1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TwoAddress instruction pass which is used 10 // by most register allocators. Two-Address instructions are rewritten 11 // from: 12 // 13 // A = B op C 14 // 15 // to: 16 // 17 // A = B 18 // A op= C 19 // 20 // Note that if a register allocator chooses to use this pass, that it 21 // has to be capable of handling the non-SSA nature of these rewritten 22 // virtual registers. 23 // 24 // It is also worth noting that the duplicate operand of the two 25 // address instruction is removed. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/Passes.h" 47 #include "llvm/CodeGen/SlotIndexes.h" 48 #include "llvm/CodeGen/TargetInstrInfo.h" 49 #include "llvm/CodeGen/TargetOpcodes.h" 50 #include "llvm/CodeGen/TargetRegisterInfo.h" 51 #include "llvm/CodeGen/TargetSubtargetInfo.h" 52 #include "llvm/MC/MCInstrDesc.h" 53 #include "llvm/MC/MCInstrItineraries.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <cassert> 62 #include <iterator> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "twoaddressinstruction" 68 69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 70 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 71 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 73 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 74 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 75 76 // Temporary flag to disable rescheduling. 77 static cl::opt<bool> 78 EnableRescheduling("twoaddr-reschedule", 79 cl::desc("Coalesce copies by rescheduling (default=true)"), 80 cl::init(true), cl::Hidden); 81 82 // Limit the number of dataflow edges to traverse when evaluating the benefit 83 // of commuting operands. 84 static cl::opt<unsigned> MaxDataFlowEdge( 85 "dataflow-edge-limit", cl::Hidden, cl::init(3), 86 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 87 "the benefit of commuting operands")); 88 89 namespace { 90 91 class TwoAddressInstructionPass : public MachineFunctionPass { 92 MachineFunction *MF; 93 const TargetInstrInfo *TII; 94 const TargetRegisterInfo *TRI; 95 const InstrItineraryData *InstrItins; 96 MachineRegisterInfo *MRI; 97 LiveVariables *LV; 98 LiveIntervals *LIS; 99 AliasAnalysis *AA; 100 CodeGenOpt::Level OptLevel; 101 102 // The current basic block being processed. 103 MachineBasicBlock *MBB; 104 105 // Keep track the distance of a MI from the start of the current basic block. 106 DenseMap<MachineInstr*, unsigned> DistanceMap; 107 108 // Set of already processed instructions in the current block. 109 SmallPtrSet<MachineInstr*, 8> Processed; 110 111 // A map from virtual registers to physical registers which are likely targets 112 // to be coalesced to due to copies from physical registers to virtual 113 // registers. e.g. v1024 = move r0. 114 DenseMap<Register, Register> SrcRegMap; 115 116 // A map from virtual registers to physical registers which are likely targets 117 // to be coalesced to due to copies to physical registers from virtual 118 // registers. e.g. r1 = move v1024. 119 DenseMap<Register, Register> DstRegMap; 120 121 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen); 122 123 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef); 124 125 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC, 126 MachineInstr *MI, unsigned Dist); 127 128 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 129 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 130 131 bool isProfitableToConv3Addr(Register RegA, Register RegB); 132 133 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 134 MachineBasicBlock::iterator &nmi, Register RegA, 135 Register RegB, unsigned Dist); 136 137 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI); 138 139 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 140 MachineBasicBlock::iterator &nmi, Register Reg); 141 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 142 MachineBasicBlock::iterator &nmi, Register Reg); 143 144 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 145 MachineBasicBlock::iterator &nmi, 146 unsigned SrcIdx, unsigned DstIdx, 147 unsigned Dist, bool shouldOnlyCommute); 148 149 bool tryInstructionCommute(MachineInstr *MI, 150 unsigned DstOpIdx, 151 unsigned BaseOpIdx, 152 bool BaseOpKilled, 153 unsigned Dist); 154 void scanUses(Register DstReg); 155 156 void processCopy(MachineInstr *MI); 157 158 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 159 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 160 161 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 162 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 163 void eliminateRegSequence(MachineBasicBlock::iterator&); 164 165 public: 166 static char ID; // Pass identification, replacement for typeid 167 168 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 169 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 170 } 171 172 void getAnalysisUsage(AnalysisUsage &AU) const override { 173 AU.setPreservesCFG(); 174 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 175 AU.addUsedIfAvailable<LiveVariables>(); 176 AU.addPreserved<LiveVariables>(); 177 AU.addPreserved<SlotIndexes>(); 178 AU.addPreserved<LiveIntervals>(); 179 AU.addPreservedID(MachineLoopInfoID); 180 AU.addPreservedID(MachineDominatorsID); 181 MachineFunctionPass::getAnalysisUsage(AU); 182 } 183 184 /// Pass entry point. 185 bool runOnMachineFunction(MachineFunction&) override; 186 }; 187 188 } // end anonymous namespace 189 190 char TwoAddressInstructionPass::ID = 0; 191 192 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 193 194 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 195 "Two-Address instruction pass", false, false) 196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 197 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 198 "Two-Address instruction pass", false, false) 199 200 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS); 201 202 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 203 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB, 204 const MachineRegisterInfo *MRI) { 205 MachineInstr *Ret = nullptr; 206 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 207 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 208 continue; 209 if (!Ret) 210 Ret = &DefMI; 211 else if (Ret != &DefMI) 212 return nullptr; 213 } 214 return Ret; 215 } 216 217 /// Check if there is a reversed copy chain from FromReg to ToReg: 218 /// %Tmp1 = copy %Tmp2; 219 /// %FromReg = copy %Tmp1; 220 /// %ToReg = add %FromReg ... 221 /// %Tmp2 = copy %ToReg; 222 /// MaxLen specifies the maximum length of the copy chain the func 223 /// can walk through. 224 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg, 225 int Maxlen) { 226 Register TmpReg = FromReg; 227 for (int i = 0; i < Maxlen; i++) { 228 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 229 if (!Def || !Def->isCopy()) 230 return false; 231 232 TmpReg = Def->getOperand(1).getReg(); 233 234 if (TmpReg == ToReg) 235 return true; 236 } 237 return false; 238 } 239 240 /// Return true if there are no intervening uses between the last instruction 241 /// in the MBB that defines the specified register and the two-address 242 /// instruction which is being processed. It also returns the last def location 243 /// by reference. 244 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist, 245 unsigned &LastDef) { 246 LastDef = 0; 247 unsigned LastUse = Dist; 248 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 249 MachineInstr *MI = MO.getParent(); 250 if (MI->getParent() != MBB || MI->isDebugValue()) 251 continue; 252 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 253 if (DI == DistanceMap.end()) 254 continue; 255 if (MO.isUse() && DI->second < LastUse) 256 LastUse = DI->second; 257 if (MO.isDef() && DI->second > LastDef) 258 LastDef = DI->second; 259 } 260 261 return !