1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 36 #include "llvm/CodeGen/LiveVariables.h" 37 #include "llvm/CodeGen/MachineFunctionPass.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/Passes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/MC/MCInstrItineraries.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetRegisterInfo.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "twoaddressinstruction" 56 57 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 58 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 59 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 60 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 61 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 62 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 63 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 64 65 // Temporary flag to disable rescheduling. 66 static cl::opt<bool> 67 EnableRescheduling("twoaddr-reschedule", 68 cl::desc("Coalesce copies by rescheduling (default=true)"), 69 cl::init(true), cl::Hidden); 70 71 // Limit the number of dataflow edges to traverse when evaluating the benefit 72 // of commuting operands. 73 static cl::opt<unsigned> MaxDataFlowEdge( 74 "dataflow-edge-limit", cl::Hidden, cl::init(3), 75 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 76 "the benefit of commuting operands")); 77 78 namespace { 79 class TwoAddressInstructionPass : public MachineFunctionPass { 80 MachineFunction *MF; 81 const TargetInstrInfo *TII; 82 const TargetRegisterInfo *TRI; 83 const InstrItineraryData *InstrItins; 84 MachineRegisterInfo *MRI; 85 LiveVariables *LV; 86 LiveIntervals *LIS; 87 AliasAnalysis *AA; 88 CodeGenOpt::Level OptLevel; 89 90 // The current basic block being processed. 91 MachineBasicBlock *MBB; 92 93 // Keep track the distance of a MI from the start of the current basic block. 94 DenseMap<MachineInstr*, unsigned> DistanceMap; 95 96 // Set of already processed instructions in the current block. 97 SmallPtrSet<MachineInstr*, 8> Processed; 98 99 // A map from virtual registers to physical registers which are likely targets 100 // to be coalesced to due to copies from physical registers to virtual 101 // registers. e.g. v1024 = move r0. 102 DenseMap<unsigned, unsigned> SrcRegMap; 103 104 // A map from virtual registers to physical registers which are likely targets 105 // to be coalesced to due to copies to physical registers from virtual 106 // registers. e.g. r1 = move v1024. 107 DenseMap<unsigned, unsigned> DstRegMap; 108 109 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, 110 MachineBasicBlock::iterator OldPos); 111 112 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen); 113 114 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 115 116 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 117 MachineInstr *MI, unsigned Dist); 118 119 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 120 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 121 122 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 123 124 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 125 MachineBasicBlock::iterator &nmi, 126 unsigned RegA, unsigned RegB, unsigned Dist); 127 128 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 129 130 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 131 MachineBasicBlock::iterator &nmi, 132 unsigned Reg); 133 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 134 MachineBasicBlock::iterator &nmi, 135 unsigned Reg); 136 137 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 138 MachineBasicBlock::iterator &nmi, 139 unsigned SrcIdx, unsigned DstIdx, 140 unsigned Dist, bool shouldOnlyCommute); 141 142 bool tryInstructionCommute(MachineInstr *MI, 143 unsigned DstOpIdx, 144 unsigned BaseOpIdx, 145 bool BaseOpKilled, 146 unsigned Dist); 147 void scanUses(unsigned DstReg); 148 149 void processCopy(MachineInstr *MI); 150 151 typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList; 152 typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap; 153 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 154 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 155 void eliminateRegSequence(MachineBasicBlock::iterator&); 156 157 public: 158 static char ID; // Pass identification, replacement for typeid 159 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 160 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 161 } 162 163 void getAnalysisUsage(AnalysisUsage &AU) const override { 164 AU.setPreservesCFG(); 165 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 166 AU.addUsedIfAvailable<LiveVariables>(); 167 AU.addPreserved<LiveVariables>(); 168 AU.addPreserved<SlotIndexes>(); 169 AU.addPreserved<LiveIntervals>(); 170 AU.addPreservedID(MachineLoopInfoID); 171 AU.addPreservedID(MachineDominatorsID); 172 MachineFunctionPass::getAnalysisUsage(AU); 173 } 174 175 /// Pass entry point. 176 bool runOnMachineFunction(MachineFunction&) override; 177 }; 178 } // end anonymous namespace 179 180 char TwoAddressInstructionPass::ID = 0; 181 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 182 "Two-Address instruction pass", false, false) 183 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 184 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 185 "Two-Address instruction pass", false, false) 186 187 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 188 189 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 190 191 /// A two-address instruction has been converted to a three-address instruction 192 /// to avoid clobbering a register. Try to sink it past the instruction that 193 /// would kill the above mentioned register to reduce register pressure. 194 bool TwoAddressInstructionPass:: 195 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, 196 MachineBasicBlock::iterator OldPos) { 197 // FIXME: Shouldn't we be trying to do this before we three-addressify the 198 // instruction? After this transformation is done, we no longer need 199 // the instruction to be in three-address form. 200 201 // Check if it's safe to move this instruction. 202 bool SeenStore = true; // Be conservative. 203 if (!MI->isSafeToMove(AA, SeenStore)) 204 return false; 205 206 unsigned DefReg = 0; 207 SmallSet<unsigned, 4> UseRegs; 208 209 for (const MachineOperand &MO : MI->operands()) { 210 if (!MO.isReg()) 211 continue; 212 unsigned MOReg = MO.getReg(); 213 if (!MOReg) 214 continue; 215 if (MO.isUse() && MOReg != SavedReg) 216 UseRegs.insert(MO.getReg()); 217 if (!MO.isDef()) 218 continue; 219 if (MO.isImplicit()) 220 // Don't try to move it if it implicitly defines a register. 221 return false; 222 if (DefReg) 223 // For now, don't move any instructions that define multiple registers. 224 return false; 225 DefReg = MO.getReg(); 226 } 227 228 // Find the instruction that kills SavedReg. 229 MachineInstr *KillMI = nullptr; 230 if (LIS) { 231 LiveInterval &LI = LIS->getInterval(SavedReg); 232 assert(LI.end() != LI.begin() && 233 "Reg should not have empty live interval."); 234 235 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 236 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 237 if (I != LI.end() && I->start < MBBEndIdx) 238 return false; 239 240 --I; 241 KillMI = LIS->getInstructionFromIndex(I->end); 242 } 243 if (!KillMI) { 244 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) { 245 if (!UseMO.isKill()) 246 continue; 247 KillMI = UseMO.getParent(); 248 break; 249 } 250 } 251 252 // If we find the instruction that kills SavedReg, and it is in an 253 // appropriate location, we can try to sink the current instruction 254 // past it. 255 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 256 MachineBasicBlock::iterator(KillMI) == OldPos || KillMI->isTerminator()) 257 return false; 258 259 // If any of the definitions are used by another instruction between the 260 // position and the kill use, then it's not safe to sink it. 261 // 262 // FIXME: This can be sped up if there is an easy way to query whether an 263 // instruction is before or after another instruction. Then we can use 264 // MachineRegisterInfo def / use instead. 