1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/ADT/BitVector.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallSet.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/MC/MCInstrItineraries.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetMachine.h" 51 #include "llvm/Target/TargetRegisterInfo.h" 52 #include "llvm/Target/TargetSubtargetInfo.h" 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "twoaddrinstr" 57 58 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 59 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 60 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 61 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 62 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 63 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 64 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 65 66 // Temporary flag to disable rescheduling. 67 static cl::opt<bool> 68 EnableRescheduling("twoaddr-reschedule", 69 cl::desc("Coalesce copies by rescheduling (default=true)"), 70 cl::init(true), cl::Hidden); 71 72 namespace { 73 class TwoAddressInstructionPass : public MachineFunctionPass { 74 MachineFunction *MF; 75 const TargetInstrInfo *TII; 76 const TargetRegisterInfo *TRI; 77 const InstrItineraryData *InstrItins; 78 MachineRegisterInfo *MRI; 79 LiveVariables *LV; 80 LiveIntervals *LIS; 81 AliasAnalysis *AA; 82 CodeGenOpt::Level OptLevel; 83 84 // The current basic block being processed. 85 MachineBasicBlock *MBB; 86 87 // Keep track the distance of a MI from the start of the current basic block. 88 DenseMap<MachineInstr*, unsigned> DistanceMap; 89 90 // Set of already processed instructions in the current block. 91 SmallPtrSet<MachineInstr*, 8> Processed; 92 93 // A map from virtual registers to physical registers which are likely targets 94 // to be coalesced to due to copies from physical registers to virtual 95 // registers. e.g. v1024 = move r0. 96 DenseMap<unsigned, unsigned> SrcRegMap; 97 98 // A map from virtual registers to physical registers which are likely targets 99 // to be coalesced to due to copies to physical registers from virtual 100 // registers. e.g. r1 = move v1024. 101 DenseMap<unsigned, unsigned> DstRegMap; 102 103 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, 104 MachineBasicBlock::iterator OldPos); 105 106 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen); 107 108 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 109 110 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 111 MachineInstr *MI, unsigned Dist); 112 113 bool commuteInstruction(MachineInstr *MI, 114 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 115 116 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 117 118 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 119 MachineBasicBlock::iterator &nmi, 120 unsigned RegA, unsigned RegB, unsigned Dist); 121 122 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 123 124 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 125 MachineBasicBlock::iterator &nmi, 126 unsigned Reg); 127 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 128 MachineBasicBlock::iterator &nmi, 129 unsigned Reg); 130 131 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 132 MachineBasicBlock::iterator &nmi, 133 unsigned SrcIdx, unsigned DstIdx, 134 unsigned Dist, bool shouldOnlyCommute); 135 136 bool tryInstructionCommute(MachineInstr *MI, 137 unsigned DstOpIdx, 138 unsigned BaseOpIdx, 139 bool BaseOpKilled, 140 unsigned Dist); 141 void scanUses(unsigned DstReg); 142 143 void processCopy(MachineInstr *MI); 144 145 typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList; 146 typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap; 147 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 148 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 149 void eliminateRegSequence(MachineBasicBlock::iterator&); 150 151 public: 152 static char ID; // Pass identification, replacement for typeid 153 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 154 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 155 } 156 157 void getAnalysisUsage(AnalysisUsage &AU) const override { 158 AU.setPreservesCFG(); 159 AU.addRequired<AAResultsWrapperPass>(); 160 AU.addPreserved<LiveVariables>(); 161 AU.addPreserved<SlotIndexes>(); 162 AU.addPreserved<LiveIntervals>(); 163 AU.addPreservedID(MachineLoopInfoID); 164 AU.addPreservedID(MachineDominatorsID); 165 MachineFunctionPass::getAnalysisUsage(AU); 166 } 167 168 /// Pass entry point. 169 bool runOnMachineFunction(MachineFunction&) override; 170 }; 171 } // end anonymous namespace 172 173 char TwoAddressInstructionPass::ID = 0; 174 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction", 175 "Two-Address instruction pass", false, false) 176 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 177 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction", 178 "Two-Address instruction pass", false, false) 179 180 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 181 182 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 183 184 /// A two-address instruction has been converted to a three-address instruction 185 /// to avoid clobbering a register. Try to sink it past the instruction that 186 /// would kill the above mentioned register to reduce register pressure. 187 bool TwoAddressInstructionPass:: 188 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, 189 MachineBasicBlock::iterator OldPos) { 190 // FIXME: Shouldn't we be trying to do this before we three-addressify the 191 // instruction? After this transformation is done, we no longer need 192 // the instruction to be in three-address form. 193 194 // Check if it's safe to move this instruction. 195 bool SeenStore = true; // Be conservative. 196 if (!MI->isSafeToMove(AA, SeenStore)) 197 return false; 198 199 unsigned DefReg = 0; 200 SmallSet<unsigned, 4> UseRegs; 201 202 for (const MachineOperand &MO : MI->operands()) { 203 if (!MO.isReg()) 204 continue; 205 unsigned MOReg = MO.getReg(); 206 if (!MOReg) 207 continue; 208 if (MO.isUse() && MOReg != SavedReg) 209 UseRegs.insert(MO.getReg()); 210 if (!MO.isDef()) 211 continue; 212 if (MO.isImplicit()) 213 // Don't try to move it if it implicitly defines a register. 214 return false; 215 if (DefReg) 216 // For now, don't move any instructions that define multiple registers. 217 return false; 218 DefReg = MO.getReg(); 219 } 220 221 // Find the instruction that kills SavedReg. 222 MachineInstr *KillMI = nullptr; 223 if (LIS) { 224 LiveInterval &LI = LIS->getInterval(SavedReg); 225 assert(LI.end() != LI.begin() && 226 "Reg should not have empty live interval."); 227 228 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 229 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 230 if (I != LI.end() && I->start < MBBEndIdx) 231 return false; 232 233 --I; 234 KillMI = LIS->getInstructionFromIndex(I->end); 235 } 236 if (!KillMI) { 237 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) { 238 if (!UseMO.isKill()) 239 continue; 240 KillMI = UseMO.getParent(); 241 break; 242 } 243 } 244 245 // If we find the instruction that kills SavedReg, and it is in an 246 // appropriate location, we can try to sink the current instruction 247 // past it. 248 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 249 KillMI == OldPos || KillMI->isTerminator()) 250 return false; 251 252 // If any of the definitions are used by another instruction between the 253 // position and the kill use, then it's not safe to sink it. 254 // 255 // FIXME: This can be sped up if there is an easy way to query whether an 256 // instruction is before or after another instruction. Then we can use 257 // MachineRegisterInfo def / use instead. 