1 //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a wrapper around MCSchedModel that allows the interface 11 // to benefit from information currently only available in TargetInstrInfo. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/TargetSchedule.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/MachineInstr.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/TargetInstrInfo.h" 20 #include "llvm/CodeGen/TargetRegisterInfo.h" 21 #include "llvm/CodeGen/TargetSubtargetInfo.h" 22 #include "llvm/MC/MCInstrDesc.h" 23 #include "llvm/MC/MCInstrItineraries.h" 24 #include "llvm/MC/MCSchedule.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <cstdint> 31 32 using namespace llvm; 33 34 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true), 35 cl::desc("Use TargetSchedModel for latency lookup")); 36 37 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true), 38 cl::desc("Use InstrItineraryData for latency lookup")); 39 40 bool TargetSchedModel::hasInstrSchedModel() const { 41 return EnableSchedModel && SchedModel.hasInstrSchedModel(); 42 } 43 44 bool TargetSchedModel::hasInstrItineraries() const { 45 return EnableSchedItins && !InstrItins.isEmpty(); 46 } 47 48 static unsigned gcd(unsigned Dividend, unsigned Divisor) { 49 // Dividend and Divisor will be naturally swapped as needed. 50 while (Divisor) { 51 unsigned Rem = Dividend % Divisor; 52 Dividend = Divisor; 53 Divisor = Rem; 54 }; 55 return Dividend; 56 } 57 58 static unsigned lcm(unsigned A, unsigned B) { 59 unsigned LCM = (uint64_t(A) * B) / gcd(A, B); 60 assert((LCM >= A && LCM >= B) && "LCM overflow"); 61 return LCM; 62 } 63 64 void TargetSchedModel::init(const MCSchedModel &sm, 65 const TargetSubtargetInfo *sti, 66 const TargetInstrInfo *tii) { 67 SchedModel = sm; 68 STI = sti; 69 TII = tii; 70 STI->initInstrItins(InstrItins); 71 72 unsigned NumRes = SchedModel.getNumProcResourceKinds(); 73 ResourceFactors.resize(NumRes); 74 ResourceLCM = SchedModel.IssueWidth; 75 for (unsigned Idx = 0; Idx < NumRes; ++Idx) { 76 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; 77 if (NumUnits > 0) 78 ResourceLCM = lcm(ResourceLCM, NumUnits); 79 } 80 MicroOpFactor = ResourceLCM / SchedModel.IssueWidth; 81 for (unsigned Idx = 0; Idx < NumRes; ++Idx) { 82 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; 83 ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0; 84 } 85 } 86 87 /// Returns true only if instruction is specified as single issue. 88 bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI, 89 const MCSchedClassDesc *SC) const { 90 if (hasInstrSchedModel()) { 91 if (!SC) 92 SC = resolveSchedClass(MI); 93 if (SC->isValid()) 94 return SC->BeginGroup; 95 } 96 return false; 97 } 98 99 bool TargetSchedModel::mustEndGroup(const MachineInstr *MI, 100 const MCSchedClassDesc *SC) const { 101 if (hasInstrSchedModel()) { 102 if (!SC) 103 SC = resolveSchedClass(MI); 104 if (SC->isValid()) 105 return SC->EndGroup; 106 } 107 return false; 108 } 109 110 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI, 111 const MCSchedClassDesc *SC) const { 112 if (hasInstrItineraries()) { 113 int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass()); 114 return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI); 115 } 116 if (hasInstrSchedModel()) { 117 if (!SC) 118 SC = resolveSchedClass(MI); 119 if (SC->isValid()) 120 return SC->NumMicroOps; 121 } 122 return MI->isTransient() ? 0 : 1; 123 } 124 125 // The machine model may explicitly specify an invalid latency, which 126 // effectively means infinite latency. Since users of the TargetSchedule API 127 // don't know how to handle this, we convert it to a very large latency that is 128 // easy to distinguish when debugging the DAG but won't induce overflow. 129 static unsigned capLatency(int Cycles) { 130 return Cycles >= 0 ? Cycles : 1000; 131 } 132 133 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require 134 /// evaluation of predicates that depend on instruction operands or flags. 135 const MCSchedClassDesc *TargetSchedModel:: 136 resolveSchedClass(const MachineInstr *MI) const { 137 // Get the definition's scheduling class descriptor from this machine model. 