1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TwoAddress instruction pass which is used 10 // by most register allocators. Two-Address instructions are rewritten 11 // from: 12 // 13 // A = B op C 14 // 15 // to: 16 // 17 // A = B 18 // A op= C 19 // 20 // Note that if a register allocator chooses to use this pass, that it 21 // has to be capable of handling the non-SSA nature of these rewritten 22 // virtual registers. 23 // 24 // It is also worth noting that the duplicate operand of the two 25 // address instruction is removed. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/Passes.h" 47 #include "llvm/CodeGen/SlotIndexes.h" 48 #include "llvm/CodeGen/TargetInstrInfo.h" 49 #include "llvm/CodeGen/TargetOpcodes.h" 50 #include "llvm/CodeGen/TargetRegisterInfo.h" 51 #include "llvm/CodeGen/TargetSubtargetInfo.h" 52 #include "llvm/MC/MCInstrDesc.h" 53 #include "llvm/MC/MCInstrItineraries.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <cassert> 62 #include <iterator> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "twoaddressinstruction" 68 69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 70 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 71 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 73 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 74 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 75 76 // Temporary flag to disable rescheduling. 77 static cl::opt<bool> 78 EnableRescheduling("twoaddr-reschedule", 79 cl::desc("Coalesce copies by rescheduling (default=true)"), 80 cl::init(true), cl::Hidden); 81 82 // Limit the number of dataflow edges to traverse when evaluating the benefit 83 // of commuting operands. 84 static cl::opt<unsigned> MaxDataFlowEdge( 85 "dataflow-edge-limit", cl::Hidden, cl::init(3), 86 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 87 "the benefit of commuting operands")); 88 89 namespace { 90 91 class TwoAddressInstructionPass : public MachineFunctionPass { 92 MachineFunction *MF; 93 const TargetInstrInfo *TII; 94 const TargetRegisterInfo *TRI; 95 const InstrItineraryData *InstrItins; 96 MachineRegisterInfo *MRI; 97 LiveVariables *LV; 98 LiveIntervals *LIS; 99 AliasAnalysis *AA; 100 CodeGenOpt::Level OptLevel; 101 102 // The current basic block being processed. 103 MachineBasicBlock *MBB; 104 105 // Keep track the distance of a MI from the start of the current basic block. 106 DenseMap<MachineInstr*, unsigned> DistanceMap; 107 108 // Set of already processed instructions in the current block. 109 SmallPtrSet<MachineInstr*, 8> Processed; 110 111 // A map from virtual registers to physical registers which are likely targets 112 // to be coalesced to due to copies from physical registers to virtual 113 // registers. e.g. v1024 = move r0. 114 DenseMap<Register, Register> SrcRegMap; 115 116 // A map from virtual registers to physical registers which are likely targets 117 // to be coalesced to due to copies to physical registers from virtual 118 // registers. e.g. r1 = move v1024. 119 DenseMap<Register, Register> DstRegMap; 120 121 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen); 122 123 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef); 124 125 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC, 126 MachineInstr *MI, unsigned Dist); 127 128 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 129 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 130 131 bool isProfitableToConv3Addr(Register RegA, Register RegB); 132 133 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 134 MachineBasicBlock::iterator &nmi, Register RegA, 135 Register RegB, unsigned Dist); 136 137 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI); 138 139 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 140 MachineBasicBlock::iterator &nmi, Register Reg); 141 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 142 MachineBasicBlock::iterator &nmi, Register Reg); 143 144 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 145 MachineBasicBlock::iterator &nmi, 146 unsigned SrcIdx, unsigned DstIdx, 147 unsigned Dist, bool shouldOnlyCommute); 148 149 bool tryInstructionCommute(MachineInstr *MI, 150 unsigned DstOpIdx, 151 unsigned BaseOpIdx, 152 bool BaseOpKilled, 153 unsigned Dist); 154 void scanUses(Register DstReg); 155 156 void processCopy(MachineInstr *MI); 157 158 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 159 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 160 161 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 162 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 163 void eliminateRegSequence(MachineBasicBlock::iterator&); 164 165 public: 166 static char ID; // Pass identification, replacement for typeid 167 168 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 169 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 170 } 171 172 void getAnalysisUsage(AnalysisUsage &AU) const override { 173 AU.setPreservesCFG(); 174 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 175 AU.addUsedIfAvailable<LiveVariables>(); 176 AU.addPreserved<LiveVariables>(); 177 AU.addPreserved<SlotIndexes>(); 178 AU.addPreserved<LiveIntervals>(); 179 AU.addPreservedID(MachineLoopInfoID); 180 AU.addPreservedID(MachineDominatorsID); 181 MachineFunctionPass::getAnalysisUsage(AU); 182 } 183 184 /// Pass entry point. 185 bool runOnMachineFunction(MachineFunction&) override; 186 }; 187 188 } // end anonymous namespace 189 190 char TwoAddressInstructionPass::ID = 0; 191 192 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 193 194 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 195 "Two-Address instruction pass", false, false) 196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 197 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 198 "Two-Address instruction pass", false, false) 199 200 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS); 201 202 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 203 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB, 204 const MachineRegisterInfo *MRI) { 205 MachineInstr *Ret = nullptr; 206 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 207 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 208 continue; 209 if (!Ret) 210 Ret = &DefMI; 211 else if (Ret != &DefMI) 212 return nullptr; 213 } 214 return Ret; 215 } 216 217 /// Check if there is a reversed copy chain from FromReg to ToReg: 218 /// %Tmp1 = copy %Tmp2; 219 /// %FromReg = copy %Tmp1; 220 /// %ToReg = add %FromReg ... 221 /// %Tmp2 = copy %ToReg; 222 /// MaxLen specifies the maximum length of the copy chain the func 223 /// can walk through. 224 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg, 225 int Maxlen) { 226 Register TmpReg = FromReg; 227 for (int i = 0; i < Maxlen; i++) { 228 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 229 if (!Def || !Def->isCopy()) 230 return false; 231 232 TmpReg = Def->getOperand(1).getReg(); 233 234 if (TmpReg == ToReg) 235 return true; 236 } 237 return false; 238 } 239 240 /// Return true if there are no intervening uses between the last instruction 241 /// in the MBB that defines the specified register and the two-address 242 /// instruction which is being processed. It also returns the last def location 243 /// by reference. 