258 MachineOperand *KillMO = nullptr; 259 MachineBasicBlock::iterator KillPos = KillMI; 260 ++KillPos; 261 262 unsigned NumVisited = 0; 263 for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) { 264 MachineInstr *OtherMI = I; 265 // DBG_VALUE cannot be counted against the limit. 266 if (OtherMI->isDebugValue()) 267 continue; 268 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 269 return false; 270 ++NumVisited; 271 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 272 MachineOperand &MO = OtherMI->getOperand(i); 273 if (!MO.isReg()) 274 continue; 275 unsigned MOReg = MO.getReg(); 276 if (!MOReg) 277 continue; 278 if (DefReg == MOReg) 279 return false; 280 281 if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) { 282 if (OtherMI == KillMI && MOReg == SavedReg) 283 // Save the operand that kills the register. We want to unset the kill 284 // marker if we can sink MI past it. 285 KillMO = &MO; 286 else if (UseRegs.count(MOReg)) 287 // One of the uses is killed before the destination. 288 return false; 289 } 290 } 291 } 292 assert(KillMO && "Didn't find kill"); 293 294 if (!LIS) { 295 // Update kill and LV information. 296 KillMO->setIsKill(false); 297 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 298 KillMO->setIsKill(true); 299 300 if (LV) 301 LV->replaceKillInstruction(SavedReg, KillMI, MI); 302 } 303 304 // Move instruction to its destination. 305 MBB->remove(MI); 306 MBB->insert(KillPos, MI); 307 308 if (LIS) 309 LIS->handleMove(*MI); 310 311 ++Num3AddrSunk; 312 return true; 313 } 314 315 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 316 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB, 317 const MachineRegisterInfo *MRI) { 318 MachineInstr *Ret = nullptr; 319 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 320 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 321 continue; 322 if (!Ret) 323 Ret = &DefMI; 324 else if (Ret != &DefMI) 325 return nullptr; 326 } 327 return Ret; 328 } 329 330 /// Check if there is a reversed copy chain from FromReg to ToReg: 331 /// %Tmp1 = copy %Tmp2; 332 /// %FromReg = copy %Tmp1; 333 /// %ToReg = add %FromReg ... 334 /// %Tmp2 = copy %ToReg; 335 /// MaxLen specifies the maximum length of the copy chain the func 336 /// can walk through. 337 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg, 338 int Maxlen) { 339 unsigned TmpReg = FromReg; 340 for (int i = 0; i < Maxlen; i++) { 341 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 342 if (!Def || !Def->isCopy()) 343 return false; 344 345 TmpReg = Def->getOperand(1).getReg(); 346 347 if (TmpReg == ToReg) 348 return true; 349 } 350 return false; 351 } 352 353 /// Return true if there are no intervening uses between the last instruction 354 /// in the MBB that defines the specified register and the two-address 355 /// instruction which is being processed. It also returns the last def location 356 /// by reference. 357 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 358 unsigned &LastDef) { 359 LastDef = 0; 360 unsigned LastUse = Dist; 361 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 362 MachineInstr *MI = MO.getParent(); 363 if (MI->getParent() != MBB || MI->isDebugValue()) 364 continue; 365 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 366 if (DI == DistanceMap.end()) 367 continue; 368 if (MO.isUse() && DI->second < LastUse) 369 LastUse = DI->second; 370 if (MO.isDef() && DI->second > LastDef) 371 LastDef = DI->second; 372 } 373 374 return !(LastUse > LastDef && LastUse < Dist); 375 } 376 377 /// Return true if the specified MI is a copy instruction or an extract_subreg 378 /// instruction. It also returns the source and destination registers and 379 /// whether they are physical registers by reference. 380 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 381 unsigned &SrcReg, unsigned &DstReg, 382 bool &IsSrcPhys, bool &IsDstPhys) { 383 SrcReg = 0; 384 DstReg = 0; 385 if (MI.isCopy()) { 386 DstReg = MI.getOperand(0).getReg(); 387 SrcReg = MI.getOperand(1).getReg(); 388 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 389 DstReg = MI.getOperand(0).getReg(); 390 SrcReg = MI.getOperand(2).getReg(); 391 } else 392 return false; 393 394 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 395 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 396 return true; 397 } 398 399 /// Test if the given register value, which is used by the 400 /// given instruction, is killed by the given instruction. 401 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 402 LiveIntervals *LIS) { 403 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && 404 !LIS->isNotInMIMap(*MI)) { 405 // FIXME: Sometimes tryInstructionTransform() will add instructions and 406 // test whether they can be folded before keeping them. In this case it 407 // sets a kill before recursively calling tryInstructionTransform() again. 408 // If there is no interval available, we assume that this instruction is 409 // one of those. A kill flag is manually inserted on the operand so the 410 // check below will handle it. 411 LiveInterval &LI = LIS->getInterval(Reg); 412 // This is to match the kill flag version where undefs don't have kill 413 // flags. 414 if (!LI.hasAtLeastOneValue()) 415 return false; 416 417 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 418 LiveInterval::const_iterator I = LI.find(useIdx); 419 assert(I != LI.end() && "Reg must be live-in to use."); 420 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 421 } 422 423 return MI->killsRegister(Reg); 424 } 425 426 /// Test if the given register value, which is used by the given 427 /// instruction, is killed by the given instruction. This looks through 428 /// coalescable copies to see if the original value is potentially not killed. 429 /// 430 /// For example, in this code: 431 /// 432 /// %reg1034 = copy %reg1024 433 /// %reg1035 = copy %reg1025<kill> 434 /// %reg1036 = add %reg1034<kill>, %reg1035<kill> 435 /// 436 /// %reg1034 is not considered to be killed, since it is copied from a 437 /// register which is not killed. Treating it as not killed lets the 438 /// normal heuristics commute the (two-address) add, which lets 439 /// coalescing eliminate the extra copy. 440 /// 441 /// If allowFalsePositives is true then likely kills are treated as kills even 442 /// if it can't be proven that they are kills. 443 static bool isKilled(MachineInstr &MI, unsigned Reg, 444 const MachineRegisterInfo *MRI, 445 const TargetInstrInfo *TII, 446 LiveIntervals *LIS, 447 bool allowFalsePositives) { 448 MachineInstr *DefMI = &MI; 449 for (;;) { 450 // All uses of physical registers are likely to be kills. 451 if (TargetRegisterInfo::isPhysicalRegister(Reg) && 452 (allowFalsePositives || MRI->hasOneUse(Reg))) 453 return true; 454 if (!isPlainlyKilled(DefMI, Reg, LIS)) 455 return false; 456 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 457 return true; 458 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 459 // If there are multiple defs, we can't do a simple analysis, so just 460 // go with what the kill flag says. 461 if (std::next(Begin) != MRI->def_end()) 462 return true; 463 DefMI = Begin->getParent(); 464 bool IsSrcPhys, IsDstPhys; 465 unsigned SrcReg, DstReg; 466 // If the def is something other than a copy, then it isn't going to 467 // be coalesced, so follow the kill flag. 468 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 469 return true; 470 Reg = SrcReg; 471 } 472 } 473 474 /// Return true if the specified MI uses the specified register as a two-address 475 /// use. If so, return the destination register by reference. 