1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TwoAddress instruction pass which is used 10 // by most register allocators. Two-Address instructions are rewritten 11 // from: 12 // 13 // A = B op C 14 // 15 // to: 16 // 17 // A = B 18 // A op= C 19 // 20 // Note that if a register allocator chooses to use this pass, that it 21 // has to be capable of handling the non-SSA nature of these rewritten 22 // virtual registers. 23 // 24 // It is also worth noting that the duplicate operand of the two 25 // address instruction is removed. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator_range.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervals.h" 37 #include "llvm/CodeGen/LiveVariables.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/Passes.h" 46 #include "llvm/CodeGen/SlotIndexes.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetOpcodes.h" 49 #include "llvm/CodeGen/TargetRegisterInfo.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/MC/MCInstrDesc.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CodeGen.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <cassert> 60 #include <iterator> 61 #include <utility> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "twoaddressinstruction" 66 67 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 68 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 69 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 70 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 71 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 72 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 73 74 // Temporary flag to disable rescheduling. 75 static cl::opt<bool> 76 EnableRescheduling("twoaddr-reschedule", 77 cl::desc("Coalesce copies by rescheduling (default=true)"), 78 cl::init(true), cl::Hidden); 79 80 // Limit the number of dataflow edges to traverse when evaluating the benefit 81 // of commuting operands. 82 static cl::opt<unsigned> MaxDataFlowEdge( 83 "dataflow-edge-limit", cl::Hidden, cl::init(3), 84 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 85 "the benefit of commuting operands")); 86 87 namespace { 88 89 class TwoAddressInstructionPass : public MachineFunctionPass { 90 MachineFunction *MF; 91 const TargetInstrInfo *TII; 92 const TargetRegisterInfo *TRI; 93 const InstrItineraryData *InstrItins; 94 MachineRegisterInfo *MRI; 95 LiveVariables *LV; 96 LiveIntervals *LIS; 97 AliasAnalysis *AA; 98 CodeGenOpt::Level OptLevel; 99 100 // The current basic block being processed. 101 MachineBasicBlock *MBB; 102 103 // Keep track the distance of a MI from the start of the current basic block. 104 DenseMap<MachineInstr*, unsigned> DistanceMap; 105 106 // Set of already processed instructions in the current block. 107 SmallPtrSet<MachineInstr*, 8> Processed; 108 109 // A map from virtual registers to physical registers which are likely targets 110 // to be coalesced to due to copies from physical registers to virtual 111 // registers. e.g. v1024 = move r0. 112 DenseMap<Register, Register> SrcRegMap; 113 114 // A map from virtual registers to physical registers which are likely targets 115 // to be coalesced to due to copies to physical registers from virtual 116 // registers. e.g. r1 = move v1024. 117 DenseMap<Register, Register> DstRegMap; 118 119 void removeClobberedSrcRegMap(MachineInstr *MI); 120 121 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen); 122 123 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef); 124 125 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC, 126 MachineInstr *MI, unsigned Dist); 127 128 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 129 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 130 131 bool isProfitableToConv3Addr(Register RegA, Register RegB); 132 133 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 134 MachineBasicBlock::iterator &nmi, Register RegA, 135 Register RegB, unsigned &Dist); 136 137 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI); 138 139 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 140 MachineBasicBlock::iterator &nmi, Register Reg); 141 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 142 MachineBasicBlock::iterator &nmi, Register Reg); 143 144 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 145 MachineBasicBlock::iterator &nmi, 146 unsigned SrcIdx, unsigned DstIdx, 147 unsigned &Dist, bool shouldOnlyCommute); 148 149 bool tryInstructionCommute(MachineInstr *MI, 150 unsigned DstOpIdx, 151 unsigned BaseOpIdx, 152 bool BaseOpKilled, 153 unsigned Dist); 154 void scanUses(Register DstReg); 155 156 void processCopy(MachineInstr *MI); 157 158 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 159 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 160 161 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 162 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 163 void eliminateRegSequence(MachineBasicBlock::iterator&); 164 165 public: 166 static char ID; // Pass identification, replacement for typeid 167 168 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 169 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 170 } 171 172 void getAnalysisUsage(AnalysisUsage &AU) const override { 173 AU.setPreservesCFG(); 174 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 175 AU.addUsedIfAvailable<LiveVariables>(); 176 AU.addPreserved<LiveVariables>(); 177 AU.addPreserved<SlotIndexes>(); 178 AU.addPreserved<LiveIntervals>(); 179 AU.addPreservedID(MachineLoopInfoID); 180 AU.addPreservedID(MachineDominatorsID); 181 MachineFunctionPass::getAnalysisUsage(AU); 182 } 183 184 /// Pass entry point. 185 bool runOnMachineFunction(MachineFunction&) override; 186 }; 187 188 } // end anonymous namespace 189 190 char TwoAddressInstructionPass::ID = 0; 191 192 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 193 194 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 195 "Two-Address instruction pass", false, false) 196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 197 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 198 "Two-Address instruction pass", false, false) 199 200 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS); 201 202 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 203 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB, 204 const MachineRegisterInfo *MRI) { 205 MachineInstr *Ret = nullptr; 206 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 207 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 208 continue; 209 if (!Ret) 210 Ret = &DefMI; 211 else if (Ret != &DefMI) 212 return nullptr; 213 } 214 return Ret; 215 } 216 217 /// Check if there is a reversed copy chain from FromReg to ToReg: 218 /// %Tmp1 = copy %Tmp2; 219 /// %FromReg = copy %Tmp1; 220 /// %ToReg = add %FromReg ... 221 /// %Tmp2 = copy %ToReg; 222 /// MaxLen specifies the maximum length of the copy chain the func 223 /// can walk through. 224 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg, 225 int Maxlen) { 226 Register TmpReg = FromReg; 227 for (int i = 0; i < Maxlen; i++) { 228 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 229 if (!Def || !Def->isCopy()) 230 return false; 231 232 TmpReg = Def->getOperand(1).getReg(); 233 234 if (TmpReg == ToReg) 235 return true; 236 } 237 return false; 238 } 239 240 /// Return true if there are no intervening uses between the last instruction 241 /// in the MBB that defines the specified register and the two-address 242 /// instruction which is being processed. It also returns the last def location 243 /// by reference. 244 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist, 245 unsigned &LastDef) { 246 LastDef = 0; 247 unsigned LastUse = Dist; 248 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 249 MachineInstr *MI = MO.getParent(); 250 if (MI->getParent() != MBB || MI->isDebugValue()) 251 continue; 252 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 253 if (DI == DistanceMap.end()) 254 continue; 255 if (MO.isUse() && DI->second < LastUse) 256 LastUse = DI->second; 257 if (MO.isDef() && DI->second > LastDef) 258 LastDef = DI->second; 259 } 260 261 return !