265 MachineOperand *KillMO = nullptr; 266 MachineBasicBlock::iterator KillPos = KillMI; 267 ++KillPos; 268 269 unsigned NumVisited = 0; 270 for (MachineInstr &OtherMI : llvm::make_range(std::next(OldPos), KillPos)) { 271 // DBG_VALUE cannot be counted against the limit. 272 if (OtherMI.isDebugValue()) 273 continue; 274 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 275 return false; 276 ++NumVisited; 277 for (unsigned i = 0, e = OtherMI.getNumOperands(); i != e; ++i) { 278 MachineOperand &MO = OtherMI.getOperand(i); 279 if (!MO.isReg()) 280 continue; 281 unsigned MOReg = MO.getReg(); 282 if (!MOReg) 283 continue; 284 if (DefReg == MOReg) 285 return false; 286 287 if (MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))) { 288 if (&OtherMI == KillMI && MOReg == SavedReg) 289 // Save the operand that kills the register. We want to unset the kill 290 // marker if we can sink MI past it. 291 KillMO = &MO; 292 else if (UseRegs.count(MOReg)) 293 // One of the uses is killed before the destination. 294 return false; 295 } 296 } 297 } 298 assert(KillMO && "Didn't find kill"); 299 300 if (!LIS) { 301 // Update kill and LV information. 302 KillMO->setIsKill(false); 303 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 304 KillMO->setIsKill(true); 305 306 if (LV) 307 LV->replaceKillInstruction(SavedReg, *KillMI, *MI); 308 } 309 310 // Move instruction to its destination. 311 MBB->remove(MI); 312 MBB->insert(KillPos, MI); 313 314 if (LIS) 315 LIS->handleMove(*MI); 316 317 ++Num3AddrSunk; 318 return true; 319 } 320 321 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 322 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB, 323 const MachineRegisterInfo *MRI) { 324 MachineInstr *Ret = nullptr; 325 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 326 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 327 continue; 328 if (!Ret) 329 Ret = &DefMI; 330 else if (Ret != &DefMI) 331 return nullptr; 332 } 333 return Ret; 334 } 335 336 /// Check if there is a reversed copy chain from FromReg to ToReg: 337 /// %Tmp1 = copy %Tmp2; 338 /// %FromReg = copy %Tmp1; 339 /// %ToReg = add %FromReg ... 340 /// %Tmp2 = copy %ToReg; 341 /// MaxLen specifies the maximum length of the copy chain the func 342 /// can walk through. 343 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg, 344 int Maxlen) { 345 unsigned TmpReg = FromReg; 346 for (int i = 0; i < Maxlen; i++) { 347 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 348 if (!Def || !Def->isCopy()) 349 return false; 350 351 TmpReg = Def->getOperand(1).getReg(); 352 353 if (TmpReg == ToReg) 354 return true; 355 } 356 return false; 357 } 358 359 /// Return true if there are no intervening uses between the last instruction 360 /// in the MBB that defines the specified register and the two-address 361 /// instruction which is being processed. It also returns the last def location 362 /// by reference. 363 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 364 unsigned &LastDef) { 365 LastDef = 0; 366 unsigned LastUse = Dist; 367 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 368 MachineInstr *MI = MO.getParent(); 369 if (MI->getParent() != MBB || MI->isDebugValue()) 370 continue; 371 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 372 if (DI == DistanceMap.end()) 373 continue; 374 if (MO.isUse() && DI->second < LastUse) 375 LastUse = DI->second; 376 if (MO.isDef() && DI->second > LastDef) 377 LastDef = DI->second; 378 } 379 380 return !(LastUse > LastDef && LastUse < Dist); 381 } 382 383 /// Return true if the specified MI is a copy instruction or an extract_subreg 384 /// instruction. It also returns the source and destination registers and 385 /// whether they are physical registers by reference. 386 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 387 unsigned &SrcReg, unsigned &DstReg, 388 bool &IsSrcPhys, bool &IsDstPhys) { 389 SrcReg = 0; 390 DstReg = 0; 391 if (MI.isCopy()) { 392 DstReg = MI.getOperand(0).getReg(); 393 SrcReg = MI.getOperand(1).getReg(); 394 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 395 DstReg = MI.getOperand(0).getReg(); 396 SrcReg = MI.getOperand(2).getReg(); 397 } else 398 return false; 399 400 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 401 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 402 return true; 403 } 404 405 /// Test if the given register value, which is used by the 406 /// given instruction, is killed by the given instruction. 407 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 408 LiveIntervals *LIS) { 409 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && 410 !LIS->isNotInMIMap(*MI)) { 411 // FIXME: Sometimes tryInstructionTransform() will add instructions and 412 // test whether they can be folded before keeping them. In this case it 413 // sets a kill before recursively calling tryInstructionTransform() again. 414 // If there is no interval available, we assume that this instruction is 415 // one of those. A kill flag is manually inserted on the operand so the 416 // check below will handle it. 417 LiveInterval &LI = LIS->getInterval(Reg); 418 // This is to match the kill flag version where undefs don't have kill 419 // flags. 420 if (!LI.hasAtLeastOneValue()) 421 return false; 422 423 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 424 LiveInterval::const_iterator I = LI.find(useIdx); 425 assert(I != LI.end() && "Reg must be live-in to use."); 426 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 427 } 428 429 return MI->killsRegister(Reg); 430 } 431 432 /// Test if the given register value, which is used by the given 433 /// instruction, is killed by the given instruction. This looks through 434 /// coalescable copies to see if the original value is potentially not killed. 435 /// 436 /// For example, in this code: 437 /// 438 /// %reg1034 = copy %reg1024 439 /// %reg1035 = copy %reg1025<kill> 440 /// %reg1036 = add %reg1034<kill>, %reg1035<kill> 441 /// 442 /// %reg1034 is not considered to be killed, since it is copied from a 443 /// register which is not killed. Treating it as not killed lets the 444 /// normal heuristics commute the (two-address) add, which lets 445 /// coalescing eliminate the extra copy. 446 /// 447 /// If allowFalsePositives is true then likely kills are treated as kills even 448 /// if it can't be proven that they are kills. 449 static bool isKilled(MachineInstr &MI, unsigned Reg, 450 const MachineRegisterInfo *MRI, 451 const TargetInstrInfo *TII, 452 LiveIntervals *LIS, 453 bool allowFalsePositives) { 454 MachineInstr *DefMI = &MI; 455 for (;;) { 456 // All uses of physical registers are likely to be kills. 457 if (TargetRegisterInfo::isPhysicalRegister(Reg) && 458 (allowFalsePositives || MRI->hasOneUse(Reg))) 459 return true; 460 if (!isPlainlyKilled(DefMI, Reg, LIS)) 461 return false; 462 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 463 return true; 464 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 465 // If there are multiple defs, we can't do a simple analysis, so just 466 // go with what the kill flag says. 467 if (std::next(Begin) != MRI->def_end()) 468 return true; 469 DefMI = Begin->getParent(); 470 bool IsSrcPhys, IsDstPhys; 471 unsigned SrcReg, DstReg; 472 // If the def is something other than a copy, then it isn't going to 473 // be coalesced, so follow the kill flag. 474 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 475 return true; 476 Reg = SrcReg; 477 } 478 } 479 480 /// Return true if the specified MI uses the specified register as a two-address 481 /// use. If so, return the destination register by reference. 