244 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist, 245 unsigned &LastDef) { 246 LastDef = 0; 247 unsigned LastUse = Dist; 248 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 249 MachineInstr *MI = MO.getParent(); 250 if (MI->getParent() != MBB || MI->isDebugValue()) 251 continue; 252 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 253 if (DI == DistanceMap.end()) 254 continue; 255 if (MO.isUse() && DI->second < LastUse) 256 LastUse = DI->second; 257 if (MO.isDef() && DI->second > LastDef) 258 LastDef = DI->second; 259 } 260 261 return !(LastUse > LastDef && LastUse < Dist); 262 } 263 264 /// Return true if the specified MI is a copy instruction or an extract_subreg 265 /// instruction. It also returns the source and destination registers and 266 /// whether they are physical registers by reference. 267 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 268 Register &SrcReg, Register &DstReg, bool &IsSrcPhys, 269 bool &IsDstPhys) { 270 SrcReg = 0; 271 DstReg = 0; 272 if (MI.isCopy()) { 273 DstReg = MI.getOperand(0).getReg(); 274 SrcReg = MI.getOperand(1).getReg(); 275 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 276 DstReg = MI.getOperand(0).getReg(); 277 SrcReg = MI.getOperand(2).getReg(); 278 } else { 279 return false; 280 } 281 282 IsSrcPhys = SrcReg.isPhysical(); 283 IsDstPhys = DstReg.isPhysical(); 284 return true; 285 } 286 287 /// Test if the given register value, which is used by the 288 /// given instruction, is killed by the given instruction. 289 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, 290 LiveIntervals *LIS) { 291 if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) { 292 // FIXME: Sometimes tryInstructionTransform() will add instructions and 293 // test whether they can be folded before keeping them. In this case it 294 // sets a kill before recursively calling tryInstructionTransform() again. 295 // If there is no interval available, we assume that this instruction is 296 // one of those. A kill flag is manually inserted on the operand so the 297 // check below will handle it. 298 LiveInterval &LI = LIS->getInterval(Reg); 299 // This is to match the kill flag version where undefs don't have kill 300 // flags. 301 if (!LI.hasAtLeastOneValue()) 302 return false; 303 304 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 305 LiveInterval::const_iterator I = LI.find(useIdx); 306 assert(I != LI.end() && "Reg must be live-in to use."); 307 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 308 } 309 310 return MI->killsRegister(Reg); 311 } 312 313 /// Test if the given register value, which is used by the given 314 /// instruction, is killed by the given instruction. This looks through 315 /// coalescable copies to see if the original value is potentially not killed. 316 /// 317 /// For example, in this code: 318 /// 319 /// %reg1034 = copy %reg1024 320 /// %reg1035 = copy killed %reg1025 321 /// %reg1036 = add killed %reg1034, killed %reg1035 322 /// 323 /// %reg1034 is not considered to be killed, since it is copied from a 324 /// register which is not killed. Treating it as not killed lets the 325 /// normal heuristics commute the (two-address) add, which lets 326 /// coalescing eliminate the extra copy. 327 /// 328 /// If allowFalsePositives is true then likely kills are treated as kills even 329 /// if it can't be proven that they are kills. 330 static bool isKilled(MachineInstr &MI, Register Reg, 331 const MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 332 LiveIntervals *LIS, bool allowFalsePositives) { 333 MachineInstr *DefMI = &MI; 334 while (true) { 335 // All uses of physical registers are likely to be kills. 336 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg))) 337 return true; 338 if (!isPlainlyKilled(DefMI, Reg, LIS)) 339 return false; 340 if (Reg.isPhysical()) 341 return true; 342 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 343 // If there are multiple defs, we can't do a simple analysis, so just 344 // go with what the kill flag says. 345 if (std::next(Begin) != MRI->def_end()) 346 return true; 347 DefMI = Begin->getParent(); 348 bool IsSrcPhys, IsDstPhys; 349 Register SrcReg, DstReg; 350 // If the def is something other than a copy, then it isn't going to 351 // be coalesced, so follow the kill flag. 352 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 353 return true; 354 Reg = SrcReg; 355 } 356 } 357 358 /// Return true if the specified MI uses the specified register as a two-address 359 /// use. If so, return the destination register by reference. 360 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) { 361 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 362 const MachineOperand &MO = MI.getOperand(i); 363 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 364 continue; 365 unsigned ti; 366 if (MI.isRegTiedToDefOperand(i, &ti)) { 367 DstReg = MI.getOperand(ti).getReg(); 368 return true; 369 } 370 } 371 return false; 372 } 373 374 /// Given a register, if has a single in-basic block use, return the use 375 /// instruction if it's a copy or a two-address use. 376 static MachineInstr * 377 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB, 378 MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 379 bool &IsCopy, Register &DstReg, bool &IsDstPhys) { 380 if (!MRI->hasOneNonDBGUse(Reg)) 381 // None or more than one use. 382 return nullptr; 383 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 384 if (UseMI.getParent() != MBB) 385 return nullptr; 386 Register SrcReg; 387 bool IsSrcPhys; 388 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 389 IsCopy = true; 390 return &UseMI; 391 } 392 IsDstPhys = false; 393 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 394 IsDstPhys = DstReg.isPhysical(); 395 return &UseMI; 396 } 397 return nullptr; 398 } 399 400 /// Return the physical register the specified virtual register might be mapped 401 /// to. 402 static MCRegister getMappedReg(Register Reg, 403 DenseMap<Register, Register> &RegMap) { 404 while (Reg.isVirtual()) { 405 DenseMap<Register, Register>::iterator SI = RegMap.find(Reg); 406 if (SI == RegMap.end()) 407 return 0; 408 Reg = SI->second; 409 } 410 if (Reg.isPhysical()) 411 return Reg; 412 return 0; 413 } 414 415 /// Return true if the two registers are equal or aliased. 416 static bool regsAreCompatible(Register RegA, Register RegB, 417 const TargetRegisterInfo *TRI) { 418 if (RegA == RegB) 419 return true; 420 if (!RegA || !RegB) 421 return false; 422 return TRI->regsOverlap(RegA, RegB); 423 } 424 425 // Returns true if Reg is equal or aliased to at least one register in Set. 426 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg, 427 const TargetRegisterInfo *TRI) { 428 for (unsigned R : Set) 429 if (TRI->regsOverlap(R, Reg)) 430 return true; 431 432 return false; 433 } 434 435 /// Return true if it's potentially profitable to commute the two-address 436 /// instruction that's being processed. 437 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA, 438 Register RegB, 439 Register RegC, 440 MachineInstr *MI, 441 unsigned Dist) { 442 if (OptLevel == CodeGenOpt::None) 443 return false; 444 445 // Determine if it's profitable to commute this two address instruction. In 446 // general, we want no uses between this instruction and the definition of 447 // the two-address register. 