138 unsigned SchedClass = MI->getDesc().getSchedClass(); 139 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass); 140 if (!SCDesc->isValid()) 141 return SCDesc; 142 143 #ifndef NDEBUG 144 unsigned NIter = 0; 145 #endif 146 while (SCDesc->isVariant()) { 147 assert(++NIter < 6 && "Variants are nested deeper than the magic number"); 148 149 SchedClass = STI->resolveSchedClass(SchedClass, MI, this); 150 SCDesc = SchedModel.getSchedClassDesc(SchedClass); 151 } 152 return SCDesc; 153 } 154 155 /// Find the def index of this operand. This index maps to the machine model and 156 /// is independent of use operands. Def operands may be reordered with uses or 157 /// merged with uses without affecting the def index (e.g. before/after 158 /// regalloc). However, an instruction's def operands must never be reordered 159 /// with respect to each other. 160 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) { 161 unsigned DefIdx = 0; 162 for (unsigned i = 0; i != DefOperIdx; ++i) { 163 const MachineOperand &MO = MI->getOperand(i); 164 if (MO.isReg() && MO.isDef()) 165 ++DefIdx; 166 } 167 return DefIdx; 168 } 169 170 /// Find the use index of this operand. This is independent of the instruction's 171 /// def operands. 172 /// 173 /// Note that uses are not determined by the operand's isUse property, which 174 /// is simply the inverse of isDef. Here we consider any readsReg operand to be 175 /// a "use". The machine model allows an operand to be both a Def and Use. 176 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) { 177 unsigned UseIdx = 0; 178 for (unsigned i = 0; i != UseOperIdx; ++i) { 179 const MachineOperand &MO = MI->getOperand(i); 180 if (MO.isReg() && MO.readsReg() && !MO.isDef()) 181 ++UseIdx; 182 } 183 return UseIdx; 184 } 185 186 // Top-level API for clients that know the operand indices. 187 unsigned TargetSchedModel::computeOperandLatency( 188 const MachineInstr *DefMI, unsigned DefOperIdx, 189 const MachineInstr *UseMI, unsigned UseOperIdx) const { 190 191 if (!hasInstrSchedModel() && !hasInstrItineraries()) 192 return TII->defaultDefLatency(SchedModel, *DefMI); 193 194 if (hasInstrItineraries()) { 195 int OperLatency = 0; 196 if (UseMI) { 197 OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx, 198 *UseMI, UseOperIdx); 199 } 200 else { 201 unsigned DefClass = DefMI->getDesc().getSchedClass(); 202 OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx); 203 } 204 if (OperLatency >= 0) 205 return OperLatency; 206 207 // No operand latency was found. 208 unsigned InstrLatency = TII->getInstrLatency(&InstrItins, *DefMI); 209 210 // Expected latency is the max of the stage latency and itinerary props. 211 // Rather than directly querying InstrItins stage latency, we call a TII 212 // hook to allow subtargets to specialize latency. This hook is only 213 // applicable to the InstrItins model. InstrSchedModel should model all 214 // special cases without TII hooks. 215 InstrLatency = 216 std::max(InstrLatency, TII->defaultDefLatency(SchedModel, *DefMI)); 217 return InstrLatency; 218 } 219 // hasInstrSchedModel() 220 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); 221 unsigned DefIdx = findDefIdx(DefMI, DefOperIdx); 222 if (DefIdx < SCDesc->NumWriteLatencyEntries) { 223 // Lookup the definition's write latency in SubtargetInfo. 224 const MCWriteLatencyEntry *WLEntry = 225 STI->getWriteLatencyEntry(SCDesc, DefIdx); 226 unsigned WriteID = WLEntry->WriteResourceID; 227 unsigned Latency = capLatency(WLEntry->Cycles); 228 if (!UseMI) 229 return Latency; 230 231 // Lookup the use's latency adjustment in SubtargetInfo. 232 const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI); 233 if (UseDesc->NumReadAdvanceEntries == 0) 234 return Latency; 235 unsigned UseIdx = findUseIdx(UseMI, UseOperIdx); 236 int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID); 237 if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap 238 return 0; 239 return Latency - Advance; 240 } 241 // If DefIdx does not exist in the model (e.g. implicit defs), then return 242 // unit latency (defaultDefLatency may be too conservative). 243 #ifndef NDEBUG 244 if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() 245 && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef() 246 && SchedModel.isComplete()) { 247 errs() << "DefIdx " << DefIdx << " exceeds machine model writes for " 248 << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)"; 249 llvm_unreachable("incomplete machine model"); 250 } 251 #endif 252 // FIXME: Automatically giving all implicit defs defaultDefLatency is 253 // undesirable. We should only do it for defs that are known to the MC 254 // desc like flags. Truly implicit defs should get 1 cycle latency. 