476 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 477 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 478 const MachineOperand &MO = MI.getOperand(i); 479 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 480 continue; 481 unsigned ti; 482 if (MI.isRegTiedToDefOperand(i, &ti)) { 483 DstReg = MI.getOperand(ti).getReg(); 484 return true; 485 } 486 } 487 return false; 488 } 489 490 /// Given a register, if has a single in-basic block use, return the use 491 /// instruction if it's a copy or a two-address use. 492 static 493 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 494 MachineRegisterInfo *MRI, 495 const TargetInstrInfo *TII, 496 bool &IsCopy, 497 unsigned &DstReg, bool &IsDstPhys) { 498 if (!MRI->hasOneNonDBGUse(Reg)) 499 // None or more than one use. 500 return nullptr; 501 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 502 if (UseMI.getParent() != MBB) 503 return nullptr; 504 unsigned SrcReg; 505 bool IsSrcPhys; 506 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 507 IsCopy = true; 508 return &UseMI; 509 } 510 IsDstPhys = false; 511 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 512 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 513 return &UseMI; 514 } 515 return nullptr; 516 } 517 518 /// Return the physical register the specified virtual register might be mapped 519 /// to. 520 static unsigned 521 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 522 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 523 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 524 if (SI == RegMap.end()) 525 return 0; 526 Reg = SI->second; 527 } 528 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 529 return Reg; 530 return 0; 531 } 532 533 /// Return true if the two registers are equal or aliased. 534 static bool 535 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 536 if (RegA == RegB) 537 return true; 538 if (!RegA || !RegB) 539 return false; 540 return TRI->regsOverlap(RegA, RegB); 541 } 542 543 /// Return true if it's potentially profitable to commute the two-address 544 /// instruction that's being processed. 545 bool 546 TwoAddressInstructionPass:: 547 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 548 MachineInstr *MI, unsigned Dist) { 549 if (OptLevel == CodeGenOpt::None) 550 return false; 551 552 // Determine if it's profitable to commute this two address instruction. In 553 // general, we want no uses between this instruction and the definition of 554 // the two-address register. 555 // e.g. 556 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 557 // %reg1029<def> = MOV8rr %reg1028 558 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 559 // insert => %reg1030<def> = MOV8rr %reg1028 560 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 561 // In this case, it might not be possible to coalesce the second MOV8rr 562 // instruction if the first one is coalesced. So it would be profitable to 563 // commute it: 564 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 565 // %reg1029<def> = MOV8rr %reg1028 566 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 567 // insert => %reg1030<def> = MOV8rr %reg1029 568 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 569 570 if (!isPlainlyKilled(MI, regC, LIS)) 571 return false; 572 573 // Ok, we have something like: 574 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 575 // let's see if it's worth commuting it. 576 577 // Look for situations like this: 578 // %reg1024<def> = MOV r1 579 // %reg1025<def> = MOV r0 580 // %reg1026<def> = ADD %reg1024, %reg1025 581 // r0 = MOV %reg1026 582 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 583 unsigned ToRegA = getMappedReg(regA, DstRegMap); 584 if (ToRegA) { 585 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 586 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 587 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 588 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 589 590 // Compute if any of the following are true: 591 // -RegB is not tied to a register and RegC is compatible with RegA. 592 // -RegB is tied to the wrong physical register, but RegC is. 593 // -RegB is tied to the wrong physical register, and RegC isn't tied. 594 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 595 return true; 596 // Don't compute if any of the following are true: 597 // -RegC is not tied to a register and RegB is compatible with RegA. 598 // -RegC is tied to the wrong physical register, but RegB is. 599 // -RegC is tied to the wrong physical register, and RegB isn't tied. 600 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 601 return false; 602 } 603 604 // If there is a use of regC between its last def (could be livein) and this 605 // instruction, then bail. 606 unsigned LastDefC = 0; 607 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 608 return false; 609 610 // If there is a use of regB between its last def (could be livein) and this 611 // instruction, then go ahead and make this transformation. 612 unsigned LastDefB = 0; 613 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 614 return true; 615 616 // Look for situation like this: 617 // %reg101 = MOV %reg100 618 // %reg102 = ... 619 // %reg103 = ADD %reg102, %reg101 620 // ... = %reg103 ... 621 // %reg100 = MOV %reg103 622 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 623 // to eliminate an otherwise unavoidable copy. 624 // FIXME: 625 // We can extend the logic further: If an pair of operands in an insn has 626 // been merged, the insn could be regarded as a virtual copy, and the virtual 627 // copy could also be used to construct a copy chain. 628 // To more generally minimize register copies, ideally the logic of two addr 629 // instruction pass should be integrated with register allocation pass where 630 // interference graph is available. 631 if (isRevCopyChain(regC, regA, 3)) 632 return true; 633 634 if (isRevCopyChain(regB, regA, 3)) 635 return false; 636 637 // Since there are no intervening uses for both registers, then commute 638 // if the def of regC is closer. Its live interval is shorter. 639 return LastDefB && LastDefC && LastDefC > LastDefB; 640 } 641 642 /// Commute a two-address instruction and update the basic block, distance map, 643 /// and live variables if needed. Return true if it is successful. 644 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 645 unsigned RegBIdx, 646 unsigned RegCIdx, 647 unsigned Dist) { 648 unsigned RegC = MI->getOperand(RegCIdx).getReg(); 649 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 650 MachineInstr *NewMI = TII->commuteInstruction(MI, false, RegBIdx, RegCIdx); 651 652 if (NewMI == nullptr) { 653 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 654 return false; 655 } 656 657 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 658 assert(NewMI == MI && 659 "TargetInstrInfo::commuteInstruction() should not return a new " 660 "instruction unless it was requested."); 661 662 // Update source register map. 663 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 664 if (FromRegC) { 665 unsigned RegA = MI->getOperand(0).getReg(); 666 SrcRegMap[RegA] = FromRegC; 667 } 668 669 return true; 670 } 671 672 /// Return true if it is profitable to convert the given 2-address instruction 673 /// to a 3-address one. 674 bool 675 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 676 // Look for situations like this: 677 // %reg1024<def> = MOV r1 678 // %reg1025<def> = MOV r0 679 // %reg1026<def> = ADD %reg1024, %reg1025 680 // r2 = MOV %reg1026 681 // Turn ADD into a 3-address instruction to avoid a copy. 682 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 683 if (!FromRegB) 684 return false; 685 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 686 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 687 } 688 689 /// Convert the specified two-address instruction into a three address one. 690 /// Return true if this transformation was successful. 