448 // e.g. 449 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 450 // %reg1029 = COPY %reg1028 451 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 452 // insert => %reg1030 = COPY %reg1028 453 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 454 // In this case, it might not be possible to coalesce the second COPY 455 // instruction if the first one is coalesced. So it would be profitable to 456 // commute it: 457 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 458 // %reg1029 = COPY %reg1028 459 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 460 // insert => %reg1030 = COPY %reg1029 461 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 462 463 if (!isPlainlyKilled(MI, RegC, LIS)) 464 return false; 465 466 // Ok, we have something like: 467 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 468 // let's see if it's worth commuting it. 469 470 // Look for situations like this: 471 // %reg1024 = MOV r1 472 // %reg1025 = MOV r0 473 // %reg1026 = ADD %reg1024, %reg1025 474 // r0 = MOV %reg1026 475 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 476 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 477 if (ToRegA) { 478 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 479 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 480 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 481 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 482 483 // Compute if any of the following are true: 484 // -RegB is not tied to a register and RegC is compatible with RegA. 485 // -RegB is tied to the wrong physical register, but RegC is. 486 // -RegB is tied to the wrong physical register, and RegC isn't tied. 487 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 488 return true; 489 // Don't compute if any of the following are true: 490 // -RegC is not tied to a register and RegB is compatible with RegA. 491 // -RegC is tied to the wrong physical register, but RegB is. 492 // -RegC is tied to the wrong physical register, and RegB isn't tied. 493 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 494 return false; 495 } 496 497 // If there is a use of RegC between its last def (could be livein) and this 498 // instruction, then bail. 499 unsigned LastDefC = 0; 500 if (!noUseAfterLastDef(RegC, Dist, LastDefC)) 501 return false; 502 503 // If there is a use of RegB between its last def (could be livein) and this 504 // instruction, then go ahead and make this transformation. 505 unsigned LastDefB = 0; 506 if (!noUseAfterLastDef(RegB, Dist, LastDefB)) 507 return true; 508 509 // Look for situation like this: 510 // %reg101 = MOV %reg100 511 // %reg102 = ... 512 // %reg103 = ADD %reg102, %reg101 513 // ... = %reg103 ... 514 // %reg100 = MOV %reg103 515 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 516 // to eliminate an otherwise unavoidable copy. 517 // FIXME: 518 // We can extend the logic further: If an pair of operands in an insn has 519 // been merged, the insn could be regarded as a virtual copy, and the virtual 520 // copy could also be used to construct a copy chain. 521 // To more generally minimize register copies, ideally the logic of two addr 522 // instruction pass should be integrated with register allocation pass where 523 // interference graph is available. 524 if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge)) 525 return true; 526 527 if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge)) 528 return false; 529 530 // Look for other target specific commute preference. 531 bool Commute; 532 if (TII->hasCommutePreference(*MI, Commute)) 533 return Commute; 534 535 // Since there are no intervening uses for both registers, then commute 536 // if the def of RegC is closer. Its live interval is shorter. 537 return LastDefB && LastDefC && LastDefC > LastDefB; 538 } 539 540 /// Commute a two-address instruction and update the basic block, distance map, 541 /// and live variables if needed. Return true if it is successful. 542 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 543 unsigned DstIdx, 544 unsigned RegBIdx, 545 unsigned RegCIdx, 546 unsigned Dist) { 547 Register RegC = MI->getOperand(RegCIdx).getReg(); 548 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 549 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 550 551 if (NewMI == nullptr) { 552 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 553 return false; 554 } 555 556 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 557 assert(NewMI == MI && 558 "TargetInstrInfo::commuteInstruction() should not return a new " 559 "instruction unless it was requested."); 560 561 // Update source register map. 562 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 563 if (FromRegC) { 564 Register RegA = MI->getOperand(DstIdx).getReg(); 565 SrcRegMap[RegA] = FromRegC; 566 } 567 568 return true; 569 } 570 571 /// Return true if it is profitable to convert the given 2-address instruction 572 /// to a 3-address one. 573 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA, 574 Register RegB) { 575 // Look for situations like this: 576 // %reg1024 = MOV r1 577 // %reg1025 = MOV r0 578 // %reg1026 = ADD %reg1024, %reg1025 579 // r2 = MOV %reg1026 580 // Turn ADD into a 3-address instruction to avoid a copy. 581 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 582 if (!FromRegB) 583 return false; 584 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 585 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 586 } 587 588 /// Convert the specified two-address instruction into a three address one. 589 /// Return true if this transformation was successful. 590 bool TwoAddressInstructionPass::convertInstTo3Addr( 591 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 592 Register RegA, Register RegB, unsigned Dist) { 593 // FIXME: Why does convertToThreeAddress() need an iterator reference? 594 MachineFunction::iterator MFI = MBB->getIterator(); 595 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV); 596 assert(MBB->getIterator() == MFI && 597 "convertToThreeAddress changed iterator reference"); 598 if (!NewMI) 599 return false; 600 601 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 602 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 603 604 if (LIS) 605 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); 606 607 // If the old instruction is debug value tracked, an update is required. 608 if (auto OldInstrNum = mi->peekDebugInstrNum()) { 609 // Sanity check. 610 assert(mi->getNumExplicitDefs() == 1); 611 assert(NewMI->getNumExplicitDefs() == 1); 612 613 // Find the old and new def location. 614 auto OldIt = mi->defs().begin(); 615 auto NewIt = NewMI->defs().begin(); 616 unsigned OldIdx = mi->getOperandNo(OldIt); 617 unsigned NewIdx = NewMI->getOperandNo(NewIt); 618 619 // Record that one def has been replaced by the other. 620 unsigned NewInstrNum = NewMI->getDebugInstrNum(); 621 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx), 622 std::make_pair(NewInstrNum, NewIdx)); 623 } 624 625 MBB->erase(mi); // Nuke the old inst. 626 627 DistanceMap.insert(std::make_pair(NewMI, Dist)); 628 mi = NewMI; 629 nmi = std::next(mi); 630 631 // Update source and destination register maps. 632 SrcRegMap.erase(RegA); 633 DstRegMap.erase(RegB); 634 return true; 635 } 636 637 /// Scan forward recursively for only uses, update maps if the use is a copy or 638 /// a two-address instruction. 