482 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 483 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 484 const MachineOperand &MO = MI.getOperand(i); 485 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 486 continue; 487 unsigned ti; 488 if (MI.isRegTiedToDefOperand(i, &ti)) { 489 DstReg = MI.getOperand(ti).getReg(); 490 return true; 491 } 492 } 493 return false; 494 } 495 496 /// Given a register, if has a single in-basic block use, return the use 497 /// instruction if it's a copy or a two-address use. 498 static 499 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 500 MachineRegisterInfo *MRI, 501 const TargetInstrInfo *TII, 502 bool &IsCopy, 503 unsigned &DstReg, bool &IsDstPhys) { 504 if (!MRI->hasOneNonDBGUse(Reg)) 505 // None or more than one use. 506 return nullptr; 507 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 508 if (UseMI.getParent() != MBB) 509 return nullptr; 510 unsigned SrcReg; 511 bool IsSrcPhys; 512 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 513 IsCopy = true; 514 return &UseMI; 515 } 516 IsDstPhys = false; 517 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 518 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 519 return &UseMI; 520 } 521 return nullptr; 522 } 523 524 /// Return the physical register the specified virtual register might be mapped 525 /// to. 526 static unsigned 527 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 528 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 529 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 530 if (SI == RegMap.end()) 531 return 0; 532 Reg = SI->second; 533 } 534 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 535 return Reg; 536 return 0; 537 } 538 539 /// Return true if the two registers are equal or aliased. 540 static bool 541 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 542 if (RegA == RegB) 543 return true; 544 if (!RegA || !RegB) 545 return false; 546 return TRI->regsOverlap(RegA, RegB); 547 } 548 549 // Returns true if Reg is equal or aliased to at least one register in Set. 550 static bool regOverlapsSet(const SmallVectorImpl<unsigned> &Set, unsigned Reg, 551 const TargetRegisterInfo *TRI) { 552 for (unsigned R : Set) 553 if (TRI->regsOverlap(R, Reg)) 554 return true; 555 556 return false; 557 } 558 559 /// Return true if it's potentially profitable to commute the two-address 560 /// instruction that's being processed. 561 bool 562 TwoAddressInstructionPass:: 563 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 564 MachineInstr *MI, unsigned Dist) { 565 if (OptLevel == CodeGenOpt::None) 566 return false; 567 568 // Determine if it's profitable to commute this two address instruction. In 569 // general, we want no uses between this instruction and the definition of 570 // the two-address register. 571 // e.g. 572 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 573 // %reg1029<def> = MOV8rr %reg1028 574 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 575 // insert => %reg1030<def> = MOV8rr %reg1028 576 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 577 // In this case, it might not be possible to coalesce the second MOV8rr 578 // instruction if the first one is coalesced. So it would be profitable to 579 // commute it: 580 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 581 // %reg1029<def> = MOV8rr %reg1028 582 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 583 // insert => %reg1030<def> = MOV8rr %reg1029 584 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 585 586 if (!isPlainlyKilled(MI, regC, LIS)) 587 return false; 588 589 // Ok, we have something like: 590 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 591 // let's see if it's worth commuting it. 592 593 // Look for situations like this: 594 // %reg1024<def> = MOV r1 595 // %reg1025<def> = MOV r0 596 // %reg1026<def> = ADD %reg1024, %reg1025 597 // r0 = MOV %reg1026 598 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 599 unsigned ToRegA = getMappedReg(regA, DstRegMap); 600 if (ToRegA) { 601 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 602 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 603 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 604 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 605 606 // Compute if any of the following are true: 607 // -RegB is not tied to a register and RegC is compatible with RegA. 608 // -RegB is tied to the wrong physical register, but RegC is. 609 // -RegB is tied to the wrong physical register, and RegC isn't tied. 610 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 611 return true; 612 // Don't compute if any of the following are true: 613 // -RegC is not tied to a register and RegB is compatible with RegA. 614 // -RegC is tied to the wrong physical register, but RegB is. 615 // -RegC is tied to the wrong physical register, and RegB isn't tied. 616 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 617 return false; 618 } 619 620 // If there is a use of regC between its last def (could be livein) and this 621 // instruction, then bail. 622 unsigned LastDefC = 0; 623 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 624 return false; 625 626 // If there is a use of regB between its last def (could be livein) and this 627 // instruction, then go ahead and make this transformation. 628 unsigned LastDefB = 0; 629 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 630 return true; 631 632 // Look for situation like this: 633 // %reg101 = MOV %reg100 634 // %reg102 = ... 635 // %reg103 = ADD %reg102, %reg101 636 // ... = %reg103 ... 637 // %reg100 = MOV %reg103 638 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 639 // to eliminate an otherwise unavoidable copy. 640 // FIXME: 641 // We can extend the logic further: If an pair of operands in an insn has 642 // been merged, the insn could be regarded as a virtual copy, and the virtual 643 // copy could also be used to construct a copy chain. 644 // To more generally minimize register copies, ideally the logic of two addr 645 // instruction pass should be integrated with register allocation pass where 646 // interference graph is available. 647 if (isRevCopyChain(regC, regA, MaxDataFlowEdge)) 648 return true; 649 650 if (isRevCopyChain(regB, regA, MaxDataFlowEdge)) 651 return false; 652 653 // Since there are no intervening uses for both registers, then commute 654 // if the def of regC is closer. Its live interval is shorter. 655 return LastDefB && LastDefC && LastDefC > LastDefB; 656 } 657 658 /// Commute a two-address instruction and update the basic block, distance map, 659 /// and live variables if needed. Return true if it is successful. 660 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 661 unsigned DstIdx, 662 unsigned RegBIdx, 663 unsigned RegCIdx, 664 unsigned Dist) { 665 unsigned RegC = MI->getOperand(RegCIdx).getReg(); 666 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 667 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 668 669 if (NewMI == nullptr) { 670 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 671 return false; 672 } 673 674 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 675 assert(NewMI == MI && 676 "TargetInstrInfo::commuteInstruction() should not return a new " 677 "instruction unless it was requested."); 678 679 // Update source register map. 680 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 681 if (FromRegC) { 682 unsigned RegA = MI->getOperand(DstIdx).getReg(); 683 SrcRegMap[RegA] = FromRegC; 684 } 685 686 return true; 687 } 688 689 /// Return true if it is profitable to convert the given 2-address instruction 690 /// to a 3-address one. 691 bool 692 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 693 // Look for situations like this: 694 // %reg1024<def> = MOV r1 695 // %reg1025<def> = MOV r0 696 // %reg1026<def> = ADD %reg1024, %reg1025 697 // r2 = MOV %reg1026 698 // Turn ADD into a 3-address instruction to avoid a copy. 699 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 700 if (!FromRegB) 701 return false; 702 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 703 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 704 } 705 706 /// Convert the specified two-address instruction into a three address one. 707 /// Return true if this transformation was successful. 