691 bool 692 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 693 MachineBasicBlock::iterator &nmi, 694 unsigned RegA, unsigned RegB, 695 unsigned Dist) { 696 // FIXME: Why does convertToThreeAddress() need an iterator reference? 697 MachineFunction::iterator MFI = MBB->getIterator(); 698 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV); 699 assert(MBB->getIterator() == MFI && 700 "convertToThreeAddress changed iterator reference"); 701 if (!NewMI) 702 return false; 703 704 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 705 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 706 bool Sunk = false; 707 708 if (LIS) 709 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); 710 711 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 712 // FIXME: Temporary workaround. If the new instruction doesn't 713 // uses RegB, convertToThreeAddress must have created more 714 // then one instruction. 715 Sunk = sink3AddrInstruction(NewMI, RegB, mi); 716 717 MBB->erase(mi); // Nuke the old inst. 718 719 if (!Sunk) { 720 DistanceMap.insert(std::make_pair(NewMI, Dist)); 721 mi = NewMI; 722 nmi = std::next(mi); 723 } 724 725 // Update source and destination register maps. 726 SrcRegMap.erase(RegA); 727 DstRegMap.erase(RegB); 728 return true; 729 } 730 731 /// Scan forward recursively for only uses, update maps if the use is a copy or 732 /// a two-address instruction. 733 void 734 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 735 SmallVector<unsigned, 4> VirtRegPairs; 736 bool IsDstPhys; 737 bool IsCopy = false; 738 unsigned NewReg = 0; 739 unsigned Reg = DstReg; 740 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 741 NewReg, IsDstPhys)) { 742 if (IsCopy && !Processed.insert(UseMI).second) 743 break; 744 745 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 746 if (DI != DistanceMap.end()) 747 // Earlier in the same MBB.Reached via a back edge. 748 break; 749 750 if (IsDstPhys) { 751 VirtRegPairs.push_back(NewReg); 752 break; 753 } 754 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 755 if (!isNew) 756 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 757 VirtRegPairs.push_back(NewReg); 758 Reg = NewReg; 759 } 760 761 if (!VirtRegPairs.empty()) { 762 unsigned ToReg = VirtRegPairs.back(); 763 VirtRegPairs.pop_back(); 764 while (!VirtRegPairs.empty()) { 765 unsigned FromReg = VirtRegPairs.back(); 766 VirtRegPairs.pop_back(); 767 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 768 if (!isNew) 769 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 770 ToReg = FromReg; 771 } 772 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 773 if (!isNew) 774 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 775 } 776 } 777 778 /// If the specified instruction is not yet processed, process it if it's a 779 /// copy. For a copy instruction, we find the physical registers the 780 /// source and destination registers might be mapped to. These are kept in 781 /// point-to maps used to determine future optimizations. e.g. 782 /// v1024 = mov r0 783 /// v1025 = mov r1 784 /// v1026 = add v1024, v1025 785 /// r1 = mov r1026 786 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 787 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 788 /// potentially joined with r1 on the output side. It's worthwhile to commute 789 /// 'add' to eliminate a copy. 790 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 791 if (Processed.count(MI)) 792 return; 793 794 bool IsSrcPhys, IsDstPhys; 795 unsigned SrcReg, DstReg; 796 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 797 return; 798 799 if (IsDstPhys && !IsSrcPhys) 800 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 801 else if (!IsDstPhys && IsSrcPhys) { 802 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 803 if (!isNew) 804 assert(SrcRegMap[DstReg] == SrcReg && 805 "Can't map to two src physical registers!"); 806 807 scanUses(DstReg); 808 } 809 810 Processed.insert(MI); 811 } 812 813 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 814 /// consider moving the instruction below the kill instruction in order to 815 /// eliminate the need for the copy. 816 bool TwoAddressInstructionPass:: 817 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 818 MachineBasicBlock::iterator &nmi, 819 unsigned Reg) { 820 // Bail immediately if we don't have LV or LIS available. We use them to find 821 // kills efficiently. 822 if (!LV && !LIS) 823 return false; 824 825 MachineInstr *MI = &*mi; 826 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 827 if (DI == DistanceMap.end()) 828 // Must be created from unfolded load. Don't waste time trying this. 829 return false; 830 831 MachineInstr *KillMI = nullptr; 832 if (LIS) { 833 LiveInterval &LI = LIS->getInterval(Reg); 834 assert(LI.end() != LI.begin() && 835 "Reg should not have empty live interval."); 836 837 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 838 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 839 if (I != LI.end() && I->start < MBBEndIdx) 840 return false; 841 842 --I; 843 KillMI = LIS->getInstructionFromIndex(I->end); 844 } else { 845 KillMI = LV->getVarInfo(Reg).findKill(MBB); 846 } 847 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 848 // Don't mess with copies, they may be coalesced later. 849 return false; 850 851 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 852 KillMI->isBranch() || KillMI->isTerminator()) 853 // Don't move pass calls, etc. 854 return false; 855 856 unsigned DstReg; 857 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 858 return false; 859 860 bool SeenStore = true; 861 if (!MI->isSafeToMove(AA, SeenStore)) 862 return false; 863 864 if (TII->getInstrLatency(InstrItins, MI) > 1) 865 // FIXME: Needs more sophisticated heuristics. 866 return false; 867 868 SmallSet<unsigned, 2> Uses; 869 SmallSet<unsigned, 2> Kills; 870 SmallSet<unsigned, 2> Defs; 871 for (const MachineOperand &MO : MI->operands()) { 872 if (!MO.isReg()) 873 continue; 874 unsigned MOReg = MO.getReg(); 875 if (!MOReg) 876 continue; 877 if (MO.isDef()) 878 Defs.insert(MOReg); 879 else { 880 Uses.insert(MOReg); 881 if (MOReg != Reg && (MO.isKill() || 882 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 883 Kills.insert(MOReg); 884 } 885 } 886 887 // Move the copies connected to MI down as well. 888 MachineBasicBlock::iterator Begin = MI; 889 MachineBasicBlock::iterator AfterMI = std::next(Begin); 890 891 MachineBasicBlock::iterator End = AfterMI; 892 while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) { 893 Defs.insert(End->getOperand(0).getReg()); 894 ++End; 895 } 896 897 // Check if the reschedule will not break depedencies. 898 unsigned NumVisited = 0; 899 MachineBasicBlock::iterator KillPos = KillMI; 900 ++KillPos; 901 for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) { 902 MachineInstr *OtherMI = I; 903 // DBG_VALUE cannot be counted against the limit. 904 if (OtherMI->isDebugValue()) 905 continue; 906 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 907 return false; 908 ++NumVisited; 909 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 910 OtherMI->isBranch() || OtherMI->isTerminator()) 911 // Don't move pass calls, etc. 912 return false; 913 for (const MachineOperand &MO : OtherMI->operands()) { 914 if (!MO.isReg()) 915 continue; 916 unsigned MOReg = MO.getReg(); 917 if (!MOReg) 918 continue; 919 if (MO.isDef()) { 920 if (Uses.count(MOReg)) 921 // Physical register use would be clobbered. 