639 void TwoAddressInstructionPass::scanUses(Register DstReg) { 640 SmallVector<Register, 4> VirtRegPairs; 641 bool IsDstPhys; 642 bool IsCopy = false; 643 Register NewReg; 644 Register Reg = DstReg; 645 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 646 NewReg, IsDstPhys)) { 647 if (IsCopy && !Processed.insert(UseMI).second) 648 break; 649 650 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 651 if (DI != DistanceMap.end()) 652 // Earlier in the same MBB.Reached via a back edge. 653 break; 654 655 if (IsDstPhys) { 656 VirtRegPairs.push_back(NewReg); 657 break; 658 } 659 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 660 if (!isNew) 661 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 662 VirtRegPairs.push_back(NewReg); 663 Reg = NewReg; 664 } 665 666 if (!VirtRegPairs.empty()) { 667 unsigned ToReg = VirtRegPairs.back(); 668 VirtRegPairs.pop_back(); 669 while (!VirtRegPairs.empty()) { 670 unsigned FromReg = VirtRegPairs.pop_back_val(); 671 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 672 if (!isNew) 673 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 674 ToReg = FromReg; 675 } 676 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 677 if (!isNew) 678 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 679 } 680 } 681 682 /// If the specified instruction is not yet processed, process it if it's a 683 /// copy. For a copy instruction, we find the physical registers the 684 /// source and destination registers might be mapped to. These are kept in 685 /// point-to maps used to determine future optimizations. e.g. 686 /// v1024 = mov r0 687 /// v1025 = mov r1 688 /// v1026 = add v1024, v1025 689 /// r1 = mov r1026 690 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 691 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 692 /// potentially joined with r1 on the output side. It's worthwhile to commute 693 /// 'add' to eliminate a copy. 694 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 695 if (Processed.count(MI)) 696 return; 697 698 bool IsSrcPhys, IsDstPhys; 699 Register SrcReg, DstReg; 700 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 701 return; 702 703 if (IsDstPhys && !IsSrcPhys) { 704 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 705 } else if (!IsDstPhys && IsSrcPhys) { 706 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 707 if (!isNew) 708 assert(SrcRegMap[DstReg] == SrcReg && 709 "Can't map to two src physical registers!"); 710 711 scanUses(DstReg); 712 } 713 714 Processed.insert(MI); 715 } 716 717 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 718 /// consider moving the instruction below the kill instruction in order to 719 /// eliminate the need for the copy. 720 bool TwoAddressInstructionPass::rescheduleMIBelowKill( 721 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 722 Register Reg) { 723 // Bail immediately if we don't have LV or LIS available. We use them to find 724 // kills efficiently. 725 if (!LV && !LIS) 726 return false; 727 728 MachineInstr *MI = &*mi; 729 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 730 if (DI == DistanceMap.end()) 731 // Must be created from unfolded load. Don't waste time trying this. 732 return false; 733 734 MachineInstr *KillMI = nullptr; 735 if (LIS) { 736 LiveInterval &LI = LIS->getInterval(Reg); 737 assert(LI.end() != LI.begin() && 738 "Reg should not have empty live interval."); 739 740 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 741 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 742 if (I != LI.end() && I->start < MBBEndIdx) 743 return false; 744 745 --I; 746 KillMI = LIS->getInstructionFromIndex(I->end); 747 } else { 748 KillMI = LV->getVarInfo(Reg).findKill(MBB); 749 } 750 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 751 // Don't mess with copies, they may be coalesced later. 752 return false; 753 754 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 755 KillMI->isBranch() || KillMI->isTerminator()) 756 // Don't move pass calls, etc. 757 return false; 758 759 Register DstReg; 760 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 761 return false; 762 763 bool SeenStore = true; 764 if (!MI->isSafeToMove(AA, SeenStore)) 765 return false; 766 767 if (TII->getInstrLatency(InstrItins, *MI) > 1) 768 // FIXME: Needs more sophisticated heuristics. 769 return false; 770 771 SmallVector<Register, 2> Uses; 772 SmallVector<Register, 2> Kills; 773 SmallVector<Register, 2> Defs; 774 for (const MachineOperand &MO : MI->operands()) { 775 if (!MO.isReg()) 776 continue; 777 Register MOReg = MO.getReg(); 778 if (!MOReg) 779 continue; 780 if (MO.isDef()) 781 Defs.push_back(MOReg); 782 else { 783 Uses.push_back(MOReg); 784 if (MOReg != Reg && (MO.isKill() || 785 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 786 Kills.push_back(MOReg); 787 } 788 } 789 790 // Move the copies connected to MI down as well. 791 MachineBasicBlock::iterator Begin = MI; 792 MachineBasicBlock::iterator AfterMI = std::next(Begin); 793 MachineBasicBlock::iterator End = AfterMI; 794 while (End != MBB->end()) { 795 End = skipDebugInstructionsForward(End, MBB->end()); 796 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) 797 Defs.push_back(End->getOperand(0).getReg()); 798 else 799 break; 800 ++End; 801 } 802 803 // Check if the reschedule will not break dependencies. 804 unsigned NumVisited = 0; 805 MachineBasicBlock::iterator KillPos = KillMI; 806 ++KillPos; 807 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 808 // Debug or pseudo instructions cannot be counted against the limit. 809 if (OtherMI.isDebugOrPseudoInstr()) 810 continue; 811 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 812 return false; 813 ++NumVisited; 814 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 815 OtherMI.isBranch() || OtherMI.isTerminator()) 816 // Don't move pass calls, etc. 817 return false; 818 for (const MachineOperand &MO : OtherMI.operands()) { 819 if (!MO.isReg()) 820 continue; 821 Register MOReg = MO.getReg(); 822 if (!MOReg) 823 continue; 824 if (MO.isDef()) { 825 if (regOverlapsSet(Uses, MOReg, TRI)) 826 // Physical register use would be clobbered. 827 return false; 828 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 829 // May clobber a physical register def. 830 // FIXME: This may be too conservative. It's ok if the instruction 831 // is sunken completely below the use. 832 return false; 833 } else { 834 if (regOverlapsSet(Defs, MOReg, TRI)) 835 return false; 836 bool isKill = 837 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 838 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 839 regOverlapsSet(Kills, MOReg, TRI))) 840 // Don't want to extend other live ranges and update kills. 841 return false; 842 if (MOReg == Reg && !isKill) 843 // We can't schedule across a use of the register in question. 844 return false; 845 // Ensure that if this is register in question, its the kill we expect. 846 assert((MOReg != Reg || &OtherMI == KillMI) && 847 "Found multiple kills of a register in a basic block"); 848 } 849 } 850 } 851 852 // Move debug info as well. 853 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 854 --Begin; 855 856 nmi = End; 857 MachineBasicBlock::iterator InsertPos = KillPos; 858 if (LIS) { 859 // We have to move the copies first so that the MBB is still well-formed 860 // when calling handleMove(). 861 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 862 auto CopyMI = MBBI++; 863 MBB->splice(InsertPos, MBB, CopyMI); 864 LIS->handleMove(*CopyMI); 865 InsertPos = CopyMI; 866 } 867 End = std::next(MachineBasicBlock::iterator(MI)); 868 } 869 870 // Copies following MI may have been moved as well. 871 MBB->splice(InsertPos, MBB, Begin, End); 872 DistanceMap.erase(DI); 873 874 // Update live variables 875 if (LIS) { 876 LIS->handleMove(*MI); 877 } else { 878 LV->removeVirtualRegisterKilled(Reg, *KillMI); 879 LV->addVirtualRegisterKilled(Reg, *MI); 880 } 881 882 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 883 return true; 884 } 885 886 /// Return true if the re-scheduling will put the given instruction too close 887 /// to the defs of its register dependencies. 