(LastUse > LastDef && LastUse < Dist); 262 } 263 264 /// Return true if the specified MI is a copy instruction or an extract_subreg 265 /// instruction. It also returns the source and destination registers and 266 /// whether they are physical registers by reference. 267 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 268 Register &SrcReg, Register &DstReg, bool &IsSrcPhys, 269 bool &IsDstPhys) { 270 SrcReg = 0; 271 DstReg = 0; 272 if (MI.isCopy()) { 273 DstReg = MI.getOperand(0).getReg(); 274 SrcReg = MI.getOperand(1).getReg(); 275 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 276 DstReg = MI.getOperand(0).getReg(); 277 SrcReg = MI.getOperand(2).getReg(); 278 } else { 279 return false; 280 } 281 282 IsSrcPhys = SrcReg.isPhysical(); 283 IsDstPhys = DstReg.isPhysical(); 284 return true; 285 } 286 287 /// Test if the given register value, which is used by the 288 /// given instruction, is killed by the given instruction. 289 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, 290 LiveIntervals *LIS) { 291 if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) { 292 // FIXME: Sometimes tryInstructionTransform() will add instructions and 293 // test whether they can be folded before keeping them. In this case it 294 // sets a kill before recursively calling tryInstructionTransform() again. 295 // If there is no interval available, we assume that this instruction is 296 // one of those. A kill flag is manually inserted on the operand so the 297 // check below will handle it. 298 LiveInterval &LI = LIS->getInterval(Reg); 299 // This is to match the kill flag version where undefs don't have kill 300 // flags. 301 if (!LI.hasAtLeastOneValue()) 302 return false; 303 304 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 305 LiveInterval::const_iterator I = LI.find(useIdx); 306 assert(I != LI.end() && "Reg must be live-in to use."); 307 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 308 } 309 310 return MI->killsRegister(Reg); 311 } 312 313 /// Test if the given register value, which is used by the given 314 /// instruction, is killed by the given instruction. This looks through 315 /// coalescable copies to see if the original value is potentially not killed. 316 /// 317 /// For example, in this code: 318 /// 319 /// %reg1034 = copy %reg1024 320 /// %reg1035 = copy killed %reg1025 321 /// %reg1036 = add killed %reg1034, killed %reg1035 322 /// 323 /// %reg1034 is not considered to be killed, since it is copied from a 324 /// register which is not killed. Treating it as not killed lets the 325 /// normal heuristics commute the (two-address) add, which lets 326 /// coalescing eliminate the extra copy. 327 /// 328 /// If allowFalsePositives is true then likely kills are treated as kills even 329 /// if it can't be proven that they are kills. 330 static bool isKilled(MachineInstr &MI, Register Reg, 331 const MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 332 LiveIntervals *LIS, bool allowFalsePositives) { 333 MachineInstr *DefMI = &MI; 334 while (true) { 335 // All uses of physical registers are likely to be kills. 336 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg))) 337 return true; 338 if (!isPlainlyKilled(DefMI, Reg, LIS)) 339 return false; 340 if (Reg.isPhysical()) 341 return true; 342 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 343 // If there are multiple defs, we can't do a simple analysis, so just 344 // go with what the kill flag says. 345 if (std::next(Begin) != MRI->def_end()) 346 return true; 347 DefMI = Begin->getParent(); 348 bool IsSrcPhys, IsDstPhys; 349 Register SrcReg, DstReg; 350 // If the def is something other than a copy, then it isn't going to 351 // be coalesced, so follow the kill flag. 352 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 353 return true; 354 Reg = SrcReg; 355 } 356 } 357 358 /// Return true if the specified MI uses the specified register as a two-address 359 /// use. If so, return the destination register by reference. 360 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) { 361 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 362 const MachineOperand &MO = MI.getOperand(i); 363 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 364 continue; 365 unsigned ti; 366 if (MI.isRegTiedToDefOperand(i, &ti)) { 367 DstReg = MI.getOperand(ti).getReg(); 368 return true; 369 } 370 } 371 return false; 372 } 373 374 /// Given a register, if has a single in-basic block use, return the use 375 /// instruction if it's a copy or a two-address use. 376 static MachineInstr * 377 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB, 378 MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 379 bool &IsCopy, Register &DstReg, bool &IsDstPhys) { 380 if (!MRI->hasOneNonDBGUse(Reg)) 381 // None or more than one use. 382 return nullptr; 383 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 384 if (UseMI.getParent() != MBB) 385 return nullptr; 386 Register SrcReg; 387 bool IsSrcPhys; 388 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 389 IsCopy = true; 390 return &UseMI; 391 } 392 IsDstPhys = false; 393 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 394 IsDstPhys = DstReg.isPhysical(); 395 return &UseMI; 396 } 397 return nullptr; 398 } 399 400 /// Return the physical register the specified virtual register might be mapped 401 /// to. 402 static MCRegister getMappedReg(Register Reg, 403 DenseMap<Register, Register> &RegMap) { 404 while (Reg.isVirtual()) { 405 DenseMap<Register, Register>::iterator SI = RegMap.find(Reg); 406 if (SI == RegMap.end()) 407 return 0; 408 Reg = SI->second; 409 } 410 if (Reg.isPhysical()) 411 return Reg; 412 return 0; 413 } 414 415 /// Return true if the two registers are equal or aliased. 416 static bool regsAreCompatible(Register RegA, Register RegB, 417 const TargetRegisterInfo *TRI) { 418 if (RegA == RegB) 419 return true; 420 if (!RegA || !RegB) 421 return false; 422 return TRI->regsOverlap(RegA, RegB); 423 } 424 425 // Returns true if Reg is equal or aliased to at least one register in Set. 426 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg, 427 const TargetRegisterInfo *TRI) { 428 for (unsigned R : Set) 429 if (TRI->regsOverlap(R, Reg)) 430 return true; 431 432 return false; 433 } 434 435 /// Return true if it's potentially profitable to commute the two-address 436 /// instruction that's being processed. 437 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA, 438 Register RegB, 439 Register RegC, 440 MachineInstr *MI, 441 unsigned Dist) { 442 if (OptLevel == CodeGenOpt::None) 443 return false; 444 445 // Determine if it's profitable to commute this two address instruction. In 446 // general, we want no uses between this instruction and the definition of 447 // the two-address register. 