922 return false; 923 if (!MO.isDead() && Defs.count(MOReg)) 924 // May clobber a physical register def. 925 // FIXME: This may be too conservative. It's ok if the instruction 926 // is sunken completely below the use. 927 return false; 928 } else { 929 if (Defs.count(MOReg)) 930 return false; 931 bool isKill = MO.isKill() || 932 (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)); 933 if (MOReg != Reg && 934 ((isKill && Uses.count(MOReg)) || Kills.count(MOReg))) 935 // Don't want to extend other live ranges and update kills. 936 return false; 937 if (MOReg == Reg && !isKill) 938 // We can't schedule across a use of the register in question. 939 return false; 940 // Ensure that if this is register in question, its the kill we expect. 941 assert((MOReg != Reg || OtherMI == KillMI) && 942 "Found multiple kills of a register in a basic block"); 943 } 944 } 945 } 946 947 // Move debug info as well. 948 while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue()) 949 --Begin; 950 951 nmi = End; 952 MachineBasicBlock::iterator InsertPos = KillPos; 953 if (LIS) { 954 // We have to move the copies first so that the MBB is still well-formed 955 // when calling handleMove(). 956 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 957 MachineInstr *CopyMI = MBBI; 958 ++MBBI; 959 MBB->splice(InsertPos, MBB, CopyMI); 960 LIS->handleMove(*CopyMI); 961 InsertPos = CopyMI; 962 } 963 End = std::next(MachineBasicBlock::iterator(MI)); 964 } 965 966 // Copies following MI may have been moved as well. 967 MBB->splice(InsertPos, MBB, Begin, End); 968 DistanceMap.erase(DI); 969 970 // Update live variables 971 if (LIS) { 972 LIS->handleMove(*MI); 973 } else { 974 LV->removeVirtualRegisterKilled(Reg, KillMI); 975 LV->addVirtualRegisterKilled(Reg, MI); 976 } 977 978 DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 979 return true; 980 } 981 982 /// Return true if the re-scheduling will put the given instruction too close 983 /// to the defs of its register dependencies. 984 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 985 MachineInstr *MI) { 986 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 987 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 988 continue; 989 if (&DefMI == MI) 990 return true; // MI is defining something KillMI uses 991 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 992 if (DDI == DistanceMap.end()) 993 return true; // Below MI 994 unsigned DefDist = DDI->second; 995 assert(Dist > DefDist && "Visited def already?"); 996 if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist)) 997 return true; 998 } 999 return false; 1000 } 1001 1002 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 1003 /// consider moving the kill instruction above the current two-address 1004 /// instruction in order to eliminate the need for the copy. 1005 bool TwoAddressInstructionPass:: 1006 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 1007 MachineBasicBlock::iterator &nmi, 1008 unsigned Reg) { 1009 // Bail immediately if we don't have LV or LIS available. We use them to find 1010 // kills efficiently. 1011 if (!LV && !LIS) 1012 return false; 1013 1014 MachineInstr *MI = &*mi; 1015 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1016 if (DI == DistanceMap.end()) 1017 // Must be created from unfolded load. Don't waste time trying this. 1018 return false; 1019 1020 MachineInstr *KillMI = nullptr; 1021 if (LIS) { 1022 LiveInterval &LI = LIS->getInterval(Reg); 1023 assert(LI.end() != LI.begin() && 1024 "Reg should not have empty live interval."); 1025 1026 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1027 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1028 if (I != LI.end() && I->start < MBBEndIdx) 1029 return false; 1030 1031 --I; 1032 KillMI = LIS->getInstructionFromIndex(I->end); 1033 } else { 1034 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1035 } 1036 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1037 // Don't mess with copies, they may be coalesced later. 1038 return false; 1039 1040 unsigned DstReg; 1041 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1042 return false; 1043 1044 bool SeenStore = true; 1045 if (!KillMI->isSafeToMove(AA, SeenStore)) 1046 return false; 1047 1048 SmallSet<unsigned, 2> Uses; 1049 SmallSet<unsigned, 2> Kills; 1050 SmallSet<unsigned, 2> Defs; 1051 SmallSet<unsigned, 2> LiveDefs; 1052 for (const MachineOperand &MO : KillMI->operands()) { 1053 if (!MO.isReg()) 1054 continue; 1055 unsigned MOReg = MO.getReg(); 1056 if (MO.isUse()) { 1057 if (!MOReg) 1058 continue; 1059 if (isDefTooClose(MOReg, DI->second, MI)) 1060 return false; 1061 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1062 if (MOReg == Reg && !isKill) 1063 return false; 1064 Uses.insert(MOReg); 1065 if (isKill && MOReg != Reg) 1066 Kills.insert(MOReg); 1067 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1068 Defs.insert(MOReg); 1069 if (!MO.isDead()) 1070 LiveDefs.insert(MOReg); 1071 } 1072 } 1073 1074 // Check if the reschedule will not break depedencies. 1075 unsigned NumVisited = 0; 1076 MachineBasicBlock::iterator KillPos = KillMI; 1077 for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) { 1078 MachineInstr *OtherMI = I; 1079 // DBG_VALUE cannot be counted against the limit. 1080 if (OtherMI->isDebugValue()) 1081 continue; 1082 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1083 return false; 1084 ++NumVisited; 1085 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 1086 OtherMI->isBranch() || OtherMI->isTerminator()) 1087 // Don't move pass calls, etc. 1088 return false; 1089 SmallVector<unsigned, 2> OtherDefs; 1090 for (const MachineOperand &MO : OtherMI->operands()) { 1091 if (!MO.isReg()) 1092 continue; 1093 unsigned MOReg = MO.getReg(); 1094 if (!MOReg) 1095 continue; 1096 if (MO.isUse()) { 1097 if (Defs.count(MOReg)) 1098 // Moving KillMI can clobber the physical register if the def has 1099 // not been seen. 1100 return false; 1101 if (Kills.count(MOReg)) 1102 // Don't want to extend other live ranges and update kills. 1103 return false; 1104 if (OtherMI != MI && MOReg == Reg && 1105 !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)))) 1106 // We can't schedule across a use of the register in question. 1107 return false; 1108 } else { 1109 OtherDefs.push_back(MOReg); 1110 } 1111 } 1112 1113 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1114 unsigned MOReg = OtherDefs[i]; 1115 if (Uses.count(MOReg)) 1116 return false; 1117 if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 1118 LiveDefs.count(MOReg)) 1119 return false; 1120 // Physical register def is seen. 1121 Defs.erase(MOReg); 1122 } 1123 } 1124 1125 // Move the old kill above MI, don't forget to move debug info as well. 1126 MachineBasicBlock::iterator InsertPos = mi; 1127 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue()) 1128 --InsertPos; 1129 MachineBasicBlock::iterator From = KillMI; 1130 MachineBasicBlock::iterator To = std::next(From); 1131 while (std::prev(From)->isDebugValue()) 1132 --From; 1133 MBB->splice(InsertPos, MBB, From, To); 1134 1135 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1136 DistanceMap.erase(DI); 1137 1138 // Update live variables 1139 if (LIS) { 1140 LIS->handleMove(*KillMI); 1141 } else { 1142 LV->removeVirtualRegisterKilled(Reg, KillMI); 1143 LV->addVirtualRegisterKilled(Reg, MI); 1144 } 1145 1146 DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1147 return true; 1148 } 1149 1150 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1151 /// given machine instruction to improve opportunities for coalescing and 1152 /// elimination of a register to register copy. 1153 /// 1154 /// 'DstOpIdx' specifies the index of MI def operand. 1155 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1156 /// operand is killed by the given instruction. 