888 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist, 889 MachineInstr *MI) { 890 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 891 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 892 continue; 893 if (&DefMI == MI) 894 return true; // MI is defining something KillMI uses 895 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 896 if (DDI == DistanceMap.end()) 897 return true; // Below MI 898 unsigned DefDist = DDI->second; 899 assert(Dist > DefDist && "Visited def already?"); 900 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 901 return true; 902 } 903 return false; 904 } 905 906 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 907 /// consider moving the kill instruction above the current two-address 908 /// instruction in order to eliminate the need for the copy. 909 bool TwoAddressInstructionPass::rescheduleKillAboveMI( 910 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 911 Register Reg) { 912 // Bail immediately if we don't have LV or LIS available. We use them to find 913 // kills efficiently. 914 if (!LV && !LIS) 915 return false; 916 917 MachineInstr *MI = &*mi; 918 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 919 if (DI == DistanceMap.end()) 920 // Must be created from unfolded load. Don't waste time trying this. 921 return false; 922 923 MachineInstr *KillMI = nullptr; 924 if (LIS) { 925 LiveInterval &LI = LIS->getInterval(Reg); 926 assert(LI.end() != LI.begin() && 927 "Reg should not have empty live interval."); 928 929 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 930 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 931 if (I != LI.end() && I->start < MBBEndIdx) 932 return false; 933 934 --I; 935 KillMI = LIS->getInstructionFromIndex(I->end); 936 } else { 937 KillMI = LV->getVarInfo(Reg).findKill(MBB); 938 } 939 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 940 // Don't mess with copies, they may be coalesced later. 941 return false; 942 943 Register DstReg; 944 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 945 return false; 946 947 bool SeenStore = true; 948 if (!KillMI->isSafeToMove(AA, SeenStore)) 949 return false; 950 951 SmallVector<Register, 2> Uses; 952 SmallVector<Register, 2> Kills; 953 SmallVector<Register, 2> Defs; 954 SmallVector<Register, 2> LiveDefs; 955 for (const MachineOperand &MO : KillMI->operands()) { 956 if (!MO.isReg()) 957 continue; 958 Register MOReg = MO.getReg(); 959 if (MO.isUse()) { 960 if (!MOReg) 961 continue; 962 if (isDefTooClose(MOReg, DI->second, MI)) 963 return false; 964 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 965 if (MOReg == Reg && !isKill) 966 return false; 967 Uses.push_back(MOReg); 968 if (isKill && MOReg != Reg) 969 Kills.push_back(MOReg); 970 } else if (MOReg.isPhysical()) { 971 Defs.push_back(MOReg); 972 if (!MO.isDead()) 973 LiveDefs.push_back(MOReg); 974 } 975 } 976 977 // Check if the reschedule will not break depedencies. 978 unsigned NumVisited = 0; 979 for (MachineInstr &OtherMI : 980 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 981 // Debug or pseudo instructions cannot be counted against the limit. 982 if (OtherMI.isDebugOrPseudoInstr()) 983 continue; 984 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 985 return false; 986 ++NumVisited; 987 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 988 OtherMI.isBranch() || OtherMI.isTerminator()) 989 // Don't move pass calls, etc. 990 return false; 991 SmallVector<Register, 2> OtherDefs; 992 for (const MachineOperand &MO : OtherMI.operands()) { 993 if (!MO.isReg()) 994 continue; 995 Register MOReg = MO.getReg(); 996 if (!MOReg) 997 continue; 998 if (MO.isUse()) { 999 if (regOverlapsSet(Defs, MOReg, TRI)) 1000 // Moving KillMI can clobber the physical register if the def has 1001 // not been seen. 1002 return false; 1003 if (regOverlapsSet(Kills, MOReg, TRI)) 1004 // Don't want to extend other live ranges and update kills. 1005 return false; 1006 if (&OtherMI != MI && MOReg == Reg && 1007 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1008 // We can't schedule across a use of the register in question. 1009 return false; 1010 } else { 1011 OtherDefs.push_back(MOReg); 1012 } 1013 } 1014 1015 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1016 Register MOReg = OtherDefs[i]; 1017 if (regOverlapsSet(Uses, MOReg, TRI)) 1018 return false; 1019 if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI)) 1020 return false; 1021 // Physical register def is seen. 1022 llvm::erase_value(Defs, MOReg); 1023 } 1024 } 1025 1026 // Move the old kill above MI, don't forget to move debug info as well. 1027 MachineBasicBlock::iterator InsertPos = mi; 1028 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1029 --InsertPos; 1030 MachineBasicBlock::iterator From = KillMI; 1031 MachineBasicBlock::iterator To = std::next(From); 1032 while (std::prev(From)->isDebugInstr()) 1033 --From; 1034 MBB->splice(InsertPos, MBB, From, To); 1035 1036 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1037 DistanceMap.erase(DI); 1038 1039 // Update live variables 1040 if (LIS) { 1041 LIS->handleMove(*KillMI); 1042 } else { 1043 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1044 LV->addVirtualRegisterKilled(Reg, *MI); 1045 } 1046 1047 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1048 return true; 1049 } 1050 1051 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1052 /// given machine instruction to improve opportunities for coalescing and 1053 /// elimination of a register to register copy. 1054 /// 1055 /// 'DstOpIdx' specifies the index of MI def operand. 1056 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1057 /// operand is killed by the given instruction. 1058 /// The 'Dist' arguments provides the distance of MI from the start of the 1059 /// current basic block and it is used to determine if it is profitable 1060 /// to commute operands in the instruction. 1061 /// 1062 /// Returns true if the transformation happened. Otherwise, returns false. 1063 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1064 unsigned DstOpIdx, 1065 unsigned BaseOpIdx, 1066 bool BaseOpKilled, 1067 unsigned Dist) { 1068 if (!MI->isCommutable()) 1069 return false; 1070 1071 bool MadeChange = false; 1072 Register DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1073 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1074 unsigned OpsNum = MI->getDesc().getNumOperands(); 1075 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1076 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1077 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1078 // and OtherOpIdx are commutable, it does not really search for 1079 // other commutable operands and does not change the values of passed 1080 // variables. 