448 // e.g. 449 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 450 // %reg1029 = COPY %reg1028 451 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 452 // insert => %reg1030 = COPY %reg1028 453 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 454 // In this case, it might not be possible to coalesce the second COPY 455 // instruction if the first one is coalesced. So it would be profitable to 456 // commute it: 457 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 458 // %reg1029 = COPY %reg1028 459 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 460 // insert => %reg1030 = COPY %reg1029 461 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 462 463 if (!isPlainlyKilled(MI, RegC, LIS)) 464 return false; 465 466 // Ok, we have something like: 467 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 468 // let's see if it's worth commuting it. 469 470 // Look for situations like this: 471 // %reg1024 = MOV r1 472 // %reg1025 = MOV r0 473 // %reg1026 = ADD %reg1024, %reg1025 474 // r0 = MOV %reg1026 475 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 476 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 477 if (ToRegA) { 478 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 479 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 480 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 481 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 482 483 // Compute if any of the following are true: 484 // -RegB is not tied to a register and RegC is compatible with RegA. 485 // -RegB is tied to the wrong physical register, but RegC is. 486 // -RegB is tied to the wrong physical register, and RegC isn't tied. 487 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 488 return true; 489 // Don't compute if any of the following are true: 490 // -RegC is not tied to a register and RegB is compatible with RegA. 491 // -RegC is tied to the wrong physical register, but RegB is. 492 // -RegC is tied to the wrong physical register, and RegB isn't tied. 493 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 494 return false; 495 } 496 497 // If there is a use of RegC between its last def (could be livein) and this 498 // instruction, then bail. 499 unsigned LastDefC = 0; 500 if (!noUseAfterLastDef(RegC, Dist, LastDefC)) 501 return false; 502 503 // If there is a use of RegB between its last def (could be livein) and this 504 // instruction, then go ahead and make this transformation. 505 unsigned LastDefB = 0; 506 if (!noUseAfterLastDef(RegB, Dist, LastDefB)) 507 return true; 508 509 // Look for situation like this: 510 // %reg101 = MOV %reg100 511 // %reg102 = ... 512 // %reg103 = ADD %reg102, %reg101 513 // ... = %reg103 ... 514 // %reg100 = MOV %reg103 515 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 516 // to eliminate an otherwise unavoidable copy. 517 // FIXME: 518 // We can extend the logic further: If an pair of operands in an insn has 519 // been merged, the insn could be regarded as a virtual copy, and the virtual 520 // copy could also be used to construct a copy chain. 521 // To more generally minimize register copies, ideally the logic of two addr 522 // instruction pass should be integrated with register allocation pass where 523 // interference graph is available. 524 if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge)) 525 return true; 526 527 if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge)) 528 return false; 529 530 // Look for other target specific commute preference. 531 bool Commute; 532 if (TII->hasCommutePreference(*MI, Commute)) 533 return Commute; 534 535 // Since there are no intervening uses for both registers, then commute 536 // if the def of RegC is closer. Its live interval is shorter. 537 return LastDefB && LastDefC && LastDefC > LastDefB; 538 } 539 540 /// Commute a two-address instruction and update the basic block, distance map, 541 /// and live variables if needed. Return true if it is successful. 542 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 543 unsigned DstIdx, 544 unsigned RegBIdx, 545 unsigned RegCIdx, 546 unsigned Dist) { 547 Register RegC = MI->getOperand(RegCIdx).getReg(); 548 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 549 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 550 551 if (NewMI == nullptr) { 552 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 553 return false; 554 } 555 556 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 557 assert(NewMI == MI && 558 "TargetInstrInfo::commuteInstruction() should not return a new " 559 "instruction unless it was requested."); 560 561 // Update source register map. 562 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 563 if (FromRegC) { 564 Register RegA = MI->getOperand(DstIdx).getReg(); 565 SrcRegMap[RegA] = FromRegC; 566 } 567 568 return true; 569 } 570 571 /// Return true if it is profitable to convert the given 2-address instruction 572 /// to a 3-address one. 573 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA, 574 Register RegB) { 575 // Look for situations like this: 576 // %reg1024 = MOV r1 577 // %reg1025 = MOV r0 578 // %reg1026 = ADD %reg1024, %reg1025 579 // r2 = MOV %reg1026 580 // Turn ADD into a 3-address instruction to avoid a copy. 581 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 582 if (!FromRegB) 583 return false; 584 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 585 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 586 } 587 588 /// Convert the specified two-address instruction into a three address one. 589 /// Return true if this transformation was successful. 590 bool TwoAddressInstructionPass::convertInstTo3Addr( 591 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 592 Register RegA, Register RegB, unsigned Dist) { 593 MachineInstrSpan MIS(mi, MBB); 594 MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV); 595 if (!NewMI) 596 return false; 597 598 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 599 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 600 601 // If the old instruction is debug value tracked, an update is required. 602 if (auto OldInstrNum = mi->peekDebugInstrNum()) { 603 // Sanity check. 604 assert(mi->getNumExplicitDefs() == 1); 605 assert(NewMI->getNumExplicitDefs() == 1); 606 607 // Find the old and new def location. 608 auto OldIt = mi->defs().begin(); 609 auto NewIt = NewMI->defs().begin(); 610 unsigned OldIdx = mi->getOperandNo(OldIt); 611 unsigned NewIdx = NewMI->getOperandNo(NewIt); 612 613 // Record that one def has been replaced by the other. 614 unsigned NewInstrNum = NewMI->getDebugInstrNum(); 615 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx), 616 std::make_pair(NewInstrNum, NewIdx)); 617 } 618 619 // If convertToThreeAddress created a single new instruction, assume it has 620 // exactly the same effect on liveness as the old instruction. This is much 621 // more efficient than calling repairIntervalsInRange. 622 bool SingleInst = std::next(MIS.begin(), 2) == MIS.end(); 623 if (LIS && SingleInst) 624 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); 625 626 SmallVector<Register> OrigRegs; 627 if (LIS && !SingleInst) { 628 for (const MachineOperand &MO : mi->operands()) { 629 if (MO.isReg()) 630 OrigRegs.push_back(MO.getReg()); 631 } 632 } 633 634 MBB->erase(mi); // Nuke the old inst. 635 636 if (LIS && !SingleInst) 637 LIS->repairIntervalsInRange(MBB, MIS.begin(), MIS.end(), OrigRegs); 638 639 DistanceMap.insert(std::make_pair(NewMI, Dist)); 640 mi = NewMI; 641 nmi = std::next(mi); 642 643 // Update source and destination register maps. 644 SrcRegMap.erase(RegA); 645 DstRegMap.erase(RegB); 646 return true; 647 } 648 649 /// Scan forward recursively for only uses, update maps if the use is a copy or 650 /// a two-address instruction. 