1 //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a wrapper around MCSchedModel that allows the interface 11 // to benefit from information currently only available in TargetInstrInfo. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/CodeGen/MachineInstr.h" 17 #include "llvm/CodeGen/MachineOperand.h" 18 #include "llvm/CodeGen/TargetSchedule.h" 19 #include "llvm/MC/MCInstrDesc.h" 20 #include "llvm/MC/MCInstrItineraries.h" 21 #include "llvm/MC/MCSchedule.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/Target/TargetInstrInfo.h" 26 #include "llvm/Target/TargetRegisterInfo.h" 27 #include "llvm/Target/TargetSubtargetInfo.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <cstdint> 31 32 using namespace llvm; 33 34 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true), 35 cl::desc("Use TargetSchedModel for latency lookup")); 36 37 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true), 38 cl::desc("Use InstrItineraryData for latency lookup")); 39 40 bool TargetSchedModel::hasInstrSchedModel() const { 41 return EnableSchedModel && SchedModel.hasInstrSchedModel(); 42 } 43 44 bool TargetSchedModel::hasInstrItineraries() const { 45 return EnableSchedItins && !InstrItins.isEmpty(); 46 } 47 48 static unsigned gcd(unsigned Dividend, unsigned Divisor) { 49 // Dividend and Divisor will be naturally swapped as needed. 50 while (Divisor) { 51 unsigned Rem = Dividend % Divisor; 52 Dividend = Divisor; 53 Divisor = Rem; 54 }; 55 return Dividend; 56 } 57 58 static unsigned lcm(unsigned A, unsigned B) { 59 unsigned LCM = (uint64_t(A) * B) / gcd(A, B); 60 assert((LCM >= A && LCM >= B) && "LCM overflow"); 61 return LCM; 62 } 63 64 void TargetSchedModel::init(const MCSchedModel &sm, 65 const TargetSubtargetInfo *sti, 66 const TargetInstrInfo *tii) { 67 SchedModel = sm; 68 STI = sti; 69 TII = tii; 70 STI->initInstrItins(InstrItins); 71 72 unsigned NumRes = SchedModel.getNumProcResourceKinds(); 73 ResourceFactors.resize(NumRes); 74 ResourceLCM = SchedModel.IssueWidth; 75 for (unsigned Idx = 0; Idx < NumRes; ++Idx) { 76 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; 77 if (NumUnits > 0) 78 ResourceLCM = lcm(ResourceLCM, NumUnits); 79 } 80 MicroOpFactor = ResourceLCM / SchedModel.IssueWidth; 81 for (unsigned Idx = 0; Idx < NumRes; ++Idx) { 82 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; 83 ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0; 84 } 85 } 86 87 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI, 88 const MCSchedClassDesc *SC) const { 89 if (hasInstrItineraries()) { 90 int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass()); 91 return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI); 92 } 93 if (hasInstrSchedModel()) { 94 if (!SC) 95 SC = resolveSchedClass(MI); 96 if (SC->isValid()) 97 return SC->NumMicroOps; 98 } 99 return MI->isTransient() ? 0 : 1; 100 } 101 102 // The machine model may explicitly specify an invalid latency, which 103 // effectively means infinite latency. Since users of the TargetSchedule API 104 // don't know how to handle this, we convert it to a very large latency that is 105 // easy to distinguish when debugging the DAG but won't induce overflow. 106 static unsigned capLatency(int Cycles) { 107 return Cycles >= 0 ? Cycles : 1000; 108 } 109 110 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require 111 /// evaluation of predicates that depend on instruction operands or flags. 112 const MCSchedClassDesc *TargetSchedModel:: 113 resolveSchedClass(const MachineInstr *MI) const { 114 // Get the definition's scheduling class descriptor from this machine model. 115 unsigned SchedClass = MI->getDesc().getSchedClass(); 116 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass); 117 if (!SCDesc->isValid()) 118 return SCDesc; 119 120 #ifndef NDEBUG 121 unsigned NIter = 0; 122 #endif 123 while (SCDesc->isVariant()) { 124 assert(++NIter < 6 && "Variants are nested deeper than the magic number"); 125 126 SchedClass = STI->resolveSchedClass(SchedClass, MI, this); 127 SCDesc = SchedModel.getSchedClassDesc(SchedClass); 128 } 129 return SCDesc; 130 } 131 132 /// Find the def index of this operand. This index maps to the machine model and 133 /// is independent of use operands. Def operands may be reordered with uses or 134 /// merged with uses without affecting the def index (e.g. before/after 135 /// regalloc). However, an instruction's def operands must never be reordered 136 /// with respect to each other. 137 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) { 138 unsigned DefIdx = 0; 139 for (unsigned i = 0; i != DefOperIdx; ++i) { 140 const MachineOperand &MO = MI->getOperand(i); 141 if (MO.isReg() && MO.isDef()) 142 ++DefIdx; 143 } 144 return DefIdx; 145 } 146 147 /// Find the use index of this operand. This is independent of the instruction's 148 /// def operands. 149 /// 150 /// Note that uses are not determined by the operand's isUse property, which 151 /// is simply the inverse of isDef. Here we consider any readsReg operand to be 152 /// a "use". The machine model allows an operand to be both a Def and Use. 153 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) { 154 unsigned UseIdx = 0; 155 for (unsigned i = 0; i != UseOperIdx; ++i) { 156 const MachineOperand &MO = MI->getOperand(i); 157 if (MO.isReg() && MO.readsReg() && !MO.isDef()) 158 ++UseIdx; 159 } 160 return UseIdx; 161 } 162 163 // Top-level API for clients that know the operand indices. 