(LastUse > LastDef && LastUse < Dist); 262 } 263 264 /// Return true if the specified MI is a copy instruction or an extract_subreg 265 /// instruction. It also returns the source and destination registers and 266 /// whether they are physical registers by reference. 267 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 268 Register &SrcReg, Register &DstReg, bool &IsSrcPhys, 269 bool &IsDstPhys) { 270 SrcReg = 0; 271 DstReg = 0; 272 if (MI.isCopy()) { 273 DstReg = MI.getOperand(0).getReg(); 274 SrcReg = MI.getOperand(1).getReg(); 275 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 276 DstReg = MI.getOperand(0).getReg(); 277 SrcReg = MI.getOperand(2).getReg(); 278 } else { 279 return false; 280 } 281 282 IsSrcPhys = SrcReg.isPhysical(); 283 IsDstPhys = DstReg.isPhysical(); 284 return true; 285 } 286 287 /// Test if the given register value, which is used by the 288 /// given instruction, is killed by the given instruction. 289 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, 290 LiveIntervals *LIS) { 291 if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) { 292 // FIXME: Sometimes tryInstructionTransform() will add instructions and 293 // test whether they can be folded before keeping them. In this case it 294 // sets a kill before recursively calling tryInstructionTransform() again. 295 // If there is no interval available, we assume that this instruction is 296 // one of those. A kill flag is manually inserted on the operand so the 297 // check below will handle it. 298 LiveInterval &LI = LIS->getInterval(Reg); 299 // This is to match the kill flag version where undefs don't have kill 300 // flags. 301 if (!LI.hasAtLeastOneValue()) 302 return false; 303 304 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 305 LiveInterval::const_iterator I = LI.find(useIdx); 306 assert(I != LI.end() && "Reg must be live-in to use."); 307 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 308 } 309 310 return MI->killsRegister(Reg); 311 } 312 313 /// Test if the given register value, which is used by the given 314 /// instruction, is killed by the given instruction. This looks through 315 /// coalescable copies to see if the original value is potentially not killed. 316 /// 317 /// For example, in this code: 318 /// 319 /// %reg1034 = copy %reg1024 320 /// %reg1035 = copy killed %reg1025 321 /// %reg1036 = add killed %reg1034, killed %reg1035 322 /// 323 /// %reg1034 is not considered to be killed, since it is copied from a 324 /// register which is not killed. Treating it as not killed lets the 325 /// normal heuristics commute the (two-address) add, which lets 326 /// coalescing eliminate the extra copy. 327 /// 328 /// If allowFalsePositives is true then likely kills are treated as kills even 329 /// if it can't be proven that they are kills. 330 static bool isKilled(MachineInstr &MI, Register Reg, 331 const MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 332 LiveIntervals *LIS, bool allowFalsePositives) { 333 MachineInstr *DefMI = &MI; 334 while (true) { 335 // All uses of physical registers are likely to be kills. 336 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg))) 337 return true; 338 if (!isPlainlyKilled(DefMI, Reg, LIS)) 339 return false; 340 if (Reg.isPhysical()) 341 return true; 342 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 343 // If there are multiple defs, we can't do a simple analysis, so just 344 // go with what the kill flag says. 345 if (std::next(Begin) != MRI->def_end()) 346 return true; 347 DefMI = Begin->getParent(); 348 bool IsSrcPhys, IsDstPhys; 349 Register SrcReg, DstReg; 350 // If the def is something other than a copy, then it isn't going to 351 // be coalesced, so follow the kill flag. 352 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 353 return true; 354 Reg = SrcReg; 355 } 356 } 357 358 /// Return true if the specified MI uses the specified register as a two-address 359 /// use. If so, return the destination register by reference. 360 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) { 361 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 362 const MachineOperand &MO = MI.getOperand(i); 363 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 364 continue; 365 unsigned ti; 366 if (MI.isRegTiedToDefOperand(i, &ti)) { 367 DstReg = MI.getOperand(ti).getReg(); 368 return true; 369 } 370 } 371 return false; 372 } 373 374 /// Given a register, if all its uses are in the same basic block, return the 375 /// last use instruction if it's a copy or a two-address use. 376 static MachineInstr * 377 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB, 378 MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 379 bool &IsCopy, Register &DstReg, bool &IsDstPhys, 380 LiveIntervals *LIS) { 381 MachineOperand *UseOp = nullptr; 382 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 383 MachineInstr *MI = MO.getParent(); 384 if (MI->getParent() != MBB) 385 return nullptr; 386 if (isPlainlyKilled(MI, Reg, LIS)) 387 UseOp = &MO; 388 } 389 if (!UseOp) 390 return nullptr; 391 MachineInstr &UseMI = *UseOp->getParent(); 392 393 Register SrcReg; 394 bool IsSrcPhys; 395 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 396 IsCopy = true; 397 return &UseMI; 398 } 399 IsDstPhys = false; 400 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 401 IsDstPhys = DstReg.isPhysical(); 402 return &UseMI; 403 } 404 if (UseMI.isCommutable()) { 405 unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex; 406 unsigned Src2 = UseMI.getOperandNo(UseOp); 407 if (TII->findCommutedOpIndices(UseMI, Src1, Src2)) { 408 MachineOperand &MO = UseMI.getOperand(Src1); 409 if (MO.isReg() && MO.isUse() && 410 isTwoAddrUse(UseMI, MO.getReg(), DstReg)) { 411 IsDstPhys = DstReg.isPhysical(); 412 return &UseMI; 413 } 414 } 415 } 416 return nullptr; 417 } 418 419 /// Return the physical register the specified virtual register might be mapped 420 /// to. 421 static MCRegister getMappedReg(Register Reg, 422 DenseMap<Register, Register> &RegMap) { 423 while (Reg.isVirtual()) { 424 DenseMap<Register, Register>::iterator SI = RegMap.find(Reg); 425 if (SI == RegMap.end()) 426 return 0; 427 Reg = SI->second; 428 } 429 if (Reg.isPhysical()) 430 return Reg; 431 return 0; 432 } 433 434 /// Return true if the two registers are equal or aliased. 435 static bool regsAreCompatible(Register RegA, Register RegB, 436 const TargetRegisterInfo *TRI) { 437 if (RegA == RegB) 438 return true; 439 if (!RegA || !RegB) 440 return false; 441 return TRI->regsOverlap(RegA, RegB); 442 } 443 444 /// From RegMap remove entries mapped to a physical register which overlaps MO. 445 static void removeMapRegEntry(const MachineOperand &MO, 446 DenseMap<Register, Register> &RegMap, 447 const TargetRegisterInfo *TRI) { 448 assert( 449 (MO.isReg() || MO.isRegMask()) && 450 "removeMapRegEntry must be called with a register or regmask operand."); 451 452 SmallVector<Register, 2> Srcs; 453 for (auto SI : RegMap) { 454 Register ToReg = SI.second; 455 if (ToReg.isVirtual()) 456 continue; 457 458 if (MO.isReg()) { 459 Register Reg = MO.getReg(); 460 if (TRI->regsOverlap(ToReg, Reg)) 461 Srcs.push_back(SI.first); 462 } else if (MO.clobbersPhysReg(ToReg)) 463 Srcs.push_back(SI.first); 464 } 465 466 for (auto SrcReg : Srcs) 467 RegMap.erase(SrcReg); 468 } 469 470 /// If a physical register is clobbered, old entries mapped to it should be 471 /// deleted. For example 472 /// 473 /// %2:gr64 = COPY killed $rdx 474 /// MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx 475 /// 476 /// After the MUL instruction, $rdx contains different value than in the COPY 477 /// instruction. So %2 should not map to $rdx after MUL. 478 void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr *MI) { 479 if (MI->isCopy()) { 480 // If a virtual register is copied to its mapped physical register, it 481 // doesn't change the potential coalescing between them, so we don't remove 482 // entries mapped to the physical register. For example 483 // 484 // %100 = COPY $r8 485 // ... 