651 void TwoAddressInstructionPass::scanUses(Register DstReg) { 652 SmallVector<Register, 4> VirtRegPairs; 653 bool IsDstPhys; 654 bool IsCopy = false; 655 Register NewReg; 656 Register Reg = DstReg; 657 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 658 NewReg, IsDstPhys)) { 659 if (IsCopy && !Processed.insert(UseMI).second) 660 break; 661 662 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 663 if (DI != DistanceMap.end()) 664 // Earlier in the same MBB.Reached via a back edge. 665 break; 666 667 if (IsDstPhys) { 668 VirtRegPairs.push_back(NewReg); 669 break; 670 } 671 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 672 if (!isNew) 673 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 674 VirtRegPairs.push_back(NewReg); 675 Reg = NewReg; 676 } 677 678 if (!VirtRegPairs.empty()) { 679 unsigned ToReg = VirtRegPairs.back(); 680 VirtRegPairs.pop_back(); 681 while (!VirtRegPairs.empty()) { 682 unsigned FromReg = VirtRegPairs.pop_back_val(); 683 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 684 if (!isNew) 685 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 686 ToReg = FromReg; 687 } 688 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 689 if (!isNew) 690 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 691 } 692 } 693 694 /// If the specified instruction is not yet processed, process it if it's a 695 /// copy. For a copy instruction, we find the physical registers the 696 /// source and destination registers might be mapped to. These are kept in 697 /// point-to maps used to determine future optimizations. e.g. 698 /// v1024 = mov r0 699 /// v1025 = mov r1 700 /// v1026 = add v1024, v1025 701 /// r1 = mov r1026 702 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 703 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 704 /// potentially joined with r1 on the output side. It's worthwhile to commute 705 /// 'add' to eliminate a copy. 706 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 707 if (Processed.count(MI)) 708 return; 709 710 bool IsSrcPhys, IsDstPhys; 711 Register SrcReg, DstReg; 712 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 713 return; 714 715 if (IsDstPhys && !IsSrcPhys) { 716 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 717 } else if (!IsDstPhys && IsSrcPhys) { 718 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 719 if (!isNew) 720 assert(SrcRegMap[DstReg] == SrcReg && 721 "Can't map to two src physical registers!"); 722 723 scanUses(DstReg); 724 } 725 726 Processed.insert(MI); 727 } 728 729 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 730 /// consider moving the instruction below the kill instruction in order to 731 /// eliminate the need for the copy. 732 bool TwoAddressInstructionPass::rescheduleMIBelowKill( 733 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 734 Register Reg) { 735 // Bail immediately if we don't have LV or LIS available. We use them to find 736 // kills efficiently. 737 if (!LV && !LIS) 738 return false; 739 740 MachineInstr *MI = &*mi; 741 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 742 if (DI == DistanceMap.end()) 743 // Must be created from unfolded load. Don't waste time trying this. 744 return false; 745 746 MachineInstr *KillMI = nullptr; 747 if (LIS) { 748 LiveInterval &LI = LIS->getInterval(Reg); 749 assert(LI.end() != LI.begin() && 750 "Reg should not have empty live interval."); 751 752 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 753 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 754 if (I != LI.end() && I->start < MBBEndIdx) 755 return false; 756 757 --I; 758 KillMI = LIS->getInstructionFromIndex(I->end); 759 } else { 760 KillMI = LV->getVarInfo(Reg).findKill(MBB); 761 } 762 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 763 // Don't mess with copies, they may be coalesced later. 764 return false; 765 766 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 767 KillMI->isBranch() || KillMI->isTerminator()) 768 // Don't move pass calls, etc. 769 return false; 770 771 Register DstReg; 772 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 773 return false; 774 775 bool SeenStore = true; 776 if (!MI->isSafeToMove(AA, SeenStore)) 777 return false; 778 779 if (TII->getInstrLatency(InstrItins, *MI) > 1) 780 // FIXME: Needs more sophisticated heuristics. 781 return false; 782 783 SmallVector<Register, 2> Uses; 784 SmallVector<Register, 2> Kills; 785 SmallVector<Register, 2> Defs; 786 for (const MachineOperand &MO : MI->operands()) { 787 if (!MO.isReg()) 788 continue; 789 Register MOReg = MO.getReg(); 790 if (!MOReg) 791 continue; 792 if (MO.isDef()) 793 Defs.push_back(MOReg); 794 else { 795 Uses.push_back(MOReg); 796 if (MOReg != Reg && (MO.isKill() || 797 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 798 Kills.push_back(MOReg); 799 } 800 } 801 802 // Move the copies connected to MI down as well. 803 MachineBasicBlock::iterator Begin = MI; 804 MachineBasicBlock::iterator AfterMI = std::next(Begin); 805 MachineBasicBlock::iterator End = AfterMI; 806 while (End != MBB->end()) { 807 End = skipDebugInstructionsForward(End, MBB->end()); 808 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) 809 Defs.push_back(End->getOperand(0).getReg()); 810 else 811 break; 812 ++End; 813 } 814 815 // Check if the reschedule will not break dependencies. 816 unsigned NumVisited = 0; 817 MachineBasicBlock::iterator KillPos = KillMI; 818 ++KillPos; 819 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 820 // Debug or pseudo instructions cannot be counted against the limit. 821 if (OtherMI.isDebugOrPseudoInstr()) 822 continue; 823 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 824 return false; 825 ++NumVisited; 826 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 827 OtherMI.isBranch() || OtherMI.isTerminator()) 828 // Don't move pass calls, etc. 829 return false; 830 for (const MachineOperand &MO : OtherMI.operands()) { 831 if (!MO.isReg()) 832 continue; 833 Register MOReg = MO.getReg(); 834 if (!MOReg) 835 continue; 836 if (MO.isDef()) { 837 if (regOverlapsSet(Uses, MOReg, TRI)) 838 // Physical register use would be clobbered. 839 return false; 840 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 841 // May clobber a physical register def. 842 // FIXME: This may be too conservative. It's ok if the instruction 843 // is sunken completely below the use. 844 return false; 845 } else { 846 if (regOverlapsSet(Defs, MOReg, TRI)) 847 return false; 848 bool isKill = 849 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 850 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 851 regOverlapsSet(Kills, MOReg, TRI))) 852 // Don't want to extend other live ranges and update kills. 853 return false; 854 if (MOReg == Reg && !isKill) 855 // We can't schedule across a use of the register in question. 856 return false; 857 // Ensure that if this is register in question, its the kill we expect. 858 assert((MOReg != Reg || &OtherMI == KillMI) && 859 "Found multiple kills of a register in a basic block"); 860 } 861 } 862 } 863 864 // Move debug info as well. 865 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 866 --Begin; 867 868 nmi = End; 869 MachineBasicBlock::iterator InsertPos = KillPos; 870 if (LIS) { 871 // We have to move the copies first so that the MBB is still well-formed 872 // when calling handleMove(). 873 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 874 auto CopyMI = MBBI++; 875 MBB->splice(InsertPos, MBB, CopyMI); 876 LIS->handleMove(*CopyMI); 877 InsertPos = CopyMI; 878 } 879 End = std::next(MachineBasicBlock::iterator(MI)); 880 } 881 882 // Copies following MI may have been moved as well. 883 MBB->splice(InsertPos, MBB, Begin, End); 884 DistanceMap.erase(DI); 885 886 // Update live variables 887 if (LIS) { 888 LIS->handleMove(*MI); 889 } else { 890 LV->removeVirtualRegisterKilled(Reg, *KillMI); 891 LV->addVirtualRegisterKilled(Reg, *MI); 892 } 893 894 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 895 return true; 896 } 897 898 /// Return true if the re-scheduling will put the given instruction too close 899 /// to the defs of its register dependencies. 