708 bool 709 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 710 MachineBasicBlock::iterator &nmi, 711 unsigned RegA, unsigned RegB, 712 unsigned Dist) { 713 // FIXME: Why does convertToThreeAddress() need an iterator reference? 714 MachineFunction::iterator MFI = MBB->getIterator(); 715 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV); 716 assert(MBB->getIterator() == MFI && 717 "convertToThreeAddress changed iterator reference"); 718 if (!NewMI) 719 return false; 720 721 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 722 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 723 bool Sunk = false; 724 725 if (LIS) 726 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); 727 728 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 729 // FIXME: Temporary workaround. If the new instruction doesn't 730 // uses RegB, convertToThreeAddress must have created more 731 // then one instruction. 732 Sunk = sink3AddrInstruction(NewMI, RegB, mi); 733 734 MBB->erase(mi); // Nuke the old inst. 735 736 if (!Sunk) { 737 DistanceMap.insert(std::make_pair(NewMI, Dist)); 738 mi = NewMI; 739 nmi = std::next(mi); 740 } 741 742 // Update source and destination register maps. 743 SrcRegMap.erase(RegA); 744 DstRegMap.erase(RegB); 745 return true; 746 } 747 748 /// Scan forward recursively for only uses, update maps if the use is a copy or 749 /// a two-address instruction. 750 void 751 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 752 SmallVector<unsigned, 4> VirtRegPairs; 753 bool IsDstPhys; 754 bool IsCopy = false; 755 unsigned NewReg = 0; 756 unsigned Reg = DstReg; 757 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 758 NewReg, IsDstPhys)) { 759 if (IsCopy && !Processed.insert(UseMI).second) 760 break; 761 762 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 763 if (DI != DistanceMap.end()) 764 // Earlier in the same MBB.Reached via a back edge. 765 break; 766 767 if (IsDstPhys) { 768 VirtRegPairs.push_back(NewReg); 769 break; 770 } 771 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 772 if (!isNew) 773 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 774 VirtRegPairs.push_back(NewReg); 775 Reg = NewReg; 776 } 777 778 if (!VirtRegPairs.empty()) { 779 unsigned ToReg = VirtRegPairs.back(); 780 VirtRegPairs.pop_back(); 781 while (!VirtRegPairs.empty()) { 782 unsigned FromReg = VirtRegPairs.back(); 783 VirtRegPairs.pop_back(); 784 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 785 if (!isNew) 786 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 787 ToReg = FromReg; 788 } 789 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 790 if (!isNew) 791 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 792 } 793 } 794 795 /// If the specified instruction is not yet processed, process it if it's a 796 /// copy. For a copy instruction, we find the physical registers the 797 /// source and destination registers might be mapped to. These are kept in 798 /// point-to maps used to determine future optimizations. e.g. 799 /// v1024 = mov r0 800 /// v1025 = mov r1 801 /// v1026 = add v1024, v1025 802 /// r1 = mov r1026 803 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 804 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 805 /// potentially joined with r1 on the output side. It's worthwhile to commute 806 /// 'add' to eliminate a copy. 807 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 808 if (Processed.count(MI)) 809 return; 810 811 bool IsSrcPhys, IsDstPhys; 812 unsigned SrcReg, DstReg; 813 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 814 return; 815 816 if (IsDstPhys && !IsSrcPhys) 817 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 818 else if (!IsDstPhys && IsSrcPhys) { 819 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 820 if (!isNew) 821 assert(SrcRegMap[DstReg] == SrcReg && 822 "Can't map to two src physical registers!"); 823 824 scanUses(DstReg); 825 } 826 827 Processed.insert(MI); 828 } 829 830 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 831 /// consider moving the instruction below the kill instruction in order to 832 /// eliminate the need for the copy. 833 bool TwoAddressInstructionPass:: 834 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 835 MachineBasicBlock::iterator &nmi, 836 unsigned Reg) { 837 // Bail immediately if we don't have LV or LIS available. We use them to find 838 // kills efficiently. 839 if (!LV && !LIS) 840 return false; 841 842 MachineInstr *MI = &*mi; 843 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 844 if (DI == DistanceMap.end()) 845 // Must be created from unfolded load. Don't waste time trying this. 846 return false; 847 848 MachineInstr *KillMI = nullptr; 849 if (LIS) { 850 LiveInterval &LI = LIS->getInterval(Reg); 851 assert(LI.end() != LI.begin() && 852 "Reg should not have empty live interval."); 853 854 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 855 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 856 if (I != LI.end() && I->start < MBBEndIdx) 857 return false; 858 859 --I; 860 KillMI = LIS->getInstructionFromIndex(I->end); 861 } else { 862 KillMI = LV->getVarInfo(Reg).findKill(MBB); 863 } 864 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 865 // Don't mess with copies, they may be coalesced later. 866 return false; 867 868 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 869 KillMI->isBranch() || KillMI->isTerminator()) 870 // Don't move pass calls, etc. 871 return false; 872 873 unsigned DstReg; 874 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 875 return false; 876 877 bool SeenStore = true; 878 if (!MI->isSafeToMove(AA, SeenStore)) 879 return false; 880 881 if (TII->getInstrLatency(InstrItins, *MI) > 1) 882 // FIXME: Needs more sophisticated heuristics. 883 return false; 884 885 SmallVector<unsigned, 2> Uses; 886 SmallVector<unsigned, 2> Kills; 887 SmallVector<unsigned, 2> Defs; 888 for (const MachineOperand &MO : MI->operands()) { 889 if (!MO.isReg()) 890 continue; 891 unsigned MOReg = MO.getReg(); 892 if (!MOReg) 893 continue; 894 if (MO.isDef()) 895 Defs.push_back(MOReg); 896 else { 897 Uses.push_back(MOReg); 898 if (MOReg != Reg && (MO.isKill() || 899 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 900 Kills.push_back(MOReg); 901 } 902 } 903 904 // Move the copies connected to MI down as well. 905 MachineBasicBlock::iterator Begin = MI; 906 MachineBasicBlock::iterator AfterMI = std::next(Begin); 907 908 MachineBasicBlock::iterator End = AfterMI; 909 while (End->isCopy() && 910 regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) { 911 Defs.push_back(End->getOperand(0).getReg()); 912 ++End; 913 } 914 915 // Check if the reschedule will not break dependencies. 916 unsigned NumVisited = 0; 917 MachineBasicBlock::iterator KillPos = KillMI; 918 ++KillPos; 919 for (MachineInstr &OtherMI : llvm::make_range(End, KillPos)) { 920 // DBG_VALUE cannot be counted against the limit. 921 if (OtherMI.isDebugValue()) 922 continue; 923 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 924 return false; 925 ++NumVisited; 926 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 927 OtherMI.isBranch() || OtherMI.isTerminator()) 928 // Don't move pass calls, etc. 929 return false; 930 for (const MachineOperand &MO : OtherMI.operands()) { 931 if (!MO.isReg()) 932 continue; 933 unsigned MOReg = MO.getReg(); 934 if (!MOReg) 935 continue; 936 if (MO.isDef()) { 937 if (regOverlapsSet(Uses, MOReg, TRI)) 938 // Physical register use would be clobbered. 