1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #define DEBUG_TYPE "twoaddrinstr" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/Function.h" 33 #include "llvm/CodeGen/LiveVariables.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/Analysis/AliasAnalysis.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Target/TargetOptions.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/ADT/BitVector.h" 45 #include "llvm/ADT/DenseMap.h" 46 #include "llvm/ADT/SmallSet.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/STLExtras.h" 49 using namespace llvm; 50 51 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 52 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 53 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 54 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 55 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 56 STATISTIC(NumReMats, "Number of instructions re-materialized"); 57 STATISTIC(NumDeletes, "Number of dead instructions deleted"); 58 59 namespace { 60 class TwoAddressInstructionPass : public MachineFunctionPass { 61 const TargetInstrInfo *TII; 62 const TargetRegisterInfo *TRI; 63 MachineRegisterInfo *MRI; 64 LiveVariables *LV; 65 AliasAnalysis *AA; 66 67 // DistanceMap - Keep track the distance of a MI from the start of the 68 // current basic block. 69 DenseMap<MachineInstr*, unsigned> DistanceMap; 70 71 // SrcRegMap - A map from virtual registers to physical registers which 72 // are likely targets to be coalesced to due to copies from physical 73 // registers to virtual registers. e.g. v1024 = move r0. 74 DenseMap<unsigned, unsigned> SrcRegMap; 75 76 // DstRegMap - A map from virtual registers to physical registers which 77 // are likely targets to be coalesced to due to copies to physical 78 // registers from virtual registers. e.g. r1 = move v1024. 79 DenseMap<unsigned, unsigned> DstRegMap; 80 81 /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen 82 /// during the initial walk of the machine function. 83 SmallVector<MachineInstr*, 16> RegSequences; 84 85 bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI, 86 unsigned Reg, 87 MachineBasicBlock::iterator OldPos); 88 89 bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC, 90 MachineInstr *MI, MachineInstr *DefMI, 91 MachineBasicBlock *MBB, unsigned Loc); 92 93 bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist, 94 unsigned &LastDef); 95 96 MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB, 97 unsigned Dist); 98 99 bool isProfitableToCommute(unsigned regB, unsigned regC, 100 MachineInstr *MI, MachineBasicBlock *MBB, 101 unsigned Dist); 102 103 bool CommuteInstruction(MachineBasicBlock::iterator &mi, 104 MachineFunction::iterator &mbbi, 105 unsigned RegB, unsigned RegC, unsigned Dist); 106 107 bool isProfitableToConv3Addr(unsigned RegA); 108 109 bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi, 110 MachineBasicBlock::iterator &nmi, 111 MachineFunction::iterator &mbbi, 112 unsigned RegB, unsigned Dist); 113 114 typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill; 115 bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills, 116 SmallVector<NewKill, 4> &NewKills, 117 MachineBasicBlock *MBB, unsigned Dist); 118 bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi, 119 MachineBasicBlock::iterator &nmi, 120 MachineFunction::iterator &mbbi, unsigned Dist); 121 122 bool TryInstructionTransform(MachineBasicBlock::iterator &mi, 123 MachineBasicBlock::iterator &nmi, 124 MachineFunction::iterator &mbbi, 125 unsigned SrcIdx, unsigned DstIdx, 126 unsigned Dist); 127 128 void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB, 129 SmallPtrSet<MachineInstr*, 8> &Processed); 130 131 void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg); 132 133 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part 134 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as 135 /// sub-register references of the register defined by REG_SEQUENCE. 136 bool EliminateRegSequences(); 137 138 public: 139 static char ID; // Pass identification, replacement for typeid 140 TwoAddressInstructionPass() : MachineFunctionPass(&ID) {} 141 142 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 143 AU.setPreservesCFG(); 144 AU.addRequired<AliasAnalysis>(); 145 AU.addPreserved<LiveVariables>(); 146 AU.addPreservedID(MachineLoopInfoID); 147 AU.addPreservedID(MachineDominatorsID); 148 if (StrongPHIElim) 149 AU.addPreservedID(StrongPHIEliminationID); 150 else 151 AU.addPreservedID(PHIEliminationID); 152 MachineFunctionPass::getAnalysisUsage(AU); 153 } 154 155 /// runOnMachineFunction - Pass entry point. 156 bool runOnMachineFunction(MachineFunction&); 157 }; 158 } 159 160 char TwoAddressInstructionPass::ID = 0; 161 static RegisterPass<TwoAddressInstructionPass> 162 X("twoaddressinstruction", "Two-Address instruction pass"); 163 164 const PassInfo *const llvm::TwoAddressInstructionPassID = &X; 165 166 /// Sink3AddrInstruction - A two-address instruction has been converted to a 167 /// three-address instruction to avoid clobbering a register. Try to sink it 168 /// past the instruction that would kill the above mentioned register to reduce 169 /// register pressure. 170 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB, 171 MachineInstr *MI, unsigned SavedReg, 172 MachineBasicBlock::iterator OldPos) { 173 // Check if it's safe to move this instruction. 174 bool SeenStore = true; // Be conservative. 175 if (!MI->isSafeToMove(TII, AA, SeenStore)) 176 return false; 177 178 unsigned DefReg = 0; 179 SmallSet<unsigned, 4> UseRegs; 180 181 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 182 const MachineOperand &MO = MI->getOperand(i); 183 if (!MO.isReg()) 184 continue; 185 unsigned MOReg = MO.getReg(); 186 if (!MOReg) 187 continue; 188 if (MO.isUse() && MOReg != SavedReg) 189 UseRegs.insert(MO.getReg()); 190 if (!MO.isDef()) 191 continue; 192 if (MO.isImplicit()) 193 // Don't try to move it if it implicitly defines a register. 