900 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist, 901 MachineInstr *MI) { 902 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 903 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 904 continue; 905 if (&DefMI == MI) 906 return true; // MI is defining something KillMI uses 907 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 908 if (DDI == DistanceMap.end()) 909 return true; // Below MI 910 unsigned DefDist = DDI->second; 911 assert(Dist > DefDist && "Visited def already?"); 912 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 913 return true; 914 } 915 return false; 916 } 917 918 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 919 /// consider moving the kill instruction above the current two-address 920 /// instruction in order to eliminate the need for the copy. 921 bool TwoAddressInstructionPass::rescheduleKillAboveMI( 922 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 923 Register Reg) { 924 // Bail immediately if we don't have LV or LIS available. We use them to find 925 // kills efficiently. 926 if (!LV && !LIS) 927 return false; 928 929 MachineInstr *MI = &*mi; 930 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 931 if (DI == DistanceMap.end()) 932 // Must be created from unfolded load. Don't waste time trying this. 933 return false; 934 935 MachineInstr *KillMI = nullptr; 936 if (LIS) { 937 LiveInterval &LI = LIS->getInterval(Reg); 938 assert(LI.end() != LI.begin() && 939 "Reg should not have empty live interval."); 940 941 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 942 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 943 if (I != LI.end() && I->start < MBBEndIdx) 944 return false; 945 946 --I; 947 KillMI = LIS->getInstructionFromIndex(I->end); 948 } else { 949 KillMI = LV->getVarInfo(Reg).findKill(MBB); 950 } 951 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 952 // Don't mess with copies, they may be coalesced later. 953 return false; 954 955 Register DstReg; 956 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 957 return false; 958 959 bool SeenStore = true; 960 if (!KillMI->isSafeToMove(AA, SeenStore)) 961 return false; 962 963 SmallVector<Register, 2> Uses; 964 SmallVector<Register, 2> Kills; 965 SmallVector<Register, 2> Defs; 966 SmallVector<Register, 2> LiveDefs; 967 for (const MachineOperand &MO : KillMI->operands()) { 968 if (!MO.isReg()) 969 continue; 970 Register MOReg = MO.getReg(); 971 if (MO.isUse()) { 972 if (!MOReg) 973 continue; 974 if (isDefTooClose(MOReg, DI->second, MI)) 975 return false; 976 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 977 if (MOReg == Reg && !isKill) 978 return false; 979 Uses.push_back(MOReg); 980 if (isKill && MOReg != Reg) 981 Kills.push_back(MOReg); 982 } else if (MOReg.isPhysical()) { 983 Defs.push_back(MOReg); 984 if (!MO.isDead()) 985 LiveDefs.push_back(MOReg); 986 } 987 } 988 989 // Check if the reschedule will not break depedencies. 990 unsigned NumVisited = 0; 991 for (MachineInstr &OtherMI : 992 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 993 // Debug or pseudo instructions cannot be counted against the limit. 994 if (OtherMI.isDebugOrPseudoInstr()) 995 continue; 996 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 997 return false; 998 ++NumVisited; 999 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1000 OtherMI.isBranch() || OtherMI.isTerminator()) 1001 // Don't move pass calls, etc. 1002 return false; 1003 SmallVector<Register, 2> OtherDefs; 1004 for (const MachineOperand &MO : OtherMI.operands()) { 1005 if (!MO.isReg()) 1006 continue; 1007 Register MOReg = MO.getReg(); 1008 if (!MOReg) 1009 continue; 1010 if (MO.isUse()) { 1011 if (regOverlapsSet(Defs, MOReg, TRI)) 1012 // Moving KillMI can clobber the physical register if the def has 1013 // not been seen. 1014 return false; 1015 if (regOverlapsSet(Kills, MOReg, TRI)) 1016 // Don't want to extend other live ranges and update kills. 1017 return false; 1018 if (&OtherMI != MI && MOReg == Reg && 1019 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1020 // We can't schedule across a use of the register in question. 1021 return false; 1022 } else { 1023 OtherDefs.push_back(MOReg); 1024 } 1025 } 1026 1027 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1028 Register MOReg = OtherDefs[i]; 1029 if (regOverlapsSet(Uses, MOReg, TRI)) 1030 return false; 1031 if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI)) 1032 return false; 1033 // Physical register def is seen. 1034 llvm::erase_value(Defs, MOReg); 1035 } 1036 } 1037 1038 // Move the old kill above MI, don't forget to move debug info as well. 1039 MachineBasicBlock::iterator InsertPos = mi; 1040 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1041 --InsertPos; 1042 MachineBasicBlock::iterator From = KillMI; 1043 MachineBasicBlock::iterator To = std::next(From); 1044 while (std::prev(From)->isDebugInstr()) 1045 --From; 1046 MBB->splice(InsertPos, MBB, From, To); 1047 1048 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1049 DistanceMap.erase(DI); 1050 1051 // Update live variables 1052 if (LIS) { 1053 LIS->handleMove(*KillMI); 1054 } else { 1055 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1056 LV->addVirtualRegisterKilled(Reg, *MI); 1057 } 1058 1059 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1060 return true; 1061 } 1062 1063 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1064 /// given machine instruction to improve opportunities for coalescing and 1065 /// elimination of a register to register copy. 1066 /// 1067 /// 'DstOpIdx' specifies the index of MI def operand. 1068 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1069 /// operand is killed by the given instruction. 1070 /// The 'Dist' arguments provides the distance of MI from the start of the 1071 /// current basic block and it is used to determine if it is profitable 1072 /// to commute operands in the instruction. 1073 /// 1074 /// Returns true if the transformation happened. Otherwise, returns false. 1075 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1076 unsigned DstOpIdx, 1077 unsigned BaseOpIdx, 1078 bool BaseOpKilled, 1079 unsigned Dist) { 1080 if (!MI->isCommutable()) 1081 return false; 1082 1083 bool MadeChange = false; 1084 Register DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1085 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1086 unsigned OpsNum = MI->getDesc().getNumOperands(); 1087 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1088 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1089 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1090 // and OtherOpIdx are commutable, it does not really search for 1091 // other commutable operands and does not change the values of passed 1092 // variables. 