939 return false; 940 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 941 // May clobber a physical register def. 942 // FIXME: This may be too conservative. It's ok if the instruction 943 // is sunken completely below the use. 944 return false; 945 } else { 946 if (regOverlapsSet(Defs, MOReg, TRI)) 947 return false; 948 bool isKill = 949 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 950 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 951 regOverlapsSet(Kills, MOReg, TRI))) 952 // Don't want to extend other live ranges and update kills. 953 return false; 954 if (MOReg == Reg && !isKill) 955 // We can't schedule across a use of the register in question. 956 return false; 957 // Ensure that if this is register in question, its the kill we expect. 958 assert((MOReg != Reg || &OtherMI == KillMI) && 959 "Found multiple kills of a register in a basic block"); 960 } 961 } 962 } 963 964 // Move debug info as well. 965 while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue()) 966 --Begin; 967 968 nmi = End; 969 MachineBasicBlock::iterator InsertPos = KillPos; 970 if (LIS) { 971 // We have to move the copies first so that the MBB is still well-formed 972 // when calling handleMove(). 973 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 974 auto CopyMI = MBBI++; 975 MBB->splice(InsertPos, MBB, CopyMI); 976 LIS->handleMove(*CopyMI); 977 InsertPos = CopyMI; 978 } 979 End = std::next(MachineBasicBlock::iterator(MI)); 980 } 981 982 // Copies following MI may have been moved as well. 983 MBB->splice(InsertPos, MBB, Begin, End); 984 DistanceMap.erase(DI); 985 986 // Update live variables 987 if (LIS) { 988 LIS->handleMove(*MI); 989 } else { 990 LV->removeVirtualRegisterKilled(Reg, *KillMI); 991 LV->addVirtualRegisterKilled(Reg, *MI); 992 } 993 994 DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 995 return true; 996 } 997 998 /// Return true if the re-scheduling will put the given instruction too close 999 /// to the defs of its register dependencies. 1000 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 1001 MachineInstr *MI) { 1002 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 1003 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 1004 continue; 1005 if (&DefMI == MI) 1006 return true; // MI is defining something KillMI uses 1007 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 1008 if (DDI == DistanceMap.end()) 1009 return true; // Below MI 1010 unsigned DefDist = DDI->second; 1011 assert(Dist > DefDist && "Visited def already?"); 1012 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 1013 return true; 1014 } 1015 return false; 1016 } 1017 1018 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 1019 /// consider moving the kill instruction above the current two-address 1020 /// instruction in order to eliminate the need for the copy. 1021 bool TwoAddressInstructionPass:: 1022 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 1023 MachineBasicBlock::iterator &nmi, 1024 unsigned Reg) { 1025 // Bail immediately if we don't have LV or LIS available. We use them to find 1026 // kills efficiently. 1027 if (!LV && !LIS) 1028 return false; 1029 1030 MachineInstr *MI = &*mi; 1031 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1032 if (DI == DistanceMap.end()) 1033 // Must be created from unfolded load. Don't waste time trying this. 1034 return false; 1035 1036 MachineInstr *KillMI = nullptr; 1037 if (LIS) { 1038 LiveInterval &LI = LIS->getInterval(Reg); 1039 assert(LI.end() != LI.begin() && 1040 "Reg should not have empty live interval."); 1041 1042 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1043 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1044 if (I != LI.end() && I->start < MBBEndIdx) 1045 return false; 1046 1047 --I; 1048 KillMI = LIS->getInstructionFromIndex(I->end); 1049 } else { 1050 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1051 } 1052 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1053 // Don't mess with copies, they may be coalesced later. 1054 return false; 1055 1056 unsigned DstReg; 1057 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1058 return false; 1059 1060 bool SeenStore = true; 1061 if (!KillMI->isSafeToMove(AA, SeenStore)) 1062 return false; 1063 1064 SmallSet<unsigned, 2> Uses; 1065 SmallSet<unsigned, 2> Kills; 1066 SmallSet<unsigned, 2> Defs; 1067 SmallSet<unsigned, 2> LiveDefs; 1068 for (const MachineOperand &MO : KillMI->operands()) { 1069 if (!MO.isReg()) 1070 continue; 1071 unsigned MOReg = MO.getReg(); 1072 if (MO.isUse()) { 1073 if (!MOReg) 1074 continue; 1075 if (isDefTooClose(MOReg, DI->second, MI)) 1076 return false; 1077 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1078 if (MOReg == Reg && !isKill) 1079 return false; 1080 Uses.insert(MOReg); 1081 if (isKill && MOReg != Reg) 1082 Kills.insert(MOReg); 1083 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1084 Defs.insert(MOReg); 1085 if (!MO.isDead()) 1086 LiveDefs.insert(MOReg); 1087 } 1088 } 1089 1090 // Check if the reschedule will not break depedencies. 1091 unsigned NumVisited = 0; 1092 for (MachineInstr &OtherMI : 1093 llvm::make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1094 // DBG_VALUE cannot be counted against the limit. 1095 if (OtherMI.isDebugValue()) 1096 continue; 1097 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1098 return false; 1099 ++NumVisited; 1100 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1101 OtherMI.isBranch() || OtherMI.isTerminator()) 1102 // Don't move pass calls, etc. 1103 return false; 1104 SmallVector<unsigned, 2> OtherDefs; 1105 for (const MachineOperand &MO : OtherMI.operands()) { 1106 if (!MO.isReg()) 1107 continue; 1108 unsigned MOReg = MO.getReg(); 1109 if (!MOReg) 1110 continue; 1111 if (MO.isUse()) { 1112 if (Defs.count(MOReg)) 1113 // Moving KillMI can clobber the physical register if the def has 1114 // not been seen. 1115 return false; 1116 if (Kills.count(MOReg)) 1117 // Don't want to extend other live ranges and update kills. 1118 return false; 1119 if (&OtherMI != MI && MOReg == Reg && 1120 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1121 // We can't schedule across a use of the register in question. 1122 return false; 1123 } else { 1124 OtherDefs.push_back(MOReg); 1125 } 1126 } 1127 1128 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1129 unsigned MOReg = OtherDefs[i]; 1130 if (Uses.count(MOReg)) 1131 return false; 1132 if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 1133 LiveDefs.count(MOReg)) 1134 return false; 1135 // Physical register def is seen. 1136 Defs.erase(MOReg); 1137 } 1138 } 1139 1140 // Move the old kill above MI, don't forget to move debug info as well. 1141 MachineBasicBlock::iterator InsertPos = mi; 1142 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue()) 1143 --InsertPos; 1144 MachineBasicBlock::iterator From = KillMI; 1145 MachineBasicBlock::iterator To = std::next(From); 1146 while (std::prev(From)->isDebugValue()) 1147 --From; 1148 MBB->splice(InsertPos, MBB, From, To); 1149 1150 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1151 DistanceMap.erase(DI); 1152 1153 // Update live variables 1154 if (LIS) { 1155 LIS->handleMove(*KillMI); 1156 } else { 1157 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1158 LV->addVirtualRegisterKilled(Reg, *MI); 1159 } 1160 1161 DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1162 return true; 1163 } 1164 1165 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1166 /// given machine instruction to improve opportunities for coalescing and 1167 /// elimination of a register to register copy. 1168 /// 1169 /// 'DstOpIdx' specifies the index of MI def operand. 