1081 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1082 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1083 continue; 1084 1085 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1086 bool AggressiveCommute = false; 1087 1088 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1089 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1090 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1091 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1092 1093 if (!DoCommute && 1094 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1095 DoCommute = true; 1096 AggressiveCommute = true; 1097 } 1098 1099 // If it's profitable to commute, try to do so. 1100 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1101 Dist)) { 1102 MadeChange = true; 1103 ++NumCommuted; 1104 if (AggressiveCommute) 1105 ++NumAggrCommuted; 1106 1107 // There might be more than two commutable operands, update BaseOp and 1108 // continue scanning. 1109 // FIXME: This assumes that the new instruction's operands are in the 1110 // same positions and were simply swapped. 1111 BaseOpReg = OtherOpReg; 1112 BaseOpKilled = OtherOpKilled; 1113 // Resamples OpsNum in case the number of operands was reduced. This 1114 // happens with X86. 1115 OpsNum = MI->getDesc().getNumOperands(); 1116 } 1117 } 1118 return MadeChange; 1119 } 1120 1121 /// For the case where an instruction has a single pair of tied register 1122 /// operands, attempt some transformations that may either eliminate the tied 1123 /// operands or improve the opportunities for coalescing away the register copy. 1124 /// Returns true if no copy needs to be inserted to untie mi's operands 1125 /// (either because they were untied, or because mi was rescheduled, and will 1126 /// be visited again later). If the shouldOnlyCommute flag is true, only 1127 /// instruction commutation is attempted. 1128 bool TwoAddressInstructionPass:: 1129 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1130 MachineBasicBlock::iterator &nmi, 1131 unsigned SrcIdx, unsigned DstIdx, 1132 unsigned Dist, bool shouldOnlyCommute) { 1133 if (OptLevel == CodeGenOpt::None) 1134 return false; 1135 1136 MachineInstr &MI = *mi; 1137 Register regA = MI.getOperand(DstIdx).getReg(); 1138 Register regB = MI.getOperand(SrcIdx).getReg(); 1139 1140 assert(regB.isVirtual() && "cannot make instruction into two-address form"); 1141 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1142 1143 if (regA.isVirtual()) 1144 scanUses(regA); 1145 1146 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1147 1148 // If the instruction is convertible to 3 Addr, instead 1149 // of returning try 3 Addr transformation aggressively and 1150 // use this variable to check later. Because it might be better. 1151 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1152 // instead of the following code. 1153 // addl %esi, %edi 1154 // movl %edi, %eax 1155 // ret 1156 if (Commuted && !MI.isConvertibleTo3Addr()) 1157 return false; 1158 1159 if (shouldOnlyCommute) 1160 return false; 1161 1162 // If there is one more use of regB later in the same MBB, consider 1163 // re-schedule this MI below it. 1164 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1165 ++NumReSchedDowns; 1166 return true; 1167 } 1168 1169 // If we commuted, regB may have changed so we should re-sample it to avoid 1170 // confusing the three address conversion below. 1171 if (Commuted) { 1172 regB = MI.getOperand(SrcIdx).getReg(); 1173 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1174 } 1175 1176 if (MI.isConvertibleTo3Addr()) { 1177 // This instruction is potentially convertible to a true 1178 // three-address instruction. Check if it is profitable. 1179 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1180 // Try to convert it. 1181 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1182 ++NumConvertedTo3Addr; 1183 return true; // Done with this instruction. 1184 } 1185 } 1186 } 1187 1188 // Return if it is commuted but 3 addr conversion is failed. 1189 if (Commuted) 1190 return false; 1191 1192 // If there is one more use of regB later in the same MBB, consider 1193 // re-schedule it before this MI if it's legal. 1194 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1195 ++NumReSchedUps; 1196 return true; 1197 } 1198 1199 // If this is an instruction with a load folded into it, try unfolding 1200 // the load, e.g. avoid this: 1201 // movq %rdx, %rcx 1202 // addq (%rax), %rcx 1203 // in favor of this: 1204 // movq (%rax), %rcx 1205 // addq %rdx, %rcx 1206 // because it's preferable to schedule a load than a register copy. 1207 if (MI.mayLoad() && !regBKilled) { 1208 // Determine if a load can be unfolded. 1209 unsigned LoadRegIndex; 1210 unsigned NewOpc = 1211 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1212 /*UnfoldLoad=*/true, 1213 /*UnfoldStore=*/false, 1214 &LoadRegIndex); 1215 if (NewOpc != 0) { 1216 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1217 if (UnfoldMCID.getNumDefs() == 1) { 1218 // Unfold the load. 1219 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1220 const TargetRegisterClass *RC = 1221 TRI->getAllocatableClass( 1222 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1223 Register Reg = MRI->createVirtualRegister(RC); 1224 SmallVector<MachineInstr *, 2> NewMIs; 1225 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1226 /*UnfoldLoad=*/true, 1227 /*UnfoldStore=*/false, NewMIs)) { 1228 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1229 return false; 1230 } 1231 assert(NewMIs.size() == 2 && 1232 "Unfolded a load into multiple instructions!"); 1233 // The load was previously folded, so this is the only use. 1234 NewMIs[1]->addRegisterKilled(Reg, TRI); 1235 1236 // Tentatively insert the instructions into the block so that they 1237 // look "normal" to the transformation logic. 1238 MBB->insert(mi, NewMIs[0]); 1239 MBB->insert(mi, NewMIs[1]); 1240 1241 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1242 << "2addr: NEW INST: " << *NewMIs[1]); 1243 1244 // Transform the instruction, now that it no longer has a load. 1245 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1246 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1247 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1248 bool TransformResult = 1249 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1250 (void)TransformResult; 1251 assert(!TransformResult && 1252 "tryInstructionTransform() should return false."); 1253 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1254 // Success, or at least we made an improvement. Keep the unfolded 1255 // instructions and discard the original. 1256 if (LV) { 1257 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1258 MachineOperand &MO = MI.getOperand(i); 1259 if (MO.isReg() && MO.getReg().isVirtual()) { 1260 if (MO.isUse()) { 1261 if (MO.isKill()) { 1262 if (NewMIs[0]->killsRegister(MO.getReg())) 1263 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1264 else { 1265 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1266 "Kill missing after load unfold!"); 1267 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1268 } 1269 } 1270 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1271 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1272 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1273 else { 1274 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1275 "Dead flag missing after load unfold!"); 1276 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1277 } 1278 } 1279 } 1280 } 1281 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1282 } 1283 1284 SmallVector<Register, 4> OrigRegs; 1285 if (LIS) { 1286 for (const MachineOperand &MO : MI.operands()) { 1287 if (MO.isReg()) 1288 OrigRegs.push_back(MO.getReg()); 1289 } 1290 } 1291 1292 MI.eraseFromParent(); 1293 1294 // Update LiveIntervals. 