164 unsigned TargetSchedModel::computeOperandLatency( 165 const MachineInstr *DefMI, unsigned DefOperIdx, 166 const MachineInstr *UseMI, unsigned UseOperIdx) const { 167 168 if (!hasInstrSchedModel() && !hasInstrItineraries()) 169 return TII->defaultDefLatency(SchedModel, *DefMI); 170 171 if (hasInstrItineraries()) { 172 int OperLatency = 0; 173 if (UseMI) { 174 OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx, 175 *UseMI, UseOperIdx); 176 } 177 else { 178 unsigned DefClass = DefMI->getDesc().getSchedClass(); 179 OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx); 180 } 181 if (OperLatency >= 0) 182 return OperLatency; 183 184 // No operand latency was found. 185 unsigned InstrLatency = TII->getInstrLatency(&InstrItins, *DefMI); 186 187 // Expected latency is the max of the stage latency and itinerary props. 188 // Rather than directly querying InstrItins stage latency, we call a TII 189 // hook to allow subtargets to specialize latency. This hook is only 190 // applicable to the InstrItins model. InstrSchedModel should model all 191 // special cases without TII hooks. 192 InstrLatency = 193 std::max(InstrLatency, TII->defaultDefLatency(SchedModel, *DefMI)); 194 return InstrLatency; 195 } 196 // hasInstrSchedModel() 197 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); 198 unsigned DefIdx = findDefIdx(DefMI, DefOperIdx); 199 if (DefIdx < SCDesc->NumWriteLatencyEntries) { 200 // Lookup the definition's write latency in SubtargetInfo. 201 const MCWriteLatencyEntry *WLEntry = 202 STI->getWriteLatencyEntry(SCDesc, DefIdx); 203 unsigned WriteID = WLEntry->WriteResourceID; 204 unsigned Latency = capLatency(WLEntry->Cycles); 205 if (!UseMI) 206 return Latency; 207 208 // Lookup the use's latency adjustment in SubtargetInfo. 209 const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI); 210 if (UseDesc->NumReadAdvanceEntries == 0) 211 return Latency; 212 unsigned UseIdx = findUseIdx(UseMI, UseOperIdx); 213 int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID); 214 if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap 215 return 0; 216 return Latency - Advance; 217 } 218 // If DefIdx does not exist in the model (e.g. implicit defs), then return 219 // unit latency (defaultDefLatency may be too conservative). 220 #ifndef NDEBUG 221 if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() 222 && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef() 223 && SchedModel.isComplete()) { 224 errs() << "DefIdx " << DefIdx << " exceeds machine model writes for " 225 << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)"; 226 llvm_unreachable("incomplete machine model"); 227 } 228 #endif 229 // FIXME: Automatically giving all implicit defs defaultDefLatency is 230 // undesirable. We should only do it for defs that are known to the MC 231 // desc like flags. Truly implicit defs should get 1 cycle latency. 232 return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, *DefMI); 233 } 234 235 unsigned 236 TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const { 237 unsigned Latency = 0; 238 for (unsigned DefIdx = 0, DefEnd = SCDesc.NumWriteLatencyEntries; 239 DefIdx != DefEnd; ++DefIdx) { 240 // Lookup the definition's write latency in SubtargetInfo. 241 const MCWriteLatencyEntry *WLEntry = 242 STI->getWriteLatencyEntry(&SCDesc, DefIdx); 243 Latency = std::max(Latency, capLatency(WLEntry->Cycles)); 244 } 245 return Latency; 246 } 247 248 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const { 249 assert(hasInstrSchedModel() && "Only call this function with a SchedModel"); 250 251 unsigned SCIdx = TII->get(Opcode).getSchedClass(); 252 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SCIdx); 253 254 if (SCDesc->isValid() && !SCDesc->isVariant()) 255 return computeInstrLatency(*SCDesc); 256 257 llvm_unreachable("No MI sched latency"); 258 } 259 260 unsigned 261 TargetSchedModel::computeInstrLatency(const MachineInstr *MI, 262 bool UseDefaultDefLatency) const { 263 // For the itinerary model, fall back to the old subtarget hook. 264 // Allow subtargets to compute Bundle latencies outside the machine model. 265 if (hasInstrItineraries() || MI->isBundle() || 266 (!hasInstrSchedModel() && !UseDefaultDefLatency)) 267 return TII->getInstrLatency(&InstrItins, *MI); 268 269 if (hasInstrSchedModel()) { 270 const MCSchedClassDesc *SCDesc = resolveSchedClass(MI); 271 if (SCDesc->isValid()) 272 return computeInstrLatency(*SCDesc); 273 } 274 return TII->defaultDefLatency(SchedModel, *MI); 275 } 276 277 unsigned TargetSchedModel:: 278 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, 279 const MachineInstr *DepMI) const { 280 if (!SchedModel.isOutOfOrder()) 281 return 1; 282 283 // Out-of-order processor can dispatch WAW dependencies in the same cycle. 284 285 // Treat predication as a data dependency for out-of-order cpus. In-order 286 // cpus do not need to treat predicated writes specially. 287 // 288 // TODO: The following hack exists because predication passes do not 289 // correctly append imp-use operands, and readsReg() strangely returns false 290 // for predicated defs. 291 unsigned Reg = DefMI->getOperand(DefOperIdx).getReg(); 292 const MachineFunction &MF = *DefMI->getParent()->getParent(); 293 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 294 if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI)) 295 return computeInstrLatency(DefMI); 296 297 // If we have a per operand scheduling model, check if this def is writing 298 // an unbuffered resource. If so, it treated like an in-order cpu. 299 if (hasInstrSchedModel()) { 300 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); 301 if (SCDesc->isValid()) { 302 for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc), 303 *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) { 304 if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize) 305 return 1; 306 } 307 } 308 } 309 return 0; 310 } 311