194 return false; 195 if (DefReg) 196 // For now, don't move any instructions that define multiple registers. 197 return false; 198 DefReg = MO.getReg(); 199 } 200 201 // Find the instruction that kills SavedReg. 202 MachineInstr *KillMI = NULL; 203 for (MachineRegisterInfo::use_nodbg_iterator 204 UI = MRI->use_nodbg_begin(SavedReg), 205 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 206 MachineOperand &UseMO = UI.getOperand(); 207 if (!UseMO.isKill()) 208 continue; 209 KillMI = UseMO.getParent(); 210 break; 211 } 212 213 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI) 214 return false; 215 216 // If any of the definitions are used by another instruction between the 217 // position and the kill use, then it's not safe to sink it. 218 // 219 // FIXME: This can be sped up if there is an easy way to query whether an 220 // instruction is before or after another instruction. Then we can use 221 // MachineRegisterInfo def / use instead. 222 MachineOperand *KillMO = NULL; 223 MachineBasicBlock::iterator KillPos = KillMI; 224 ++KillPos; 225 226 unsigned NumVisited = 0; 227 for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) { 228 MachineInstr *OtherMI = I; 229 // DBG_VALUE cannot be counted against the limit. 230 if (OtherMI->isDebugValue()) 231 continue; 232 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 233 return false; 234 ++NumVisited; 235 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 236 MachineOperand &MO = OtherMI->getOperand(i); 237 if (!MO.isReg()) 238 continue; 239 unsigned MOReg = MO.getReg(); 240 if (!MOReg) 241 continue; 242 if (DefReg == MOReg) 243 return false; 244 245 if (MO.isKill()) { 246 if (OtherMI == KillMI && MOReg == SavedReg) 247 // Save the operand that kills the register. We want to unset the kill 248 // marker if we can sink MI past it. 249 KillMO = &MO; 250 else if (UseRegs.count(MOReg)) 251 // One of the uses is killed before the destination. 252 return false; 253 } 254 } 255 } 256 257 // Update kill and LV information. 258 KillMO->setIsKill(false); 259 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 260 KillMO->setIsKill(true); 261 262 if (LV) 263 LV->replaceKillInstruction(SavedReg, KillMI, MI); 264 265 // Move instruction to its destination. 266 MBB->remove(MI); 267 MBB->insert(KillPos, MI); 268 269 ++Num3AddrSunk; 270 return true; 271 } 272 273 /// isTwoAddrUse - Return true if the specified MI is using the specified 274 /// register as a two-address operand. 275 static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) { 276 const TargetInstrDesc &TID = UseMI->getDesc(); 277 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) { 278 MachineOperand &MO = UseMI->getOperand(i); 279 if (MO.isReg() && MO.getReg() == Reg && 280 (MO.isDef() || UseMI->isRegTiedToDefOperand(i))) 281 // Earlier use is a two-address one. 282 return true; 283 } 284 return false; 285 } 286 287 /// isProfitableToReMat - Return true if the heuristics determines it is likely 288 /// to be profitable to re-materialize the definition of Reg rather than copy 289 /// the register. 290 bool 291 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg, 292 const TargetRegisterClass *RC, 293 MachineInstr *MI, MachineInstr *DefMI, 294 MachineBasicBlock *MBB, unsigned Loc) { 295 bool OtherUse = false; 296 for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg), 297 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 298 MachineOperand &UseMO = UI.getOperand(); 299 MachineInstr *UseMI = UseMO.getParent(); 300 MachineBasicBlock *UseMBB = UseMI->getParent(); 301 if (UseMBB == MBB) { 302 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 303 if (DI != DistanceMap.end() && DI->second == Loc) 304 continue; // Current use. 305 OtherUse = true; 306 // There is at least one other use in the MBB that will clobber the 307 // register. 308 if (isTwoAddrUse(UseMI, Reg)) 309 return true; 310 } 311 } 312 313 // If other uses in MBB are not two-address uses, then don't remat. 314 if (OtherUse) 315 return false; 316 317 // No other uses in the same block, remat if it's defined in the same 318 // block so it does not unnecessarily extend the live range. 319 return MBB == DefMI->getParent(); 320 } 321 322 /// NoUseAfterLastDef - Return true if there are no intervening uses between the 323 /// last instruction in the MBB that defines the specified register and the 324 /// two-address instruction which is being processed. It also returns the last 325 /// def location by reference 326 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg, 327 MachineBasicBlock *MBB, unsigned Dist, 328 unsigned &LastDef) { 329 LastDef = 0; 330 unsigned LastUse = Dist; 331 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg), 332 E = MRI->reg_end(); I != E; ++I) { 333 MachineOperand &MO = I.getOperand(); 334 MachineInstr *MI = MO.getParent(); 335 if (MI->getParent() != MBB || MI->isDebugValue()) 336 continue; 337 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 338 if (DI == DistanceMap.end()) 339 continue; 340 if (MO.isUse() && DI->second < LastUse) 341 LastUse = DI->second; 342 if (MO.isDef() && DI->second > LastDef) 343 LastDef = DI->second; 344 } 345 346 return !