1093 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1094 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1095 continue; 1096 1097 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1098 bool AggressiveCommute = false; 1099 1100 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1101 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1102 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1103 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1104 1105 if (!DoCommute && 1106 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1107 DoCommute = true; 1108 AggressiveCommute = true; 1109 } 1110 1111 // If it's profitable to commute, try to do so. 1112 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1113 Dist)) { 1114 MadeChange = true; 1115 ++NumCommuted; 1116 if (AggressiveCommute) 1117 ++NumAggrCommuted; 1118 1119 // There might be more than two commutable operands, update BaseOp and 1120 // continue scanning. 1121 // FIXME: This assumes that the new instruction's operands are in the 1122 // same positions and were simply swapped. 1123 BaseOpReg = OtherOpReg; 1124 BaseOpKilled = OtherOpKilled; 1125 // Resamples OpsNum in case the number of operands was reduced. This 1126 // happens with X86. 1127 OpsNum = MI->getDesc().getNumOperands(); 1128 } 1129 } 1130 return MadeChange; 1131 } 1132 1133 /// For the case where an instruction has a single pair of tied register 1134 /// operands, attempt some transformations that may either eliminate the tied 1135 /// operands or improve the opportunities for coalescing away the register copy. 1136 /// Returns true if no copy needs to be inserted to untie mi's operands 1137 /// (either because they were untied, or because mi was rescheduled, and will 1138 /// be visited again later). If the shouldOnlyCommute flag is true, only 1139 /// instruction commutation is attempted. 1140 bool TwoAddressInstructionPass:: 1141 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1142 MachineBasicBlock::iterator &nmi, 1143 unsigned SrcIdx, unsigned DstIdx, 1144 unsigned Dist, bool shouldOnlyCommute) { 1145 if (OptLevel == CodeGenOpt::None) 1146 return false; 1147 1148 MachineInstr &MI = *mi; 1149 Register regA = MI.getOperand(DstIdx).getReg(); 1150 Register regB = MI.getOperand(SrcIdx).getReg(); 1151 1152 assert(regB.isVirtual() && "cannot make instruction into two-address form"); 1153 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1154 1155 if (regA.isVirtual()) 1156 scanUses(regA); 1157 1158 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1159 1160 // If the instruction is convertible to 3 Addr, instead 1161 // of returning try 3 Addr transformation aggressively and 1162 // use this variable to check later. Because it might be better. 1163 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1164 // instead of the following code. 1165 // addl %esi, %edi 1166 // movl %edi, %eax 1167 // ret 1168 if (Commuted && !MI.isConvertibleTo3Addr()) 1169 return false; 1170 1171 if (shouldOnlyCommute) 1172 return false; 1173 1174 // If there is one more use of regB later in the same MBB, consider 1175 // re-schedule this MI below it. 1176 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1177 ++NumReSchedDowns; 1178 return true; 1179 } 1180 1181 // If we commuted, regB may have changed so we should re-sample it to avoid 1182 // confusing the three address conversion below. 1183 if (Commuted) { 1184 regB = MI.getOperand(SrcIdx).getReg(); 1185 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1186 } 1187 1188 if (MI.isConvertibleTo3Addr()) { 1189 // This instruction is potentially convertible to a true 1190 // three-address instruction. Check if it is profitable. 1191 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1192 // Try to convert it. 1193 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1194 ++NumConvertedTo3Addr; 1195 return true; // Done with this instruction. 1196 } 1197 } 1198 } 1199 1200 // Return if it is commuted but 3 addr conversion is failed. 1201 if (Commuted) 1202 return false; 1203 1204 // If there is one more use of regB later in the same MBB, consider 1205 // re-schedule it before this MI if it's legal. 1206 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1207 ++NumReSchedUps; 1208 return true; 1209 } 1210 1211 // If this is an instruction with a load folded into it, try unfolding 1212 // the load, e.g. avoid this: 1213 // movq %rdx, %rcx 1214 // addq (%rax), %rcx 1215 // in favor of this: 1216 // movq (%rax), %rcx 1217 // addq %rdx, %rcx 1218 // because it's preferable to schedule a load than a register copy. 1219 if (MI.mayLoad() && !regBKilled) { 1220 // Determine if a load can be unfolded. 1221 unsigned LoadRegIndex; 1222 unsigned NewOpc = 1223 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1224 /*UnfoldLoad=*/true, 1225 /*UnfoldStore=*/false, 1226 &LoadRegIndex); 1227 if (NewOpc != 0) { 1228 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1229 if (UnfoldMCID.getNumDefs() == 1) { 1230 // Unfold the load. 1231 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1232 const TargetRegisterClass *RC = 1233 TRI->getAllocatableClass( 1234 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1235 Register Reg = MRI->createVirtualRegister(RC); 1236 SmallVector<MachineInstr *, 2> NewMIs; 1237 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1238 /*UnfoldLoad=*/true, 1239 /*UnfoldStore=*/false, NewMIs)) { 1240 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1241 return false; 1242 } 1243 assert(NewMIs.size() == 2 && 1244 "Unfolded a load into multiple instructions!"); 1245 // The load was previously folded, so this is the only use. 1246 NewMIs[1]->addRegisterKilled(Reg, TRI); 1247 1248 // Tentatively insert the instructions into the block so that they 1249 // look "normal" to the transformation logic. 1250 MBB->insert(mi, NewMIs[0]); 1251 MBB->insert(mi, NewMIs[1]); 1252 1253 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1254 << "2addr: NEW INST: " << *NewMIs[1]); 1255 1256 // Transform the instruction, now that it no longer has a load. 1257 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1258 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1259 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1260 bool TransformResult = 1261 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1262 (void)TransformResult; 1263 assert(!TransformResult && 1264 "tryInstructionTransform() should return false."); 1265 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1266 // Success, or at least we made an improvement. Keep the unfolded 1267 // instructions and discard the original. 1268 if (LV) { 1269 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1270 MachineOperand &MO = MI.getOperand(i); 1271 if (MO.isReg() && MO.getReg().isVirtual()) { 1272 if (MO.isUse()) { 1273 if (MO.isKill()) { 1274 if (NewMIs[0]->killsRegister(MO.getReg())) 1275 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1276 else { 1277 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1278 "Kill missing after load unfold!"); 1279 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1280 } 1281 } 1282 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1283 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1284 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1285 else { 1286 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1287 "Dead flag missing after load unfold!"); 1288 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1289 } 1290 } 1291 } 1292 } 1293 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1294 } 1295 1296 SmallVector<Register, 4> OrigRegs; 1297 if (LIS) { 1298 for (const MachineOperand &MO : MI.operands()) { 1299 if (MO.isReg()) 1300 OrigRegs.push_back(MO.getReg()); 1301 } 1302 1303 LIS->RemoveMachineInstrFromMaps(MI); 1304 } 1305 1306 MI.eraseFromParent(); 1307 1308 // Update LiveIntervals. 