486 // $r8 = COPY %100 487 // 488 // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't 489 // destroy the content of $r8, and should not impact SrcRegMap. 490 Register Dst = MI->getOperand(0).getReg(); 491 if (!Dst || Dst.isVirtual()) 492 return; 493 494 Register Src = MI->getOperand(1).getReg(); 495 if (regsAreCompatible(Dst, getMappedReg(Src, SrcRegMap), TRI)) 496 return; 497 } 498 499 for (const MachineOperand &MO : MI->operands()) { 500 if (MO.isRegMask()) { 501 removeMapRegEntry(MO, SrcRegMap, TRI); 502 continue; 503 } 504 if (!MO.isReg() || !MO.isDef()) 505 continue; 506 Register Reg = MO.getReg(); 507 if (!Reg || Reg.isVirtual()) 508 continue; 509 removeMapRegEntry(MO, SrcRegMap, TRI); 510 } 511 } 512 513 // Returns true if Reg is equal or aliased to at least one register in Set. 514 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg, 515 const TargetRegisterInfo *TRI) { 516 for (unsigned R : Set) 517 if (TRI->regsOverlap(R, Reg)) 518 return true; 519 520 return false; 521 } 522 523 /// Return true if it's potentially profitable to commute the two-address 524 /// instruction that's being processed. 525 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA, 526 Register RegB, 527 Register RegC, 528 MachineInstr *MI, 529 unsigned Dist) { 530 if (OptLevel == CodeGenOpt::None) 531 return false; 532 533 // Determine if it's profitable to commute this two address instruction. In 534 // general, we want no uses between this instruction and the definition of 535 // the two-address register. 536 // e.g. 537 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 538 // %reg1029 = COPY %reg1028 539 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 540 // insert => %reg1030 = COPY %reg1028 541 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 542 // In this case, it might not be possible to coalesce the second COPY 543 // instruction if the first one is coalesced. So it would be profitable to 544 // commute it: 545 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 546 // %reg1029 = COPY %reg1028 547 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 548 // insert => %reg1030 = COPY %reg1029 549 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 550 551 if (!isPlainlyKilled(MI, RegC, LIS)) 552 return false; 553 554 // Ok, we have something like: 555 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 556 // let's see if it's worth commuting it. 557 558 // Look for situations like this: 559 // %reg1024 = MOV r1 560 // %reg1025 = MOV r0 561 // %reg1026 = ADD %reg1024, %reg1025 562 // r0 = MOV %reg1026 563 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 564 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 565 if (ToRegA) { 566 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 567 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 568 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 569 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 570 571 // Compute if any of the following are true: 572 // -RegB is not tied to a register and RegC is compatible with RegA. 573 // -RegB is tied to the wrong physical register, but RegC is. 574 // -RegB is tied to the wrong physical register, and RegC isn't tied. 575 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 576 return true; 577 // Don't compute if any of the following are true: 578 // -RegC is not tied to a register and RegB is compatible with RegA. 579 // -RegC is tied to the wrong physical register, but RegB is. 580 // -RegC is tied to the wrong physical register, and RegB isn't tied. 581 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 582 return false; 583 } 584 585 // If there is a use of RegC between its last def (could be livein) and this 586 // instruction, then bail. 587 unsigned LastDefC = 0; 588 if (!noUseAfterLastDef(RegC, Dist, LastDefC)) 589 return false; 590 591 // If there is a use of RegB between its last def (could be livein) and this 592 // instruction, then go ahead and make this transformation. 593 unsigned LastDefB = 0; 594 if (!noUseAfterLastDef(RegB, Dist, LastDefB)) 595 return true; 596 597 // Look for situation like this: 598 // %reg101 = MOV %reg100 599 // %reg102 = ... 600 // %reg103 = ADD %reg102, %reg101 601 // ... = %reg103 ... 602 // %reg100 = MOV %reg103 603 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 604 // to eliminate an otherwise unavoidable copy. 605 // FIXME: 606 // We can extend the logic further: If an pair of operands in an insn has 607 // been merged, the insn could be regarded as a virtual copy, and the virtual 608 // copy could also be used to construct a copy chain. 609 // To more generally minimize register copies, ideally the logic of two addr 610 // instruction pass should be integrated with register allocation pass where 611 // interference graph is available. 612 if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge)) 613 return true; 614 615 if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge)) 616 return false; 617 618 // Look for other target specific commute preference. 619 bool Commute; 620 if (TII->hasCommutePreference(*MI, Commute)) 621 return Commute; 622 623 // Since there are no intervening uses for both registers, then commute 624 // if the def of RegC is closer. Its live interval is shorter. 625 return LastDefB && LastDefC && LastDefC > LastDefB; 626 } 627 628 /// Commute a two-address instruction and update the basic block, distance map, 629 /// and live variables if needed. Return true if it is successful. 630 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 631 unsigned DstIdx, 632 unsigned RegBIdx, 633 unsigned RegCIdx, 634 unsigned Dist) { 635 Register RegC = MI->getOperand(RegCIdx).getReg(); 636 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 637 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 638 639 if (NewMI == nullptr) { 640 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 641 return false; 642 } 643 644 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 645 assert(NewMI == MI && 646 "TargetInstrInfo::commuteInstruction() should not return a new " 647 "instruction unless it was requested."); 648 649 // Update source register map. 650 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 651 if (FromRegC) { 652 Register RegA = MI->getOperand(DstIdx).getReg(); 653 SrcRegMap[RegA] = FromRegC; 654 } 655 656 return true; 657 } 658 659 /// Return true if it is profitable to convert the given 2-address instruction 660 /// to a 3-address one. 661 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA, 662 Register RegB) { 663 // Look for situations like this: 664 // %reg1024 = MOV r1 665 // %reg1025 = MOV r0 666 // %reg1026 = ADD %reg1024, %reg1025 667 // r2 = MOV %reg1026 668 // Turn ADD into a 3-address instruction to avoid a copy. 669 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 670 if (!FromRegB) 671 return false; 672 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 673 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 674 } 675 676 /// Convert the specified two-address instruction into a three address one. 677 /// Return true if this transformation was successful. 678 bool TwoAddressInstructionPass::convertInstTo3Addr( 679 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 680 Register RegA, Register RegB, unsigned &Dist) { 681 MachineInstrSpan MIS(mi, MBB); 682 MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV, LIS); 683 if (!NewMI) 684 return false; 685 686 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 687 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 688 689 // If the old instruction is debug value tracked, an update is required. 690 if (auto OldInstrNum = mi->peekDebugInstrNum()) { 691 assert(mi->getNumExplicitDefs() == 1); 692 assert(NewMI->getNumExplicitDefs() == 1); 693 694 // Find the old and new def location. 695 auto OldIt = mi->defs().begin(); 696 auto NewIt = NewMI->defs().begin(); 697 unsigned OldIdx = mi->getOperandNo(OldIt); 698 unsigned NewIdx = NewMI->getOperandNo(NewIt); 699 700 // Record that one def has been replaced by the other. 