(LastUse > LastDef && LastUse < Dist); 347 } 348 349 MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg, 350 MachineBasicBlock *MBB, 351 unsigned Dist) { 352 unsigned LastUseDist = 0; 353 MachineInstr *LastUse = 0; 354 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg), 355 E = MRI->reg_end(); I != E; ++I) { 356 MachineOperand &MO = I.getOperand(); 357 MachineInstr *MI = MO.getParent(); 358 if (MI->getParent() != MBB || MI->isDebugValue()) 359 continue; 360 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 361 if (DI == DistanceMap.end()) 362 continue; 363 if (DI->second >= Dist) 364 continue; 365 366 if (MO.isUse() && DI->second > LastUseDist) { 367 LastUse = DI->first; 368 LastUseDist = DI->second; 369 } 370 } 371 return LastUse; 372 } 373 374 /// isCopyToReg - Return true if the specified MI is a copy instruction or 375 /// a extract_subreg instruction. It also returns the source and destination 376 /// registers and whether they are physical registers by reference. 377 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 378 unsigned &SrcReg, unsigned &DstReg, 379 bool &IsSrcPhys, bool &IsDstPhys) { 380 SrcReg = 0; 381 DstReg = 0; 382 unsigned SrcSubIdx, DstSubIdx; 383 if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) { 384 if (MI.isExtractSubreg()) { 385 DstReg = MI.getOperand(0).getReg(); 386 SrcReg = MI.getOperand(1).getReg(); 387 } else if (MI.isInsertSubreg()) { 388 DstReg = MI.getOperand(0).getReg(); 389 SrcReg = MI.getOperand(2).getReg(); 390 } else if (MI.isSubregToReg()) { 391 DstReg = MI.getOperand(0).getReg(); 392 SrcReg = MI.getOperand(2).getReg(); 393 } 394 } 395 396 if (DstReg) { 397 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 398 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 399 return true; 400 } 401 return false; 402 } 403 404 /// isKilled - Test if the given register value, which is used by the given 405 /// instruction, is killed by the given instruction. This looks through 406 /// coalescable copies to see if the original value is potentially not killed. 407 /// 408 /// For example, in this code: 409 /// 410 /// %reg1034 = copy %reg1024 411 /// %reg1035 = copy %reg1025<kill> 412 /// %reg1036 = add %reg1034<kill>, %reg1035<kill> 413 /// 414 /// %reg1034 is not considered to be killed, since it is copied from a 415 /// register which is not killed. Treating it as not killed lets the 416 /// normal heuristics commute the (two-address) add, which lets 417 /// coalescing eliminate the extra copy. 418 /// 419 static bool isKilled(MachineInstr &MI, unsigned Reg, 420 const MachineRegisterInfo *MRI, 421 const TargetInstrInfo *TII) { 422 MachineInstr *DefMI = &MI; 423 for (;;) { 424 if (!DefMI->killsRegister(Reg)) 425 return false; 426 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 427 return true; 428 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 429 // If there are multiple defs, we can't do a simple analysis, so just 430 // go with what the kill flag says. 431 if (llvm::next(Begin) != MRI->def_end()) 432 return true; 433 DefMI = &*Begin; 434 bool IsSrcPhys, IsDstPhys; 435 unsigned SrcReg, DstReg; 436 // If the def is something other than a copy, then it isn't going to 437 // be coalesced, so follow the kill flag. 438 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 439 return true; 440 Reg = SrcReg; 441 } 442 } 443 444 /// isTwoAddrUse - Return true if the specified MI uses the specified register 445 /// as a two-address use. If so, return the destination register by reference. 446 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 447 const TargetInstrDesc &TID = MI.getDesc(); 448 unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands(); 449 for (unsigned i = 0; i != NumOps; ++i) { 450 const MachineOperand &MO = MI.getOperand(i); 451 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 452 continue; 453 unsigned ti; 454 if (MI.isRegTiedToDefOperand(i, &ti)) { 455 DstReg = MI.getOperand(ti).getReg(); 456 return true; 457 } 458 } 459 return false; 460 } 461 462 /// findOnlyInterestingUse - Given a register, if has a single in-basic block 463 /// use, return the use instruction if it's a copy or a two-address use. 464 static 465 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 466 MachineRegisterInfo *MRI, 467 const TargetInstrInfo *TII, 468 bool &IsCopy, 469 unsigned &DstReg, bool &IsDstPhys) { 470 if (!MRI->hasOneNonDBGUse(Reg)) 471 // None or more than one use. 472 return 0; 473 MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg); 474 if (UseMI.getParent() != MBB) 475 return 0; 476 unsigned SrcReg; 477 bool IsSrcPhys; 478 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 479 IsCopy = true; 480 return &UseMI; 481 } 482 IsDstPhys = false; 483 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 484 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 485 return &UseMI; 486 } 487 return 0; 488 } 489 490 /// getMappedReg - Return the physical register the specified virtual register 491 /// might be mapped to. 492 static unsigned 493 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 494 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 495 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 496 if (SI == RegMap.end()) 497 return 0; 498 Reg = SI->second; 499 } 500 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 501 return Reg; 502 return 0; 503 } 504 505 /// regsAreCompatible - Return true if the two registers are equal or aliased. 506 /// 507 static bool 508 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 509 if (RegA == RegB) 510 return true; 511 if (!RegA || !RegB) 512 return false; 513 return TRI->regsOverlap(RegA, RegB); 514 } 515 516 517 /// isProfitableToReMat - Return true if it's potentially profitable to commute 518 /// the two-address instruction that's being processed. 519 bool 520 TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC, 521 MachineInstr *MI, MachineBasicBlock *MBB, 522 unsigned Dist) { 523 // Determine if it's profitable to commute this two address instruction. In 524 // general, we want no uses between this instruction and the definition of 525 // the two-address register. 