1309 if (LIS) { 1310 MachineBasicBlock::iterator Begin(NewMIs[0]); 1311 MachineBasicBlock::iterator End(NewMIs[1]); 1312 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1313 } 1314 1315 mi = NewMIs[1]; 1316 } else { 1317 // Transforming didn't eliminate the tie and didn't lead to an 1318 // improvement. Clean up the unfolded instructions and keep the 1319 // original. 1320 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1321 NewMIs[0]->eraseFromParent(); 1322 NewMIs[1]->eraseFromParent(); 1323 } 1324 } 1325 } 1326 } 1327 1328 return false; 1329 } 1330 1331 // Collect tied operands of MI that need to be handled. 1332 // Rewrite trivial cases immediately. 1333 // Return true if any tied operands where found, including the trivial ones. 1334 bool TwoAddressInstructionPass:: 1335 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1336 const MCInstrDesc &MCID = MI->getDesc(); 1337 bool AnyOps = false; 1338 unsigned NumOps = MI->getNumOperands(); 1339 1340 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1341 unsigned DstIdx = 0; 1342 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1343 continue; 1344 AnyOps = true; 1345 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1346 MachineOperand &DstMO = MI->getOperand(DstIdx); 1347 Register SrcReg = SrcMO.getReg(); 1348 Register DstReg = DstMO.getReg(); 1349 // Tied constraint already satisfied? 1350 if (SrcReg == DstReg) 1351 continue; 1352 1353 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1354 1355 // Deal with undef uses immediately - simply rewrite the src operand. 1356 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1357 // Constrain the DstReg register class if required. 1358 if (DstReg.isVirtual()) 1359 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1360 TRI, *MF)) 1361 MRI->constrainRegClass(DstReg, RC); 1362 SrcMO.setReg(DstReg); 1363 SrcMO.setSubReg(0); 1364 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1365 continue; 1366 } 1367 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1368 } 1369 return AnyOps; 1370 } 1371 1372 // Process a list of tied MI operands that all use the same source register. 1373 // The tied pairs are of the form (SrcIdx, DstIdx). 1374 void 1375 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1376 TiedPairList &TiedPairs, 1377 unsigned &Dist) { 1378 bool IsEarlyClobber = llvm::find_if(TiedPairs, [MI](auto const &TP) { 1379 return MI->getOperand(TP.second).isEarlyClobber(); 1380 }) != TiedPairs.end(); 1381 1382 bool RemovedKillFlag = false; 1383 bool AllUsesCopied = true; 1384 unsigned LastCopiedReg = 0; 1385 SlotIndex LastCopyIdx; 1386 Register RegB = 0; 1387 unsigned SubRegB = 0; 1388 for (auto &TP : TiedPairs) { 1389 unsigned SrcIdx = TP.first; 1390 unsigned DstIdx = TP.second; 1391 1392 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1393 Register RegA = DstMO.getReg(); 1394 1395 // Grab RegB from the instruction because it may have changed if the 1396 // instruction was commuted. 1397 RegB = MI->getOperand(SrcIdx).getReg(); 1398 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1399 1400 if (RegA == RegB) { 1401 // The register is tied to multiple destinations (or else we would 1402 // not have continued this far), but this use of the register 1403 // already matches the tied destination. Leave it. 1404 AllUsesCopied = false; 1405 continue; 1406 } 1407 LastCopiedReg = RegA; 1408 1409 assert(RegB.isVirtual() && "cannot make instruction into two-address form"); 1410 1411 #ifndef NDEBUG 1412 // First, verify that we don't have a use of "a" in the instruction 1413 // (a = b + a for example) because our transformation will not 1414 // work. This should never occur because we are in SSA form. 1415 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1416 assert(i == DstIdx || 1417 !MI->getOperand(i).isReg() || 1418 MI->getOperand(i).getReg() != RegA); 1419 #endif 1420 1421 // Emit a copy. 1422 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1423 TII->get(TargetOpcode::COPY), RegA); 1424 // If this operand is folding a truncation, the truncation now moves to the 1425 // copy so that the register classes remain valid for the operands. 1426 MIB.addReg(RegB, 0, SubRegB); 1427 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1428 if (SubRegB) { 1429 if (RegA.isVirtual()) { 1430 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1431 SubRegB) && 1432 "tied subregister must be a truncation"); 1433 // The superreg class will not be used to constrain the subreg class. 1434 RC = nullptr; 1435 } else { 1436 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1437 && "tied subregister must be a truncation"); 1438 } 1439 } 1440 1441 // Update DistanceMap. 1442 MachineBasicBlock::iterator PrevMI = MI; 1443 --PrevMI; 1444 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1445 DistanceMap[MI] = ++Dist; 1446 1447 if (LIS) { 1448 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1449 1450 if (RegA.isVirtual()) { 1451 LiveInterval &LI = LIS->getInterval(RegA); 1452 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1453 SlotIndex endIdx = 1454 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1455 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1456 for (auto &S : LI.subranges()) { 1457 VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1458 S.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1459 } 1460 } 1461 } 1462 1463 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1464 1465 MachineOperand &MO = MI->getOperand(SrcIdx); 1466 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1467 "inconsistent operand info for 2-reg pass"); 1468 if (MO.isKill()) { 1469 MO.setIsKill(false); 1470 RemovedKillFlag = true; 1471 } 1472 1473 // Make sure regA is a legal regclass for the SrcIdx operand. 1474 if (RegA.isVirtual() && RegB.isVirtual()) 1475 MRI->constrainRegClass(RegA, RC); 1476 MO.setReg(RegA); 1477 // The getMatchingSuper asserts guarantee that the register class projected 1478 // by SubRegB is compatible with RegA with no subregister. So regardless of 1479 // whether the dest oper writes a subreg, the source oper should not. 1480 MO.setSubReg(0); 1481 1482 // Propagate SrcRegMap. 1483 SrcRegMap[RegA] = RegB; 1484 } 1485 1486 if (AllUsesCopied) { 1487 bool ReplacedAllUntiedUses = true; 1488 if (!IsEarlyClobber) { 1489 // Replace other (un-tied) uses of regB with LastCopiedReg. 1490 for (MachineOperand &MO : MI->operands()) { 1491 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1492 if (MO.getSubReg() == SubRegB) { 1493 if (MO.isKill()) { 1494 MO.setIsKill(false); 1495 RemovedKillFlag = true; 1496 } 1497 MO.setReg(LastCopiedReg); 1498 MO.setSubReg(0); 1499 } else { 1500 ReplacedAllUntiedUses = false; 1501 } 1502 } 1503 } 1504 } 1505 1506 // Update live variables for regB. 1507 if (RemovedKillFlag && ReplacedAllUntiedUses && 1508 LV && LV->getVarInfo(RegB).removeKill(*MI)) { 1509 MachineBasicBlock::iterator PrevMI = MI; 1510 --PrevMI; 1511 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1512 } 1513 1514 // Update LiveIntervals. 1515 if (LIS) { 1516 LiveInterval &LI = LIS->getInterval(RegB); 1517 SlotIndex MIIdx = LIS->getInstructionIndex(*MI); 1518 LiveInterval::const_iterator I = LI.find(MIIdx); 1519 assert(I != LI.end() && "RegB must be live-in to use."); 1520 1521 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1522 if (I->end == UseIdx) 1523 LI.removeSegment(LastCopyIdx, UseIdx); 1524 } 1525 } else if (RemovedKillFlag) { 1526 // Some tied uses of regB matched their destination registers, so 1527 // regB is still used in this instruction, but a kill flag was 1528 // removed from a different tied use of regB, so now we need to add 1529 // a kill flag to one of the remaining uses of regB. 1530 for (MachineOperand &MO : MI->operands()) { 1531 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1532 MO.setIsKill(true); 1533 break; 1534 } 1535 } 1536 } 1537 } 1538 1539 /// Reduce two-address instructions to two operands. 