1295 if (LIS) { 1296 MachineBasicBlock::iterator Begin(NewMIs[0]); 1297 MachineBasicBlock::iterator End(NewMIs[1]); 1298 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1299 } 1300 1301 mi = NewMIs[1]; 1302 } else { 1303 // Transforming didn't eliminate the tie and didn't lead to an 1304 // improvement. Clean up the unfolded instructions and keep the 1305 // original. 1306 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1307 NewMIs[0]->eraseFromParent(); 1308 NewMIs[1]->eraseFromParent(); 1309 } 1310 } 1311 } 1312 } 1313 1314 return false; 1315 } 1316 1317 // Collect tied operands of MI that need to be handled. 1318 // Rewrite trivial cases immediately. 1319 // Return true if any tied operands where found, including the trivial ones. 1320 bool TwoAddressInstructionPass:: 1321 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1322 const MCInstrDesc &MCID = MI->getDesc(); 1323 bool AnyOps = false; 1324 unsigned NumOps = MI->getNumOperands(); 1325 1326 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1327 unsigned DstIdx = 0; 1328 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1329 continue; 1330 AnyOps = true; 1331 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1332 MachineOperand &DstMO = MI->getOperand(DstIdx); 1333 Register SrcReg = SrcMO.getReg(); 1334 Register DstReg = DstMO.getReg(); 1335 // Tied constraint already satisfied? 1336 if (SrcReg == DstReg) 1337 continue; 1338 1339 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1340 1341 // Deal with undef uses immediately - simply rewrite the src operand. 1342 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1343 // Constrain the DstReg register class if required. 1344 if (DstReg.isVirtual()) 1345 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1346 TRI, *MF)) 1347 MRI->constrainRegClass(DstReg, RC); 1348 SrcMO.setReg(DstReg); 1349 SrcMO.setSubReg(0); 1350 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1351 continue; 1352 } 1353 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1354 } 1355 return AnyOps; 1356 } 1357 1358 // Process a list of tied MI operands that all use the same source register. 1359 // The tied pairs are of the form (SrcIdx, DstIdx). 1360 void 1361 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1362 TiedPairList &TiedPairs, 1363 unsigned &Dist) { 1364 bool IsEarlyClobber = llvm::find_if(TiedPairs, [MI](auto const &TP) { 1365 return MI->getOperand(TP.second).isEarlyClobber(); 1366 }) != TiedPairs.end(); 1367 1368 bool RemovedKillFlag = false; 1369 bool AllUsesCopied = true; 1370 unsigned LastCopiedReg = 0; 1371 SlotIndex LastCopyIdx; 1372 Register RegB = 0; 1373 unsigned SubRegB = 0; 1374 for (auto &TP : TiedPairs) { 1375 unsigned SrcIdx = TP.first; 1376 unsigned DstIdx = TP.second; 1377 1378 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1379 Register RegA = DstMO.getReg(); 1380 1381 // Grab RegB from the instruction because it may have changed if the 1382 // instruction was commuted. 1383 RegB = MI->getOperand(SrcIdx).getReg(); 1384 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1385 1386 if (RegA == RegB) { 1387 // The register is tied to multiple destinations (or else we would 1388 // not have continued this far), but this use of the register 1389 // already matches the tied destination. Leave it. 1390 AllUsesCopied = false; 1391 continue; 1392 } 1393 LastCopiedReg = RegA; 1394 1395 assert(RegB.isVirtual() && "cannot make instruction into two-address form"); 1396 1397 #ifndef NDEBUG 1398 // First, verify that we don't have a use of "a" in the instruction 1399 // (a = b + a for example) because our transformation will not 1400 // work. This should never occur because we are in SSA form. 1401 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1402 assert(i == DstIdx || 1403 !MI->getOperand(i).isReg() || 1404 MI->getOperand(i).getReg() != RegA); 1405 #endif 1406 1407 // Emit a copy. 1408 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1409 TII->get(TargetOpcode::COPY), RegA); 1410 // If this operand is folding a truncation, the truncation now moves to the 1411 // copy so that the register classes remain valid for the operands. 1412 MIB.addReg(RegB, 0, SubRegB); 1413 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1414 if (SubRegB) { 1415 if (RegA.isVirtual()) { 1416 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1417 SubRegB) && 1418 "tied subregister must be a truncation"); 1419 // The superreg class will not be used to constrain the subreg class. 1420 RC = nullptr; 1421 } else { 1422 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1423 && "tied subregister must be a truncation"); 1424 } 1425 } 1426 1427 // Update DistanceMap. 1428 MachineBasicBlock::iterator PrevMI = MI; 1429 --PrevMI; 1430 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1431 DistanceMap[MI] = ++Dist; 1432 1433 if (LIS) { 1434 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1435 1436 if (RegA.isVirtual()) { 1437 LiveInterval &LI = LIS->getInterval(RegA); 1438 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1439 SlotIndex endIdx = 1440 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1441 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1442 } 1443 } 1444 1445 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1446 1447 MachineOperand &MO = MI->getOperand(SrcIdx); 1448 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1449 "inconsistent operand info for 2-reg pass"); 1450 if (MO.isKill()) { 1451 MO.setIsKill(false); 1452 RemovedKillFlag = true; 1453 } 1454 1455 // Make sure regA is a legal regclass for the SrcIdx operand. 1456 if (RegA.isVirtual() && RegB.isVirtual()) 1457 MRI->constrainRegClass(RegA, RC); 1458 MO.setReg(RegA); 1459 // The getMatchingSuper asserts guarantee that the register class projected 1460 // by SubRegB is compatible with RegA with no subregister. So regardless of 1461 // whether the dest oper writes a subreg, the source oper should not. 1462 MO.setSubReg(0); 1463 1464 // Propagate SrcRegMap. 1465 SrcRegMap[RegA] = RegB; 1466 } 1467 1468 if (AllUsesCopied) { 1469 bool ReplacedAllUntiedUses = true; 1470 if (!IsEarlyClobber) { 1471 // Replace other (un-tied) uses of regB with LastCopiedReg. 1472 for (MachineOperand &MO : MI->operands()) { 1473 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1474 if (MO.getSubReg() == SubRegB) { 1475 if (MO.isKill()) { 1476 MO.setIsKill(false); 1477 RemovedKillFlag = true; 1478 } 1479 MO.setReg(LastCopiedReg); 1480 MO.setSubReg(0); 1481 } else { 1482 ReplacedAllUntiedUses = false; 1483 } 1484 } 1485 } 1486 } 1487 1488 // Update live variables for regB. 1489 if (RemovedKillFlag && ReplacedAllUntiedUses && 1490 LV && LV->getVarInfo(RegB).removeKill(*MI)) { 1491 MachineBasicBlock::iterator PrevMI = MI; 1492 --PrevMI; 1493 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1494 } 1495 1496 // Update LiveIntervals. 1497 if (LIS) { 1498 LiveInterval &LI = LIS->getInterval(RegB); 1499 SlotIndex MIIdx = LIS->getInstructionIndex(*MI); 1500 LiveInterval::const_iterator I = LI.find(MIIdx); 1501 assert(I != LI.end() && "RegB must be live-in to use."); 1502 1503 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1504 if (I->end == UseIdx) 1505 LI.removeSegment(LastCopyIdx, UseIdx); 1506 } 1507 } else if (RemovedKillFlag) { 1508 // Some tied uses of regB matched their destination registers, so 1509 // regB is still used in this instruction, but a kill flag was 1510 // removed from a different tied use of regB, so now we need to add 1511 // a kill flag to one of the remaining uses of regB. 1512 for (MachineOperand &MO : MI->operands()) { 1513 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1514 MO.setIsKill(true); 1515 break; 1516 } 1517 } 1518 } 1519 } 1520 1521 /// Reduce two-address instructions to two operands. 