526 // e.g. 527 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 528 // %reg1029<def> = MOV8rr %reg1028 529 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 530 // insert => %reg1030<def> = MOV8rr %reg1028 531 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 532 // In this case, it might not be possible to coalesce the second MOV8rr 533 // instruction if the first one is coalesced. So it would be profitable to 534 // commute it: 535 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 536 // %reg1029<def> = MOV8rr %reg1028 537 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 538 // insert => %reg1030<def> = MOV8rr %reg1029 539 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 540 541 if (!MI->killsRegister(regC)) 542 return false; 543 544 // Ok, we have something like: 545 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 546 // let's see if it's worth commuting it. 547 548 // Look for situations like this: 549 // %reg1024<def> = MOV r1 550 // %reg1025<def> = MOV r0 551 // %reg1026<def> = ADD %reg1024, %reg1025 552 // r0 = MOV %reg1026 553 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 554 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 555 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 556 unsigned ToRegB = getMappedReg(regB, DstRegMap); 557 unsigned ToRegC = getMappedReg(regC, DstRegMap); 558 if (!regsAreCompatible(FromRegB, ToRegB, TRI) && 559 (regsAreCompatible(FromRegB, ToRegC, TRI) || 560 regsAreCompatible(FromRegC, ToRegB, TRI))) 561 return true; 562 563 // If there is a use of regC between its last def (could be livein) and this 564 // instruction, then bail. 565 unsigned LastDefC = 0; 566 if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC)) 567 return false; 568 569 // If there is a use of regB between its last def (could be livein) and this 570 // instruction, then go ahead and make this transformation. 571 unsigned LastDefB = 0; 572 if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB)) 573 return true; 574 575 // Since there are no intervening uses for both registers, then commute 576 // if the def of regC is closer. Its live interval is shorter. 577 return LastDefB && LastDefC && LastDefC > LastDefB; 578 } 579 580 /// CommuteInstruction - Commute a two-address instruction and update the basic 581 /// block, distance map, and live variables if needed. Return true if it is 582 /// successful. 583 bool 584 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi, 585 MachineFunction::iterator &mbbi, 586 unsigned RegB, unsigned RegC, unsigned Dist) { 587 MachineInstr *MI = mi; 588 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 589 MachineInstr *NewMI = TII->commuteInstruction(MI); 590 591 if (NewMI == 0) { 592 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 593 return false; 594 } 595 596 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 597 // If the instruction changed to commute it, update livevar. 598 if (NewMI != MI) { 599 if (LV) 600 // Update live variables 601 LV->replaceKillInstruction(RegC, MI, NewMI); 602 603 mbbi->insert(mi, NewMI); // Insert the new inst 604 mbbi->erase(mi); // Nuke the old inst. 605 mi = NewMI; 606 DistanceMap.insert(std::make_pair(NewMI, Dist)); 607 } 608 609 // Update source register map. 610 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 611 if (FromRegC) { 612 unsigned RegA = MI->getOperand(0).getReg(); 613 SrcRegMap[RegA] = FromRegC; 614 } 615 616 return true; 617 } 618 619 /// isProfitableToConv3Addr - Return true if it is profitable to convert the 620 /// given 2-address instruction to a 3-address one. 621 bool 622 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) { 623 // Look for situations like this: 624 // %reg1024<def> = MOV r1 625 // %reg1025<def> = MOV r0 626 // %reg1026<def> = ADD %reg1024, %reg1025 627 // r2 = MOV %reg1026 628 // Turn ADD into a 3-address instruction to avoid a copy. 629 unsigned FromRegA = getMappedReg(RegA, SrcRegMap); 630 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 631 return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI)); 632 } 633 634 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a 635 /// three address one. Return true if this transformation was successful. 636 bool 637 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi, 638 MachineBasicBlock::iterator &nmi, 639 MachineFunction::iterator &mbbi, 640 unsigned RegB, unsigned Dist) { 641 MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV); 642 if (NewMI) { 643 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 644 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 645 bool Sunk = false; 646 647 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 648 // FIXME: Temporary workaround. If the new instruction doesn't 649 // uses RegB, convertToThreeAddress must have created more 650 // then one instruction. 651 Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi); 652 653 mbbi->erase(mi); // Nuke the old inst. 654 655 if (!Sunk) { 656 DistanceMap.insert(std::make_pair(NewMI, Dist)); 657 mi = NewMI; 658 nmi = llvm::next(mi); 659 } 660 return true; 661 } 662 663 return false; 664 } 665 666 /// ProcessCopy - If the specified instruction is not yet processed, process it 667 /// if it's a copy. For a copy instruction, we find the physical registers the 668 /// source and destination registers might be mapped to. These are kept in 669 /// point-to maps used to determine future optimizations. e.g. 670 /// v1024 = mov r0 671 /// v1025 = mov r1 672 /// v1026 = add v1024, v1025 673 /// r1 = mov r1026 674 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 675 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 676 /// potentially joined with r1 on the output side. It's worthwhile to commute 677 /// 'add' to eliminate a copy. 678 void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI, 679 MachineBasicBlock *MBB, 680 