1540 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1541 MF = &Func; 1542 const TargetMachine &TM = MF->getTarget(); 1543 MRI = &MF->getRegInfo(); 1544 TII = MF->getSubtarget().getInstrInfo(); 1545 TRI = MF->getSubtarget().getRegisterInfo(); 1546 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1547 LV = getAnalysisIfAvailable<LiveVariables>(); 1548 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1549 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1550 AA = &AAPass->getAAResults(); 1551 else 1552 AA = nullptr; 1553 OptLevel = TM.getOptLevel(); 1554 // Disable optimizations if requested. We cannot skip the whole pass as some 1555 // fixups are necessary for correctness. 1556 if (skipFunction(Func.getFunction())) 1557 OptLevel = CodeGenOpt::None; 1558 1559 bool MadeChange = false; 1560 1561 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1562 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1563 1564 // This pass takes the function out of SSA form. 1565 MRI->leaveSSA(); 1566 1567 // This pass will rewrite the tied-def to meet the RegConstraint. 1568 MF->getProperties() 1569 .set(MachineFunctionProperties::Property::TiedOpsRewritten); 1570 1571 TiedOperandMap TiedOperands; 1572 for (MachineBasicBlock &MBBI : *MF) { 1573 MBB = &MBBI; 1574 unsigned Dist = 0; 1575 DistanceMap.clear(); 1576 SrcRegMap.clear(); 1577 DstRegMap.clear(); 1578 Processed.clear(); 1579 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1580 mi != me; ) { 1581 MachineBasicBlock::iterator nmi = std::next(mi); 1582 // Skip debug instructions. 1583 if (mi->isDebugInstr()) { 1584 mi = nmi; 1585 continue; 1586 } 1587 1588 // Expand REG_SEQUENCE instructions. This will position mi at the first 1589 // expanded instruction. 1590 if (mi->isRegSequence()) 1591 eliminateRegSequence(mi); 1592 1593 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1594 1595 processCopy(&*mi); 1596 1597 // First scan through all the tied register uses in this instruction 1598 // and record a list of pairs of tied operands for each register. 1599 if (!collectTiedOperands(&*mi, TiedOperands)) { 1600 mi = nmi; 1601 continue; 1602 } 1603 1604 ++NumTwoAddressInstrs; 1605 MadeChange = true; 1606 LLVM_DEBUG(dbgs() << '\t' << *mi); 1607 1608 // If the instruction has a single pair of tied operands, try some 1609 // transformations that may either eliminate the tied operands or 1610 // improve the opportunities for coalescing away the register copy. 1611 if (TiedOperands.size() == 1) { 1612 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1613 = TiedOperands.begin()->second; 1614 if (TiedPairs.size() == 1) { 1615 unsigned SrcIdx = TiedPairs[0].first; 1616 unsigned DstIdx = TiedPairs[0].second; 1617 Register SrcReg = mi->getOperand(SrcIdx).getReg(); 1618 Register DstReg = mi->getOperand(DstIdx).getReg(); 1619 if (SrcReg != DstReg && 1620 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1621 // The tied operands have been eliminated or shifted further down 1622 // the block to ease elimination. Continue processing with 'nmi'. 1623 TiedOperands.clear(); 1624 mi = nmi; 1625 continue; 1626 } 1627 } 1628 } 1629 1630 // Now iterate over the information collected above. 1631 for (auto &TO : TiedOperands) { 1632 processTiedPairs(&*mi, TO.second, Dist); 1633 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1634 } 1635 1636 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1637 if (mi->isInsertSubreg()) { 1638 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1639 // To %reg:subidx = COPY %subreg 1640 unsigned SubIdx = mi->getOperand(3).getImm(); 1641 mi->RemoveOperand(3); 1642 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1643 mi->getOperand(0).setSubReg(SubIdx); 1644 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1645 mi->RemoveOperand(1); 1646 mi->setDesc(TII->get(TargetOpcode::COPY)); 1647 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1648 } 1649 1650 // Clear TiedOperands here instead of at the top of the loop 1651 // since most instructions do not have tied operands. 1652 TiedOperands.clear(); 1653 mi = nmi; 1654 } 1655 } 1656 1657 if (LIS) 1658 MF->verify(this, "After two-address instruction pass"); 1659 1660 return MadeChange; 1661 } 1662 1663 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1664 /// 1665 /// The instruction is turned into a sequence of sub-register copies: 1666 /// 1667 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1668 /// 1669 /// Becomes: 1670 /// 1671 /// undef %dst:ssub0 = COPY %v1 1672 /// %dst:ssub1 = COPY %v2 1673 void TwoAddressInstructionPass:: 1674 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1675 MachineInstr &MI = *MBBI; 1676 Register DstReg = MI.getOperand(0).getReg(); 1677 if (MI.getOperand(0).getSubReg() || DstReg.isPhysical() || 1678 !(MI.getNumOperands() & 1)) { 1679 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1680 llvm_unreachable(nullptr); 1681 } 1682 1683 SmallVector<Register, 4> OrigRegs; 1684 if (LIS) { 1685 OrigRegs.push_back(MI.getOperand(0).getReg()); 1686 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1687 OrigRegs.push_back(MI.getOperand(i).getReg()); 1688 } 1689 1690 bool DefEmitted = false; 1691 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1692 MachineOperand &UseMO = MI.getOperand(i); 1693 Register SrcReg = UseMO.getReg(); 1694 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1695 // Nothing needs to be inserted for undef operands. 1696 if (UseMO.isUndef()) 1697 continue; 1698 1699 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1700 // might insert a COPY that uses SrcReg after is was killed. 1701 bool isKill = UseMO.isKill(); 1702 if (isKill) 1703 for (unsigned j = i + 2; j < e; j += 2) 1704 if (MI.getOperand(j).getReg() == SrcReg) { 1705 MI.getOperand(j).setIsKill(); 1706 UseMO.setIsKill(false); 1707 isKill = false; 1708 break; 1709 } 1710 1711 // Insert the sub-register copy. 1712 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1713 TII->get(TargetOpcode::COPY)) 1714 .addReg(DstReg, RegState::Define, SubIdx) 1715 .add(UseMO); 1716 1717 // The first def needs an undef flag because there is no live register 1718 // before it. 1719 if (!DefEmitted) { 1720 CopyMI->getOperand(0).setIsUndef(true); 1721 // Return an iterator pointing to the first inserted instr. 1722 MBBI = CopyMI; 1723 } 1724 DefEmitted = true; 1725 1726 // Update LiveVariables' kill info. 1727 if (LV && isKill && !SrcReg.isPhysical()) 1728 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1729 1730 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1731 } 1732 1733 MachineBasicBlock::iterator EndMBBI = 1734 std::next(MachineBasicBlock::iterator(MI)); 1735 1736 if (!DefEmitted) { 1737 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1738 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1739 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1740 MI.RemoveOperand(j); 1741 } else { 1742 if (LIS) 1743 LIS->RemoveMachineInstrFromMaps(MI); 1744 1745 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1746 MI.eraseFromParent(); 1747 } 1748 1749 // Udpate LiveIntervals. 1750 if (LIS) 1751 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1752 } 1753