1170 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1171 /// operand is killed by the given instruction. 1172 /// The 'Dist' arguments provides the distance of MI from the start of the 1173 /// current basic block and it is used to determine if it is profitable 1174 /// to commute operands in the instruction. 1175 /// 1176 /// Returns true if the transformation happened. Otherwise, returns false. 1177 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1178 unsigned DstOpIdx, 1179 unsigned BaseOpIdx, 1180 bool BaseOpKilled, 1181 unsigned Dist) { 1182 if (!MI->isCommutable()) 1183 return false; 1184 1185 unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1186 unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1187 unsigned OpsNum = MI->getDesc().getNumOperands(); 1188 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1189 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1190 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1191 // and OtherOpIdx are commutable, it does not really search for 1192 // other commutable operands and does not change the values of passed 1193 // variables. 1194 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1195 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1196 continue; 1197 1198 unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1199 bool AggressiveCommute = false; 1200 1201 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1202 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1203 bool DoCommute = 1204 !BaseOpKilled && isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1205 1206 if (!DoCommute && 1207 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1208 DoCommute = true; 1209 AggressiveCommute = true; 1210 } 1211 1212 // If it's profitable to commute, try to do so. 1213 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1214 Dist)) { 1215 ++NumCommuted; 1216 if (AggressiveCommute) 1217 ++NumAggrCommuted; 1218 return true; 1219 } 1220 } 1221 return false; 1222 } 1223 1224 /// For the case where an instruction has a single pair of tied register 1225 /// operands, attempt some transformations that may either eliminate the tied 1226 /// operands or improve the opportunities for coalescing away the register copy. 1227 /// Returns true if no copy needs to be inserted to untie mi's operands 1228 /// (either because they were untied, or because mi was rescheduled, and will 1229 /// be visited again later). If the shouldOnlyCommute flag is true, only 1230 /// instruction commutation is attempted. 1231 bool TwoAddressInstructionPass:: 1232 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1233 MachineBasicBlock::iterator &nmi, 1234 unsigned SrcIdx, unsigned DstIdx, 1235 unsigned Dist, bool shouldOnlyCommute) { 1236 if (OptLevel == CodeGenOpt::None) 1237 return false; 1238 1239 MachineInstr &MI = *mi; 1240 unsigned regA = MI.getOperand(DstIdx).getReg(); 1241 unsigned regB = MI.getOperand(SrcIdx).getReg(); 1242 1243 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1244 "cannot make instruction into two-address form"); 1245 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1246 1247 if (TargetRegisterInfo::isVirtualRegister(regA)) 1248 scanUses(regA); 1249 1250 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1251 1252 // If the instruction is convertible to 3 Addr, instead 1253 // of returning try 3 Addr transformation aggresively and 1254 // use this variable to check later. Because it might be better. 1255 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1256 // instead of the following code. 1257 // addl %esi, %edi 1258 // movl %edi, %eax 1259 // ret 1260 if (Commuted && !MI.isConvertibleTo3Addr()) 1261 return false; 1262 1263 if (shouldOnlyCommute) 1264 return false; 1265 1266 // If there is one more use of regB later in the same MBB, consider 1267 // re-schedule this MI below it. 1268 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1269 ++NumReSchedDowns; 1270 return true; 1271 } 1272 1273 // If we commuted, regB may have changed so we should re-sample it to avoid 1274 // confusing the three address conversion below. 1275 if (Commuted) { 1276 regB = MI.getOperand(SrcIdx).getReg(); 1277 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1278 } 1279 1280 if (MI.isConvertibleTo3Addr()) { 1281 // This instruction is potentially convertible to a true 1282 // three-address instruction. Check if it is profitable. 1283 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1284 // Try to convert it. 1285 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1286 ++NumConvertedTo3Addr; 1287 return true; // Done with this instruction. 1288 } 1289 } 1290 } 1291 1292 // Return if it is commuted but 3 addr conversion is failed. 1293 if (Commuted) 1294 return false; 1295 1296 // If there is one more use of regB later in the same MBB, consider 1297 // re-schedule it before this MI if it's legal. 1298 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1299 ++NumReSchedUps; 1300 return true; 1301 } 1302 1303 // If this is an instruction with a load folded into it, try unfolding 1304 // the load, e.g. avoid this: 1305 // movq %rdx, %rcx 1306 // addq (%rax), %rcx 1307 // in favor of this: 1308 // movq (%rax), %rcx 1309 // addq %rdx, %rcx 1310 // because it's preferable to schedule a load than a register copy. 1311 if (MI.mayLoad() && !regBKilled) { 1312 // Determine if a load can be unfolded. 1313 unsigned LoadRegIndex; 1314 unsigned NewOpc = 1315 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1316 /*UnfoldLoad=*/true, 1317 /*UnfoldStore=*/false, 1318 &LoadRegIndex); 1319 if (NewOpc != 0) { 1320 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1321 if (UnfoldMCID.getNumDefs() == 1) { 1322 // Unfold the load. 1323 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1324 const TargetRegisterClass *RC = 1325 TRI->getAllocatableClass( 1326 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1327 unsigned Reg = MRI->createVirtualRegister(RC); 1328 SmallVector<MachineInstr *, 2> NewMIs; 1329 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1330 /*UnfoldLoad=*/true, 1331 /*UnfoldStore=*/false, NewMIs)) { 1332 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1333 return false; 1334 } 1335 assert(NewMIs.size() == 2 && 1336 "Unfolded a load into multiple instructions!"); 1337 // The load was previously folded, so this is the only use. 1338 NewMIs[1]->addRegisterKilled(Reg, TRI); 1339 1340 // Tentatively insert the instructions into the block so that they 1341 // look "normal" to the transformation logic. 1342 MBB->insert(mi, NewMIs[0]); 1343 MBB->insert(mi, NewMIs[1]); 1344 1345 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1346 << "2addr: NEW INST: " << *NewMIs[1]); 1347 1348 // Transform the instruction, now that it no longer has a load. 1349 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1350 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1351 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1352 bool TransformResult = 1353 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1354 (void)TransformResult; 1355 assert(!TransformResult && 1356 "tryInstructionTransform() should return false."); 1357 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1358 // Success, or at least we made an improvement. Keep the unfolded 1359 // instructions and discard the original. 