SmallPtrSet<MachineInstr*, 8> &Processed) { 681 if (Processed.count(MI)) 682 return; 683 684 bool IsSrcPhys, IsDstPhys; 685 unsigned SrcReg, DstReg; 686 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 687 return; 688 689 if (IsDstPhys && !IsSrcPhys) 690 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 691 else if (!IsDstPhys && IsSrcPhys) { 692 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 693 if (!isNew) 694 assert(SrcRegMap[DstReg] == SrcReg && 695 "Can't map to two src physical registers!"); 696 697 SmallVector<unsigned, 4> VirtRegPairs; 698 bool IsCopy = false; 699 unsigned NewReg = 0; 700 while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII, 701 IsCopy, NewReg, IsDstPhys)) { 702 if (IsCopy) { 703 if (!Processed.insert(UseMI)) 704 break; 705 } 706 707 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 708 if (DI != DistanceMap.end()) 709 // Earlier in the same MBB.Reached via a back edge. 710 break; 711 712 if (IsDstPhys) { 713 VirtRegPairs.push_back(NewReg); 714 break; 715 } 716 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second; 717 if (!isNew) 718 assert(SrcRegMap[NewReg] == DstReg && 719 "Can't map to two src physical registers!"); 720 VirtRegPairs.push_back(NewReg); 721 DstReg = NewReg; 722 } 723 724 if (!VirtRegPairs.empty()) { 725 unsigned ToReg = VirtRegPairs.back(); 726 VirtRegPairs.pop_back(); 727 while (!VirtRegPairs.empty()) { 728 unsigned FromReg = VirtRegPairs.back(); 729 VirtRegPairs.pop_back(); 730 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 731 if (!isNew) 732 assert(DstRegMap[FromReg] == ToReg && 733 "Can't map to two dst physical registers!"); 734 ToReg = FromReg; 735 } 736 } 737 } 738 739 Processed.insert(MI); 740 } 741 742 /// isSafeToDelete - If the specified instruction does not produce any side 743 /// effects and all of its defs are dead, then it's safe to delete. 744 static bool isSafeToDelete(MachineInstr *MI, 745 const TargetInstrInfo *TII, 746 SmallVector<unsigned, 4> &Kills) { 747 const TargetInstrDesc &TID = MI->getDesc(); 748 if (TID.mayStore() || TID.isCall()) 749 return false; 750 if (TID.isTerminator() || TID.hasUnmodeledSideEffects()) 751 return false; 752 753 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 754 MachineOperand &MO = MI->getOperand(i); 755 if (!MO.isReg()) 756 continue; 757 if (MO.isDef() && !MO.isDead()) 758 return false; 759 if (MO.isUse() && MO.isKill()) 760 Kills.push_back(MO.getReg()); 761 } 762 return true; 763 } 764 765 /// canUpdateDeletedKills - Check if all the registers listed in Kills are 766 /// killed by instructions in MBB preceding the current instruction at 767 /// position Dist. If so, return true and record information about the 768 /// preceding kills in NewKills. 769 bool TwoAddressInstructionPass:: 770 canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills, 771 SmallVector<NewKill, 4> &NewKills, 772 MachineBasicBlock *MBB, unsigned Dist) { 773 while (!Kills.empty()) { 774 unsigned Kill = Kills.back(); 775 Kills.pop_back(); 776 if (TargetRegisterInfo::isPhysicalRegister(Kill)) 777 return false; 778 779 MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist); 780 if (!LastKill) 781 return false; 782 783 bool isModRef = LastKill->definesRegister(Kill); 784 NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef), 785 LastKill)); 786 } 787 return true; 788 } 789 790 /// DeleteUnusedInstr - If an instruction with a tied register operand can 791 /// be safely deleted, just delete it. 792 bool 793 TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi, 794 MachineBasicBlock::iterator &nmi, 795 MachineFunction::iterator &mbbi, 796 unsigned Dist) { 797 // Check if the instruction has no side effects and if all its defs are dead. 798 SmallVector<unsigned, 4> Kills; 799 if (!isSafeToDelete(mi, TII, Kills)) 800 return false; 801 802 // If this instruction kills some virtual registers, we need to 803 // update the kill information. If it's not possible to do so, 804 // then bail out. 805 SmallVector<NewKill, 4> NewKills; 806 if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist)) 807 return false; 808 809 if (LV) { 810 while (!NewKills.empty()) { 811 MachineInstr *NewKill = NewKills.back().second; 812 unsigned Kill = NewKills.back().first.first; 813 bool isDead = NewKills.back().first.second; 814 NewKills.pop_back(); 815 if (LV->removeVirtualRegisterKilled(Kill, mi)) { 816 if (isDead) 817 LV->addVirtualRegisterDead(Kill, NewKill); 818 else 819 LV->addVirtualRegisterKilled(Kill, NewKill); 820 } 821 } 822 } 823 824 mbbi->erase(mi); // Nuke the old inst. 825 mi = nmi; 826 return true; 827 } 828 829 /// TryInstructionTransform - For the case where an instruction has a single 830 /// pair of tied register operands, attempt some transformations that may 831 /// either eliminate the tied operands or improve the opportunities for 832 /// coalescing away the register copy. Returns true if the tied operands 833 /// are eliminated altogether. 834 bool TwoAddressInstructionPass:: 835 TryInstructionTransform(MachineBasicBlock::iterator &mi, 836 MachineBasicBlock::iterator &nmi, 837 MachineFunction::iterator &mbbi, 838 unsigned SrcIdx, unsigned DstIdx, unsigned Dist) { 839 const TargetInstrDesc &TID = mi->getDesc(); 840 unsigned regA = mi->getOperand(DstIdx).getReg(); 841 unsigned regB = mi->getOperand(SrcIdx).getReg(); 842 843 assert(TargetRegisterInfo::isVirtualRegister(regB) && 844 "cannot make instruction into two-address form"); 845 846 // If regA is dead and the instruction can be deleted, just delete 847 // it so it doesn't clobber regB. 848 bool regBKilled = isKilled(*mi, regB, MRI, TII); 849 if (!regBKilled && mi->getOperand(DstIdx).isDead() && 850 DeleteUnusedInstr(mi, nmi, mbbi, Dist)) { 851 ++NumDeletes; 852 return true; // Done with this instruction. 