701 unsigned NewInstrNum = NewMI->getDebugInstrNum(); 702 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx), 703 std::make_pair(NewInstrNum, NewIdx)); 704 } 705 706 MBB->erase(mi); // Nuke the old inst. 707 708 for (MachineInstr &MI : MIS) 709 DistanceMap.insert(std::make_pair(&MI, Dist++)); 710 Dist--; 711 mi = NewMI; 712 nmi = std::next(mi); 713 714 // Update source and destination register maps. 715 SrcRegMap.erase(RegA); 716 DstRegMap.erase(RegB); 717 return true; 718 } 719 720 /// Scan forward recursively for only uses, update maps if the use is a copy or 721 /// a two-address instruction. 722 void TwoAddressInstructionPass::scanUses(Register DstReg) { 723 SmallVector<Register, 4> VirtRegPairs; 724 bool IsDstPhys; 725 bool IsCopy = false; 726 Register NewReg; 727 Register Reg = DstReg; 728 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 729 NewReg, IsDstPhys, LIS)) { 730 if (IsCopy && !Processed.insert(UseMI).second) 731 break; 732 733 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 734 if (DI != DistanceMap.end()) 735 // Earlier in the same MBB.Reached via a back edge. 736 break; 737 738 if (IsDstPhys) { 739 VirtRegPairs.push_back(NewReg); 740 break; 741 } 742 SrcRegMap[NewReg] = Reg; 743 VirtRegPairs.push_back(NewReg); 744 Reg = NewReg; 745 } 746 747 if (!VirtRegPairs.empty()) { 748 unsigned ToReg = VirtRegPairs.back(); 749 VirtRegPairs.pop_back(); 750 while (!VirtRegPairs.empty()) { 751 unsigned FromReg = VirtRegPairs.pop_back_val(); 752 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 753 if (!isNew) 754 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 755 ToReg = FromReg; 756 } 757 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 758 if (!isNew) 759 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 760 } 761 } 762 763 /// If the specified instruction is not yet processed, process it if it's a 764 /// copy. For a copy instruction, we find the physical registers the 765 /// source and destination registers might be mapped to. These are kept in 766 /// point-to maps used to determine future optimizations. e.g. 767 /// v1024 = mov r0 768 /// v1025 = mov r1 769 /// v1026 = add v1024, v1025 770 /// r1 = mov r1026 771 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 772 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 773 /// potentially joined with r1 on the output side. It's worthwhile to commute 774 /// 'add' to eliminate a copy. 775 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 776 if (Processed.count(MI)) 777 return; 778 779 bool IsSrcPhys, IsDstPhys; 780 Register SrcReg, DstReg; 781 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 782 return; 783 784 if (IsDstPhys && !IsSrcPhys) { 785 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 786 } else if (!IsDstPhys && IsSrcPhys) { 787 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 788 if (!isNew) 789 assert(SrcRegMap[DstReg] == SrcReg && 790 "Can't map to two src physical registers!"); 791 792 scanUses(DstReg); 793 } 794 795 Processed.insert(MI); 796 } 797 798 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 799 /// consider moving the instruction below the kill instruction in order to 800 /// eliminate the need for the copy. 801 bool TwoAddressInstructionPass::rescheduleMIBelowKill( 802 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 803 Register Reg) { 804 // Bail immediately if we don't have LV or LIS available. We use them to find 805 // kills efficiently. 806 if (!LV && !LIS) 807 return false; 808 809 MachineInstr *MI = &*mi; 810 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 811 if (DI == DistanceMap.end()) 812 // Must be created from unfolded load. Don't waste time trying this. 813 return false; 814 815 MachineInstr *KillMI = nullptr; 816 if (LIS) { 817 LiveInterval &LI = LIS->getInterval(Reg); 818 assert(LI.end() != LI.begin() && 819 "Reg should not have empty live interval."); 820 821 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 822 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 823 if (I != LI.end() && I->start < MBBEndIdx) 824 return false; 825 826 --I; 827 KillMI = LIS->getInstructionFromIndex(I->end); 828 } else { 829 KillMI = LV->getVarInfo(Reg).findKill(MBB); 830 } 831 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 832 // Don't mess with copies, they may be coalesced later. 833 return false; 834 835 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 836 KillMI->isBranch() || KillMI->isTerminator()) 837 // Don't move pass calls, etc. 838 return false; 839 840 Register DstReg; 841 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 842 return false; 843 844 bool SeenStore = true; 845 if (!MI->isSafeToMove(AA, SeenStore)) 846 return false; 847 848 if (TII->getInstrLatency(InstrItins, *MI) > 1) 849 // FIXME: Needs more sophisticated heuristics. 850 return false; 851 852 SmallVector<Register, 2> Uses; 853 SmallVector<Register, 2> Kills; 854 SmallVector<Register, 2> Defs; 855 for (const MachineOperand &MO : MI->operands()) { 856 if (!MO.isReg()) 857 continue; 858 Register MOReg = MO.getReg(); 859 if (!MOReg) 860 continue; 861 if (MO.isDef()) 862 Defs.push_back(MOReg); 863 else { 864 Uses.push_back(MOReg); 865 if (MOReg != Reg && (MO.isKill() || 866 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 867 Kills.push_back(MOReg); 868 } 869 } 870 871 // Move the copies connected to MI down as well. 872 MachineBasicBlock::iterator Begin = MI; 873 MachineBasicBlock::iterator AfterMI = std::next(Begin); 874 MachineBasicBlock::iterator End = AfterMI; 875 while (End != MBB->end()) { 876 End = skipDebugInstructionsForward(End, MBB->end()); 877 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) 878 Defs.push_back(End->getOperand(0).getReg()); 879 else 880 break; 881 ++End; 882 } 883 884 // Check if the reschedule will not break dependencies. 885 unsigned NumVisited = 0; 886 MachineBasicBlock::iterator KillPos = KillMI; 887 ++KillPos; 888 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 889 // Debug or pseudo instructions cannot be counted against the limit. 890 if (OtherMI.isDebugOrPseudoInstr()) 891 continue; 892 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 893 return false; 894 ++NumVisited; 895 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 896 OtherMI.isBranch() || OtherMI.isTerminator()) 897 // Don't move pass calls, etc. 898 return false; 899 for (const MachineOperand &MO : OtherMI.operands()) { 900 if (!MO.isReg()) 901 continue; 902 Register MOReg = MO.getReg(); 903 if (!MOReg) 904 continue; 905 if (MO.isDef()) { 906 if (regOverlapsSet(Uses, MOReg, TRI)) 907 // Physical register use would be clobbered. 908 return false; 909 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 910 // May clobber a physical register def. 911 // FIXME: This may be too conservative. It's ok if the instruction 912 // is sunken completely below the use. 913 return false; 914 } else { 915 if (regOverlapsSet(Defs, MOReg, TRI)) 916 return false; 917 bool isKill = 918 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 919 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 920 regOverlapsSet(Kills, MOReg, TRI))) 921 // Don't want to extend other live ranges and update kills. 922 return false; 923 if (MOReg == Reg && !isKill) 924 // We can't schedule across a use of the register in question. 925 return false; 926 // Ensure that if this is register in question, its the kill we expect. 927 assert((MOReg != Reg || &OtherMI == KillMI) && 928 "Found multiple kills of a register in a basic block"); 929 } 930 } 931 } 932 933 // Move debug info as well. 934 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 935 --Begin; 936 937 nmi = End; 938 MachineBasicBlock::iterator InsertPos = KillPos; 939 if (LIS) { 940 // We have to move the copies (and any interleaved debug instructions) 941 // first so that the MBB is still well-formed when calling handleMove(). 