1360 if (LV) { 1361 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1362 MachineOperand &MO = MI.getOperand(i); 1363 if (MO.isReg() && 1364 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 1365 if (MO.isUse()) { 1366 if (MO.isKill()) { 1367 if (NewMIs[0]->killsRegister(MO.getReg())) 1368 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1369 else { 1370 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1371 "Kill missing after load unfold!"); 1372 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1373 } 1374 } 1375 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1376 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1377 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1378 else { 1379 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1380 "Dead flag missing after load unfold!"); 1381 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1382 } 1383 } 1384 } 1385 } 1386 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1387 } 1388 1389 SmallVector<unsigned, 4> OrigRegs; 1390 if (LIS) { 1391 for (const MachineOperand &MO : MI.operands()) { 1392 if (MO.isReg()) 1393 OrigRegs.push_back(MO.getReg()); 1394 } 1395 } 1396 1397 MI.eraseFromParent(); 1398 1399 // Update LiveIntervals. 1400 if (LIS) { 1401 MachineBasicBlock::iterator Begin(NewMIs[0]); 1402 MachineBasicBlock::iterator End(NewMIs[1]); 1403 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1404 } 1405 1406 mi = NewMIs[1]; 1407 } else { 1408 // Transforming didn't eliminate the tie and didn't lead to an 1409 // improvement. Clean up the unfolded instructions and keep the 1410 // original. 1411 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1412 NewMIs[0]->eraseFromParent(); 1413 NewMIs[1]->eraseFromParent(); 1414 } 1415 } 1416 } 1417 } 1418 1419 return false; 1420 } 1421 1422 // Collect tied operands of MI that need to be handled. 1423 // Rewrite trivial cases immediately. 1424 // Return true if any tied operands where found, including the trivial ones. 1425 bool TwoAddressInstructionPass:: 1426 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1427 const MCInstrDesc &MCID = MI->getDesc(); 1428 bool AnyOps = false; 1429 unsigned NumOps = MI->getNumOperands(); 1430 1431 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1432 unsigned DstIdx = 0; 1433 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1434 continue; 1435 AnyOps = true; 1436 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1437 MachineOperand &DstMO = MI->getOperand(DstIdx); 1438 unsigned SrcReg = SrcMO.getReg(); 1439 unsigned DstReg = DstMO.getReg(); 1440 // Tied constraint already satisfied? 1441 if (SrcReg == DstReg) 1442 continue; 1443 1444 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1445 1446 // Deal with <undef> uses immediately - simply rewrite the src operand. 1447 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1448 // Constrain the DstReg register class if required. 1449 if (TargetRegisterInfo::isVirtualRegister(DstReg)) 1450 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1451 TRI, *MF)) 1452 MRI->constrainRegClass(DstReg, RC); 1453 SrcMO.setReg(DstReg); 1454 SrcMO.setSubReg(0); 1455 DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1456 continue; 1457 } 1458 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1459 } 1460 return AnyOps; 1461 } 1462 1463 // Process a list of tied MI operands that all use the same source register. 1464 // The tied pairs are of the form (SrcIdx, DstIdx). 1465 void 1466 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1467 TiedPairList &TiedPairs, 1468 unsigned &Dist) { 1469 bool IsEarlyClobber = false; 1470 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1471 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1472 IsEarlyClobber |= DstMO.isEarlyClobber(); 1473 } 1474 1475 bool RemovedKillFlag = false; 1476 bool AllUsesCopied = true; 1477 unsigned LastCopiedReg = 0; 1478 SlotIndex LastCopyIdx; 1479 unsigned RegB = 0; 1480 unsigned SubRegB = 0; 1481 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1482 unsigned SrcIdx = TiedPairs[tpi].first; 1483 unsigned DstIdx = TiedPairs[tpi].second; 1484 1485 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1486 unsigned RegA = DstMO.getReg(); 1487 1488 // Grab RegB from the instruction because it may have changed if the 1489 // instruction was commuted. 1490 RegB = MI->getOperand(SrcIdx).getReg(); 1491 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1492 1493 if (RegA == RegB) { 1494 // The register is tied to multiple destinations (or else we would 1495 // not have continued this far), but this use of the register 1496 // already matches the tied destination. Leave it. 1497 AllUsesCopied = false; 1498 continue; 1499 } 1500 LastCopiedReg = RegA; 1501 1502 assert(TargetRegisterInfo::isVirtualRegister(RegB) && 1503 "cannot make instruction into two-address form"); 1504 1505 #ifndef NDEBUG 1506 // First, verify that we don't have a use of "a" in the instruction 1507 // (a = b + a for example) because our transformation will not 1508 // work. This should never occur because we are in SSA form. 1509 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1510 assert(i == DstIdx || 1511 !MI->getOperand(i).isReg() || 1512 MI->getOperand(i).getReg() != RegA); 1513 #endif 1514 1515 // Emit a copy. 1516 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1517 TII->get(TargetOpcode::COPY), RegA); 1518 // If this operand is folding a truncation, the truncation now moves to the 1519 // copy so that the register classes remain valid for the operands. 1520 MIB.addReg(RegB, 0, SubRegB); 1521 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1522 if (SubRegB) { 1523 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1524 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1525 SubRegB) && 1526 "tied subregister must be a truncation"); 1527 // The superreg class will not be used to constrain the subreg class. 1528 RC = nullptr; 1529 } 1530 else { 1531 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1532 && "tied subregister must be a truncation"); 1533 } 1534 } 1535 1536 // Update DistanceMap. 1537 MachineBasicBlock::iterator PrevMI = MI; 1538 --PrevMI; 1539 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1540 DistanceMap[MI] = ++Dist; 1541 1542 if (LIS) { 1543 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1544 1545 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1546 LiveInterval &LI = LIS->getInterval(RegA); 1547 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1548 SlotIndex endIdx = 1549 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1550 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1551 } 1552 } 1553 1554 DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1555 1556 MachineOperand &MO = MI->getOperand(SrcIdx); 1557 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1558 "inconsistent operand info for 2-reg pass"); 1559 if (MO.isKill()) { 1560 MO.setIsKill(false); 1561 RemovedKillFlag = true; 1562 } 1563 1564 // Make sure regA is a legal regclass for the SrcIdx operand. 1565 if (TargetRegisterInfo::isVirtualRegister(RegA) && 1566 TargetRegisterInfo::isVirtualRegister(RegB)) 1567 MRI->constrainRegClass(RegA, RC); 1568 MO.setReg(RegA); 1569 // The getMatchingSuper asserts guarantee that the register class projected 1570 // by SubRegB is compatible with RegA with no subregister. So regardless of 1571 // whether the dest oper writes a subreg, the source oper should not. 1572 MO.setSubReg(0); 1573 1574 // Propagate SrcRegMap. 1575 SrcRegMap[RegA] = RegB; 1576 } 1577 1578 if (AllUsesCopied) { 1579 if (!IsEarlyClobber) { 1580 // Replace other (un-tied) uses of regB with LastCopiedReg. 1581 for (MachineOperand &MO : MI->operands()) { 1582 if (MO.isReg() && MO.getReg() == RegB && 1583 MO.isUse()) { 1584 if (MO.isKill()) { 1585 MO.setIsKill(false); 1586 RemovedKillFlag = true; 1587 } 1588 MO.setReg(LastCopiedReg); 1589 MO.setSubReg(MO.getSubReg()); 1590 } 1591 } 1592 } 1593 1594 // Update live variables for regB. 1595 if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(*MI)) { 1596 MachineBasicBlock::iterator PrevMI = MI; 1597 --PrevMI; 1598 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1599 } 1600 1601 // Update LiveIntervals. 