853 } 854 855 // Check if it is profitable to commute the operands. 856 unsigned SrcOp1, SrcOp2; 857 unsigned regC = 0; 858 unsigned regCIdx = ~0U; 859 bool TryCommute = false; 860 bool AggressiveCommute = false; 861 if (TID.isCommutable() && mi->getNumOperands() >= 3 && 862 TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) { 863 if (SrcIdx == SrcOp1) 864 regCIdx = SrcOp2; 865 else if (SrcIdx == SrcOp2) 866 regCIdx = SrcOp1; 867 868 if (regCIdx != ~0U) { 869 regC = mi->getOperand(regCIdx).getReg(); 870 if (!regBKilled && isKilled(*mi, regC, MRI, TII)) 871 // If C dies but B does not, swap the B and C operands. 872 // This makes the live ranges of A and C joinable. 873 TryCommute = true; 874 else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) { 875 TryCommute = true; 876 AggressiveCommute = true; 877 } 878 } 879 } 880 881 // If it's profitable to commute, try to do so. 882 if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) { 883 ++NumCommuted; 884 if (AggressiveCommute) 885 ++NumAggrCommuted; 886 return false; 887 } 888 889 if (TID.isConvertibleTo3Addr()) { 890 // This instruction is potentially convertible to a true 891 // three-address instruction. Check if it is profitable. 892 if (!regBKilled || isProfitableToConv3Addr(regA)) { 893 // Try to convert it. 894 if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) { 895 ++NumConvertedTo3Addr; 896 return true; // Done with this instruction. 897 } 898 } 899 } 900 return false; 901 } 902 903 /// runOnMachineFunction - Reduce two-address instructions to two operands. 904 /// 905 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) { 906 DEBUG(dbgs() << "Machine Function\n"); 907 const TargetMachine &TM = MF.getTarget(); 908 MRI = &MF.getRegInfo(); 909 TII = TM.getInstrInfo(); 910 TRI = TM.getRegisterInfo(); 911 LV = getAnalysisIfAvailable<LiveVariables>(); 912 AA = &getAnalysis<AliasAnalysis>(); 913 914 bool MadeChange = false; 915 916 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 917 DEBUG(dbgs() << "********** Function: " 918 << MF.getFunction()->getName() << '\n'); 919 920 // ReMatRegs - Keep track of the registers whose def's are remat'ed. 921 BitVector ReMatRegs; 922 ReMatRegs.resize(MRI->getLastVirtReg()+1); 923 924 typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> > 925 TiedOperandMap; 926 TiedOperandMap TiedOperands(4); 927 928 SmallPtrSet<MachineInstr*, 8> Processed; 929 for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end(); 930 mbbi != mbbe; ++mbbi) { 931 unsigned Dist = 0; 932 DistanceMap.clear(); 933 SrcRegMap.clear(); 934 DstRegMap.clear(); 935 Processed.clear(); 936 for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end(); 937 mi != me; ) { 938 MachineBasicBlock::iterator nmi = llvm::next(mi); 939 if (mi->isDebugValue()) { 940 mi = nmi; 941 continue; 942 } 943 944 // Remember REG_SEQUENCE instructions, we'll deal with them later. 945 if (mi->isRegSequence()) 946 RegSequences.push_back(&*mi); 947 948 const TargetInstrDesc &TID = mi->getDesc(); 949 bool FirstTied = true; 950 951 DistanceMap.insert(std::make_pair(mi, ++Dist)); 952 953 ProcessCopy(&*mi, &*mbbi, Processed); 954 955 // First scan through all the tied register uses in this instruction 956 // and record a list of pairs of tied operands for each register. 957 unsigned NumOps = mi->isInlineAsm() 958 ? mi->getNumOperands() : TID.getNumOperands(); 959 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 960 unsigned DstIdx = 0; 961 if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 962 continue; 963 964 if (FirstTied) { 965 FirstTied = false; 966 ++NumTwoAddressInstrs; 967 DEBUG(dbgs() << '\t' << *mi); 968 } 969 970 assert(mi->getOperand(SrcIdx).isReg() && 971 mi->getOperand(SrcIdx).getReg() && 972 mi->getOperand(SrcIdx).isUse() && 973 "two address instruction invalid"); 974 975 unsigned regB = mi->getOperand(SrcIdx).getReg(); 976 TiedOperandMap::iterator OI = TiedOperands.find(regB); 977 if (OI == TiedOperands.end()) { 978 SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair; 979 OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first; 980 } 981 OI->second.push_back(std::make_pair(SrcIdx, DstIdx)); 982 } 983 984 // Now iterate over the information collected above. 985 for (TiedOperandMap::iterator OI = TiedOperands.begin(), 986 OE = TiedOperands.end(); OI != OE; ++OI) { 987 SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second; 988 989 // If the instruction has a single pair of tied operands, try some 990 // transformations that may either eliminate the tied operands or 991 // improve the opportunities for coalescing away the register copy. 992 if (TiedOperands.size() == 1 && TiedPairs.size() == 1) { 993 unsigned SrcIdx = TiedPairs[0].first; 994 unsigned DstIdx = TiedPairs[0].second; 995 996 // If the registers are already equal, nothing needs to be done. 997 if (mi->getOperand(SrcIdx).getReg() == 998 mi->getOperand(DstIdx).getReg()) 999 break; // Done with this instruction. 1000 1001 if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist)) 1002 break; // The tied operands have been eliminated. 1003 } 1004 1005 bool RemovedKillFlag = false; 1006 bool AllUsesCopied = true; 1007 unsigned LastCopiedReg = 0; 1008 unsigned regB = OI->first; 1009 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1010 unsigned SrcIdx = TiedPairs[tpi].first; 1011 unsigned DstIdx = TiedPairs[tpi].second; 1012 unsigned regA = mi->getOperand(DstIdx).getReg(); 1013 // Grab regB from the instruction because it may have changed if the 1014 // instruction was commuted. 