942 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 943 auto CopyMI = MBBI++; 944 MBB->splice(InsertPos, MBB, CopyMI); 945 if (!CopyMI->isDebugOrPseudoInstr()) 946 LIS->handleMove(*CopyMI); 947 InsertPos = CopyMI; 948 } 949 End = std::next(MachineBasicBlock::iterator(MI)); 950 } 951 952 // Copies following MI may have been moved as well. 953 MBB->splice(InsertPos, MBB, Begin, End); 954 DistanceMap.erase(DI); 955 956 // Update live variables 957 if (LIS) { 958 LIS->handleMove(*MI); 959 } else { 960 LV->removeVirtualRegisterKilled(Reg, *KillMI); 961 LV->addVirtualRegisterKilled(Reg, *MI); 962 } 963 964 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 965 return true; 966 } 967 968 /// Return true if the re-scheduling will put the given instruction too close 969 /// to the defs of its register dependencies. 970 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist, 971 MachineInstr *MI) { 972 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 973 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 974 continue; 975 if (&DefMI == MI) 976 return true; // MI is defining something KillMI uses 977 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 978 if (DDI == DistanceMap.end()) 979 return true; // Below MI 980 unsigned DefDist = DDI->second; 981 assert(Dist > DefDist && "Visited def already?"); 982 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 983 return true; 984 } 985 return false; 986 } 987 988 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 989 /// consider moving the kill instruction above the current two-address 990 /// instruction in order to eliminate the need for the copy. 991 bool TwoAddressInstructionPass::rescheduleKillAboveMI( 992 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 993 Register Reg) { 994 // Bail immediately if we don't have LV or LIS available. We use them to find 995 // kills efficiently. 996 if (!LV && !LIS) 997 return false; 998 999 MachineInstr *MI = &*mi; 1000 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1001 if (DI == DistanceMap.end()) 1002 // Must be created from unfolded load. Don't waste time trying this. 1003 return false; 1004 1005 MachineInstr *KillMI = nullptr; 1006 if (LIS) { 1007 LiveInterval &LI = LIS->getInterval(Reg); 1008 assert(LI.end() != LI.begin() && 1009 "Reg should not have empty live interval."); 1010 1011 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1012 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1013 if (I != LI.end() && I->start < MBBEndIdx) 1014 return false; 1015 1016 --I; 1017 KillMI = LIS->getInstructionFromIndex(I->end); 1018 } else { 1019 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1020 } 1021 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1022 // Don't mess with copies, they may be coalesced later. 1023 return false; 1024 1025 Register DstReg; 1026 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1027 return false; 1028 1029 bool SeenStore = true; 1030 if (!KillMI->isSafeToMove(AA, SeenStore)) 1031 return false; 1032 1033 SmallVector<Register, 2> Uses; 1034 SmallVector<Register, 2> Kills; 1035 SmallVector<Register, 2> Defs; 1036 SmallVector<Register, 2> LiveDefs; 1037 for (const MachineOperand &MO : KillMI->operands()) { 1038 if (!MO.isReg()) 1039 continue; 1040 Register MOReg = MO.getReg(); 1041 if (MO.isUse()) { 1042 if (!MOReg) 1043 continue; 1044 if (isDefTooClose(MOReg, DI->second, MI)) 1045 return false; 1046 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1047 if (MOReg == Reg && !isKill) 1048 return false; 1049 Uses.push_back(MOReg); 1050 if (isKill && MOReg != Reg) 1051 Kills.push_back(MOReg); 1052 } else if (MOReg.isPhysical()) { 1053 Defs.push_back(MOReg); 1054 if (!MO.isDead()) 1055 LiveDefs.push_back(MOReg); 1056 } 1057 } 1058 1059 // Check if the reschedule will not break depedencies. 1060 unsigned NumVisited = 0; 1061 for (MachineInstr &OtherMI : 1062 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1063 // Debug or pseudo instructions cannot be counted against the limit. 1064 if (OtherMI.isDebugOrPseudoInstr()) 1065 continue; 1066 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1067 return false; 1068 ++NumVisited; 1069 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1070 OtherMI.isBranch() || OtherMI.isTerminator()) 1071 // Don't move pass calls, etc. 1072 return false; 1073 SmallVector<Register, 2> OtherDefs; 1074 for (const MachineOperand &MO : OtherMI.operands()) { 1075 if (!MO.isReg()) 1076 continue; 1077 Register MOReg = MO.getReg(); 1078 if (!MOReg) 1079 continue; 1080 if (MO.isUse()) { 1081 if (regOverlapsSet(Defs, MOReg, TRI)) 1082 // Moving KillMI can clobber the physical register if the def has 1083 // not been seen. 1084 return false; 1085 if (regOverlapsSet(Kills, MOReg, TRI)) 1086 // Don't want to extend other live ranges and update kills. 1087 return false; 1088 if (&OtherMI != MI && MOReg == Reg && 1089 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1090 // We can't schedule across a use of the register in question. 1091 return false; 1092 } else { 1093 OtherDefs.push_back(MOReg); 1094 } 1095 } 1096 1097 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1098 Register MOReg = OtherDefs[i]; 1099 if (regOverlapsSet(Uses, MOReg, TRI)) 1100 return false; 1101 if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI)) 1102 return false; 1103 // Physical register def is seen. 1104 llvm::erase_value(Defs, MOReg); 1105 } 1106 } 1107 1108 // Move the old kill above MI, don't forget to move debug info as well. 1109 MachineBasicBlock::iterator InsertPos = mi; 1110 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1111 --InsertPos; 1112 MachineBasicBlock::iterator From = KillMI; 1113 MachineBasicBlock::iterator To = std::next(From); 1114 while (std::prev(From)->isDebugInstr()) 1115 --From; 1116 MBB->splice(InsertPos, MBB, From, To); 1117 1118 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1119 DistanceMap.erase(DI); 1120 1121 // Update live variables 1122 if (LIS) { 1123 LIS->handleMove(*KillMI); 1124 } else { 1125 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1126 LV->addVirtualRegisterKilled(Reg, *MI); 1127 } 1128 1129 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1130 return true; 1131 } 1132 1133 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1134 /// given machine instruction to improve opportunities for coalescing and 1135 /// elimination of a register to register copy. 1136 /// 1137 /// 'DstOpIdx' specifies the index of MI def operand. 1138 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1139 /// operand is killed by the given instruction. 1140 /// The 'Dist' arguments provides the distance of MI from the start of the 1141 /// current basic block and it is used to determine if it is profitable 1142 /// to commute operands in the instruction. 1143 /// 1144 /// Returns true if the transformation happened. Otherwise, returns false. 1145 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1146 unsigned DstOpIdx, 1147 unsigned BaseOpIdx, 1148 bool BaseOpKilled, 1149 unsigned Dist) { 1150 if (!MI->isCommutable()) 1151 return false; 1152 1153 bool MadeChange = false; 1154 Register DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1155 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1156 unsigned OpsNum = MI->getDesc().getNumOperands(); 1157 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1158 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1159 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1160 // and OtherOpIdx are commutable, it does not really search for 1161 // other commutable operands and does not change the values of passed 1162 // variables. 1163 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1164 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1165 continue; 1166 1167 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1168 bool AggressiveCommute = false; 1169 1170 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1171 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1172 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1173 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1174 1175 if (!DoCommute && 1176 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1177 DoCommute = true; 1178 AggressiveCommute = true; 1179 } 1180 1181 // If it's profitable to commute, try to do so. 1182 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1183 Dist)) { 1184 MadeChange = true; 1185 ++NumCommuted; 1186 if (AggressiveCommute) 1187 ++NumAggrCommuted; 1188 1189 // There might be more than two commutable operands, update BaseOp and 1190 // continue scanning. 