1522 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1523 MF = &Func; 1524 const TargetMachine &TM = MF->getTarget(); 1525 MRI = &MF->getRegInfo(); 1526 TII = MF->getSubtarget().getInstrInfo(); 1527 TRI = MF->getSubtarget().getRegisterInfo(); 1528 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1529 LV = getAnalysisIfAvailable<LiveVariables>(); 1530 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1531 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1532 AA = &AAPass->getAAResults(); 1533 else 1534 AA = nullptr; 1535 OptLevel = TM.getOptLevel(); 1536 // Disable optimizations if requested. We cannot skip the whole pass as some 1537 // fixups are necessary for correctness. 1538 if (skipFunction(Func.getFunction())) 1539 OptLevel = CodeGenOpt::None; 1540 1541 bool MadeChange = false; 1542 1543 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1544 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1545 1546 // This pass takes the function out of SSA form. 1547 MRI->leaveSSA(); 1548 1549 // This pass will rewrite the tied-def to meet the RegConstraint. 1550 MF->getProperties() 1551 .set(MachineFunctionProperties::Property::TiedOpsRewritten); 1552 1553 TiedOperandMap TiedOperands; 1554 for (MachineBasicBlock &MBBI : *MF) { 1555 MBB = &MBBI; 1556 unsigned Dist = 0; 1557 DistanceMap.clear(); 1558 SrcRegMap.clear(); 1559 DstRegMap.clear(); 1560 Processed.clear(); 1561 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1562 mi != me; ) { 1563 MachineBasicBlock::iterator nmi = std::next(mi); 1564 // Skip debug instructions. 1565 if (mi->isDebugInstr()) { 1566 mi = nmi; 1567 continue; 1568 } 1569 1570 // Expand REG_SEQUENCE instructions. This will position mi at the first 1571 // expanded instruction. 1572 if (mi->isRegSequence()) 1573 eliminateRegSequence(mi); 1574 1575 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1576 1577 processCopy(&*mi); 1578 1579 // First scan through all the tied register uses in this instruction 1580 // and record a list of pairs of tied operands for each register. 1581 if (!collectTiedOperands(&*mi, TiedOperands)) { 1582 mi = nmi; 1583 continue; 1584 } 1585 1586 ++NumTwoAddressInstrs; 1587 MadeChange = true; 1588 LLVM_DEBUG(dbgs() << '\t' << *mi); 1589 1590 // If the instruction has a single pair of tied operands, try some 1591 // transformations that may either eliminate the tied operands or 1592 // improve the opportunities for coalescing away the register copy. 1593 if (TiedOperands.size() == 1) { 1594 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1595 = TiedOperands.begin()->second; 1596 if (TiedPairs.size() == 1) { 1597 unsigned SrcIdx = TiedPairs[0].first; 1598 unsigned DstIdx = TiedPairs[0].second; 1599 Register SrcReg = mi->getOperand(SrcIdx).getReg(); 1600 Register DstReg = mi->getOperand(DstIdx).getReg(); 1601 if (SrcReg != DstReg && 1602 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1603 // The tied operands have been eliminated or shifted further down 1604 // the block to ease elimination. Continue processing with 'nmi'. 1605 TiedOperands.clear(); 1606 mi = nmi; 1607 continue; 1608 } 1609 } 1610 } 1611 1612 // Now iterate over the information collected above. 1613 for (auto &TO : TiedOperands) { 1614 processTiedPairs(&*mi, TO.second, Dist); 1615 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1616 } 1617 1618 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1619 if (mi->isInsertSubreg()) { 1620 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1621 // To %reg:subidx = COPY %subreg 1622 unsigned SubIdx = mi->getOperand(3).getImm(); 1623 mi->RemoveOperand(3); 1624 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1625 mi->getOperand(0).setSubReg(SubIdx); 1626 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1627 mi->RemoveOperand(1); 1628 mi->setDesc(TII->get(TargetOpcode::COPY)); 1629 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1630 } 1631 1632 // Clear TiedOperands here instead of at the top of the loop 1633 // since most instructions do not have tied operands. 1634 TiedOperands.clear(); 1635 mi = nmi; 1636 } 1637 } 1638 1639 if (LIS) 1640 MF->verify(this, "After two-address instruction pass"); 1641 1642 return MadeChange; 1643 } 1644 1645 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1646 /// 1647 /// The instruction is turned into a sequence of sub-register copies: 1648 /// 1649 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1650 /// 1651 /// Becomes: 1652 /// 1653 /// undef %dst:ssub0 = COPY %v1 1654 /// %dst:ssub1 = COPY %v2 1655 void TwoAddressInstructionPass:: 1656 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1657 MachineInstr &MI = *MBBI; 1658 Register DstReg = MI.getOperand(0).getReg(); 1659 if (MI.getOperand(0).getSubReg() || DstReg.isPhysical() || 1660 !(MI.getNumOperands() & 1)) { 1661 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1662 llvm_unreachable(nullptr); 1663 } 1664 1665 SmallVector<Register, 4> OrigRegs; 1666 if (LIS) { 1667 OrigRegs.push_back(MI.getOperand(0).getReg()); 1668 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1669 OrigRegs.push_back(MI.getOperand(i).getReg()); 1670 } 1671 1672 bool DefEmitted = false; 1673 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1674 MachineOperand &UseMO = MI.getOperand(i); 1675 Register SrcReg = UseMO.getReg(); 1676 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1677 // Nothing needs to be inserted for undef operands. 1678 if (UseMO.isUndef()) 1679 continue; 1680 1681 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1682 // might insert a COPY that uses SrcReg after is was killed. 1683 bool isKill = UseMO.isKill(); 1684 if (isKill) 1685 for (unsigned j = i + 2; j < e; j += 2) 1686 if (MI.getOperand(j).getReg() == SrcReg) { 1687 MI.getOperand(j).setIsKill(); 1688 UseMO.setIsKill(false); 1689 isKill = false; 1690 break; 1691 } 1692 1693 // Insert the sub-register copy. 1694 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1695 TII->get(TargetOpcode::COPY)) 1696 .addReg(DstReg, RegState::Define, SubIdx) 1697 .add(UseMO); 1698 1699 // The first def needs an undef flag because there is no live register 1700 // before it. 1701 if (!DefEmitted) { 1702 CopyMI->getOperand(0).setIsUndef(true); 1703 // Return an iterator pointing to the first inserted instr. 1704 MBBI = CopyMI; 1705 } 1706 DefEmitted = true; 1707 1708 // Update LiveVariables' kill info. 1709 if (LV && isKill && !SrcReg.isPhysical()) 1710 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1711 1712 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1713 } 1714 1715 MachineBasicBlock::iterator EndMBBI = 1716 std::next(MachineBasicBlock::iterator(MI)); 1717 1718 if (!DefEmitted) { 1719 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1720 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1721 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1722 MI.RemoveOperand(j); 1723 } else { 1724 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1725 MI.eraseFromParent(); 1726 } 1727 1728 // Udpate LiveIntervals. 1729 if (LIS) 1730 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1731 } 1732