1015 regB = mi->getOperand(SrcIdx).getReg(); 1016 1017 if (regA == regB) { 1018 // The register is tied to multiple destinations (or else we would 1019 // not have continued this far), but this use of the register 1020 // already matches the tied destination. Leave it. 1021 AllUsesCopied = false; 1022 continue; 1023 } 1024 LastCopiedReg = regA; 1025 1026 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1027 "cannot make instruction into two-address form"); 1028 1029 #ifndef NDEBUG 1030 // First, verify that we don't have a use of "a" in the instruction 1031 // (a = b + a for example) because our transformation will not 1032 // work. This should never occur because we are in SSA form. 1033 for (unsigned i = 0; i != mi->getNumOperands(); ++i) 1034 assert(i == DstIdx || 1035 !mi->getOperand(i).isReg() || 1036 mi->getOperand(i).getReg() != regA); 1037 #endif 1038 1039 // Emit a copy or rematerialize the definition. 1040 const TargetRegisterClass *rc = MRI->getRegClass(regB); 1041 MachineInstr *DefMI = MRI->getVRegDef(regB); 1042 // If it's safe and profitable, remat the definition instead of 1043 // copying it. 1044 if (DefMI && 1045 DefMI->getDesc().isAsCheapAsAMove() && 1046 DefMI->isSafeToReMat(TII, AA, regB) && 1047 isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){ 1048 DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n"); 1049 unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg(); 1050 TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI); 1051 ReMatRegs.set(regB); 1052 ++NumReMats; 1053 } else { 1054 bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc, 1055 mi->getDebugLoc()); 1056 (void)Emitted; 1057 assert(Emitted && "Unable to issue a copy instruction!\n"); 1058 } 1059 1060 MachineBasicBlock::iterator prevMI = prior(mi); 1061 // Update DistanceMap. 1062 DistanceMap.insert(std::make_pair(prevMI, Dist)); 1063 DistanceMap[mi] = ++Dist; 1064 1065 DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI); 1066 1067 MachineOperand &MO = mi->getOperand(SrcIdx); 1068 assert(MO.isReg() && MO.getReg() == regB && MO.isUse() && 1069 "inconsistent operand info for 2-reg pass"); 1070 if (MO.isKill()) { 1071 MO.setIsKill(false); 1072 RemovedKillFlag = true; 1073 } 1074 MO.setReg(regA); 1075 } 1076 1077 if (AllUsesCopied) { 1078 // Replace other (un-tied) uses of regB with LastCopiedReg. 1079 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { 1080 MachineOperand &MO = mi->getOperand(i); 1081 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) { 1082 if (MO.isKill()) { 1083 MO.setIsKill(false); 1084 RemovedKillFlag = true; 1085 } 1086 MO.setReg(LastCopiedReg); 1087 } 1088 } 1089 1090 // Update live variables for regB. 1091 if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi)) 1092 LV->addVirtualRegisterKilled(regB, prior(mi)); 1093 1094 } else if (RemovedKillFlag) { 1095 // Some tied uses of regB matched their destination registers, so 1096 // regB is still used in this instruction, but a kill flag was 1097 // removed from a different tied use of regB, so now we need to add 1098 // a kill flag to one of the remaining uses of regB. 1099 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { 1100 MachineOperand &MO = mi->getOperand(i); 1101 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) { 1102 MO.setIsKill(true); 1103 break; 1104 } 1105 } 1106 } 1107 1108 MadeChange = true; 1109 1110 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1111 } 1112 1113 // Clear TiedOperands here instead of at the top of the loop 1114 // since most instructions do not have tied operands. 1115 TiedOperands.clear(); 1116 mi = nmi; 1117 } 1118 } 1119 1120 // Some remat'ed instructions are dead. 1121 int VReg = ReMatRegs.find_first(); 1122 while (VReg != -1) { 1123 if (MRI->use_nodbg_empty(VReg)) { 1124 MachineInstr *DefMI = MRI->getVRegDef(VReg); 1125 DefMI->eraseFromParent(); 1126 } 1127 VReg = ReMatRegs.find_next(VReg); 1128 } 1129 1130 // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve 1131 // SSA form. It's now safe to de-SSA. 1132 MadeChange |= EliminateRegSequences(); 1133 1134 return MadeChange; 1135 } 1136 1137 static void UpdateRegSequenceSrcs(unsigned SrcReg, 1138 unsigned DstReg, unsigned SubIdx, 1139 MachineRegisterInfo *MRI, 1140 const TargetRegisterInfo &TRI) { 1141 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg), 1142 RE = MRI->reg_end(); RI != RE; ) { 1143 MachineOperand &MO = RI.getOperand(); 1144 ++RI; 1145 MO.substVirtReg(DstReg, SubIdx, TRI); 1146 } 1147 } 1148 1149 /// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are 1150 /// EXTRACT_SUBREG from the same register and to the same virtual register 1151 /// with different sub-register indices, attempt to combine the 1152 /// EXTRACT_SUBREGs and pre-coalesce them. e.g. 1153 /// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0 1154 /// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6 1155 /// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5 1156 /// Since D subregs 5, 6 can combine to a Q register, we can coalesce 1157 /// reg1026 to reg1029. 1158 void 1159 TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, 1160 unsigned DstReg) { 1161 SmallSet<unsigned, 4> Seen; 1162 for (unsigned i = 0, e = Srcs.size(); i != e; ++i) { 1163 unsigned SrcReg = Srcs[i]; 1164 if (!Seen.insert(SrcReg)) 1165 continue; 1166 1167 // Check that the instructions are all in the same basic block. 1168 MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg); 1169 MachineInstr *DstDefMI = MRI->getVRegDef(DstReg); 1170 if (SrcDefMI->getParent() != DstDefMI->getParent()) 1171 continue; 1172 1173 // If there are no other uses than extract_subreg which feed into 1174 // the reg_sequence, then we might be able to coalesce them. 1175 bool CanCoalesce = true; 1176 SmallVector<unsigned, 4> SubIndices; 1177 for (MachineRegisterInfo::use_nodbg_iterator 1178 UI = MRI->use_nodbg_begin(SrcReg), 1179 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 1180 MachineInstr *UseMI = &*UI; 1181 // FIXME: For now require that the destination subregs match the subregs 1182 // being extracted. 