1191 // FIXME: This assumes that the new instruction's operands are in the 1192 // same positions and were simply swapped. 1193 BaseOpReg = OtherOpReg; 1194 BaseOpKilled = OtherOpKilled; 1195 // Resamples OpsNum in case the number of operands was reduced. This 1196 // happens with X86. 1197 OpsNum = MI->getDesc().getNumOperands(); 1198 } 1199 } 1200 return MadeChange; 1201 } 1202 1203 /// For the case where an instruction has a single pair of tied register 1204 /// operands, attempt some transformations that may either eliminate the tied 1205 /// operands or improve the opportunities for coalescing away the register copy. 1206 /// Returns true if no copy needs to be inserted to untie mi's operands 1207 /// (either because they were untied, or because mi was rescheduled, and will 1208 /// be visited again later). If the shouldOnlyCommute flag is true, only 1209 /// instruction commutation is attempted. 1210 bool TwoAddressInstructionPass:: 1211 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1212 MachineBasicBlock::iterator &nmi, 1213 unsigned SrcIdx, unsigned DstIdx, 1214 unsigned &Dist, bool shouldOnlyCommute) { 1215 if (OptLevel == CodeGenOpt::None) 1216 return false; 1217 1218 MachineInstr &MI = *mi; 1219 Register regA = MI.getOperand(DstIdx).getReg(); 1220 Register regB = MI.getOperand(SrcIdx).getReg(); 1221 1222 assert(regB.isVirtual() && "cannot make instruction into two-address form"); 1223 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1224 1225 if (regA.isVirtual()) 1226 scanUses(regA); 1227 1228 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1229 1230 // If the instruction is convertible to 3 Addr, instead 1231 // of returning try 3 Addr transformation aggressively and 1232 // use this variable to check later. Because it might be better. 1233 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1234 // instead of the following code. 1235 // addl %esi, %edi 1236 // movl %edi, %eax 1237 // ret 1238 if (Commuted && !MI.isConvertibleTo3Addr()) 1239 return false; 1240 1241 if (shouldOnlyCommute) 1242 return false; 1243 1244 // If there is one more use of regB later in the same MBB, consider 1245 // re-schedule this MI below it. 1246 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1247 ++NumReSchedDowns; 1248 return true; 1249 } 1250 1251 // If we commuted, regB may have changed so we should re-sample it to avoid 1252 // confusing the three address conversion below. 1253 if (Commuted) { 1254 regB = MI.getOperand(SrcIdx).getReg(); 1255 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1256 } 1257 1258 if (MI.isConvertibleTo3Addr()) { 1259 // This instruction is potentially convertible to a true 1260 // three-address instruction. Check if it is profitable. 1261 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1262 // Try to convert it. 1263 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1264 ++NumConvertedTo3Addr; 1265 return true; // Done with this instruction. 1266 } 1267 } 1268 } 1269 1270 // Return if it is commuted but 3 addr conversion is failed. 1271 if (Commuted) 1272 return false; 1273 1274 // If there is one more use of regB later in the same MBB, consider 1275 // re-schedule it before this MI if it's legal. 1276 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1277 ++NumReSchedUps; 1278 return true; 1279 } 1280 1281 // If this is an instruction with a load folded into it, try unfolding 1282 // the load, e.g. avoid this: 1283 // movq %rdx, %rcx 1284 // addq (%rax), %rcx 1285 // in favor of this: 1286 // movq (%rax), %rcx 1287 // addq %rdx, %rcx 1288 // because it's preferable to schedule a load than a register copy. 1289 if (MI.mayLoad() && !regBKilled) { 1290 // Determine if a load can be unfolded. 1291 unsigned LoadRegIndex; 1292 unsigned NewOpc = 1293 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1294 /*UnfoldLoad=*/true, 1295 /*UnfoldStore=*/false, 1296 &LoadRegIndex); 1297 if (NewOpc != 0) { 1298 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1299 if (UnfoldMCID.getNumDefs() == 1) { 1300 // Unfold the load. 1301 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1302 const TargetRegisterClass *RC = 1303 TRI->getAllocatableClass( 1304 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1305 Register Reg = MRI->createVirtualRegister(RC); 1306 SmallVector<MachineInstr *, 2> NewMIs; 1307 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1308 /*UnfoldLoad=*/true, 1309 /*UnfoldStore=*/false, NewMIs)) { 1310 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1311 return false; 1312 } 1313 assert(NewMIs.size() == 2 && 1314 "Unfolded a load into multiple instructions!"); 1315 // The load was previously folded, so this is the only use. 1316 NewMIs[1]->addRegisterKilled(Reg, TRI); 1317 1318 // Tentatively insert the instructions into the block so that they 1319 // look "normal" to the transformation logic. 1320 MBB->insert(mi, NewMIs[0]); 1321 MBB->insert(mi, NewMIs[1]); 1322 DistanceMap.insert(std::make_pair(NewMIs[0], Dist++)); 1323 DistanceMap.insert(std::make_pair(NewMIs[1], Dist)); 1324 1325 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1326 << "2addr: NEW INST: " << *NewMIs[1]); 1327 1328 // Transform the instruction, now that it no longer has a load. 1329 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1330 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1331 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1332 bool TransformResult = 1333 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1334 (void)TransformResult; 1335 assert(!TransformResult && 1336 "tryInstructionTransform() should return false."); 1337 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1338 // Success, or at least we made an improvement. Keep the unfolded 1339 // instructions and discard the original. 1340 if (LV) { 1341 for (const MachineOperand &MO : MI.operands()) { 1342 if (MO.isReg() && MO.getReg().isVirtual()) { 1343 if (MO.isUse()) { 1344 if (MO.isKill()) { 1345 if (NewMIs[0]->killsRegister(MO.getReg())) 1346 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1347 else { 1348 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1349 "Kill missing after load unfold!"); 1350 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1351 } 1352 } 1353 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1354 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1355 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1356 else { 1357 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1358 "Dead flag missing after load unfold!"); 1359 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1360 } 1361 } 1362 } 1363 } 1364 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1365 } 1366 1367 SmallVector<Register, 4> OrigRegs; 1368 if (LIS) { 1369 for (const MachineOperand &MO : MI.operands()) { 1370 if (MO.isReg()) 1371 OrigRegs.push_back(MO.getReg()); 1372 } 1373 1374 LIS->RemoveMachineInstrFromMaps(MI); 1375 } 1376 1377 MI.eraseFromParent(); 1378 DistanceMap.erase(&MI); 1379 1380 // Update LiveIntervals. 1381 if (LIS) { 1382 MachineBasicBlock::iterator Begin(NewMIs[0]); 1383 MachineBasicBlock::iterator End(NewMIs[1]); 1384 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1385 } 1386 1387 mi = NewMIs[1]; 1388 } else { 1389 // Transforming didn't eliminate the tie and didn't lead to an 1390 // improvement. Clean up the unfolded instructions and keep the 1391 // original. 1392 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1393 NewMIs[0]->eraseFromParent(); 1394 NewMIs[1]->eraseFromParent(); 1395 DistanceMap.erase(NewMIs[0]); 1396 DistanceMap.erase(NewMIs[1]); 1397 Dist--; 1398 } 1399 } 1400 } 1401 } 1402 1403 return false; 1404 } 1405 1406 // Collect tied operands of MI that need to be handled. 