255 return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, *DefMI); 256 } 257 258 unsigned 259 TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const { 260 return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc)); 261 } 262 263 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const { 264 assert(hasInstrSchedModel() && "Only call this function with a SchedModel"); 265 266 unsigned SCIdx = TII->get(Opcode).getSchedClass(); 267 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SCIdx); 268 269 if (!SCDesc->isValid()) 270 return 0; 271 if (!SCDesc->isVariant()) 272 return computeInstrLatency(*SCDesc); 273 274 llvm_unreachable("No MI sched latency"); 275 } 276 277 unsigned 278 TargetSchedModel::computeInstrLatency(const MachineInstr *MI, 279 bool UseDefaultDefLatency) const { 280 // For the itinerary model, fall back to the old subtarget hook. 281 // Allow subtargets to compute Bundle latencies outside the machine model. 282 if (hasInstrItineraries() || MI->isBundle() || 283 (!hasInstrSchedModel() && !UseDefaultDefLatency)) 284 return TII->getInstrLatency(&InstrItins, *MI); 285 286 if (hasInstrSchedModel()) { 287 const MCSchedClassDesc *SCDesc = resolveSchedClass(MI); 288 if (SCDesc->isValid()) 289 return computeInstrLatency(*SCDesc); 290 } 291 return TII->defaultDefLatency(SchedModel, *MI); 292 } 293 294 unsigned TargetSchedModel:: 295 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, 296 const MachineInstr *DepMI) const { 297 if (!SchedModel.isOutOfOrder()) 298 return 1; 299 300 // Out-of-order processor can dispatch WAW dependencies in the same cycle. 301 302 // Treat predication as a data dependency for out-of-order cpus. In-order 303 // cpus do not need to treat predicated writes specially. 304 // 305 // TODO: The following hack exists because predication passes do not 306 // correctly append imp-use operands, and readsReg() strangely returns false 307 // for predicated defs. 308 unsigned Reg = DefMI->getOperand(DefOperIdx).getReg(); 309 const MachineFunction &MF = *DefMI->getMF(); 310 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 311 if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI)) 312 return computeInstrLatency(DefMI); 313 314 // If we have a per operand scheduling model, check if this def is writing 315 // an unbuffered resource. If so, it treated like an in-order cpu. 316 if (hasInstrSchedModel()) { 317 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); 318 if (SCDesc->isValid()) { 319 for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc), 320 *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) { 321 if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize) 322 return 1; 323 } 324 } 325 } 326 return 0; 327 } 328 329 static Optional<double> 330 getRThroughputFromItineraries(unsigned schedClass, 331 const InstrItineraryData *IID){ 332 Optional<double> Throughput; 333 334 for (const InstrStage *IS = IID->beginStage(schedClass), 335 *E = IID->endStage(schedClass); 336 IS != E; ++IS) { 337 if (IS->getCycles()) { 338 double Temp = countPopulation(IS->getUnits()) * 1.0 / IS->getCycles(); 339 Throughput = Throughput.hasValue() 340 ? std::min(Throughput.getValue(), Temp) 341 : Temp; 342 } 343 } 344 if (Throughput.hasValue()) 345 // We need reciprocal throughput that's why we return such value. 346 return 1 / Throughput.getValue(); 347 return Throughput; 348 } 349 350 Optional<double> 351 TargetSchedModel::computeInstrRThroughput(const MachineInstr *MI) const { 352 if (hasInstrItineraries()) 353 return getRThroughputFromItineraries(MI->getDesc().getSchedClass(), 354 getInstrItineraries()); 355 if (hasInstrSchedModel()) 356 return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI)); 357 return Optional<double>(); 358 } 359 360 Optional<double> 361 TargetSchedModel::computeInstrRThroughput(unsigned Opcode) const { 362 unsigned SchedClass = TII->get(Opcode).getSchedClass(); 363 if (hasInstrItineraries()) 364 return getRThroughputFromItineraries(SchedClass, getInstrItineraries()); 365 if (hasInstrSchedModel()) { 366 const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass); 367 if (SCDesc.isValid() && !SCDesc.isVariant()) 368 return MCSchedModel::getReciprocalThroughput(*STI, SCDesc); 369 } 370 return Optional<double>(); 371 } 372