1157 /// The 'Dist' arguments provides the distance of MI from the start of the 1158 /// current basic block and it is used to determine if it is profitable 1159 /// to commute operands in the instruction. 1160 /// 1161 /// Returns true if the transformation happened. Otherwise, returns false. 1162 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1163 unsigned DstOpIdx, 1164 unsigned BaseOpIdx, 1165 bool BaseOpKilled, 1166 unsigned Dist) { 1167 unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1168 unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1169 unsigned OpsNum = MI->getDesc().getNumOperands(); 1170 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1171 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1172 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1173 // and OtherOpIdx are commutable, it does not really search for 1174 // other commutable operands and does not change the values of passed 1175 // variables. 1176 if (OtherOpIdx == BaseOpIdx || 1177 !TII->findCommutedOpIndices(MI, BaseOpIdx, OtherOpIdx)) 1178 continue; 1179 1180 unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1181 bool AggressiveCommute = false; 1182 1183 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1184 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1185 bool DoCommute = 1186 !BaseOpKilled && isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1187 1188 if (!DoCommute && 1189 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1190 DoCommute = true; 1191 AggressiveCommute = true; 1192 } 1193 1194 // If it's profitable to commute, try to do so. 1195 if (DoCommute && commuteInstruction(MI, BaseOpIdx, OtherOpIdx, Dist)) { 1196 ++NumCommuted; 1197 if (AggressiveCommute) 1198 ++NumAggrCommuted; 1199 return true; 1200 } 1201 } 1202 return false; 1203 } 1204 1205 /// For the case where an instruction has a single pair of tied register 1206 /// operands, attempt some transformations that may either eliminate the tied 1207 /// operands or improve the opportunities for coalescing away the register copy. 1208 /// Returns true if no copy needs to be inserted to untie mi's operands 1209 /// (either because they were untied, or because mi was rescheduled, and will 1210 /// be visited again later). If the shouldOnlyCommute flag is true, only 1211 /// instruction commutation is attempted. 1212 bool TwoAddressInstructionPass:: 1213 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1214 MachineBasicBlock::iterator &nmi, 1215 unsigned SrcIdx, unsigned DstIdx, 1216 unsigned Dist, bool shouldOnlyCommute) { 1217 if (OptLevel == CodeGenOpt::None) 1218 return false; 1219 1220 MachineInstr &MI = *mi; 1221 unsigned regA = MI.getOperand(DstIdx).getReg(); 1222 unsigned regB = MI.getOperand(SrcIdx).getReg(); 1223 1224 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1225 "cannot make instruction into two-address form"); 1226 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1227 1228 if (TargetRegisterInfo::isVirtualRegister(regA)) 1229 scanUses(regA); 1230 1231 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1232 1233 // If the instruction is convertible to 3 Addr, instead 1234 // of returning try 3 Addr transformation aggresively and 1235 // use this variable to check later. Because it might be better. 1236 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1237 // instead of the following code. 1238 // addl %esi, %edi 1239 // movl %edi, %eax 1240 // ret 1241 if (Commuted && !MI.isConvertibleTo3Addr()) 1242 return false; 1243 1244 if (shouldOnlyCommute) 1245 return false; 1246 1247 // If there is one more use of regB later in the same MBB, consider 1248 // re-schedule this MI below it. 1249 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1250 ++NumReSchedDowns; 1251 return true; 1252 } 1253 1254 // If we commuted, regB may have changed so we should re-sample it to avoid 1255 // confusing the three address conversion below. 1256 if (Commuted) { 1257 regB = MI.getOperand(SrcIdx).getReg(); 1258 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1259 } 1260 1261 if (MI.isConvertibleTo3Addr()) { 1262 // This instruction is potentially convertible to a true 1263 // three-address instruction. Check if it is profitable. 1264 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1265 // Try to convert it. 1266 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1267 ++NumConvertedTo3Addr; 1268 return true; // Done with this instruction. 1269 } 1270 } 1271 } 1272 1273 // Return if it is commuted but 3 addr conversion is failed. 1274 if (Commuted) 1275 return false; 1276 1277 // If there is one more use of regB later in the same MBB, consider 1278 // re-schedule it before this MI if it's legal. 1279 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1280 ++NumReSchedUps; 1281 return true; 1282 } 1283 1284 // If this is an instruction with a load folded into it, try unfolding 1285 // the load, e.g. avoid this: 1286 // movq %rdx, %rcx 1287 // addq (%rax), %rcx 1288 // in favor of this: 1289 // movq (%rax), %rcx 1290 // addq %rdx, %rcx 1291 // because it's preferable to schedule a load than a register copy. 1292 if (MI.mayLoad() && !regBKilled) { 1293 // Determine if a load can be unfolded. 1294 unsigned LoadRegIndex; 1295 unsigned NewOpc = 1296 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1297 /*UnfoldLoad=*/true, 1298 /*UnfoldStore=*/false, 1299 &LoadRegIndex); 1300 if (NewOpc != 0) { 1301 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1302 if (UnfoldMCID.getNumDefs() == 1) { 1303 // Unfold the load. 1304 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1305 const TargetRegisterClass *RC = 1306 TRI->getAllocatableClass( 1307 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1308 unsigned Reg = MRI->createVirtualRegister(RC); 1309 SmallVector<MachineInstr *, 2> NewMIs; 1310 if (!TII->unfoldMemoryOperand(*MF, &MI, Reg, 1311 /*UnfoldLoad=*/true,/*UnfoldStore=*/false, 1312 NewMIs)) { 1313 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1314 return false; 1315 } 1316 assert(NewMIs.size() == 2 && 1317 "Unfolded a load into multiple instructions!"); 1318 // The load was previously folded, so this is the only use. 1319 NewMIs[1]->addRegisterKilled(Reg, TRI); 1320 1321 // Tentatively insert the instructions into the block so that they 1322 // look "normal" to the transformation logic. 1323 MBB->insert(mi, NewMIs[0]); 1324 MBB->insert(mi, NewMIs[1]); 1325 1326 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1327 << "2addr: NEW INST: " << *NewMIs[1]); 1328 1329 // Transform the instruction, now that it no longer has a load. 1330 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1331 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1332 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1333 bool TransformResult = 1334 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1335 (void)TransformResult; 1336 assert(!TransformResult && 1337 "tryInstructionTransform() should return false."); 1338 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1339 // Success, or at least we made an improvement. Keep the unfolded 1340 // instructions and discard the original. 