1183 if (!UseMI->isExtractSubreg() || 1184 UseMI->getOperand(0).getReg() != DstReg || 1185 UseMI->getOperand(0).getSubReg() != UseMI->getOperand(2).getImm() || 1186 UseMI->getOperand(1).getSubReg() != 0) { 1187 CanCoalesce = false; 1188 break; 1189 } 1190 SubIndices.push_back(UseMI->getOperand(2).getImm()); 1191 } 1192 1193 if (!CanCoalesce || SubIndices.size() < 2) 1194 continue; 1195 1196 // FIXME: For now require that the src and dst registers are in the 1197 // same regclass. 1198 if (MRI->getRegClass(SrcReg) != MRI->getRegClass(DstReg)) 1199 continue; 1200 1201 std::sort(SubIndices.begin(), SubIndices.end()); 1202 unsigned NewSubIdx = 0; 1203 if (TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SubIndices, 1204 NewSubIdx)) { 1205 bool Proceed = true; 1206 if (NewSubIdx) 1207 for (MachineRegisterInfo::reg_nodbg_iterator 1208 RI = MRI->reg_nodbg_begin(SrcReg), RE = MRI->reg_nodbg_end(); 1209 RI != RE; ) { 1210 MachineOperand &MO = RI.getOperand(); 1211 ++RI; 1212 // FIXME: If the sub-registers do not combine to the whole 1213 // super-register, i.e. NewSubIdx != 0, and any of the use has a 1214 // sub-register index, then abort the coalescing attempt. 1215 if (MO.getSubReg()) { 1216 Proceed = false; 1217 break; 1218 } 1219 } 1220 if (Proceed) 1221 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg), 1222 RE = MRI->reg_end(); RI != RE; ) { 1223 MachineOperand &MO = RI.getOperand(); 1224 ++RI; 1225 MO.setReg(DstReg); 1226 if (NewSubIdx) 1227 MO.setSubReg(NewSubIdx); 1228 } 1229 } 1230 } 1231 } 1232 1233 static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq, 1234 MachineRegisterInfo *MRI) { 1235 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg), 1236 UE = MRI->use_end(); UI != UE; ++UI) { 1237 MachineInstr *UseMI = &*UI; 1238 if (UseMI != RegSeq && UseMI->isRegSequence()) 1239 return true; 1240 } 1241 return false; 1242 } 1243 1244 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part 1245 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as 1246 /// sub-register references of the register defined by REG_SEQUENCE. e.g. 1247 /// 1248 /// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ... 1249 /// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6 1250 /// => 1251 /// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ... 1252 bool TwoAddressInstructionPass::EliminateRegSequences() { 1253 if (RegSequences.empty()) 1254 return false; 1255 1256 for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) { 1257 MachineInstr *MI = RegSequences[i]; 1258 unsigned DstReg = MI->getOperand(0).getReg(); 1259 if (MI->getOperand(0).getSubReg() || 1260 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1261 !(MI->getNumOperands() & 1)) { 1262 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); 1263 llvm_unreachable(0); 1264 } 1265 1266 bool IsImpDef = true; 1267 SmallVector<unsigned, 4> RealSrcs; 1268 SmallSet<unsigned, 4> Seen; 1269 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 1270 unsigned SrcReg = MI->getOperand(i).getReg(); 1271 if (MI->getOperand(i).getSubReg() || 1272 TargetRegisterInfo::isPhysicalRegister(SrcReg)) { 1273 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); 1274 llvm_unreachable(0); 1275 } 1276 1277 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 1278 if (DefMI->isImplicitDef()) { 1279 DefMI->eraseFromParent(); 1280 continue; 1281 } 1282 IsImpDef = false; 1283 1284 // Remember EXTRACT_SUBREG sources. These might be candidate for 1285 // coalescing. 1286 if (DefMI->isExtractSubreg()) 1287 RealSrcs.push_back(DefMI->getOperand(1).getReg()); 1288 1289 if (!Seen.insert(SrcReg) || 1290 MI->getParent() != DefMI->getParent() || 1291 !MI->getOperand(i).isKill() || 1292 HasOtherRegSequenceUses(SrcReg, MI, MRI)) { 1293 // REG_SEQUENCE cannot have duplicated operands, add a copy. 1294 // Also add an copy if the source is live-in the block. We don't want 1295 // to end up with a partial-redef of a livein, e.g. 1296 // BB0: 1297 // reg1051:10<def> = 1298 // ... 1299 // BB1: 1300 // ... = reg1051:10 1301 // BB2: 1302 // reg1051:9<def> = 1303 // LiveIntervalAnalysis won't like it. 1304 // 1305 // If the REG_SEQUENCE doesn't kill its source, keeping live variables 1306 // correctly up to date becomes very difficult. Insert a copy. 1307 // 1308 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 1309 unsigned NewReg = MRI->createVirtualRegister(RC); 1310 MachineBasicBlock::iterator InsertLoc = MI; 1311 bool Emitted = 1312 TII->copyRegToReg(*MI->getParent(), InsertLoc, NewReg, SrcReg, RC, RC, 1313 MI->getDebugLoc()); 1314 (void)Emitted; 1315 assert(Emitted && "Unable to issue a copy instruction!\n"); 1316 MI->getOperand(i).setReg(NewReg); 1317 if (MI->getOperand(i).isKill()) { 1318 MachineBasicBlock::iterator CopyMI = prior(InsertLoc); 1319 MachineOperand *KillMO = CopyMI->findRegisterUseOperand(SrcReg); 1320 KillMO->setIsKill(); 1321 if (LV) 1322 // Update live variables 1323 LV->replaceKillInstruction(SrcReg, MI, &*CopyMI); 1324 } 1325 } 1326 } 1327 1328 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 1329 unsigned SrcReg = MI->getOperand(i).getReg(); 1330 unsigned SubIdx = MI->getOperand(i+1).getImm(); 1331 UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI); 1332 } 1333 1334 if (IsImpDef) { 1335 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF"); 1336 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1337 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j) 1338 MI->RemoveOperand(j); 1339 } else { 1340 DEBUG(dbgs() << "Eliminated: " << *MI); 1341 MI->eraseFromParent(); 1342 } 1343 1344 // Try coalescing some EXTRACT_SUBREG instructions. 1345 CoalesceExtSubRegs(RealSrcs, DstReg); 1346 } 1347 1348 RegSequences.clear(); 1349 return true; 1350 } 1351