1407 // Rewrite trivial cases immediately. 1408 // Return true if any tied operands where found, including the trivial ones. 1409 bool TwoAddressInstructionPass:: 1410 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1411 bool AnyOps = false; 1412 unsigned NumOps = MI->getNumOperands(); 1413 1414 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1415 unsigned DstIdx = 0; 1416 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1417 continue; 1418 AnyOps = true; 1419 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1420 MachineOperand &DstMO = MI->getOperand(DstIdx); 1421 Register SrcReg = SrcMO.getReg(); 1422 Register DstReg = DstMO.getReg(); 1423 // Tied constraint already satisfied? 1424 if (SrcReg == DstReg) 1425 continue; 1426 1427 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1428 1429 // Deal with undef uses immediately - simply rewrite the src operand. 1430 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1431 // Constrain the DstReg register class if required. 1432 if (DstReg.isVirtual()) { 1433 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 1434 MRI->constrainRegClass(DstReg, RC); 1435 } 1436 SrcMO.setReg(DstReg); 1437 SrcMO.setSubReg(0); 1438 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1439 continue; 1440 } 1441 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1442 } 1443 return AnyOps; 1444 } 1445 1446 // Process a list of tied MI operands that all use the same source register. 1447 // The tied pairs are of the form (SrcIdx, DstIdx). 1448 void 1449 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1450 TiedPairList &TiedPairs, 1451 unsigned &Dist) { 1452 bool IsEarlyClobber = llvm::find_if(TiedPairs, [MI](auto const &TP) { 1453 return MI->getOperand(TP.second).isEarlyClobber(); 1454 }) != TiedPairs.end(); 1455 1456 bool RemovedKillFlag = false; 1457 bool AllUsesCopied = true; 1458 unsigned LastCopiedReg = 0; 1459 SlotIndex LastCopyIdx; 1460 Register RegB = 0; 1461 unsigned SubRegB = 0; 1462 for (auto &TP : TiedPairs) { 1463 unsigned SrcIdx = TP.first; 1464 unsigned DstIdx = TP.second; 1465 1466 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1467 Register RegA = DstMO.getReg(); 1468 1469 // Grab RegB from the instruction because it may have changed if the 1470 // instruction was commuted. 1471 RegB = MI->getOperand(SrcIdx).getReg(); 1472 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1473 1474 if (RegA == RegB) { 1475 // The register is tied to multiple destinations (or else we would 1476 // not have continued this far), but this use of the register 1477 // already matches the tied destination. Leave it. 1478 AllUsesCopied = false; 1479 continue; 1480 } 1481 LastCopiedReg = RegA; 1482 1483 assert(RegB.isVirtual() && "cannot make instruction into two-address form"); 1484 1485 #ifndef NDEBUG 1486 // First, verify that we don't have a use of "a" in the instruction 1487 // (a = b + a for example) because our transformation will not 1488 // work. This should never occur because we are in SSA form. 1489 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1490 assert(i == DstIdx || 1491 !MI->getOperand(i).isReg() || 1492 MI->getOperand(i).getReg() != RegA); 1493 #endif 1494 1495 // Emit a copy. 1496 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1497 TII->get(TargetOpcode::COPY), RegA); 1498 // If this operand is folding a truncation, the truncation now moves to the 1499 // copy so that the register classes remain valid for the operands. 1500 MIB.addReg(RegB, 0, SubRegB); 1501 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1502 if (SubRegB) { 1503 if (RegA.isVirtual()) { 1504 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1505 SubRegB) && 1506 "tied subregister must be a truncation"); 1507 // The superreg class will not be used to constrain the subreg class. 1508 RC = nullptr; 1509 } else { 1510 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1511 && "tied subregister must be a truncation"); 1512 } 1513 } 1514 1515 // Update DistanceMap. 1516 MachineBasicBlock::iterator PrevMI = MI; 1517 --PrevMI; 1518 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1519 DistanceMap[MI] = ++Dist; 1520 1521 if (LIS) { 1522 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1523 1524 SlotIndex endIdx = 1525 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1526 if (RegA.isVirtual()) { 1527 LiveInterval &LI = LIS->getInterval(RegA); 1528 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1529 LI.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1530 for (auto &S : LI.subranges()) { 1531 VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1532 S.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1533 } 1534 } else { 1535 for (MCRegUnitIterator Unit(RegA, TRI); Unit.isValid(); ++Unit) { 1536 if (LiveRange *LR = LIS->getCachedRegUnit(*Unit)) { 1537 VNInfo *VNI = 1538 LR->getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1539 LR->addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1540 } 1541 } 1542 } 1543 } 1544 1545 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1546 1547 MachineOperand &MO = MI->getOperand(SrcIdx); 1548 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1549 "inconsistent operand info for 2-reg pass"); 1550 if (MO.isKill()) { 1551 MO.setIsKill(false); 1552 RemovedKillFlag = true; 1553 } 1554 1555 // Make sure regA is a legal regclass for the SrcIdx operand. 1556 if (RegA.isVirtual() && RegB.isVirtual()) 1557 MRI->constrainRegClass(RegA, RC); 1558 MO.setReg(RegA); 1559 // The getMatchingSuper asserts guarantee that the register class projected 1560 // by SubRegB is compatible with RegA with no subregister. So regardless of 1561 // whether the dest oper writes a subreg, the source oper should not. 1562 MO.setSubReg(0); 1563 } 1564 1565 if (AllUsesCopied) { 1566 LaneBitmask RemainingUses = LaneBitmask::getNone(); 1567 // Replace other (un-tied) uses of regB with LastCopiedReg. 1568 for (MachineOperand &MO : MI->operands()) { 1569 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1570 if (MO.getSubReg() == SubRegB && !IsEarlyClobber) { 1571 if (MO.isKill()) { 1572 MO.setIsKill(false); 1573 RemovedKillFlag = true; 1574 } 1575 MO.setReg(LastCopiedReg); 1576 MO.setSubReg(0); 1577 } else { 1578 RemainingUses |= TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1579 } 1580 } 1581 } 1582 1583 // Update live variables for regB. 1584 if (RemovedKillFlag && RemainingUses.none() && LV && 1585 LV->getVarInfo(RegB).removeKill(*MI)) { 1586 MachineBasicBlock::iterator PrevMI = MI; 1587 --PrevMI; 1588 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1589 } 1590 1591 if (RemovedKillFlag && RemainingUses.none()) 1592 SrcRegMap[LastCopiedReg] = RegB; 1593 1594 // Update LiveIntervals. 1595 if (LIS) { 1596 SlotIndex UseIdx = LIS->getInstructionIndex(*MI); 1597 auto Shrink = [=](LiveRange &LR, LaneBitmask LaneMask) { 1598 LiveRange::Segment *S = LR.getSegmentContaining(LastCopyIdx); 1599 if (!S) 1600 return true; 1601 if ((LaneMask & RemainingUses).any()) 1602 return false; 1603 if (S->end.getBaseIndex() != UseIdx) 1604 return false; 1605 S->end = LastCopyIdx; 1606 return true; 1607 }; 1608 1609 LiveInterval &LI = LIS->getInterval(RegB); 1610 bool ShrinkLI = true; 1611 for (auto &S : LI.subranges()) 1612 ShrinkLI &= Shrink(S, S.LaneMask); 1613 if (ShrinkLI) 1614 Shrink(LI, LaneBitmask::getAll()); 1615 } 1616 } else if (RemovedKillFlag) { 1617 // Some tied uses of regB matched their destination registers, so 1618 // regB is still used in this instruction, but a kill flag was 1619 // removed from a different tied use of regB, so now we need to add 1620 // a kill flag to one of the remaining uses of regB. 1621 for (MachineOperand &MO : MI->operands()) { 1622 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1623 MO.setIsKill(true); 1624 break; 1625 } 1626 } 1627 } 1628 } 1629 1630 /// Reduce two-address instructions to two operands. 