1341 if (LV) { 1342 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1343 MachineOperand &MO = MI.getOperand(i); 1344 if (MO.isReg() && 1345 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 1346 if (MO.isUse()) { 1347 if (MO.isKill()) { 1348 if (NewMIs[0]->killsRegister(MO.getReg())) 1349 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]); 1350 else { 1351 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1352 "Kill missing after load unfold!"); 1353 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]); 1354 } 1355 } 1356 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) { 1357 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1358 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]); 1359 else { 1360 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1361 "Dead flag missing after load unfold!"); 1362 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]); 1363 } 1364 } 1365 } 1366 } 1367 LV->addVirtualRegisterKilled(Reg, NewMIs[1]); 1368 } 1369 1370 SmallVector<unsigned, 4> OrigRegs; 1371 if (LIS) { 1372 for (const MachineOperand &MO : MI.operands()) { 1373 if (MO.isReg()) 1374 OrigRegs.push_back(MO.getReg()); 1375 } 1376 } 1377 1378 MI.eraseFromParent(); 1379 1380 // Update LiveIntervals. 1381 if (LIS) { 1382 MachineBasicBlock::iterator Begin(NewMIs[0]); 1383 MachineBasicBlock::iterator End(NewMIs[1]); 1384 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1385 } 1386 1387 mi = NewMIs[1]; 1388 } else { 1389 // Transforming didn't eliminate the tie and didn't lead to an 1390 // improvement. Clean up the unfolded instructions and keep the 1391 // original. 1392 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1393 NewMIs[0]->eraseFromParent(); 1394 NewMIs[1]->eraseFromParent(); 1395 } 1396 } 1397 } 1398 } 1399 1400 return false; 1401 } 1402 1403 // Collect tied operands of MI that need to be handled. 1404 // Rewrite trivial cases immediately. 1405 // Return true if any tied operands where found, including the trivial ones. 1406 bool TwoAddressInstructionPass:: 1407 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1408 const MCInstrDesc &MCID = MI->getDesc(); 1409 bool AnyOps = false; 1410 unsigned NumOps = MI->getNumOperands(); 1411 1412 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1413 unsigned DstIdx = 0; 1414 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1415 continue; 1416 AnyOps = true; 1417 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1418 MachineOperand &DstMO = MI->getOperand(DstIdx); 1419 unsigned SrcReg = SrcMO.getReg(); 1420 unsigned DstReg = DstMO.getReg(); 1421 // Tied constraint already satisfied? 1422 if (SrcReg == DstReg) 1423 continue; 1424 1425 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1426 1427 // Deal with <undef> uses immediately - simply rewrite the src operand. 1428 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1429 // Constrain the DstReg register class if required. 1430 if (TargetRegisterInfo::isVirtualRegister(DstReg)) 1431 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1432 TRI, *MF)) 1433 MRI->constrainRegClass(DstReg, RC); 1434 SrcMO.setReg(DstReg); 1435 SrcMO.setSubReg(0); 1436 DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1437 continue; 1438 } 1439 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1440 } 1441 return AnyOps; 1442 } 1443 1444 // Process a list of tied MI operands that all use the same source register. 1445 // The tied pairs are of the form (SrcIdx, DstIdx). 1446 void 1447 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1448 TiedPairList &TiedPairs, 1449 unsigned &Dist) { 1450 bool IsEarlyClobber = false; 1451 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1452 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1453 IsEarlyClobber |= DstMO.isEarlyClobber(); 1454 } 1455 1456 bool RemovedKillFlag = false; 1457 bool AllUsesCopied = true; 1458 unsigned LastCopiedReg = 0; 1459 SlotIndex LastCopyIdx; 1460 unsigned RegB = 0; 1461 unsigned SubRegB = 0; 1462 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1463 unsigned SrcIdx = TiedPairs[tpi].first; 1464 unsigned DstIdx = TiedPairs[tpi].second; 1465 1466 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1467 unsigned RegA = DstMO.getReg(); 1468 1469 // Grab RegB from the instruction because it may have changed if the 1470 // instruction was commuted. 1471 RegB = MI->getOperand(SrcIdx).getReg(); 1472 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1473 1474 if (RegA == RegB) { 1475 // The register is tied to multiple destinations (or else we would 1476 // not have continued this far), but this use of the register 1477 // already matches the tied destination. Leave it. 1478 AllUsesCopied = false; 1479 continue; 1480 } 1481 LastCopiedReg = RegA; 1482 1483 assert(TargetRegisterInfo::isVirtualRegister(RegB) && 1484 "cannot make instruction into two-address form"); 1485 1486 #ifndef NDEBUG 1487 // First, verify that we don't have a use of "a" in the instruction 1488 // (a = b + a for example) because our transformation will not 1489 // work. This should never occur because we are in SSA form. 1490 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1491 assert(i == DstIdx || 1492 !MI->getOperand(i).isReg() || 1493 MI->getOperand(i).getReg() != RegA); 1494 #endif 1495 1496 // Emit a copy. 1497 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1498 TII->get(TargetOpcode::COPY), RegA); 1499 // If this operand is folding a truncation, the truncation now moves to the 1500 // copy so that the register classes remain valid for the operands. 1501 MIB.addReg(RegB, 0, SubRegB); 1502 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1503 if (SubRegB) { 1504 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1505 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1506 SubRegB) && 1507 "tied subregister must be a truncation"); 1508 // The superreg class will not be used to constrain the subreg class. 1509 RC = nullptr; 1510 } 1511 else { 1512 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1513 && "tied subregister must be a truncation"); 1514 } 1515 } 1516 1517 // Update DistanceMap. 1518 MachineBasicBlock::iterator PrevMI = MI; 1519 --PrevMI; 1520 DistanceMap.insert(std::make_pair(PrevMI, Dist)); 1521 DistanceMap[MI] = ++Dist; 1522 1523 if (LIS) { 1524 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1525 1526 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1527 LiveInterval &LI = LIS->getInterval(RegA); 1528 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1529 SlotIndex endIdx = 1530 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1531 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1532 } 1533 } 1534 1535 DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1536 1537 MachineOperand &MO = MI->getOperand(SrcIdx); 1538 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1539 "inconsistent operand info for 2-reg pass"); 1540 if (MO.isKill()) { 1541 MO.setIsKill(false); 1542 RemovedKillFlag = true; 1543 } 1544 1545 // Make sure regA is a legal regclass for the SrcIdx operand. 1546 if (TargetRegisterInfo::isVirtualRegister(RegA) && 1547 TargetRegisterInfo::isVirtualRegister(RegB)) 1548 MRI->constrainRegClass(RegA, RC); 1549 MO.setReg(RegA); 1550 // The getMatchingSuper asserts guarantee that the register class projected 1551 // by SubRegB is compatible with RegA with no subregister. So regardless of 1552 // whether the dest oper writes a subreg, the source oper should not. 1553 MO.setSubReg(0); 1554 1555 // Propagate SrcRegMap. 1556 SrcRegMap[RegA] = RegB; 1557 } 1558 1559 if (AllUsesCopied) { 1560 if (!IsEarlyClobber) { 1561 // Replace other (un-tied) uses of regB with LastCopiedReg. 1562 for (MachineOperand &MO : MI->operands()) { 1563 if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB && 1564 MO.isUse()) { 1565 if (MO.isKill()) { 1566 MO.setIsKill(false); 1567 RemovedKillFlag = true; 1568 } 1569 MO.setReg(LastCopiedReg); 1570 MO.setSubReg(0); 1571 } 1572 } 1573 } 1574 1575 // Update live variables for regB. 1576 if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) { 1577 MachineBasicBlock::iterator PrevMI = MI; 1578 --PrevMI; 1579 LV->addVirtualRegisterKilled(RegB, PrevMI); 1580 } 1581 1582 // Update LiveIntervals. 