1602 if (LIS) { 1603 LiveInterval &LI = LIS->getInterval(RegB); 1604 SlotIndex MIIdx = LIS->getInstructionIndex(*MI); 1605 LiveInterval::const_iterator I = LI.find(MIIdx); 1606 assert(I != LI.end() && "RegB must be live-in to use."); 1607 1608 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1609 if (I->end == UseIdx) 1610 LI.removeSegment(LastCopyIdx, UseIdx); 1611 } 1612 1613 } else if (RemovedKillFlag) { 1614 // Some tied uses of regB matched their destination registers, so 1615 // regB is still used in this instruction, but a kill flag was 1616 // removed from a different tied use of regB, so now we need to add 1617 // a kill flag to one of the remaining uses of regB. 1618 for (MachineOperand &MO : MI->operands()) { 1619 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1620 MO.setIsKill(true); 1621 break; 1622 } 1623 } 1624 } 1625 } 1626 1627 /// Reduce two-address instructions to two operands. 1628 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1629 MF = &Func; 1630 const TargetMachine &TM = MF->getTarget(); 1631 MRI = &MF->getRegInfo(); 1632 TII = MF->getSubtarget().getInstrInfo(); 1633 TRI = MF->getSubtarget().getRegisterInfo(); 1634 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1635 LV = getAnalysisIfAvailable<LiveVariables>(); 1636 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1637 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1638 AA = &AAPass->getAAResults(); 1639 else 1640 AA = nullptr; 1641 OptLevel = TM.getOptLevel(); 1642 1643 bool MadeChange = false; 1644 1645 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1646 DEBUG(dbgs() << "********** Function: " 1647 << MF->getName() << '\n'); 1648 1649 // This pass takes the function out of SSA form. 1650 MRI->leaveSSA(); 1651 1652 TiedOperandMap TiedOperands; 1653 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1654 MBBI != MBBE; ++MBBI) { 1655 MBB = &*MBBI; 1656 unsigned Dist = 0; 1657 DistanceMap.clear(); 1658 SrcRegMap.clear(); 1659 DstRegMap.clear(); 1660 Processed.clear(); 1661 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1662 mi != me; ) { 1663 MachineBasicBlock::iterator nmi = std::next(mi); 1664 if (mi->isDebugValue()) { 1665 mi = nmi; 1666 continue; 1667 } 1668 1669 // Expand REG_SEQUENCE instructions. This will position mi at the first 1670 // expanded instruction. 1671 if (mi->isRegSequence()) 1672 eliminateRegSequence(mi); 1673 1674 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1675 1676 processCopy(&*mi); 1677 1678 // First scan through all the tied register uses in this instruction 1679 // and record a list of pairs of tied operands for each register. 1680 if (!collectTiedOperands(&*mi, TiedOperands)) { 1681 mi = nmi; 1682 continue; 1683 } 1684 1685 ++NumTwoAddressInstrs; 1686 MadeChange = true; 1687 DEBUG(dbgs() << '\t' << *mi); 1688 1689 // If the instruction has a single pair of tied operands, try some 1690 // transformations that may either eliminate the tied operands or 1691 // improve the opportunities for coalescing away the register copy. 1692 if (TiedOperands.size() == 1) { 1693 SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs 1694 = TiedOperands.begin()->second; 1695 if (TiedPairs.size() == 1) { 1696 unsigned SrcIdx = TiedPairs[0].first; 1697 unsigned DstIdx = TiedPairs[0].second; 1698 unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); 1699 unsigned DstReg = mi->getOperand(DstIdx).getReg(); 1700 if (SrcReg != DstReg && 1701 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1702 // The tied operands have been eliminated or shifted further down 1703 // the block to ease elimination. Continue processing with 'nmi'. 1704 TiedOperands.clear(); 1705 mi = nmi; 1706 continue; 1707 } 1708 } 1709 } 1710 1711 // Now iterate over the information collected above. 1712 for (auto &TO : TiedOperands) { 1713 processTiedPairs(&*mi, TO.second, Dist); 1714 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1715 } 1716 1717 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1718 if (mi->isInsertSubreg()) { 1719 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1720 // To %reg:subidx = COPY %subreg 1721 unsigned SubIdx = mi->getOperand(3).getImm(); 1722 mi->RemoveOperand(3); 1723 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1724 mi->getOperand(0).setSubReg(SubIdx); 1725 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1726 mi->RemoveOperand(1); 1727 mi->setDesc(TII->get(TargetOpcode::COPY)); 1728 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1729 } 1730 1731 // Clear TiedOperands here instead of at the top of the loop 1732 // since most instructions do not have tied operands. 1733 TiedOperands.clear(); 1734 mi = nmi; 1735 } 1736 } 1737 1738 if (LIS) 1739 MF->verify(this, "After two-address instruction pass"); 1740 1741 return MadeChange; 1742 } 1743 1744 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1745 /// 1746 /// The instruction is turned into a sequence of sub-register copies: 1747 /// 1748 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1749 /// 1750 /// Becomes: 1751 /// 1752 /// %dst:ssub0<def,undef> = COPY %v1 1753 /// %dst:ssub1<def> = COPY %v2 1754 /// 1755 void TwoAddressInstructionPass:: 1756 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1757 MachineInstr &MI = *MBBI; 1758 unsigned DstReg = MI.getOperand(0).getReg(); 1759 if (MI.getOperand(0).getSubReg() || 1760 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1761 !(MI.getNumOperands() & 1)) { 1762 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1763 llvm_unreachable(nullptr); 1764 } 1765 1766 SmallVector<unsigned, 4> OrigRegs; 1767 if (LIS) { 1768 OrigRegs.push_back(MI.getOperand(0).getReg()); 1769 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1770 OrigRegs.push_back(MI.getOperand(i).getReg()); 1771 } 1772 1773 bool DefEmitted = false; 1774 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1775 MachineOperand &UseMO = MI.getOperand(i); 1776 unsigned SrcReg = UseMO.getReg(); 1777 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1778 // Nothing needs to be inserted for <undef> operands. 1779 if (UseMO.isUndef()) 1780 continue; 1781 1782 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1783 // might insert a COPY that uses SrcReg after is was killed. 1784 bool isKill = UseMO.isKill(); 1785 if (isKill) 1786 for (unsigned j = i + 2; j < e; j += 2) 1787 if (MI.getOperand(j).getReg() == SrcReg) { 1788 MI.getOperand(j).setIsKill(); 1789 UseMO.setIsKill(false); 1790 isKill = false; 1791 break; 1792 } 1793 1794 // Insert the sub-register copy. 1795 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1796 TII->get(TargetOpcode::COPY)) 1797 .addReg(DstReg, RegState::Define, SubIdx) 1798 .add(UseMO); 1799 1800 // The first def needs an <undef> flag because there is no live register 1801 // before it. 1802 if (!DefEmitted) { 1803 CopyMI->getOperand(0).setIsUndef(true); 1804 // Return an iterator pointing to the first inserted instr. 1805 MBBI = CopyMI; 1806 } 1807 DefEmitted = true; 1808 1809 // Update LiveVariables' kill info. 1810 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1811 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1812 1813 DEBUG(dbgs() << "Inserted: " << *CopyMI); 1814 } 1815 1816 MachineBasicBlock::iterator EndMBBI = 1817 std::next(MachineBasicBlock::iterator(MI)); 1818 1819 if (!DefEmitted) { 1820 DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1821 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1822 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1823 MI.RemoveOperand(j); 1824 } else { 1825 DEBUG(dbgs() << "Eliminated: " << MI); 1826 MI.eraseFromParent(); 1827 } 1828 1829 // Udpate LiveIntervals. 1830 if (LIS) 1831 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1832 } 1833