIdx = LIS->getInstructionIndex(*MI); 1622 LiveInterval::const_iterator I = LI.find(MIIdx); 1623 assert(I != LI.end() && "RegB must be live-in to use."); 1624 1625 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1626 if (I->end == UseIdx) 1627 LI.removeSegment(LastCopyIdx, UseIdx); 1628 } 1629 } else if (RemovedKillFlag) { 1630 // Some tied uses of regB matched their destination registers, so 1631 // regB is still used in this instruction, but a kill flag was 1632 // removed from a different tied use of regB, so now we need to add 1633 // a kill flag to one of the remaining uses of regB. 1634 for (MachineOperand &MO : MI->operands()) { 1635 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1636 MO.setIsKill(true); 1637 break; 1638 } 1639 } 1640 } 1641 } 1642 1643 /// Reduce two-address instructions to two operands. 1644 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1645 MF = &Func; 1646 const TargetMachine &TM = MF->getTarget(); 1647 MRI = &MF->getRegInfo(); 1648 TII = MF->getSubtarget().getInstrInfo(); 1649 TRI = MF->getSubtarget().getRegisterInfo(); 1650 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1651 LV = getAnalysisIfAvailable<LiveVariables>(); 1652 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1653 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1654 AA = &AAPass->getAAResults(); 1655 else 1656 AA = nullptr; 1657 OptLevel = TM.getOptLevel(); 1658 1659 bool MadeChange = false; 1660 1661 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1662 DEBUG(dbgs() << "********** Function: " 1663 << MF->getName() << '\n'); 1664 1665 // This pass takes the function out of SSA form. 1666 MRI->leaveSSA(); 1667 1668 TiedOperandMap TiedOperands; 1669 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1670 MBBI != MBBE; ++MBBI) { 1671 MBB = &*MBBI; 1672 unsigned Dist = 0; 1673 DistanceMap.clear(); 1674 SrcRegMap.clear(); 1675 DstRegMap.clear(); 1676 Processed.clear(); 1677 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1678 mi != me; ) { 1679 MachineBasicBlock::iterator nmi = std::next(mi); 1680 if (mi->isDebugValue()) { 1681 mi = nmi; 1682 continue; 1683 } 1684 1685 // Expand REG_SEQUENCE instructions. This will position mi at the first 1686 // expanded instruction. 1687 if (mi->isRegSequence()) 1688 eliminateRegSequence(mi); 1689 1690 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1691 1692 processCopy(&*mi); 1693 1694 // First scan through all the tied register uses in this instruction 1695 // and record a list of pairs of tied operands for each register. 1696 if (!collectTiedOperands(&*mi, TiedOperands)) { 1697 mi = nmi; 1698 continue; 1699 } 1700 1701 ++NumTwoAddressInstrs; 1702 MadeChange = true; 1703 DEBUG(dbgs() << '\t' << *mi); 1704 1705 // If the instruction has a single pair of tied operands, try some 1706 // transformations that may either eliminate the tied operands or 1707 // improve the opportunities for coalescing away the register copy. 1708 if (TiedOperands.size() == 1) { 1709 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1710 = TiedOperands.begin()->second; 1711 if (TiedPairs.size() == 1) { 1712 unsigned SrcIdx = TiedPairs[0].first; 1713 unsigned DstIdx = TiedPairs[0].second; 1714 unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); 1715 unsigned DstReg = mi->getOperand(DstIdx).getReg(); 1716 if (SrcReg != DstReg && 1717 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1718 // The tied operands have been eliminated or shifted further down 1719 // the block to ease elimination. Continue processing with 'nmi'. 1720 TiedOperands.clear(); 1721 mi = nmi; 1722 continue; 1723 } 1724 } 1725 } 1726 1727 // Now iterate over the information collected above. 1728 for (auto &TO : TiedOperands) { 1729 processTiedPairs(&*mi, TO.second, Dist); 1730 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1731 } 1732 1733 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1734 if (mi->isInsertSubreg()) { 1735 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1736 // To %reg:subidx = COPY %subreg 1737 unsigned SubIdx = mi->getOperand(3).getImm(); 1738 mi->RemoveOperand(3); 1739 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1740 mi->getOperand(0).setSubReg(SubIdx); 1741 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1742 mi->RemoveOperand(1); 1743 mi->setDesc(TII->get(TargetOpcode::COPY)); 1744 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1745 } 1746 1747 // Clear TiedOperands here instead of at the top of the loop 1748 // since most instructions do not have tied operands. 1749 TiedOperands.clear(); 1750 mi = nmi; 1751 } 1752 } 1753 1754 if (LIS) 1755 MF->verify(this, "After two-address instruction pass"); 1756 1757 return MadeChange; 1758 } 1759 1760 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1761 /// 1762 /// The instruction is turned into a sequence of sub-register copies: 1763 /// 1764 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1765 /// 1766 /// Becomes: 1767 /// 1768 /// %dst:ssub0<def,undef> = COPY %v1 1769 /// %dst:ssub1<def> = COPY %v2 1770 void TwoAddressInstructionPass:: 1771 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1772 MachineInstr &MI = *MBBI; 1773 unsigned DstReg = MI.getOperand(0).getReg(); 1774 if (MI.getOperand(0).getSubReg() || 1775 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1776 !(MI.getNumOperands() & 1)) { 1777 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1778 llvm_unreachable(nullptr); 1779 } 1780 1781 SmallVector<unsigned, 4> OrigRegs; 1782 if (LIS) { 1783 OrigRegs.push_back(MI.getOperand(0).getReg()); 1784 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1785 OrigRegs.push_back(MI.getOperand(i).getReg()); 1786 } 1787 1788 bool DefEmitted = false; 1789 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1790 MachineOperand &UseMO = MI.getOperand(i); 1791 unsigned SrcReg = UseMO.getReg(); 1792 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1793 // Nothing needs to be inserted for <undef> operands. 1794 if (UseMO.isUndef()) 1795 continue; 1796 1797 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1798 // might insert a COPY that uses SrcReg after is was killed. 1799 bool isKill = UseMO.isKill(); 1800 if (isKill) 1801 for (unsigned j = i + 2; j < e; j += 2) 1802 if (MI.getOperand(j).getReg() == SrcReg) { 1803 MI.getOperand(j).setIsKill(); 1804 UseMO.setIsKill(false); 1805 isKill = false; 1806 break; 1807 } 1808 1809 // Insert the sub-register copy. 1810 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1811 TII->get(TargetOpcode::COPY)) 1812 .addReg(DstReg, RegState::Define, SubIdx) 1813 .add(UseMO); 1814 1815 // The first def needs an <undef> flag because there is no live register 1816 // before it. 1817 if (!DefEmitted) { 1818 CopyMI->getOperand(0).setIsUndef(true); 1819 // Return an iterator pointing to the first inserted instr. 1820 MBBI = CopyMI; 1821 } 1822 DefEmitted = true; 1823 1824 // Update LiveVariables' kill info. 1825 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1826 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1827 1828 DEBUG(dbgs() << "Inserted: " << *CopyMI); 1829 } 1830 1831 MachineBasicBlock::iterator EndMBBI = 1832 std::next(MachineBasicBlock::iterator(MI)); 1833 1834 if (!DefEmitted) { 1835 DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1836 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1837 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1838 MI.RemoveOperand(j); 1839 } else { 1840 DEBUG(dbgs() << "Eliminated: " << MI); 1841 MI.eraseFromParent(); 1842 } 1843 1844 // Udpate LiveIntervals. 1845 if (LIS) 1846 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1847 } 1848