1583 if (LIS) { 1584 LiveInterval &LI = LIS->getInterval(RegB); 1585 SlotIndex MIIdx = LIS->getInstructionIndex(*MI); 1586 LiveInterval::const_iterator I = LI.find(MIIdx); 1587 assert(I != LI.end() && "RegB must be live-in to use."); 1588 1589 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1590 if (I->end == UseIdx) 1591 LI.removeSegment(LastCopyIdx, UseIdx); 1592 } 1593 1594 } else if (RemovedKillFlag) { 1595 // Some tied uses of regB matched their destination registers, so 1596 // regB is still used in this instruction, but a kill flag was 1597 // removed from a different tied use of regB, so now we need to add 1598 // a kill flag to one of the remaining uses of regB. 1599 for (MachineOperand &MO : MI->operands()) { 1600 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1601 MO.setIsKill(true); 1602 break; 1603 } 1604 } 1605 } 1606 } 1607 1608 /// Reduce two-address instructions to two operands. 1609 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1610 MF = &Func; 1611 const TargetMachine &TM = MF->getTarget(); 1612 MRI = &MF->getRegInfo(); 1613 TII = MF->getSubtarget().getInstrInfo(); 1614 TRI = MF->getSubtarget().getRegisterInfo(); 1615 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1616 LV = getAnalysisIfAvailable<LiveVariables>(); 1617 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1618 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1619 OptLevel = TM.getOptLevel(); 1620 1621 bool MadeChange = false; 1622 1623 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1624 DEBUG(dbgs() << "********** Function: " 1625 << MF->getName() << '\n'); 1626 1627 // This pass takes the function out of SSA form. 1628 MRI->leaveSSA(); 1629 1630 TiedOperandMap TiedOperands; 1631 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1632 MBBI != MBBE; ++MBBI) { 1633 MBB = &*MBBI; 1634 unsigned Dist = 0; 1635 DistanceMap.clear(); 1636 SrcRegMap.clear(); 1637 DstRegMap.clear(); 1638 Processed.clear(); 1639 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1640 mi != me; ) { 1641 MachineBasicBlock::iterator nmi = std::next(mi); 1642 if (mi->isDebugValue()) { 1643 mi = nmi; 1644 continue; 1645 } 1646 1647 // Expand REG_SEQUENCE instructions. This will position mi at the first 1648 // expanded instruction. 1649 if (mi->isRegSequence()) 1650 eliminateRegSequence(mi); 1651 1652 DistanceMap.insert(std::make_pair(mi, ++Dist)); 1653 1654 processCopy(&*mi); 1655 1656 // First scan through all the tied register uses in this instruction 1657 // and record a list of pairs of tied operands for each register. 1658 if (!collectTiedOperands(mi, TiedOperands)) { 1659 mi = nmi; 1660 continue; 1661 } 1662 1663 ++NumTwoAddressInstrs; 1664 MadeChange = true; 1665 DEBUG(dbgs() << '\t' << *mi); 1666 1667 // If the instruction has a single pair of tied operands, try some 1668 // transformations that may either eliminate the tied operands or 1669 // improve the opportunities for coalescing away the register copy. 1670 if (TiedOperands.size() == 1) { 1671 SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs 1672 = TiedOperands.begin()->second; 1673 if (TiedPairs.size() == 1) { 1674 unsigned SrcIdx = TiedPairs[0].first; 1675 unsigned DstIdx = TiedPairs[0].second; 1676 unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); 1677 unsigned DstReg = mi->getOperand(DstIdx).getReg(); 1678 if (SrcReg != DstReg && 1679 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1680 // The tied operands have been eliminated or shifted further down 1681 // the block to ease elimination. Continue processing with 'nmi'. 1682 TiedOperands.clear(); 1683 mi = nmi; 1684 continue; 1685 } 1686 } 1687 } 1688 1689 // Now iterate over the information collected above. 1690 for (auto &TO : TiedOperands) { 1691 processTiedPairs(mi, TO.second, Dist); 1692 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1693 } 1694 1695 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1696 if (mi->isInsertSubreg()) { 1697 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1698 // To %reg:subidx = COPY %subreg 1699 unsigned SubIdx = mi->getOperand(3).getImm(); 1700 mi->RemoveOperand(3); 1701 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1702 mi->getOperand(0).setSubReg(SubIdx); 1703 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1704 mi->RemoveOperand(1); 1705 mi->setDesc(TII->get(TargetOpcode::COPY)); 1706 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1707 } 1708 1709 // Clear TiedOperands here instead of at the top of the loop 1710 // since most instructions do not have tied operands. 1711 TiedOperands.clear(); 1712 mi = nmi; 1713 } 1714 } 1715 1716 if (LIS) 1717 MF->verify(this, "After two-address instruction pass"); 1718 1719 return MadeChange; 1720 } 1721 1722 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1723 /// 1724 /// The instruction is turned into a sequence of sub-register copies: 1725 /// 1726 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1727 /// 1728 /// Becomes: 1729 /// 1730 /// %dst:ssub0<def,undef> = COPY %v1 1731 /// %dst:ssub1<def> = COPY %v2 1732 /// 1733 void TwoAddressInstructionPass:: 1734 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1735 MachineInstr *MI = MBBI; 1736 unsigned DstReg = MI->getOperand(0).getReg(); 1737 if (MI->getOperand(0).getSubReg() || 1738 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1739 !(MI->getNumOperands() & 1)) { 1740 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); 1741 llvm_unreachable(nullptr); 1742 } 1743 1744 SmallVector<unsigned, 4> OrigRegs; 1745 if (LIS) { 1746 OrigRegs.push_back(MI->getOperand(0).getReg()); 1747 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) 1748 OrigRegs.push_back(MI->getOperand(i).getReg()); 1749 } 1750 1751 bool DefEmitted = false; 1752 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 1753 MachineOperand &UseMO = MI->getOperand(i); 1754 unsigned SrcReg = UseMO.getReg(); 1755 unsigned SubIdx = MI->getOperand(i+1).getImm(); 1756 // Nothing needs to be inserted for <undef> operands. 1757 if (UseMO.isUndef()) 1758 continue; 1759 1760 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1761 // might insert a COPY that uses SrcReg after is was killed. 1762 bool isKill = UseMO.isKill(); 1763 if (isKill) 1764 for (unsigned j = i + 2; j < e; j += 2) 1765 if (MI->getOperand(j).getReg() == SrcReg) { 1766 MI->getOperand(j).setIsKill(); 1767 UseMO.setIsKill(false); 1768 isKill = false; 1769 break; 1770 } 1771 1772 // Insert the sub-register copy. 1773 MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1774 TII->get(TargetOpcode::COPY)) 1775 .addReg(DstReg, RegState::Define, SubIdx) 1776 .addOperand(UseMO); 1777 1778 // The first def needs an <undef> flag because there is no live register 1779 // before it. 1780 if (!DefEmitted) { 1781 CopyMI->getOperand(0).setIsUndef(true); 1782 // Return an iterator pointing to the first inserted instr. 1783 MBBI = CopyMI; 1784 } 1785 DefEmitted = true; 1786 1787 // Update LiveVariables' kill info. 1788 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1789 LV->replaceKillInstruction(SrcReg, MI, CopyMI); 1790 1791 DEBUG(dbgs() << "Inserted: " << *CopyMI); 1792 } 1793 1794 MachineBasicBlock::iterator EndMBBI = 1795 std::next(MachineBasicBlock::iterator(MI)); 1796 1797 if (!DefEmitted) { 1798 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF"); 1799 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1800 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j) 1801 MI->RemoveOperand(j); 1802 } else { 1803 DEBUG(dbgs() << "Eliminated: " << *MI); 1804 MI->eraseFromParent(); 1805 } 1806 1807 // Udpate LiveIntervals. 1808 if (LIS) 1809 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1810 } 1811