1631 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1632 MF = &Func; 1633 const TargetMachine &TM = MF->getTarget(); 1634 MRI = &MF->getRegInfo(); 1635 TII = MF->getSubtarget().getInstrInfo(); 1636 TRI = MF->getSubtarget().getRegisterInfo(); 1637 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1638 LV = getAnalysisIfAvailable<LiveVariables>(); 1639 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1640 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1641 AA = &AAPass->getAAResults(); 1642 else 1643 AA = nullptr; 1644 OptLevel = TM.getOptLevel(); 1645 // Disable optimizations if requested. We cannot skip the whole pass as some 1646 // fixups are necessary for correctness. 1647 if (skipFunction(Func.getFunction())) 1648 OptLevel = CodeGenOpt::None; 1649 1650 bool MadeChange = false; 1651 1652 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1653 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1654 1655 // This pass takes the function out of SSA form. 1656 MRI->leaveSSA(); 1657 1658 // This pass will rewrite the tied-def to meet the RegConstraint. 1659 MF->getProperties() 1660 .set(MachineFunctionProperties::Property::TiedOpsRewritten); 1661 1662 TiedOperandMap TiedOperands; 1663 for (MachineBasicBlock &MBBI : *MF) { 1664 MBB = &MBBI; 1665 unsigned Dist = 0; 1666 DistanceMap.clear(); 1667 SrcRegMap.clear(); 1668 DstRegMap.clear(); 1669 Processed.clear(); 1670 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1671 mi != me; ) { 1672 MachineBasicBlock::iterator nmi = std::next(mi); 1673 // Skip debug instructions. 1674 if (mi->isDebugInstr()) { 1675 mi = nmi; 1676 continue; 1677 } 1678 1679 // Expand REG_SEQUENCE instructions. This will position mi at the first 1680 // expanded instruction. 1681 if (mi->isRegSequence()) 1682 eliminateRegSequence(mi); 1683 1684 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1685 1686 processCopy(&*mi); 1687 1688 // First scan through all the tied register uses in this instruction 1689 // and record a list of pairs of tied operands for each register. 1690 if (!collectTiedOperands(&*mi, TiedOperands)) { 1691 removeClobberedSrcRegMap(&*mi); 1692 mi = nmi; 1693 continue; 1694 } 1695 1696 ++NumTwoAddressInstrs; 1697 MadeChange = true; 1698 LLVM_DEBUG(dbgs() << '\t' << *mi); 1699 1700 // If the instruction has a single pair of tied operands, try some 1701 // transformations that may either eliminate the tied operands or 1702 // improve the opportunities for coalescing away the register copy. 1703 if (TiedOperands.size() == 1) { 1704 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1705 = TiedOperands.begin()->second; 1706 if (TiedPairs.size() == 1) { 1707 unsigned SrcIdx = TiedPairs[0].first; 1708 unsigned DstIdx = TiedPairs[0].second; 1709 Register SrcReg = mi->getOperand(SrcIdx).getReg(); 1710 Register DstReg = mi->getOperand(DstIdx).getReg(); 1711 if (SrcReg != DstReg && 1712 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1713 // The tied operands have been eliminated or shifted further down 1714 // the block to ease elimination. Continue processing with 'nmi'. 1715 TiedOperands.clear(); 1716 removeClobberedSrcRegMap(&*mi); 1717 mi = nmi; 1718 continue; 1719 } 1720 } 1721 } 1722 1723 // Now iterate over the information collected above. 1724 for (auto &TO : TiedOperands) { 1725 processTiedPairs(&*mi, TO.second, Dist); 1726 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1727 } 1728 1729 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1730 if (mi->isInsertSubreg()) { 1731 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1732 // To %reg:subidx = COPY %subreg 1733 unsigned SubIdx = mi->getOperand(3).getImm(); 1734 mi->removeOperand(3); 1735 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1736 mi->getOperand(0).setSubReg(SubIdx); 1737 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1738 mi->removeOperand(1); 1739 mi->setDesc(TII->get(TargetOpcode::COPY)); 1740 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1741 1742 // Update LiveIntervals. 1743 if (LIS) { 1744 Register Reg = mi->getOperand(0).getReg(); 1745 LiveInterval &LI = LIS->getInterval(Reg); 1746 if (LI.hasSubRanges()) { 1747 // The COPY no longer defines subregs of %reg except for 1748 // %reg.subidx. 1749 LaneBitmask LaneMask = 1750 TRI->getSubRegIndexLaneMask(mi->getOperand(0).getSubReg()); 1751 SlotIndex Idx = LIS->getInstructionIndex(*mi); 1752 for (auto &S : LI.subranges()) { 1753 if ((S.LaneMask & LaneMask).none()) { 1754 LiveRange::iterator UseSeg = S.FindSegmentContaining(Idx); 1755 LiveRange::iterator DefSeg = std::next(UseSeg); 1756 S.MergeValueNumberInto(DefSeg->valno, UseSeg->valno); 1757 } 1758 } 1759 1760 // The COPY no longer has a use of %reg. 1761 LIS->shrinkToUses(&LI); 1762 } else { 1763 // The live interval for Reg did not have subranges but now it needs 1764 // them because we have introduced a subreg def. Recompute it. 1765 LIS->removeInterval(Reg); 1766 LIS->createAndComputeVirtRegInterval(Reg); 1767 } 1768 } 1769 } 1770 1771 // Clear TiedOperands here instead of at the top of the loop 1772 // since most instructions do not have tied operands. 1773 TiedOperands.clear(); 1774 removeClobberedSrcRegMap(&*mi); 1775 mi = nmi; 1776 } 1777 } 1778 1779 return MadeChange; 1780 } 1781 1782 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1783 /// 1784 /// The instruction is turned into a sequence of sub-register copies: 1785 /// 1786 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1787 /// 1788 /// Becomes: 1789 /// 1790 /// undef %dst:ssub0 = COPY %v1 1791 /// %dst:ssub1 = COPY %v2 1792 void TwoAddressInstructionPass:: 1793 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1794 MachineInstr &MI = *MBBI; 1795 Register DstReg = MI.getOperand(0).getReg(); 1796 if (MI.getOperand(0).getSubReg() || DstReg.isPhysical() || 1797 !(MI.getNumOperands() & 1)) { 1798 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1799 llvm_unreachable(nullptr); 1800 } 1801 1802 SmallVector<Register, 4> OrigRegs; 1803 if (LIS) { 1804 OrigRegs.push_back(MI.getOperand(0).getReg()); 1805 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1806 OrigRegs.push_back(MI.getOperand(i).getReg()); 1807 } 1808 1809 bool DefEmitted = false; 1810 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1811 MachineOperand &UseMO = MI.getOperand(i); 1812 Register SrcReg = UseMO.getReg(); 1813 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1814 // Nothing needs to be inserted for undef operands. 1815 if (UseMO.isUndef()) 1816 continue; 1817 1818 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1819 // might insert a COPY that uses SrcReg after is was killed. 1820 bool isKill = UseMO.isKill(); 1821 if (isKill) 1822 for (unsigned j = i + 2; j < e; j += 2) 1823 if (MI.getOperand(j).getReg() == SrcReg) { 1824 MI.getOperand(j).setIsKill(); 1825 UseMO.setIsKill(false); 1826 isKill = false; 1827 break; 1828 } 1829 1830 // Insert the sub-register copy. 1831 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1832 TII->get(TargetOpcode::COPY)) 1833 .addReg(DstReg, RegState::Define, SubIdx) 1834 .add(UseMO); 1835 1836 // The first def needs an undef flag because there is no live register 1837 // before it. 1838 if (!DefEmitted) { 1839 CopyMI->getOperand(0).setIsUndef(true); 1840 // Return an iterator pointing to the first inserted instr. 1841 MBBI = CopyMI; 1842 } 1843 DefEmitted = true; 1844 1845 // Update LiveVariables' kill info. 1846 if (LV && isKill && !SrcReg.isPhysical()) 1847 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1848 1849 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1850 } 1851 1852 MachineBasicBlock::iterator EndMBBI = 1853 std::next(MachineBasicBlock::iterator(MI)); 1854 1855 if (!DefEmitted) { 1856 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1857 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1858 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1859 MI.removeOperand(j); 1860 } else { 1861 if (LIS) 1862 LIS->RemoveMachineInstrFromMaps(MI); 1863 1864 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1865 MI.eraseFromParent(); 1866 } 1867 1868 // Udpate LiveIntervals. 1869 if (LIS) 1870 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1871 } 1872